PERPETUAL

TROUBLE SHOOTER'S MANUAL
 Reg. U. S. Pat. Off.

VOLUME XXIII

JOHN F. RIDER PUBLISHER, INC.
\square

ADMIRAL PAGE 23-1

TO REMOVE CLOCK FROM CABINET

(Radio chassis need not be removed when removing clock)

1. Remove the back from radio cabinet.
2. Remove the clock plug from the socket on top of the radio chassis, by removing screw from top of plug and gently prying plug out from socket.
3. Remove the 2 nuts which hold the clock back cover to the clock.
4. Pull the clock out through the front of the cabinet.

Operating radio when clock is REMOVED FROM CABINET

If the radio must be operated without the clock, a wire jumper must be connected between contacts 1 and 4 on socket M2 to complete the circuit.

Adjustments A and C made from underside of chassis.

DIAL STRINGING AND POINTER SETTING

Dial stringing and pointer with solid lines shown with gang closed. Dashed line pointer positions (1400 KC and 900 KC) shown when tuning condenser is tuned to generator signal.

ALIGNMENT PROCEDURE

- Connect a wire jumper between contacts 1 and 4 on clock socket (M2) as shown in illustration.
- Turn receiver volume control full on (fully clockwise).
- Connect output meter across speaker voice coil.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and proceed in the following sequence.
- Repeat adjustments to insure good results. a .1 mfd . condenser in series with low side of signal generator and connect to chassis.
Caution: Do not connect a ground wire directly to chassis.

$=$| Signal
 Generator
 Frequency | Receiver
 Gang
 Setting | Trimmer
 Description | Trimmer
 Designation | Type of
 Adjustment |
| :---: | :---: | :---: | :---: | :---: |
| 155 KC | Gang
 fully
 open | 2nd IF
 lst IF | *A, B
 *C, D | Maximum
 output |
| 1620 KC | Gang
 fully
 open | Oscillator | E | Maximum
 output |

PAGE 23-2 ADMIRAL
MODELS 5L21, 5L22,
5L23, Ch. 5L2

*These readings will be either lower or practically zero if taken with a 1000 ohm-per-volt meter.

VOLTAGEDATA

Voltages shown on schematic diagram

- All readings made between tube socket terminals and B minus (negative lead of electrolytic condenser Cl3).
- Measured on 117 Volt 60 Cycle AC line.
- Volume control minimum; dial turned to low frequency end.
- Voltages measured with Vacuum Tube Voltmeter.

RESISTORS	COIL, TRANSFORMERS, ETC.	CABINET PARTS Part No.
	${ }_{\text {L1 }}$	Bezel, Tuning Dial (Frame) \qquad
		Volume, Ebony Volume, Maroon \qquad
CONDENSER	MISCELLANEOUS PARTS Description	
		Washer, Felt (for tuning knobs) -
mid. max. Osc. jcang -	Clamp ifor line	
		CLOCK PARTS
C6		(tal
fci jous mat		Co
	ith grounding strap - $\square_{87 \mathrm{~A}}^{87}$	ceitel
		Bezel, Clock (Frame)
		${ }_{\text {Motor Assembly }}^{\text {for } 110 \mathrm{~V} \text {. } 60 \text { cycle }}$
		Gl
schematic correspond to lead numbers srinted on tace of couplate.		Clock \qquad ${ }_{910}^{91 C} 6.12$

 rear of the changer base and also on the changer model label.

Cartridge and Needle

As shown in the illustrations, alternate cartridges may be used. Cartridges are interchangeable when complete with needle.

Adjustments A and C made from underside of chassis.
DIAL STRINGING AND POINTER SETTING

Dial stringing and pointer with solid lines shown with gang closed. Dashed line pointer positions (1400 KC and 900 KC) shown when tuning condenser is tuned to generator signal.

ALIGNMENT PROCEDURE

- Turn receiver volume control full on.
- Antenna must be connected and placed in the same relative position to the chassis as when in cabinet.
- Use an isolation transformer if available, otherwise connect a . 1 mfd . condenser in series with low side of signal generator and connect to chassis. Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and proceed in the following sequence.
- Repeat adjustments to insure good results.

Step	Dummy Anterina in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd. condenser	Tuning condenser, antenna stator	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd IF } \\ & \text { 1st IF } \end{aligned}$	$\begin{aligned} & \text { *A, B } \\ & { }^{*} \mathrm{C}, \mathrm{D} \end{aligned}$	Maximum output
2	250 mmfd. condenser	Tuning condenser, antenna stator	1620 KC	Gang fully open	Oscillator	E	Maximum output

Mount dial pointer. Set pointer to horizontal position with tuning condenser tuned to 1400 KC generator signal (see illustration below). Rotate the tuning condenser until the pointer is in a vertical position (900 KC), then slip chassis in cabinet, carefully guiding the pointer so that it locates between the dial escutcheon and the cabinet. Install antenna and chassis mounting bolts. The pointer and escutcheon may be mounted after installing the chassis in cabinet as follows: Set pointer to horizontal position with gang tuned to 1400 KC signal. Place escutcheon on cabinet. With long nose pliers slip the hairpin ends of the escutcheon mounting springs in holes of escutcheon tabs.

> Loop of several turns of wire, or place generator lead close to receiver antenna for adequate signal pickup.

No actual connection (signal by radiation)
$1400 \mathrm{KC} \left\lvert\, \begin{gathered}\text { Tune in } \\ \text { generator } \\ \text { signal }\end{gathered}\right.$

Antenna	$\dagger \mathrm{F}$	Maximum output

*Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of chassis, if you use alignment tool \#98A30-7 obtainable from your Admiral distributor. The bottom IF slug adjustment may be reached through the hollow core in the upper slug.
\dagger Antenna Trimmer " F " should be aligned after chassis and antenna are mounted in cabinet.

PAGE 23-4 ADMIRAL

MODELS 5M21, 5M22, Ch. 5M2

A These readings will be zero on "Phono"; all other DC readings may be slightly higher.
VOLTAGE DATA
Voltages given on schematic diagram.

- All readings made between tube socket terminals and B minus (terminal of On-Off switch).
- Switch S2 in "Radio" position.
- Measured on 117 Volt 60 Cycle AC line.
- Volume control minimum; dial turned to low end.
- Voltages measured with Vacuum Tube Voltmeter.

ALIGNMENT PROCEDURE

IMPORTANT: For IF alignment, it will be necessary to disassemble the radio chassis from the escutcheon and housing and also remove the chassis cover and dial scale assembly. The antenna, RF and oscillator trimmers are accessible from top of chassis; disassembly of chassis cover and dial scale will generally not be required.

- Connect output meter across speaker voice coil.
- Turn receiver Volume control fully on; Tone control fully clockwise.
- Radio-Phono switch in "Radio" position.
- Antenna must be connected and placed in the same relative
position to the chassis as when in the cabinet.
- Use lowest output setting of signal generator that gives a satisfactory reading on meter.
- Use a non-metallic alignment tool for IF adjustments.
- Repeat adjustments to insure good results.

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generafor Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	.1 mfd . condenser	Pin 7 of 6BE6 tube	455 KC	Gang fully open	$\begin{gathered} \text { 2nd IF } \\ \text { 1st IF } \end{gathered}$	$\begin{aligned} & * \mathrm{~A}, \mathrm{~B} \\ & * \mathrm{C}, \mathrm{D} \end{aligned}$	Maximum Output
2	.1 mfd . condenser	Tuning condenser, antenna stator	1620 KC	"	Oscillator	E	"
3	Loop of several turns of wire, or place generator lead close to receiver loop for adequate signal.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	RF	F	"
4	"	"	"	"	Antenna	G	"

*Adjustments " A " and " C " are made from underside of chassis.

REMOVING RADIO CHASSIS FROM HOUSING

To remove the radio chassis from the front housing proceed as follows:

1. Position the gang condenser drum as shown below.
2. Unhook spring at "A".
3. Keeping tension on dial cord, hook spring to edge of cut out at "B".
4. Remove six screws "C" and hex nuts " D " and " E ".
5. Remove front housing from chassis.
6. Reassemble in reverse order. See illustration below for pointer setting.

Radio Chassis With Front Housing Removed.
Dial Stringing Also Shown.

Dial Scale and Pointer Setting.

PAGE 23-8 ADMIRAL

MODELS 6N25, 6N26, 6N27, Ch. 5R2

RESISTORS	
Symbol	Description Part No.
R1	150 ohms, $1 / 2$ watt................60B 8
R2	39,000 ohms, l watt.............60B 14-393
R3	10,000 ohms, 1 watt.............60B 14-103
R4	22,000 ohms, $1 / 2$ watt._.........60B 8-223
R5	150 ohms, $1 / 2$ watt...............60B $8-151$
R6	27,000 ohms, 1 watt.............60B 14-273
\dagger R7	47,000 ohms, $1 / 2 \mathrm{watt}$
R8	1 megohm, $1 / 2$ watt..............60B 8-105
R9	4.7 megohms, $1 / 2$ watt...........60B 8-475
$\begin{aligned} & \text { R10A } \\ & \text { R10B } \end{aligned}$	$\left.\begin{array}{l}1 \text { megohm, Volume } \\ 2 \text { megohms, Tone }\end{array}\right\}$ pot.........75B 11-11
(R10 includes switch S2)	
R11	82,000 ohms, $1 / 2$ watt............60B 8-823
R12	470,000 ohms, 1/2 watt...........60B 8-474
R13	47,000 ohms, $1 / 2$ watt.............60B 8-473
R1	470,000 ohms, $1 / 2$ watt...........60B 8-474
R15	270 ohms, 2 watts.................60E 20-271
R16	310 ohms, 5 watts $\}$
R17	310 ohms, 5 watts $\}$..............61A 5-10

CONDENSERS

Symbol	Description Part No.
Cl	5 mmfd , mica.......................65B 1-62
C2	2 to 20 mmid , trimmer..........66B 8-5
$\begin{aligned} & \text { C3A } \\ & \text { C3B } \\ & \text { C3C } \end{aligned}$	420 mmfd max. $\left.\begin{array}{l}193.8 \text { midd, max. } \\ 90 \text { mmfd, max. }\end{array}\right\}$ Gang.......68B $46-2$
	(Note: Dial drum spot-welded to gang)
C4	. 1 mfd , 400 volts, paper.......64B 5-20
C5	50 mmfd , ceramic................65B 6-4
C6	. 1 mfd , 400 volts, paper.......64B 5-20
C7	.005 mfd , min, ceramic........65A 10-1
\dagger ¢8	100 mmfd , ceramic
$\dagger \mathrm{C} 9$	100 mmfd , ceramic
C10	. 1 mfd , 200 volts, paper.......64B 5-30
C	.01 mfd , min, ceramic..........65A 10-3
C12	100 mmid , min, ceramic.......65B 6-3
C13	. 005 mfd , min, ceramic. $-\ldots65$ A $10-1$
C14	. 002 mfd , min, ceramic.........65A 10-7
C15	. 01 mfd , min, ceramic.......... 65A 10-3
C16	. 1 mfd , 400 volts, paper.......64B 5-20
C17	. $1 \mathrm{mfd}, 400$ volts, paper.-.....64B 5-20
C18	. 002 mfd , 600 volts, paper....64B 5-14
C19	50 mfd , 25 volts, elect..........67A 4-10
C20A	$20 \mathrm{mfd}, 350$ volts)
C20B	20 mfd , 350 volts \} Elect........67C 15-17
C20C	$60 \mathrm{mfd}, 400 \mathrm{volts}$ J

COILS, TRANSFORMERS, ETC.

Symbol	Description Part No.
L1	Antenna Loop......................69C116-2
L2	Coil, RF...............................69A 115-2
L3	Coil, Oscillator.....................69A 52-5
T1	Transformer, 1st IF............. 72B 28-7.
T2	Transformer, 2nd IF............72B 28-7
T3	Transformer, Output............79A 22
T4	Transformer, Power.............80B 22
M10	Speaker (8" PM)...................78B 49-3
Sl	Switch, Radio-Phono............77A 28-2
S2	Switch, On-Off..........-.......... Part of R10
	Diode Filter.........................63A3-1

MISCELLANEOUS PARTS

M5 Socket, Phono Input..............88A1
M7 Socket, Phono Motor................ 89A 6-11
\dagger Part of diode filter (part \#63A3-1). Heplace with exact duplicate or individual components.

M8 Plug, Cable Connector..........88A 20-1 Cover and Insulator (for plug 88A20-1)..............88A 20-12 Cable (9 wire), including Plug and cover..................AB225 M9 Socket, Cable...........................88A 20-2 Clip, IF Transformer Mtg....................72B 28-10 Cover Assembly, Chassis...................A1880
Dial Back and Bracket Assembly......A1881
Dial Cord (50 " length needed).......... 50A 1-3
Dial Scale..22B 23-1
Escutcheon, Radio.................................23D 63-3
Grommet, Gang Mounting...................12A 1-2
Pilot Light, \#47......................................81A 1-8
Pointer, Metal Dial..............................25A 37
Shaft, Tuning.. 28A 48-1
Snap Button (for mtg. dial scale)...... 13A 1-1-71
Socket, Pilot Light.................................82A 6-3
Socket, Tube (7 pin miniature)............87A 3-7
Spacer Sleeve (for mounting gang)..29A 2-1-71
Speed Nut (for mounting radio
escutcheon)..............................
2B 12-4-68
Spring, Dial Cord Tension.....................19B 1-3
Spring, Hairpin (for tuning shaft)...............19A 2-5
CABINET PARTS

PHONOGRAPH PARTS

ymbol	Description
M1 Motor, Phono (3 speed).....407B 19	
M2	crtridge Pickup.................409A cludes needle) 409A
M3 Cable, Shielded Pickup (includes plug). \qquad 413A 11-2	
M4	Plug, Pickup Cable............88A 2-3
M6	otor
Adapter, 45 RPM (envelope of 12).....48A 8-1	
Button, Snap-in Plug.........................13A 2-8-57	
Belt, Rubber Drive.........................406A 20	
Centerpost, RecordG400B 505-1	
Idler Wheel (includes tire).............G400A 59	
Needle Retaining Nut (for 409A13 cartridge) \qquad 98A 54-2	
Screw and Washer, Changer Mounting ($10-32 \times 11 / 4 \mathrm{RH} \mathrm{MS}$)..... AR 10	
..405A	

*To insure proper matching and fit, also specify cabinet manufacturer's code letters (usually burned or stamped on back rail of cabinet). Wood parts are supplied only if old part cannot be repaired; whe: ordering, describe condition of old part in detail.
§Order these parts using the part number given in Cabinet Hinge Ordering Data, Form No. S379. Otherwise, return ola part, or send an outline tracing (exact size) of part and specify finish (brass, bronze, etc.).

ALIGNMENT PROCEDURE

- Connect output meter across speaker voice coil.
- Turn receiver volume control full on.
- Use an isolation transformer if available, otherwise connect a .1 mfd . condenser in series with low side of signal generator and connect to chassis.
Caution: Do not connect a ground wire directly to
chassis.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and then proceed as outlined in chart below.
- Repeat adjustments to insure good results.

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Receiver Gang Setting	$\begin{gathered} \text { Trimmer } \\ \text { Description } \end{gathered}$	Trimmer Designation	Type of Adjustment
1	250 mmfd . condenser	Antenna stator of tuning condenser	455 KC	$\underset{\substack{\text { Gang fully } \\ \text { open }}}{ }$	$\underset{\text { 2nd }}{\text { 2nd }}$	$\begin{aligned} & { }^{*} \mathrm{~A}, \mathrm{~B} \\ & { }^{*} \mathrm{C}, \mathrm{D} \end{aligned}$	Maximum Output
2	250 mmfd . condenser	Antenna stator of tuning condenser	1620 KC	Gang fully open	Oscillator (on gang)	E	Maximum Output
3	Loop of several turns of wire or place generator lead close to receiver loop for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna (on gang)	F	$\begin{aligned} & \text { Maximum } \\ & \text { Output } \end{aligned}$
4	Set dial pointer slide as shown in Dial Cord Stringing Diagram. Also see instructions below on "Setting Pointer Slide" and on "Removing Or Installing Chassis In Cabinet."						

*Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of chassis, if you use alignment tool \#98A30-7 obtainable from your Admiral distributor. The bottom IF slug adjustment may be reached through the hollow core in the upper slug.

TUBE AND TRIMMER LOCATION

Adjustments A and C are made from underside of chassis.

REMOVING OR INSTALLING CHASSIS IN CABINET

Fully close the gang condenser before removing or installing the chassis in the cabinet. When installing, carefully slide the chassis in the cabinet, so that the tab on the pointer slide fits into the elongated hole at the center of the dial pointer. See the "Pointer Setting and Dial Stringing" diagram at the right. Parts which are shown in dotted lines are not assembled to the chassis. These parts are mounted on the inside of the cabinet.

POINTER SETTING AND DIAL CORD STRINGING

SETTING POINTER SLIDE

With the gang condenser fully closed, line up the center of the pointer slide with the bottom hole in the pointer slide bracket as shown in the figure above.

*These voltage readings will be either lower or practically zero if taken with a 1000 ohm-per-volt meter.

VOLTAGE DATA

Voltages shown on schematic diagram.

- All readings made between tube socket terminals and B minus (terminal of On-Off switch).
- Dial turned to low frequency end; volume control at minimum.
- Measured on 117 Volts AC line.
- Voltages measured with Vacuum Tube Voltmeter.

REPLACING BATTERIES

Replacement batteries of the following types may be used in this set:
"A" Battery (71/2 Volts): General 31, Eveready 717, Burgess C5, Ray-O-Vac 751C or equivalent.
"B" Battery ($671 / 2$ Volts): General 108, Eveready 467 , Burgess XX45, Ray-O-Vac 4367 or equivalent.
The "A" and "B" batteries have been designed for equal life. Under normal operating conditions, battery life should be approximately 40 operating hours. The " A " battery may give satisfactory performance with voltage as low as 5.5 volts. The " B " battery may give satisfactory performance with voltage as low as 49.5 volts. Replace the batteries when the reception is weak and the battery voltage has dropped below values given above.
To install replacement batteries, slide the cover latch and open the hinged bottom cover. Then remove the wing nut which holds the battery support bracket in place.
Disconnect the battery connectors from the old worn out batteries. Batteries can easily be removed from the set by grasping them with long nose pliers or if necessary, removing the cabinet bottom. Install the new batteries so that the battery connectors are farthest away from the ends of the battery bracket. Batteries may become shorted if the bracket touches the connectors.

Note: It is important that the run-down batteries be removed from the set IMMEDIATELY because the chemical action inside of the cells will cause some batteries to leak when they are worn out. The acid which leaks from a rundown battery may damage parts of the set or the cabinet because of its corrosive action.

REPLACING TUBES

Tubes can most conveniently be removed or replaced by first removing the batteries and cabinet bottom. A miniature tube puller or extractor will be of help in facilitating tube replacement.

Models 4V12 Mahogany, 4V18 Green and 4V19 Ebony.

REMOVING AND INSTALLING CHASSIS IN CABINET

Removal of the chassis from the cabinet is not required when replacing tubes or batteries. It will, however, be necessary to remove the chassis for making alignment or for taking voltage readings. For taking voltage readings, it will also be necessary to remove the metal cover enclosing the underside of the chassis. To remove the chassis from the cabinet, proceed as follows:
(a) Remove the tuning knob, pointer hub and cabinet bottom (base). The speaker grille may be removed by pulling it down and away from the cabinet.
(b) Remove the 2 chassis mounting screws located at the top inside of the cabinet, just below the handle brackets.
(c) Carefully slide the chassis out of the cabinet, being careful not to damage the built-in iron core antenna or the speaker.
Install the chassis in the cabinet in the reverse order. A screwdriver with a magnetic blade or a screw holding type screwdriver will be of help in inserting the chassis mounting screws when installing the chassis in the cabinet.

STRINGING THE VOLUME CONTROL DRIVE CORD

The illustration below shows the volume control drive cord

stringing used in 4 Vl radio chassis. The arrows along the drive cord show the direction in which the volume control drive cord is strung.

Before stringing the drive cord, rotate the volume control fully counterclockwise until the on-off switch snaps in the off position. Place the volume knob over the gang condenser tuning shaft. To prevent the volume knob from slipping off during drive cord stringing, mount the dial pointer hub to the gang condenser tuning shaft. To prevent slipping of the volume control drive, it is important to maintain tension on the drive cord tension spring.

TRIMMER LOCATION

Adjustments A and C are made from other side of chassis.

ALIGNMENT PROCEDURE - Use battery power for alignment if fresh batteries are - Set volume control full on. available. If using AC power, an isolation transformer should be used if available. If an isolation transformer is not used, - Connect output meter across speaker voice coil. connect a .1 mfd . condenser in series with the signal generator low side to B minus (pin 7 of 1U5 tube.) - Use lowest setting of signal generator capable of producing - Batteries should be held in place on the chassis during adequate output meter indication. alignment. The metal chassis cover need not be removed during - Use a non-metallic alignment tool for IF transformers. alignment. Repeat adjustments to insure good results.							
Stop	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Genarafor Frequency	$\begin{aligned} & \text { Receivar } \\ & \text { Gang } \\ & \text { Sefting } \end{aligned}$	Trimmer Description	Trimmer Designation	Type of Adjustment
1	.001 mfd . when using AC. .1 mfd . when using Battery	Antenna stator of tuning condenser	455 KC	Gaing fully open	2nd IF 1st IF	$\begin{aligned} & { }^{*} \mathrm{~A}, \mathrm{~B} \\ & { }^{\circ} \mathrm{C}, \mathrm{D} \end{aligned}$	$\begin{gathered} \text { Maximum } \\ \text { output } \end{gathered}$
2	.001 mfd . when using AC. .1 mfd . when using Battery	Antenna stator of tuning condenser	1620 KC	Gang fully open	Oscillator (on gang)	E	$\begin{aligned} & \text { Maximum } \\ & \text { output } \end{aligned}$
Install the metal chassis cover if removed during IF Alignment.							
3	Loop of several turns of wire, or place generator lead close to receiver for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenns (on gang)	F	Maximum output

*Adjustments A and C are made from other side of chassis.

RESISTORS

Symbol	Description	Part No.
R1	2.2 megohms, 1/2 watt............60B	8-225
R2	270 ohms, 1/2 watt..................60B	8-271
R3	100,000 ohms, $1 / 2$ watt.............60B	8-104
R4	18,000 ohms, $1 / 2$ watt..............60B	8-183
R5	3.3 megohms, $1 / 2$ watt.............60B	8-335
R6	10 megohms, $1 / 2 \mathrm{watt}$..............60B	8-106
R7	390 ohms, $1 / 2$ watt...................60B	8-391
R8	1 megohm, Vol. Control...........75B (R8 includes Switch S1)	1-43
R9	120 ohms, $1 / 2$ watt...................60B	8-121
\dagger R10	10 megohms, $1 / 2 \mathrm{watt}$	
tR11	4.7 megohms, $1 / 2 \mathrm{watt}$	
$\dagger \mathrm{R} 12$	1 megohm, $1 / 2 \mathrm{watt}$	
tR13	3.3 megohms, $1 / 2$ watt	
R14	2,200 ohms, $1 / 2$ watt................60B	8-222
R15	47 ohms, 1 watt......................60B	14-470
R16	2,700 ohms, 1 watt..................60B	14-272
R17A	1380 ohms \ 5 watt, tapped	
R17B	1380 ohms / Candohm...........61A	5-7

CONDENSERS

Symbol

Description
Part No.
C1A 272 mmfd, max. Ant. $\quad 107$ mmfd, max. Osc. $\}$ gang.. 68B 41
C2 250 mmfd , ceramic...................65C 6-5
C3 $\quad .25 \mathrm{mfd}, 200$ volts, paper $\ldots64 \mathrm{~B} \quad$ 1-28
C4 100 mmfd , ceramic...................65C 6-3
C5 $\quad 005 \mathrm{mid}$, ceramic.....................65C $10-5$
C6 . 01 mfd, , 400 volts, paper........64B $\quad 1-25$
C7 . 001 mfd , min, ceramic.............65C 6-41
C8 $\quad 100 \mathrm{mfd}, 25$ volts, elect. .67A 4.6
†Cs 100 mmfd ceramic.
¡ClO .001 mid, min, ceramic
tcll .01 mfd , min, ceramic
†C12 100 mmfd , ceramic
†Cl3 .005 mfd , ceramic
C14 . 001 mfd , min, ceramic.............65C 6-41
C15 . 1 mfd , 200 volts, paper..............64B \quad 1-30
C16 $\quad .047 \mathrm{mfd}, 400$ volts, paper.......65A $13-5$
C17A $20 \mathrm{mfd}, 150$ volts
C17B 20 mfd, 150 volts $\}$ elect.....67C $7-41$
C17C $20 \mathrm{mfd}, 150$ volts

COILS, TRANSFORMERS, ETC.

Symbol	on
L1	Antenna, Rod
L2	Coil, Oscillator....................6.69A
T1	Transformer, 1st IF................72B
T2	Transformer, 2nd IF................72B 28-62
T3	Transformer, Output..............98A
M1	Speaker ($31 / 2^{\prime \prime}$ PM) and Output Trans. \qquad 78B 58
M2	Rectifier, Selenium................93A 1-6
S1	Switch, On-Off
S2	Switch, Power Change............77A 19-1 Couplate (includes R10, R11, R12, R13, C9, C10, C11, C12, C13). 63B 6-6

MISCELLANEOUS PARTS

rdcket	
support...........................15A 603	
lume pulley and bracket ass'y....A3316	
shield for gang...........................15A 6	
cover	AC switch.....................15A 10.15
Carton and Fillers..........................44B	
lip, IF Transformer Mounting..........72B 28-10	
Clip "B" Battery Connector..............90太 5-3	
Cover, Metal for chassis..................14C 70	
Drum, Vol. Control.............................17A 30	
Insulator, Fibre (for mtg. rectifier)...32A 137	
Customer Instructions418 20-3	
Dial Cord (30 '\% length needed)..........50A 1-3	
Nut, Wing ($=6 / 32$ for battery	
Plate, Electrolytic Mounting............67A 2-1	
Plug, " $\mathrm{A}^{\prime \prime}$ Battery Connector............88A 4-6	
Hub, Brass mounts on volume control shaft.......27A 153	
Screw, Set for volume control drum$(\div 6-32 \times 3 / 16) .$	
Socket, Tube..................................87A 3-4	
Washer, Spring ($5 / 16^{\prime \prime} \mathrm{OD} \times 3 / 16^{\prime \prime} \mathrm{ID}$)...4A 6-1	
CABINET PARTS	
Symbol	scriptio
Bottom, Cabinet (Base)	
Mahogany for 4 V 12 complete with metal door...........A37	
fame only..................... ${ }^{3}$	

\dagger Part of couplate (part $\mp 63 \mathrm{~B} 6$ 6 6 . Replace with extra duplicate or individual components. Note that num
bers $1,2,3,4,5,6,7,8,9$ on schematic correspond to lead numbers printed on face of couplate

Description
Bottom, Cabinet (Base) contd. Green for 4V18 complete with metal door.......... A3493 plastic frame only............................34D 35.6 Ebony for 4 V 19 complete with metal door.......... A3270 plastic frame only. 34D 35.2
Bracket, Handle Support (metal
ends)
ends)............................
Mahogany for 4V12..........................34D 49-2
Green for 4V18 34D 49-2

Ebony 4 V 18 $.34 D$
49-3
49-1
Dial Pointer and Hub Assembly (includes compression ring). Mahogany for 4 V 12 ... Green for 4V18Green for 4V19

Escutcheon Overlay, Plastic..................................
Grille Cloth and Support Assembly Mahogany for 4V12 and 4V19......AA227-2 Green for 4V18.....................................AA227-3
Handle, Carrying (plastic covering only) Mahogany for 4V12.........................33A 58-2 Green for 4V18..33A 58-3 Red for 4V19..33A 58-6
Hinge, Bottom Cover............................. 37 A 33
Knob, Volume
Mahogany for 4V12...........................33C 67-3
Green for 4 V 18 33 C

Red for 4V \qquad 33C 67-5

Knob, Tuning (includes compression ring)
Mahogany for 4V12..........................A3707
Green for 4V18................................... A3708
Red for 4V19... A3709
Ring, Compression (for tuning knob)..19A 31-7
Ring, Compression (for pointer hub). 19A 31-2 Rivet, Shoulder
with $7 / 64$ shoulder...............................6A
with $3 / 32$ shoulder......................61
w-7-71
with $3 / 32$ shoulder.
Rubber Strap, for carrying handle upper, with 13/32" holes...............12A 38 lower, with $1 / 4^{\prime \prime}$ holes......................12A 38-1
Screw
$=4 \times 5 / 8$ self tapping; for mtg . plastic base to cabinet $=8-32 \times 7 / 16$; for mtg. handle and chassis
Slide Arm (for bottom door).. 291
Spring, Support (for carrying
handle)....
Washer, Felt (for volume knob)

ADMIRAL PAGE 23-13

©John F. Rider

ALIGNMENT PROCEDURE

- Turn receiver volume control full on.
- Antenna must be connected and placed in the same relative position to the chassis as when in cabinet.
- Use an isolation transformer if available, otherwise connect a .1 mfd . condenser in series with low side of signal generator and connect to chassis. Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and proceed in the following sequence.
- Repeat adjustments to insure good results.

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd. condenser	Tuning condenser, antenna stator	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd IF } \\ & \text { 1st IF } \end{aligned}$	$\begin{aligned} & { }^{*} \mathrm{~A}, \mathrm{~B} \\ & { }^{\mathrm{C}} \mathrm{C}, \mathrm{D} \end{aligned}$	Maximum output
2	250 mmfd. condenser	Tuning condenser, antenna stator	1620 KC	Gang fully open	Oscillator	E	Maximum output

Mount dial pointer. Set pointer to horizontal position with tuning condenser tuned to 1400 KC generator signal (see Dial Stringing and Pointer Setting diagram below). Rotate the tuning condenser until the pointer is in a vertical position (900 KC), then slip chassis in cabinet, carefully guiding the pointer so that it locates between the dial escutcheon and the cabinet. Install antenna and chassis mounting bolts.

Loop of several turns

 of wire, or place generator leads close to receiver antenna for adequate signal pickup.No actual connection (signal by radiation)

1400 KC

$\substack{\text { Tune in } \\ \text { generator } \\ \text { signal }}$	Antenna	$\dagger F$	Maximum output

*Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of chassis, if you use alignment tool \#98A30-7 obtainable from your Admiral distributor. The bottom IF slug adjustment may be reached through the hollow core in the upper slug.
\dagger Antenna Trimmer " F " should be aligned after chassis and antenna are mounted in cabinet.

TUBE AND TRIMMER LOCATION

Adjustments A and C made from underside of chassis.

DIAL STRINGING AND POINTER SETTING

Solid lines show dial stringing and pointer position with gang closed. Dashed lines show pointer positions (1400 KC and 900 KC) when gang condenser is tuned to a generator signal.

RECORD CHANGER SERVICE DATA

The changer model number will be found stamped at the top rear of the changer base and also on the changer model label.

Models 5 Y22 and 5Y22A DIFFERENCES IN MODELS
Models 5 Y 22 and 5Y22A are the same with exception of the Radio-Phono switch and the record changer. Model 5Y22 has a 3 position Radio-Phono switch and uses the RC550 record changer. Model 5Y22A has a 2 position Radio-Phono switch and uses the RC600 record changer. See circuit notes on schematic.

Cartridge and Needle

As shown in the illustrations, alternate cartridges may be used. Cartridges are interchangeable when complete with needle.

S485 Rev. 1

PAGE 23-16 ADMIRAL
MODELS 5A32/12, /15, /16, 5A33/12, /15, /16, Ch. 5A3

Model 5A32 Mahogany, 5A33 Ivory Operating Voltage: 117 volt $A C$ only. Power: 30 watts.

ALIGNMENT PROCEDURE

- Turn receiver volume control full on (fully clockwise).
- Use an isolation transformer if available, otherwise connect a . 1 mfd . condenser in series with low side of signal generator and connect to chassis.
Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and proceed in the following sequence.
- Repeat adjustments to insure good results.

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd . condenser	Antenna stator of tuning condenser	455 KC	Gang fully open	2nd IF 1stif	$\begin{aligned} & \text { *A, } \mathrm{B} \\ & \text { *C, } \end{aligned}$	Maximum output
2	250 mmfd. condenser	Antenna stator of tuning condenser	1620 KC	Gang fully open	Oscillator	E	Maximum output

Mount and set dial pointer to horizontal position with tuning condenser tuned to 1400 KC generator signal; see illustration below.

> Loop of several turns of wire, or place generator lead close to receiver loop for adequate signal pickup.
No actual connection (signal by radiation)

$1400 \mathrm{KC} |$| Tune in |
| :---: |
| generator |
| signal |

Antenna	F	Maximum output

*Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of the chassis, if you use alignment tool \#98A30-7 obtainable from your Admiral distributor. The bottom IF slug adjustment may be reached through the hollow core in the upper slug.

TUBE AND TRIMMER LOCATION

Adjustments A and C made from underside of chassis.
DIAL STRINGING AND POINTER SETTING

Dial stringing and pointer with solid lines shown with gang closed. Dashed line pointer positions (1400 KC and 900 KC) shown when tuning condenser is tuned to generator signal.

OPERATING RADIO MANUALLY

To operate the radio manually, the "Auto-Of-On" switch must be in the "On" position or the radio will not operate.
The radio on-off switch will turn the radio on or off, but will have no control over the appliance or the clock.

to remove clock from cabinet

To remove the clock, proceed as follows:

1. Remove the radio chassis from the cabinet.
2. Remove the three hexagonal nuts and lock washers which mount the clock movement to the metal cover.
3. Carefully remove the clock movement from the cover. Do not unsolder leads unless complete removal of the clock is required. The metal cover mounting the clock to the chassis may be removed if more space is required for servicing the clock.

TO REMOVE FIELD AND COIL ASSEMBLY OR TO REMOVE ROTOR

The field and coil assembly and the rotor can be easily removed after the two screws which mount the nameplate are removed.
Note that when the rotor is replaced, the gear on the rotor must drop into the hole in the center of the gear plate and mesh with the clock gear.

*These voltage readings will be either lower or practically zero if taken with a 1000 ohm-per-volt meter.

RESISTORS

RESISTORS	
Symbol	Description ${ }^{\text {a }}$ Part No.
R1	22,000 ohms, $1 / 2$ watt.............60B 8-223
R2	100 ohms, ${ }^{1 / 2}$ watt..................60B 8-101
R3	1 megohm, 1/2 watt................60B 8-105
R4	1 megohm, Volume control.75B 1-41 (R4 includes switch Sl)
R5	4.7 megohms, $1 / 2$ watt............60B 8-475
§R6	500,000 ohms, 1/4 watt
§R7	500,000 ohms, 1/4 watt
R8	150 ohms, $1 / 2$ watt..................60B 8-151
R9	33 ohms, 1 watt.......................60B 28-3
R10	560 ohms, 2 watts...................60B 60 20-561

CONDENSERS

C1A	290 mmfd , max
ClB	104 mmfd, max., Osc. $\}$ gang...68B (Dial drum spotwelded to
${ }^{\text {C }}$	05 mfd , 400 volts, paper ${ }^{\text {a }}$ 64B $1-22$
C4	. 1 mid, 200 volts, paper........64B 1-30
C5	220 mmfd , ceramic..............65C 6-80
C6	. 01 mfd, 400 volts, paper....64B 1-25
	. 047 mfd , 400 volts, paper....65A 13-5
C8	. 005 mfd , 400 volts
${ }^{\text {C99 }}$	\{See note
${ }^{\text {c }}$	$\}$ on schematic
Cl1	. 1 mfd, 200 volts, paper........64B 1-30
	. $02 \mathrm{mfd}, 400$ volts, paper....64B 1-24
C13	$70 \mathrm{mfd}, 150$ volts , elect... 67
C	$30 \mathrm{mfd}, 150$ volts $\}$ elect....... 67 A 17
	\int (in later sets) 25, paper
C14	$\left\{\begin{array}{l} 4 \text { mid, } 150 \text { volts, elect. } \\ 4 \text { (in early sets)......................... } \end{array}\right.$

schematic correspond to lead numbers printschematic correspond to

VOLTAGE DATA

Voltages shown on schematic diagram.

- All readings made between tube socket terminals and B minus (terminal of On-Off switch).
- Measured on 117 Volt AC line.
- Volume control minimum; dial turned to low frequency end.
- Voltages measured with Vacuum Tube Voltmeter.

COIL, TRANSFORMERS, ETC.	
Description Part No.	
T1. Transformer, 1st IF .-............72B 28-7	
T2	Transformer, 2nd IF72B 28-7
T3 Transformer, Output98A 21	Transformer, Output98A 21
M1 Outlet, Appliance	
	Speaker (4" PM) and
Sl Switch; Radio On-	
S2 S	

MISCELLANEOUS PARTS

MODELS 5Z22,

5Z23, Ch. 5Z2

Model 5Z22 Mahogany and 5Z23 Ivory Operating Voltage: 117 volts, 50 to 60 cycles AC or DC. Power: 30 watts.

ALIGNMENT PROCEDURE

- Connect output meter across speaker voice coil.
- Turn receiver volume control full on.
- Use an isolation transformer if available, otherwise connect a .1 mfd condenser in series with low side of signal generator and connect to chassis.
Caution: Do not connect a ground wire directly to
chassis.
Use lowest output setting of signal generator capable of producing adequate output meter indication and then proceed as outlined in chart below.
- Repeat adjustments to insure good results.

Stop	Dummy Anfenna in Series with Signal Generafor	Connection of Signal Generafor (High Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd . condenser	Antenna stator of tuning condenser	455 KC	Gang fully open	$\underset{\text { ist IF }}{\text { 2nd }}$	$\begin{aligned} & { }^{*} \mathrm{~A}, \mathrm{~B} \\ & { }^{*} \mathrm{C}, \mathrm{D} \end{aligned}$	Maximum Output
2	250 mmfd . condenser	Antenna stator of tuning condenser	1620 KC	Gang fully open	Oscillator (on gang)	E	Maximum Output
3	Loop of several turns of wire or place generator lead close to receiver loop for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna (on gang)	F	$\begin{aligned} & \text { Maximum } \\ & \text { Output } \end{aligned}$
4	Mount and set dial pointer as shown in "Pointer Setting and Dial Cord Stringing" diagram.						

*Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all. be made from the top of chassis, if you use alignment tool \#98A30-7 obtainable from your Admiral distributor. The bottom IF slug adjustment may be reached through the hollow core in the upper slug.

TUBE AND TRIMMER LOCATION

Adjustments A and C made from underside of chassis.

POINTER SETTING AND DIAL CORD STRINGING

*These voltage readings will be either lower or practically zero if taken with a 1000 ohm-per-volt meter.

VOLTAGE DATA

Voltages shown on schematic diagram.

- All rearlings made between tube socket terminals and B minus (terminal of On-Off switch).
(1) Dial turned to low frequency end; volume control at minimum.
- Measured on 117 Volts AC line.
- Voltages measured with Vacuum Tube Voltmeter.

RESISTORS		Symbol	Description Part No.
Symbol	Description Part No.		220 mmfd , ceramic
RI	22,000 ohms, $1 / 2$ watt...............60B 8-223	${ }^{\text {c9 }}$	$.05 \mathrm{mfd}, 400$ volts; paper......648 1-22
R2	1 megohm, $1 / 2$ watt..................608 8-105	ClO^{0}	. 01 mfd , 400 volts, paper......64B 1-25
R3	1 megohm, Volume control.75B 1-40 (R3 includes switch S1)	$\begin{aligned} & \dagger \mathrm{Cll} \\ & \dagger \mathrm{Cl2} \end{aligned}$	$.005 \mathrm{mfd}, 400$ volts S See note
R4	4.7 megohms, $1 / 2$ watt.....-) ...60B 8-475	$\dagger{ }_{+} \mathrm{Cl}^{\text {cli }}$	\{ on schematic
\dagger ¢5	$500,000 \mathrm{okms}, 1 / 2$ watt	C14	. 02 mfd , 400 volts, paper........64B 1-24
+ ${ }_{\text {+ } \mathrm{R} 6}$	500,000 ohms, 150 ohms, $1 / 2 \mathrm{watt}$ wata	C15a	$70 \mathrm{mfd}, 150$ volts $\}$ elect.......67A 17
R8		$\begin{aligned} & \text { C15b } \\ & \text { C16 } \end{aligned}$	30 mid, 150 volts $\}$ elect......... 67 A 17 .047 mfd 400 volts, paper 64B 8-28
$\begin{aligned} & \text { R9 } \\ & \text { R10 } \end{aligned}$	1,000 ohms, 1 watt..................60B 28-2 150,000 ohms, $1 / 2$ watt..........60B 8-154	$\begin{aligned} & \text { C16 } \\ & \text { C17 } \end{aligned}$.18 mfd, 200 volts, paper......64A 2-2
CONDENSERS		COILS, TRANSFORMERS, ETC.	
Symbol	Description Part No.	Ll	Antenna, Loop \qquad .69C 142-2 (mounted on cardboard back)
Cla	Ant., 420 mmfd , max $\}$ gang....688	L2	Coil, Oscillator
Clb	Osc. 108 mmfd , max \{ gang....68B 38 (Dial drum spot welded to gang)	${ }_{\text {T1 }}$	
	47 mmfd ceramic. Wa,	T3	Transformer, Output
$\begin{aligned} & \text { C3 } \\ & \text { C4 } \end{aligned}$			Speaker (5" PM) and Output Transformer78B 62-1
${ }^{\text {c }}$		S1	Switch, On-OffPart of R3
			(Includes R5, R6, Cl1, Cl2, C13)

MODEL 6M22, Ch. 6M2

ALIGNMENT PROCEDURE

- Turn receiver volume control full on.
- Antenna must be connected and placed in the same relative position to the chassis as when in cabinet.
- Use an isolation transformer if available, otherwise connect a .1 mfd . condenser in series with low side of signal generator and connect to chassis. Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and proceed in the following sequence.
- Repeat adjustments to insure good results.

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd. condenser	Tuning condenser, antenna stator	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd IF } \\ & \text { Ist IF } \end{aligned}$	$\begin{aligned} & * A, B \\ & * C, D \end{aligned}$	Maximum output
2	250 mmfd. condenser	Tuning condenser, antenna stator	1620 KC	Gang fully open	Oscillator	E	Maximum output

Mount dial pointer. Set pointer to horizontal position with tuning condenser tuned to 1400 KC generator signal (see illustration below). Rotate the tuning condenser until the pointer is in a vertical position (900 KC), then slip chassis in cabinet, carefully guiding the pointer so that it locates between the dial escutcheon and the cabinet. Install antenna and chassis mounting bolts. The pointer and escutcheon may be mounted after installing the chassis in cabinet as follows: Set pointer to horizontal position with gang tuned to 1400 KC signal. Place escutcheon on cabinet. With long nose pliers slip the hairpin ends of the escutcheon mounting springs in holes of escutcheon tabs.

3	Loop of several turns of wire, or place genera- tor lead close to re- ceiver antenna for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna	$\dagger \mathrm{F}$

*Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of chassis, if you use alignment tool \#98A30-7 obtainable from your Admiral distributor. The bottom IF slug adjustment may be reached through the hollow core in the upper slug. \dagger Antenna Trimmer " F " should be aligned after chassis and antenna are mounted in cabinet.

Adjustments A and C made from underside of chassis.

DIAL STRINGING AND POINTER SETTING

Dial stringing and pointer with solid lines shown with gang closed. Dashed line pointer positions (1400 KC and 900 KC) shown when tuning condenser is tuned to generator signal.

RECORD CHANGER SERVICE DATA

The changer model number will be found stamped at the top rear of the changer base and also on the changer model label

Cartridge and Needle
As shown in the illustrations, alternate cart ridges may be used. Cartridges are inter. changeable when complete with needle.

ADMIRAL PAGE 23-21

*These readings will be either lower or practically zero if taken with a 1000 ohm-per-volt meter.
A These readings will be zero on "Phono"; all other DC readings may be slightly higher.

VOLTAGE DATA

Voltages given on schematic diagram.

- All readings made between tube socket terminals and
- Measured on 117 Volt 60 Cycle AC line. B minus (terminal of On-Off switch).
- Volume control minimum; dial turned to low end
- Switch S2 in "Radio" position.
- Voltages measured with Vacuum Tube Voltmeter.

	RESISTORS	COILS, TRANSFORMERS, ETC. Symbol Past No.	
Symbol	Description Pari No.	§L1 Rod Antenna (includes	Escutcheon, Dial
Rl	1,600 ohms, 1/2 watt, 5\%-....60B 7-162	d and CI)	for 6J21, 6J22 --..23C 81-1
R2	47,000 ohms, $1 / 2 \mathrm{watt}$...__60B 8-473	L2 Coil, Oscillator -n........69A 113-1	for 6M22
\dagger R3	47,000 ohms, 1/4 watt	T1 Transformer, 1st IF -i............72B 50	Escutcheon Ring (GoId trim) -................23A 53
R4	1 megohm, $1 / 2 \mathrm{watt}$	T2 Transformer, 2nd IF	
R5	4.7 megohms, $1 / 2$ watt............60B 6 8-475	T3 Transformer, Output …..........79A 11-3 M1 Speaker, (5" pm) \qquad 78B 39-3	Hinge Screw ($6 / 32 \times 1 / 4$ BH MS)
R7	47,000 ohms, $1 / 2 \mathrm{watt}$................60B 6 8-473	M5 Socket, Phono input -..........-88A 1	Jewel, Pilot Light.
R8	470,000 ohms, $1 / 2$ watt	M8 Socket \& Leads, Motor -	Knob, Radio, for Ebony 6J21
R9	150 ohms, 1 watt........-...-...-60B 14-151	Sl Switch, On-Off	-On Volume" (inner knob)33C ${ }^{33}$ 55-22
R10A	2 megohms, tone		"Tone (Radio-Phono'" (inner knob).................33C ${ }^{\text {33 }}$ 55-20
R10B	1 megohm, volume \}-.........	\dagger Diode Filter	"Tuning" (outer knob) .-....--.............33C 55-19
R11	27,000 ohins, 1/2 watt..........60B 8-273	†Diode Filter ……………............63	Knob, Radio, for Mahogany 6]22
R12	150,000 ohms, $1 / 2$ watt_-.....-60B 6 60B $28-3$	MISCELLANEOUS	"Off-On Volume" (inner knob)33C 55-18
R13	33 ohms, l watt.............60B 28-3		"Tone" (outer knob) --......................33C ${ }^{\text {33 }}$ 55-17
R14	220 ohms, 1 watt_.................60B 28-7	Carton and Fillers \qquad 44B 145	"Radio-Phono" (inner knob)33C 55.16
R15	1,000 ohms, 1 watt $\ldots60 B ~ 28-2 ~$		"Tuning"' (outer knob) \qquad 33C 55-15 Knob, Radio, for Mahogany 6M22 "Off-On Volume" (inner knob) "Tone" (outer knob) \qquad 33C 55-9 "Radio-Phono"" (inner knob) \qquad 33C 55-8
Symbol	Description Part No.	Speaker) -...-...-.....-_..............12B	"'Tuning" (outer knob) ---...................33C 55-7
Cl	Trimmer, 3 to $30 \mathrm{mmfd} . . . \quad$-.....Part of Ll	Grommet, Rubber (gang mtg.)............12A 1-2 Insulator, Phono Receptacle $\quad 32 \AA 46$	for cabinet bottom......................-12A 3-4
$8 \mathrm{8C2}$	Antenna and Oscillator gang	Manual	for cabinet top.................................12A 9-8
C3	. 005 mfd., min., Ceramic__65A. 10-1	Customer Instruction	
C4	50 mmfd ., Ceramic --............65B 6-4	for 6J21, 6J2241A 18-33	Washer, Felt (for tuning knobs)...-... 5A 4-9
C5	.05 mfd., 400 volts, paper._64B 1-22	for 6M22-.....................................41A 18-47	
C6	. 1 mfd., 200 volts, paper..._-_64B 1-30	Service, for RC550 Changer - .-........ 327	PHONOERAPH PARTS
C7	$75 \mathrm{mmfd} ., 3 \%$, Ceramic._-_-_Part of T1	Pilot Light, \#47..............................81A 1-8	Symbol Description Part No.
C8	$75 \mathrm{mmfd} ., 3 \%$, Ceramic.-.-...--Part of Tl	Pilot Light Socket and Leads.........82A 2 -2	. M2 Cartridge Pickup
C9	75 mmid., 3\%, Ceramic.-.-......Part of T2	Plate, Pointer Support _...................---15A 498	(includes needle)
C10	$75 \mathrm{mmfd} ., 3 \%$, Ceramic_-_-_Part of T2	Pointer, Dial \qquad 25A 35-1 28A 42	M3 Cable, Shielded Pickup
${ }_{\dagger}^{+} \mathrm{Cl1}$	100 mmfd ., Ceramic		(includes plug) \qquad 413A 11-1
${ }_{+}^{+}$	100 mmfd ., Ceramic	Shield, pilot Light (6J2 only) Sleeve, Pointer Shaft \qquad 82A $15-1$ 27A 162-1	M4 Plug, Pickup Cable...................88A 2-3
C13	. $002 \mathrm{mfd} ., 600$ volts, paper_...64B 1-14	Sleeve, Pointer Shaft. .. 123	M6 Motor, Phono (3 speed)..............407B 19
${ }^{\text {Cl4 }}$.01 mfd., 400 volts, paper -......64B 1-25	Spacer, "T" (gang condenser mtg.) 29A 2-1-71	M7 Plug, Motor (Male) \qquad 88A 8-1 Adapter, 45 RPM (envelope of 12) ...48A 8-1
C15	.1 mfd., 200 volts, paper -	Spring, Dial Cord Tension .19B 1-5	Adapter, 45 RPM (envelope of 12)....48A 8-1 Button, Snap-in Plug -............................13A 2-8-57
C16	. $01 \mathrm{mfd} ., 400$ volts, paper	Socket, Tube (12BA6)	Button, Snap-in Plug -............................. G400B 2-8057
C17	. $03 \mathrm{mfd} ., 400$ volts, paper.........64B 1-23	Washer, "C' (for pointer drum) --....... 4A 4-6	
C18	$.01 \mathrm{mfd} ., 400$ volts, paper..-...64B 1-25	Washer, Spring ... 4 A 6-10-0	Ider wheel (includes tire)..................G400A 279.
C19	.1 mfd., 200 volts, paper \qquad 64B 1-30		for 409A13 cartridge_-.............-........-98A 15-19
C21	500 mmfd., Ceramic. \qquad 65B 6-6 $.05 \mathrm{mfd} ., 400$ volts, paper. \qquad 64B 1-22	abinet Plastic	
C22	. 18 mfd., 200 volts, paper64A 2-2	Cabinet, Plastic Bottom, less lid (Ebony 6J21) 34D 28-3	Needle Retaining Nut (for 409Al cariridge) \qquad
C23a	$30 \mathrm{mfd} ., 150$ volts ?	Bottom, less lid (Mahogany	Service Manual, RC550 Changer............S327
C23b	$30 \mathrm{mfd} ., 150$ volts $\}$ Elect	6J22, 6M22)-34D 28-5	Screw and Washer, Ch
C23c	$20 \mathrm{mfd} ., 150$ volts	Lid only (Ebony 6J21)..........................34D 28.4	Mounting ($10-32 \times 11 / 4 \mathrm{RH}$ MS)
C23d	$20 \mathrm{mfd} ., \mathrm{L} 25$ volts	Lid only (Mahoadny 6J22, 6M22)....34D 28-6	

[^0]$\oint 6 \mathrm{M} 2$ chassis use part number 68B30-1 gang (ant enna 324 mmfd . max., oscillator 108 mmfa . max.) with part number $69 B 144$

SPECIFICATIONS

CIRCUIT

5 tube AC-DC Superheterodyne covering two bands, 540 KC to 1730 KC and 5.8 MC to 18 MC (16 to 52 meters).

OPERATING VOLTAGE
$110-120$ Volts AC or $110-120$ Volts DC. It can be operated on 220 Volts AC or DC only if a special line resistance cord is used. (See Parts List.)

ALIGNMENT PROCEDURE

- Connect output meter across voice coil.
- Turn receiver volume control full on.
- Use an isolation transformer if available, otherwise connect a .1 mfd . condenser in series with low side of signal generator and attach to B minus of chassis.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and then proceed as outlined in chart below.

Repeat adjustments to insure good results.

Step	Dummy Antenna in Series with Sigual Generator	Connection of Signal Generator (High Side)	Band Switch Position	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Desiguation	Type of Adjustment
1	250 mmfd . condenser	Grid Cap 12A8 Tube	BC	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd IF } \\ & \text { 1st IF } \end{aligned}$	$\begin{aligned} & * \mathrm{~A}, \mathrm{~B} \\ & * \mathrm{C}, \mathrm{D} \end{aligned}$	Maximum Output
2	250 mmfd . condenser	End of Ant. Wire	BC	1730 KC	Gang fully open	BC Oscillator (on gang)	E	Maximum Output
3	250 mmfd . condenser	End of Ant. Wire	BC	1400 KC	Tune in generator signal	BC Antenna (on gang)	F	Maximum Output
4	250 mmfd . condenser	End of Ant. Wire	BC	600 KC	Tune in generator signal	$\underset{\mathrm{pad}}{\mathrm{BC}}$	G	```Maximum Output. Rock gang while adjusting```
Recheck alignment at 1400 KC (in step 3 above)								
5	400 ohm carbon resistor	End of Ant. Wire	SW	15 MC	Tune in generator signal	SW Antenna	$\stackrel{+}{+}$	Maximum Output. Rock gang while adjusting

* Adjustments A and C are made from underside of chassis.
\dagger Be sure that trimmer is aligned at correct frequency and not on image which should be approximately 910 KC lower than correct frequency, as indicated on the dial. Check to see that image appears 910 KC lower than alignment frequency.

TUBE AND TRIMMER LOCATION

POINTER SETTING AND DIAL CORD STRINGING

CONDENSERS

C1	. 00
C2	50 mfd , mi
3 A	3 to 30 mmfd . \ Dual
C3B	450 to 510 mmfd . STrimmer
C4A	420 mmfd, max, Ant. \} Gang.68B 45-1
C4B	420 mmfd, max, Osc. (Dial drum spotwelded to gang)
C5	. 003 mfd , 3%, silver mica.....65B 1-6
C6	10 mfd , Zero temp. coeff, ceramic. \qquad .65C 6-44
C7	$100 \mathrm{mfd},-.00075$ temp coeff, ceramic. .65C 6 -19
C8	. 005 mfd , min, ceramic disc...65C 10-1
C9	. 047 mfd , 400 volts, paper....64B 5-22
C10	. 047 mfd , 400 volts, paper...64B 5-22
C11	. 047 mfd , 400 volts, paper....64B 5-22
12	. 2 mfd , 400 volts, paper........64B 5-19
C13	250 mmfd , ceramic...............65C 6-5
14	. 01 mfd , min, ceramic disc.....65C 10-3
C15	. 047 mfd , 400 volts, paper....64B 5-22
*C16	$250 \mathrm{mmfd}, 500$ volts
*C17	$.01 \mathrm{mfd}, 400$ volts
C18	. 01 mfd , min, ceramic disc.....65C 10-3
C19	. $047 \mathrm{mfd}, 400$ volts, paper....64B 5-22
C20A	$30 \mathrm{mfd}, 150$ volts
C20B	30 mfd , 150 volts Elect......67B 23-1
C20	$20 \mathrm{mfd}, 150$ volts

COILS, TRANSFORMERS, ETC.
Coil, Antenna BC...................69A 74
Coil, Antenna SW.............69B 75-1
Coil, Oscillator BC and SW...69B 76-1
Transformer, Ist IF

Symbol	Description Part No.
T2	Transformer, 2nd !F..............72B 51
T3	Transformer, Output.............98A 4
S1	Switch, Band........................77A 32-3
S2	Switch, On-Off.....................Part of R7
M1	Speaker (5' PM) and
	Output Transformer...............78B 62-1
	Couplate.............................63A 5-1

MISCELLANEOUS

* Part of couplate (part number 63A5-1). Replace with exact duplicate or individual components. Note that numbers $1,2,3,4$, on schematic correspond to lead numbers printed on face of couplate.

VOLTAGE DATA

Voltages shown on schematic diagram.

- All readings made between tube socket terminals and B minus (terminal of On-Off switch).
- Dial turned to low frequency end; volume control at minimum.
- Band switch set in "BC" position.
- Measured on 117 volts AC line.
- Voltages measured with Vacuum Tube Voltmeter.

Model 5X21 Ebony, 5X22 Mahogany, 5X23 Ivory Operating Voltage: 117 volts AC only. Power: 30 watts.

- Turn receiver volume control full on (fully clockwise).
- Use an isolation transformer if available, otherwise connect a .1 mfd condenser in series with low side of signal generator and connect to chassis.
Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.

PROCEDURE

- Use lowest output setting of signal generator capable of producing adequate output meter indication and proceed in the following sequence.
- Use a NON-METALLIC alignment tool for IF transformers. See asterisk * note below.
- Repeat adjustments to insure good results.

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Receiver Gang Setring	Trimmer Description	Trimmer Designation	Type of Adjusiment
1	250 mmfd . condenser	Antenna stator of tuning condenser	455 KC	$\begin{aligned} & \text { Gang } \\ & \text { fully } \\ & \text { open } \end{aligned}$	$\begin{aligned} & \text { 2nd } \\ & \text { 1st } \\ & \text { IF } \end{aligned}$	$\begin{aligned} & { }^{*} \mathrm{~A}, \mathrm{~B}, \mathrm{~B} \end{aligned}$	Maximum output
2	250 mmfd . condenser	Antenna stator of tuning condenser	1620 KC	$\begin{aligned} & \text { Gang } \\ & \text { fully } \\ & \text { open } \end{aligned}$	Oscillator (on gang)	E	Maximum output
3	Loop of several turns of wire, or place generator lead close to receiver antenna for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna (on gang)	F	Maximum output output

*Adjustments A and C made from the underside of the chassis. To avoid splitting the slotted head of the powdered iron core tuning slugs in IF transformers, use an alignment tool having a blade $1 / 8^{\prime \prime}$ wide.

TUBE AND TRIMMER LOCATION

Adjustments A and C made from underside of chassis.
DIAL STRINGING AND POINTER SETTING

Dial stringing and pointer setting is shown with the gang condenser closed. The 1400 KC pointer setting is shown in dashed lines.

OPERATING THE RADIO

The radio is turned on manually when the "Off-Auto-On" switch is set to the "ON" position. The radio is turned on and off automatically when the switch is set to the "AUTO" position.

removing the clock from cabinet

To remove the clock, proceed as follows:

1. Remove the radio chassis from the cabinet.
2. Remove the two hexagonal nuts and lock washers which mount the clock movement to the metal cover.
3. Carefully remove the clock movement from the cover. Do not unsolder leads unless complete removal of the clock is required. The metal cover mounting the clock to the chassis may be removed if more space is required for servicing the clock.

REPLACING THE CLOCK MOTOR

To remove the clock motor, press the motor inwardly and rotate it to the left (counterclockwise).
Mount the clock motor by pressing the motor inwardly and rotating it to the right (clockwise).

Caution: The gear on the motor must mesh with the fiber gear on the clock mechanism. If the gears are not properly meshed, damage may result.

PAGE 23-26 ADMIRAL
MODELS 5X21, 5X22, 5X23, Ch. 5X2

*These voltage readings will be either lower or practically zero if taken with a 1000 ohm-per-volt meter.

VOLTAGE DATA

Voltages shown on schematic diagram.

- All readings made between tube socket terminals and B minus (negative of electrolytic condenser $\mathrm{Cl3}$).
- Measured on 117 Volt AC line.
- Volume control minimum; dial turned to low frequency end.
- Voltages measured with Vacuum Tube Voltmeter.

Syinbol	$\left\{\begin{array}{l} \text { Description } \\ \text { (in eqd, } 150 \text { volts, elect. } \end{array}\right. \text { Part No. }$
COIL, TRANSFORMERS, ETC,	
Ll	Rod Antenna and Cabinet Back 69 C 157
L2	Coil, Oscillator-......-............69A 52-4
T1	Transformer, 1st IF72B 28-7
T2 T	Transformer, 2nd IF .-........-72B 28-7
T3	Transformer, Output-98A 4
M1	Speaker (4" PM) and Output Transformer
Sl S	Switch, Off-Auto-On
	(part of clock) 91 C3 6-16
	Couplate \qquad

miscellanneous parts

Models 5S21AN Ebony, 5S22AN Mahogany and 5S23AN Ivory

GENERAL

This receiver employs the very latest in radio circuitry and printed circuit wiring technique. The printed circuit wiring used in this receiver replaces the hookup wire type of circuit wiring used in earlier receivers. See figures 1 and 2. The printed circuit wiring is permanently adhered to the underside of the plastic chassis base by a photo engraving process. This new method of wiring has produced greater uniformity of chassis wiring, fewer wiring troubles and simplifies circuit tracing and trouble shooting. All circuit components are of standard size and design. For servicing convenience, all parts are mounted on the top side of the chassis; see figure 3. Audio circuit components are contained in a printed circuit couplate.

Trouble shooting and parts replacement will in general be the same as for receivers wired with hookup wire. However, when servicing, it is important to read the service information given in this manual with respect to servicing technique printed circuit receivers. A top view of the chassis is shown in figure 3. A bottom view of early and later production chassis is shown in figures 1 and 2. The early and later production chassis have some minor differences in the routing of the printed circuit wiring but however, are the same electrically.

REPLACEMENT OF COMPONENTS

All components used in this receiver are of standard size and design. For servicing convenience, all components are mounted on the top side of the chassis, see figure 3.

To avoid damage to printed circuits by application of excessive heat when replacing components, use a soldering iron (60 watts or less) with a small tip. Do not use a soldering gun.

To remove a defective component, apply the tip of the soldering iron to the connection point at the underside of the chassis. Keep soldering iron on connection just long enough to melt the solder, then quickly tap the chassis against the service bench to shake the solder away from the connection. After the solder is removed, untwist or separate connections. A pick will be helpful for untwisting or separating connections. After discorinecting connecting wires or lugs, carefully remove components from the top side of the chassis.

Before installing replacement components, clean the solder from the connection point, so that the leads or lugs can be pushed through the holes in the chassis panel. To avoid running solder into adjacent leads of the printed circuit, use as little solder as possible.

For quick replacement, resistors and condensers may be replaced by clipping out the defective part and soldering the new part to the connecting leads remaining from the original part.
An open or damaged section of printed circuit wiring can be replaced by soldering a jumper of ordinary hookup wire across the connection points. To avoid need for complete tube socket replacement, defective tube socket pin clips may be replaced individually. Tube socket pin clips are available under part number 87A35-2.
Note: The tubular shield (center connection) at the bottom of each tube socket must be securely soldered to the printed circuit wiring, otherwise hum or oscillation will result.

Figure 1. Bottom View of (Early Production) Chassis.

Figure 2. Bottom View of (Later Production) Chassis.

ALIGNMENT PROCEDURE

- Connect output meter across speaker voice coil.
- Turn receiver volume control full on.
- Use an isolation transformer if available, otherwise connect a .1 mfd . condenser in series with low side of signal generator and connect to chassis.
Caution: Do not connect a ground wire directly to chassis.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and then proceed as outlined in chart below.
- Use a NON-METALLIC alignment tool for IF transformers.
- Repeat adjustments to insure good results.

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd. condenser	Antenna stator of tuning condenser	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd IF } \\ & \text { 1st IF } \end{aligned}$	$\begin{aligned} & \text { *A, B } \\ & \text { *C, } \end{aligned}$	Maximum Output
2	250 mmfd . condenser	Antenna stator of tuning condenser	1620 KC	Gang fully open	Oscillator (on gang)	E	Maximum Output
5	Loop of several turns of wire or place generator lead close to receiver loop for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna (on gang)	F	Maximum Output
4	Set dial pointer slide as shown in Pointer Setting and Dial Cord Stringing Diagram below. Also see instructions below on "Removing Or Installing Chassis In Cabinet" and on "Setting Pointer Slide."						

*Adjustments A and C made from the underside of the chassis. To avoid splitting the slotted head of powdered iron core tuning slugs in IF transformers, use an alignment tool with a blade $1 / 3^{\prime \prime}$ wide.

Figure 3. Top View of Chassis. Location of Components and Alignment Adjustments. Shown. Adjustments A and C made from underside. See figures 1 and 2.

REMOVING OR INSTALLING CHASSIS IN CABINET

Fully close the gang condenser before removing or installing the chassis in the cabinet. When installing, carefully slide the chassis in the cabinet, so that the tab on the pointer slide fits into the elongated hole at the center of the dial pointer. See the "Pointer Setting and Dial Stringing" diagram at the right. Parts which are shown in dotted lines are not assembled to the chassis. These parts are mounted on the inside of the cabinet.

POINTER SETTING AND DIAL CORD STRINGING

SETTING POINTER SLIDE

With the gang condenser fully closed, line up the center of the pointer slide with the bottom hole in the pointer slide bracket as shown in the figure above.

ADMIRAL PAGE 23-29

MODELS 5S21AN, 5S22AN, 5S23AN, Ch. 5C3

SPECIFICATIONS

Circuit: Superheterodyne using 5 miniature tubes. See additional circuit information on front page.

Frequency Range: Standard broadcast band, 535 to 1620 KC .

Ll	Antenna, Loop...........................69C 159 (mounted on cardboard back)
L2	Coil, Oscillator............................69A 158-1 (includes R1)
Tl	Transformer, lst IF................. 72B 28-63
T2	Transformer, 2nd IF................72B 28-63
T3	Transformer, Output................98A 4
M1	Speaker ($5^{\prime \prime}$ PM) and Output Transformer..............78B 26-3
Sl	Switch, On-Off... R4 Couplate.............. (Includes R5, R6, R7, C3, C4, C5, C6, C7)

MISCELLANEOUS PARTS

Bracket, Pointer Slide (incl. pulleys).....A3730
Cabinet, Plastic
\qquad
Mahogany...34D 26-13
Ivory..34D 26-14
Carton and Fillers..................................... 44 B 236
Dial Background.......................................22A 30
Dial Cord (27" length needed)50A 1-3
Grommet (for mtg. gang)........................12A 1-19
Grommet (for mtg. tuning shaft).............12A 1-21
Knob, Tuning
Ebony...33A 81-1
Mahogany...33A 81-3
Ivory..33A 81-2
Pointer, Dial..25A 52
Shaft, Tuning..28A 26-6
Slide, Pointer...15A 800
Snap Button
for mtg. pointer to cabinet....................13A 1-2-59
for mtg. dial background......................13A 1-3-59
Socket, Tube..87A 35-1
Spacer, Metal "T" (for mtg. gang)29A 2-1-24
Spacer, Tuning Shaft................................29A 2-7-24
Speed Nut (for tuning shaft spacer)

2B 10-19-27
Spring, Dial Cord Tension........................19C 1-2
Spring, Pointer Tension............................19C 1-20
Washer, "C" (for tuning shaft)4A 4-6-0
Washer, Spring (for tuning shaft)..........4A 6-3-0
Washer, Spring (for pointer)4A 6-5

6C22, 6C22A Mahogany, 6C23, 6C23A Ivory Operating Voltage: 117 volts, 50 to 60 cycles, AC or DC. Power: 30 watts.

ALIGNMENT PROCEDURE

- Turn receiver volume control full on.
- Use an isolation transformer if available, otherwise connect a .1 mfd . condenser in series with low side of signal generator and connect to B minus (terminal of On-Off switch).
Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and then proceed as outlined in chart below.
- Repeat adjustments to insure good results.
- Use a non-metallic alignment tool for IF trans formers.

Step	Dummy Anfenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd . condenser	Pin 8 of 12SA7 tube	455 KC	Gang fully open	$\begin{gathered} \text { 2nd IF } \\ \text { lst } \end{gathered}$	$\begin{aligned} & { }^{*} \mathrm{~A}, \mathrm{~B} \\ & { }^{*} \mathrm{C}, \mathrm{D} \end{aligned}$	$\begin{gathered} \text { Maximum } \\ \text { Output } \end{gathered}$
2	250 mmfd . condenser	Tuning condenser Antenna stator	1620 KC	Gang fully open	Oscillator (on gang)	E	$\begin{aligned} & \text { Maximum } \\ & \text { Output } \end{aligned}$
3	Loop of several turns of wire, or place generator lead close to receiver antenna for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	$\begin{gathered} \mathrm{RF} \\ \text { (on gang) } \end{gathered}$	F	$\begin{aligned} & \text { Maximum } \\ & \text { Output } \end{aligned}$
4	"	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna (on gang)	G	$\begin{aligned} & \text { Maximum } \\ & \text { Output } \end{aligned}$

POINTER SETTING
AND DIAL CORD STRINGING

POINTER SETTING
Before installing the chassis in the cabinet, fully close the gang condenser. Slide the chassis in the cabinet and mount the dial pointer in a horizontal position (pointed at the dot and dah. below 55 on the radio dial scale).

TUBE AND TRIMMER LOCATION

Adjustments A and C are made from underside of chassis.

㲤 When stringing the dial cord, the gang condenser and pointer
drum must be in the position shown in the dial stringing and pointer setting diagram at right. Starting at the tension spring on the gang condenser drum, string the dial cord in the direction shown by the arrows. Maintain sufficient tension on the dial cord tension spring to prevent slipping of the dial cord.

PAGE 23-32 ADMIRAL
MODELS 6C22, 6C22A, 6C23, 6C23A, Ch. 6C2, 6C2A

*These voltage readings will be either lower or practically zero if taken with a 1000 ohms-per-volt meter.

VOLTAGEDATA

Voltages shown on schematic diagram

- All readings made between tube socket terminals and B minus (terminal of On-Off switch).
- Measured on 117 Volt 60 Cycle AC line.
- Volume control minimum; dial turned to low frequency end.
- Voltages measured with Vacuum-tube Voltmeter.

ALIGNMENT PROCEDURE

- Turn receiver volume control full on.
- Antenna must be connected and placed in the same relative position to the chassis as when in cabinet.
- Use an isolation transformer; otherwise, connect a . 1 mfd . capacitor in series with low side of signal generator and connect to chassis. Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output of signal generator necessary to produce midscale meter indication and proceed in the following sequence.
- Repeat adjustments to insure good results.

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	.001 mfd . capacitor	Tuning capacitor, antenna stator	455 KC	Gang fully open	2nd IF lst IF	$\begin{aligned} & \text { *A, B } \\ & \text { * } \mathrm{C}, \mathrm{D} \end{aligned}$	$\begin{aligned} & \text { Maximum } \\ & \text { output } \end{aligned}$
2	.001 mfd . capacitor	Tuning capacitor, antenna stator	1620 KC	Gang fully open	Oscillator	E	$\begin{aligned} & \text { Maximum } \\ & \text { output } \end{aligned}$
3	Loop of several turns of wire, or place generator leads close to receiver antenna for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna	\dagger F	$\begin{aligned} & \text { Maximum } \\ & \text { output } \end{aligned}$

* Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of chassis, if you use alignment tool \#98A30-7 obtainable from your Admiral distributor. The bottom IF slug adjustment may be reached through the hollow core in the upper slug. If IF transformers have slotted tuning slugs, use an alignment tool with a blade $3 / 32^{\prime \prime}$ wide.
\dagger Antenina Trimmer "F" should be aligned after chassis and an tenna are mounted in cabinet.

RECORD CHANGER SERVICE DATA

The record changer model number is found stamped at the top rear of the changer pan and on the changer model label.

Models 5D31 Ebony, 5D32 Maroon, 5D33 Ivory

TUBE AND TRIMMER LOCATION

Adjustments A and C made from underside of chassis. Adjustment F on antenna.

Solid lines show dial stringing and pointer position with tuning gang open. Dashed lines show pointer position (1400 KC) when tuning gang is tuned to a generator signal.

CARTRIDGE AND NEEDLE
Cartridges complete with needle are interchangeable.

*These readings will be lower if taken with a 1000 ohms-per-volt meter.
AThese readings will be zero on 'Phono''; other DC readings may be slightly higher.

OPERATING VOLTAGE

117 volts, 60 cycles $A C$ only; 50 watts

VOLTAGEDATA

- All readings made between tube socket terminals and B minus (terminal of On-Off switch).
- Radio-Phono switch S2 in "Radio" position.
- Measured on 117 Volt, 60 Cycle AC line.
- Volume control minimum; dial turned to low end.
- Voltages measured with vacuum-tube voltmeter.

RESISTORS	Symbol Description Part No. T3 Transformer, Output............. 79 C 46-1	Description Knob, Radio, ,"Ott-Vart No.
Symbol Description Part No.		"Off-Volume"' (inner knob)
R1 22,000 ohms, $1 / 2 \mathrm{watt}$--........60B $6-223$	M5 Socket, Phono Input..............88A	maroon-..33C
	M8 Socket \& Leads, $\begin{aligned} & \text { Phono Motor .-..............-89A 6-3 }\end{aligned}$	
	(Includes R7, R8, C14,	ivory
R6 4.7 megohms, $1 / 2$ watt	C15, C16)	ebony (outer knob)
\dagger TR7 250,000 ohms, ${ }^{1 / 2}$ watt	Diode Filter (Includes R4, C8, C9)	
		ivory, .--
R10 33 ohms, 1 watt....................60B 688 28-3		Tuning" (outer knob)
	MISCELLANEOUS PARTS	maroon .-.
R13 27,000 ohms, $1 / 2$ watt...........60B $8-273$	Dial Coid ' (22'' length needed)..50A 1-3	
	Grommet, Rubber (gang mtg.)....12B 1-18 Manual, Customer Instruction … 41 B 20-31	Ring, Compression
CAPA	Manual, Service for RC600	for "Off-Volume" knob.................19A 31-11
		for pilot light, jewel .-.................19A 31-15
Cl Trimmer, 3 to 30 mmfd66A 33	Pointer, Dial (includes	Rubber Channel
	compression ring)A4103	for cabinet top...........................12A 9-8
(Drum spotwelded to gang)	Shield, Pilot Light...............................-82A 4	ubber
C3 $\quad .01 \mathrm{mfd}, 450 \mathrm{volts}$, ceramic. 655 C 10-3	Sleeve, Tuning (brass)..................-27A 180	
$\mathrm{C}^{4} 50 \mathrm{mmid}$, 500 volts , ceramic...65C 6 -4	Socket,	nameplate
		Stay Arm and Plate...............37A 9-1
C7 $\quad .1$ mfd, 200 volts, paper......64B 1-30		Washer, Felt (for tuning knobs)..5A 4-21
\$C8 8100 mmfd , ceramic		PHONOGRAPH PARTS
	Spring, Dial Cord Tension...........19B 1-5	M2 Cartridge, Pickup (Part
C11 . 01 mfd , 450 volts, ceramic.. 655 C 10-3	Spring, Hairpin tuning sleeve)	os. 409A 13, 40
$\mathrm{C12} .01 \mathrm{mfd}$, 450 volts, ceramic. 655 C 10-3		and 409A 16 used;
C13 . 047		
$\begin{array}{ll}\text { †C14 } & \text { See schematic } \\ \dagger & \text { C15 } \\ \text {. }\end{array}$	CABINET PARTS	M3 Cable, Shielded Pickup
\dagger ¢16 See schematic		(includes plug) -.............413A 11-1
C17A $70 \mathrm{mfd}, 150$ volts ?	Base, Metal (cabinet legs)35E 269	M4 Plug, Pickup Cable............88A 2-3
C17B $70 \mathrm{mid}, 150$ volts elect........67B 7-18	Cotiom Board........atata.a..............43B 205	M6 Motor, Phono (3 speed) 888 A 8-1
$\mathrm{Cl}^{\text {C17C }} 20 \mathrm{mfd} 25 \mathrm{Volts}$		S3 Switch and Mtg. Plate G400A 606
C19 . 01 mfd , 450 volts , ceramic. 655 C 10-3		Adapter, 45 RPM (envelope
C20 . 01 mfd , 450 volts, ceramic..65C 10-3	ivory , -......................................34E 63-8	
	Cabinet Cover, Plastic ebony	
COILS, TRANSFORMERS, ETC.		Kit, 50 Cycle Conversion98B 15-24
		Manual, Service
Antenna, Iron (Includes C1)69B 164.	Grille Cloth and Baffle Board	Nor 409A13 cartridge...................-38A 15-19
12 Coil, Oscillator......-...........69A 52-6	ebony	
*T1 Transformer, 1st IF	maroon	for 409A 16 cartridge98B 15-28
with hollow core slugs. 72 C 128-7	ivory ---..A3982	Needle Retaining Nut (for
*T2 Transformer, 2nd IF ${ }^{\text {with sloted }}$ core slugs..72C 28-7		409A13 cartridge)............................98A 54-2
With hollow core slugs. 72C 128-7	Hinge Stud.-(.).-.........................-27A 17-1	Mounting ($10-32 \times 11 / 4 \mathrm{RH}$ M
with slotted core slugs..72C 28-7	Tewel, Pilot Light...........................82A 21-4	Spring, Changer Float.....................19A 10-3

ALIGNMENT PROCEDURE

- Turn receiver volume control full on (fully clockwise).
- Use an isolation transformer if available; otherwise, connect a .1 mfd . capacitor in series with low side of signal generator and connect to chassis.
Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output of signal generator required for midscale meter indication and proceed in the following sequence.
- Repeat àdjustments to insure good results.

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Descriprion	Trimmer Designation	Type of Adjustment
1	250 mmfd . condenser	Antenna stator of tuning capacitor	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd IF } \\ & \text { lst IF } \end{aligned}$	$\begin{aligned} & * \mathrm{~A}, \mathrm{~B}, \\ & * \mathrm{C}, \mathrm{D} \end{aligned}$	Maximum output.
2	250 mmfd . condenser	Antenna stator of tuning capacitor	1620 KC	Gang fully open	Oscillator	E	Maximum output

Set tuning pointer with tuning gang tuned to 1400 KC generator signal; see illustration below.

Loop of several turns of wire, or place generator lead close to receiver loop for adequate. signal pickup.

No actual connection (signal by radiation)
$\left.1400 \mathrm{KC} \quad \begin{gathered}\text { Tune in } \\ \text { generator } \\ \text { signal }\end{gathered} \right\rvert\,$ $\underset{\text { signal }}{ }$

Antema
F
Maximum output
*Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of the chassis, if you use alignment tool \#98A30-7 obtainable from your Admiral distributor. The bottom IF slug adjustment may be reached through the hollow core in the upper slug. If IF transformers have slotted head tuning slugs, use an alignment tool with a blade $3 / 32^{\prime \prime}$ wide.

TUBE AND TRIMMER LOCATION

Adjustments A and C made from underside of chassis.

OPERATING RADIO MANUALLY

When the "Auto-Off-On" switch is set to the "On" position, the radio may be operated manually with the "Off-Volume" knob. The On-Off switch in the radio will not control the clock or the appliance outlet.

TO REMOVE CLOCK FROM CABINET

To remove the clock, proceed as follows:

1. Remove the radio chassis from the cabinet.
2. Remove four Phillips screws which mount the clock to the cabinet.
3. Carefully remove the clock. Do not unsolder electrical connections unless complete removal of the clock is required.

DIAL STRINGING AND POINTER SETTING

Dial stringing and pointer with solid lines shown with gang closed. Dashed line pointer position (1400 KC) shown when tuning gang is tuned to generator signal.

PARTS AND SERVICE FOR CLOCK
Consult your Admiral distributor for the address of the nearest parts and service station for clocks used in Admiral radios.

PAGE 23-36 ADMIRAL
MODELS 5E31, 5E32, 5E33, Ch. 5E3

*These voltage readings will be either lower or practically zero if taken with a 1000 ohms-per-volt meter.

VOLTAGE DATA

- Voltages shown on schematic diagram.
- All readings made between tube socket terminals and B minus (terminal of On-Off switch).
- Measured on 117 Volt AC line
- Volume control minimum; dial set at low frequency end.
- Voltages measured with vacuum-tube voltmeter.

RESISTORS	
Symbol	1 Description Part No.
R1	22,000 ohms, $1 / 2 \mathrm{watt}60 B 808323$
R2	180 ohms, $1 / 2$ watt..............60B 8-181
R3	1 megohm, ${ }^{1 / 2}$ watt-.............60B 8-105
R4	1 megohm, Volume control \qquad 75B 1-58
	(R4 includes switch Si)
§R5	6.8 megohms, $1 / 4$ watt
§R6	470,000 ohms, $1 / 4$ watt
\$R7	470,000 ohms, $11 / 4$ watt
R8	150 ohms, 1/2 watt................60B 8-151
R9	33 ohms, 1 watt.................60B 28-3
R10	560 ohms, 2 watts...............60B $20-561$
CAPACITORS	
C1A	290 mmfd , max. Ant. \}gang..68B 51-1
ClB	104 mmfd, max. Osc. \}gang...68B 51-1 (Dial drum spotwelded to gang).
C2	47 mmid , ceramic................65C 6 6-79
C	. 01 mfd, ceramic...............65C 10-3
C4	. 1 mfd , 200 volts, paper....64B 1-30
§¢5	220 mmfd , ceramic
${ }_{\text {§ }}$. 005 mfd , ceramic
C7	. 047 mid , 400 volts, paper..65A 13-5
§ C^{8}	. 005 mfd , ceramic
§ C 9	\{see note
\$C10	\{ on schematic
${ }^{\text {Cll }}$. 1 mfd, 200 volts, paper....64B 1-30
C12	. 01 mfd, ceramic................65C 10-3
	$70 \mathrm{mfd}, 150 \mathrm{volts}\}$ elect 67 A
C13B	30 mfd , 150 volts $\}$ elect...........67A 17-1
COILS, TRANSFORMERS, ETC.	
Ll	$\begin{aligned} & \text { Iron Core Antenna and } \\ & \text { Cabinet Back................69B } 171 \\ & \hline \end{aligned}$

Symbol Description Part No.	CABINET PARTS
${ }^{*}$ T1 Transformer, 1 st IF	Description Part No.
with hollow core slugs..72C with slotted core slugs. 72 C 28-7	Cabinet, Plastic
	ebony ..-3D 67-1
with hollow core slugs..72C 128-7	ivory ..34D 67-3
	green ..34D 37-4
	gray ..34D 67-5
Output Transformer.........78B 85	Grille, Metal.................................36B 46
M3 Outlet, Appliance...............87A 21-1	Knobs, Tuning and Volume
M4 Socket, Pilot Light.............82A 17-4	ebony ...-33A 81-1
S1 Switch, Radio On-Off..........Part of R4	maroon33A 81-2
S2 Switch Auto-On-Off.............Part of M2	ivory ...-33A 81-3
Couplate63B 6-7	
C5, C6, C8, C9, Cló)	
	Nameplate, "Admiral"....................26A 44
MISCELLANEOUS PARTS	Pointer, Tuning..................................25A 57
Bracket, Pointer Support...............15A 936	Trimcunt Fastener
Clip, IF Transformer Mounting....728 28-10	Washer, Felt (for tuning knobs)....5A 4-19
Drum, Dial Pointer17A 5-2	
Grommet, Rubber (gang mtg.)....12B 1218	
Line Cord and Plug	CLOCK PARTS
Pilot Light, \#4781A 1-8	
Pointer, Dial ...---.............................-25A 57	M2 Clock, Complete 91 C
Shaft, Tuning.....................................28A 70-1	
	91 C -11
Spacer, Meta \qquad 29A 2-3-24	maroon ..91C 9-12
Speed Nut (mtg. pointer	ivory ...91C 9-13
shaft sleeve) ${ }^{\text {a }}$ (1).	green .-...-91C 91C 9-14
Spring, Dial, Cord Tension.........19C 1-5	

Part of couplate (part No. 63B 6-7). Numbers on schematic correspond to lead numbers on couplate.
*Transformers differ slightly. For best results, order exact part.

Models 4X11 Ebony, 4X12 Maroon, 4X18 Green and 4X14 Gray

GENERAL

This receiver incorporates the latest radio circuitry with printed circuit technique. The printed circuit used in this receiver replaces the hookup wire used in earlier receivers. See figures 1 and 2. The printed circuit is permanently fixed to the plastic chassis base by a photoengraving process. This new method of circuitry offers uniform chassis wiring, fewer wiring troubles and simplifies circuit tracing and trouble shooting. All circuit components are standard size and design. For servicing convenience, all parts are mounted on the top of the chassis; see figure 2. Audio circuit parts are contained in a printed circuit couplate, part number 63B6-6.

In general, trouble shooting and parts replacement will be the same as for receivers wired with hookup wire. However, when servicing, it is important to read the service information given in this manual concerning servicing technique for printed circuit receivers. A top view of the chassis is shown in figure 2. A bottom view of the chassis is shown in figure 1 .

REPLACING PARTS

To avoid damaging printed circuits with excessive heat, use a soldering iron (60 watts maximum) with a small tip when replacing parts.

To remove defective parts, apply the tip of the soldering iron to the connection at the underside of the chassis. Keep soldering iron on connection just long enough to melt the solder, then quickly tap the chassis against the service bench to shake the solder away from the connection. After the solder is removed, untwist or separate connections. A pick will be helpful for untwisting or separating connections. After disconnecting wires or lugs, carefully remove parts from the top of the chassis.

SPECIFICATIONS

Circuit: Superheterodyne using 4 miniature tubes. See additional circuit information
Frequency Range: Standard broadcast band, 535 to 1620 KC.
Intermediate Frequency: 455 KC .
Power Supply: Two $1 \frac{1}{2}$ volt " A " batteries and one 671/2 volt battery.
Antenna: Built-in Ferro-Scope (iron-core) antenna. Speaker: 31/2" PM, with Alnico V magnet. Voice coil impedance, 3.2 ohms.

Before installing replacement parts, clean the solder from the connection, so the wires or lugs may pass through the holes in the chassis panel. To avoid running solder into adjoining circuits, use as little solder as necessary.

For quick replacement, resistors and capacitors may be replaced by clipping out the defective part and soldering the new part to the connecting wires remaining from the original part.

An open or damaged section of the printed circuit can be repaired by soldering a jumper of ordinary hookup wire across the connection points. To avoid need for complete tube socket replacement, defective tube socket terminals may be replaced individually. Tube socket terminals are available under part number 87A35-2.

Note: The tubular shield (center connection) at the bottom of each tube socket must be securely soldered to the printed circuit, otherwise hum or oscillation will result.

Figure 1. Bottom View of Chassis.

```
MODELS 4X11, 4X12, 4X18, 4X19, Ch. 4X1
```


ALIGNMENT PROCEDURE

- Use FRESH batteries when alignment adjustments are made.
- Connect output meter across speaker voice coil.
- Turn receiver volume control full on.
- Use lowest output of signal generator necessary
for producing adequate output meter indication and then proceed as outlined in chart below.
- Use a NON-METALLIC alignment tool for IF transformers.
- Repeat adjustments to insure good alignment.

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generafor (High Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	. 1 mfd . capacitor	Stator of antenna tuning capacitor	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd IF } \\ & \text { 1st IF } \end{aligned}$	$\begin{aligned} & * \mathrm{~A}, \mathrm{~B} \\ & { }^{\mathrm{C}} \mathrm{C}, \mathrm{D} \end{aligned}$	Maximum Output
2	.1 mfd capacitor	Stator of antenna tuning capacitor	1620 KC	Gang fully open	Oscillator (on gang)	E	$\begin{aligned} & \text { Maximum } \\ & \text { Output } \end{aligned}$
3	Loop of several turns of wire or place generator lead close to receiver loop for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna (on gang)	F	Maximum Output

*Adjustments A and C made from the underside of the chassis. To avoid splitting the slotted head of powdered iron core tuning slugs in IF transformers, use an alignment tool with a blade $3 / 32^{\prime \prime}$ wide.

Figure 2. Top View of Chassis. Location of Components and Alignment Adjustments Shown. Adjustments A and C made from underside. See figure 1.

REPLACING BATTERIES

In normal use, batteries for this set should furnish about 80 operating hours. Batteries of the type given below, or an equivalent substitute may be used in this set.
"A" Battery ($1 \frac{1}{2}$ volts) : R.C.A. VS236, Burgess 21R, Eveready 964.
"B" Battery ($671 / 2$ volts) : R.C.A. VS216, Burgess P45, Eveready 477.

©John F. Rider

RESISTORS

	RESISTORS
Symbol	Description Part No.
R1	100,000 ohms, $1 / 2$ watt........60B $8-104$
R2	18,000 ohms, $1 / 2$ watt..........60B $8-183$
R3	3.3 megohms, $1 / 2$ watt..........60B $8-335$
R4	10 megohms, $1 / 2$ watt...........60B 8-106
R5	1 megohm, Volume control..75B 19-1 (includes switch S1)
\dagger R6	4.7 megohms
\dagger R7	1 megohm
\dagger R8	10 megohms
$\dagger \mathrm{R} 9$	3.3 megohms
R10	390 ohms, $1 / 2$ watt...............60B 8-391

CAPACITORS

Symbol	Description Part No.
C1A	197 mmfd, max, ant.
C1B	97.8 mmfd, max, osc. $)^{\text {g }}$
C2	100 mmfd , ceramic.............65C 6-3
C3	. 01 mfd , ceramic.................65A 10-3
C4	. 005 mfd , ceramic................65A 10-5
C5	. 005 mfd , ceramic................65A 10-5
C6	. 01 mfd , ceramic..................65A 10-3
$\dagger \mathrm{C} 7$	150 mmfd
$\dagger \mathrm{C} 8$. 002 mfd
$\pm{ }_{+}$C9	. 01 mfd
$\dagger \mathrm{Cl} 0$	150 mmfd
\dagger +C11	. 005 mfd
C12	. 002 mfd , ceramic................65B 0 -37
C13	10 mfd , 75 volts, electrolytic67A 4-11

COILS, TRANSFORMERS, ETC.

Symbol	Description Part No.
Ll	Antenna, Iron Core.............69B 166-1
L2	Coil, Oscillator....................69A 165-1
T1	Transformer, 1st IF.............72B 28-64
T2	Transformer, 2nd IF.............72B 28-64
T3	Transformer, Output............98A 21
M1	Speaker ($31 / 2^{\prime \prime}$ PM) and Output Transformer...................78B 83-1
Sl	

MISCELLANEOUS PARTS

Dsscription

Bracket
"A" Battery Ground...18A 70 74
"A" Battery Ground..........
"A" Battery Ground.
Carton and Fillers................................44C 288
Clip, Fuse (for cabinet catch)...........84A 10-16
Connector
"A"Battery.. 6 6-1
"B" Battery
Nut (for mtg. speaker).......................2A 1-14-24
Lockwasher (for mtg. speaker)3B 1-26-24

CABINET PARTS

Cabinet, Rear
ebony..34D 64-2
maroon...34D 64-4
green...34D 64-6
gray..34D 64-8
Compression Ring (for tuning knob).19A 31-10
Eyelet (for cabinet catch)6B 3-31
Grille Cloth and Baffle..........................AA 227.7
Handle, Plastic
ebony..37B 87-1
ebony... 87-2
maroo.
green........
gray...37B 87-4
Hinge, Spring......................................19A 72-1
Knob, Tuning
\qquad
maroon... 33 B 104.3
green...33B 104-5
gray..33B 104-7
Knob, Volume
ebony..33B 104-2
maroon...33B 104-4
green..33B 104-6
gray..33B 104-8
Screw
for mtg. chassis, \#4-40 x $3 / 16$
BH MS...245-187-C2-24
for mtg . eyelet, $\# 6-32 \times 3 / 8$ BH MS..60-375-C2-24
for mtg. Volume knob, $\# 4-40 \times 5 / 16$ BH MS..245-312-C2-24

Models 4Y11 Ebony, 4Y12 Maroon, 4Y18 Green and 4Y19 Gray

SPECIFICATIONS

Circuit: Superheterodyne receiver with 4 miniature tubes and a selenium rectifier.

Frequency Range: Standard broadcast band, 535 to 1620 KC.

Intermediate Frequency: 455 KC .
Power Supply: This receiver will operate on 117 volt AC or DC or on one $671 / 2$ volt " B " battery and one $71 / 2$ volt "A" battery.

Power Consumption: 20 watts on 117 volt AC or DC line.

Antenna: Built-in Ferro-Scope (iron core) antenna.
Speaker: $31 / 2^{\prime \prime}$ PM, with Alnico V magnet. Voice coil impedance, 3.2 ohms .

REPLACING BATTERIES

Note: Run-down batteries should be removed from the set. Corrosive material may leak from a run-down battery and parts of the chassis or the cabinet are likely to be damaged.

In normal use, batteries for this set should furnish about 40 operating hours. Batteries listed below, or an equivalent substitute may be used in this set.
"A" Battery ($71 / 2$ volts) : Burgess C5, Eveready 717 or equivalent.
"B" Battery ($671 / 2$ volts) : Burgess XX45, Eveready 467 or equivalent.

REPLACING TUBES

Any tube may be removed or replaced after the knurled knobs are pulled off the tuning and volume control shafts. Some type of tube extracting device may be useful, or a tube may be removed by carefully working a slender screwdriver between the base of the tube and its socket.

Tube and Battery Location

REMOVING THE CHASSIS

The chassis need only be removed from the cabinet when servicing the underside of the chassis.

To remove the chassis, proceed as follows:
(a) Remove one screw from the chassis to disconnect the bead chain fastened to the cabinet.
(b) Remove and disconnect the "A" and "B"batteries; remove the knurled tuning knob and the 1U4 tube.
(c) Remove the chassis mounting screw located in each battery case and behind the tubes. The entire chassis may be lifted out of the cabinet.
The chassis cover must be removed to align the re-

ALIGNMENT PROCEDURE

- Battery power is preferable for alignment; use FRESH bat teries. If this set is to be aligned while operating on an AC power line, an isolation transformer should be used. If an isolation transformer is not available, connect a .1 mfd . capacitor in series with the signal generator low side to B minus (pin 7 of IU5 tube.)
- The chassis cover must be removed to align trimmers A and C.
- Set volume control full on.
- Connect output meter across speaker voice coil.
- Use lowest setting of signal generator capable of producing adequate output meter indication.
- Use a non-metallic alignment tool for IF transformers.
- Repeat adjustments to insure good results.

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Receiver Gang Setring	Trimmer Description	Trimmer Designation	Type of Adjustment
1	.001 mfd . when using AC. .1 mfd . when using Battery.	Stator of antenna tuning capacitor	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd } \\ & \text { lif } \\ & \text { IF } \end{aligned}$	$\begin{aligned} & \text { *A, B } \\ & { }^{*} \mathrm{C}, \mathrm{D} \end{aligned}$	Maximum output
2	.001 mfd. when using AC. .1 mfd. when using Battery.	Stator of antenna tuning capacitor	1620 KC	Gang fully open	Oscillator (on gang)	E	$\begin{aligned} & \text { Maximum } \\ & \text { output } \end{aligned}$

Install the metal chassis cover removed during IF Alignment.

3	Loop of several turns of wire, or place genera- tor lead close to re- ceiver for adequate sig- nal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal.	Antenna (on gang)	F

*Adjustments A and C are made from underside of chassis. To avoid splitting the slotted head of powdered iron tuning slug in IF transformers, use an alignment tool with a blade $3 / 32^{\prime \prime}$ wide.
ceiver or check voltages, etc. Remove the remaining two screws which hold the cover on the chassis. Press the switch button to disengage the chassis cover.

When replacing the chassis cover, press the switch button to permit the cover to fit on the chassis at all points. Three tabs on the chassis cover must fit in slots along the edge of the chassis at either side of the speaker. Caution: Be sure the lead wires from the output transformer (on the speaker) are not caught between the chassis and the cover.

Dial Cord Stringing

DIAL CORD STRINGING

To string the dial cord, close the tuning gang. Start stringing at the tension spring and run the dial cord in the direction indicated by the arrow. See illustration below. Draw the dial cord tight to apply tension on the spring and prevent slipping at the tuning shaft.

Adjustments A and C are made from underside of chassis.

ADMIRAL PAGE 23-43

©John F. Rider

RESISTORS	
Symbol	Description Part No.
R1	2.2 megohms, $1 / 2$ watt60B 8-225
R2	100,000 ohms, 1/2 watt60B 8-104
R3	270 ohms, $1 / 2$ watt60B 8-271
R4	18,000 ohms, $1 / 2$ watt60B 8-183
R5	10 megohms, $1 / 2$ watt60B 8-106
R6	390 ohms, $1 / 2$ watt60B 8-391
R7	3.3 megohms, $1 / 2$ watt60B 8-335
R8	I megohm, Volume control..75C 1-57 (Includes On-Off switch Sl)
R9	120 ohms, $1 / 2$ watt60B 8-121
\dagger R10	10 megohms, $1 / 2$ watt
\dagger Rll	4.7 megohms, 1/2 watt
\dagger R12	1 megohm, $1 / 2$ watt
\dagger Rl3	3.3 megohms, $1 / 2$ watt
R14	2,200 ohms, $1 / 2$ watt60B 8-222
R15	47 ohms, 1 watt60B 14-470
R16	2,700 ohms, 1 watt60B 14-272
R17A	1380 ohms \} 5 watt tapped
R17B	1380 ohms) Candohm61A 5-7

CAPACITORS

Symbol	Description Part No.
C1A	272 mmfd , max. Ant. \}gang. 68B 57
ClB	107 mmfd , max. Osc. \}gang.. 68 B
C2	250 mmfd , ceramic65C 6-5
C3	. 25 mfd , 200 volts, paper....64B 1-28
C4	. 005 mfd , ceramic65C 10-5
C5	100 mmfd , ceramic65C 6-3
C6	. $18 \mathrm{mid}, 200$ volts, paper....64A 2-2
C7	. $01 \mathrm{mfd}, 400$ volts ${ }^{\text {a }}$ paper...64B 1-25
C8	. 001 mfd , ceramic65C 6-41
C9	$100 \mathrm{mfd}, 25$ volts, electrolytic67A 4-6
$\dagger \mathrm{ClO}$.01 mfd , ceramic
$\dagger \mathrm{Cll}$	150 mmfd , ceramic
$\dagger \mathrm{Cl2}$. 002 mfd , ceramic
$\dagger \mathrm{Cl} 3$	150 mmfd , ceramic
\dagger ¢14	. 005 mfd , ceramic
Cl5	. 001 mfd , ceramic65C 6-41
C16	. 047 mfd , 400 volts, paper..65A 13-5
C17A	$20 \mathrm{mfd}, 150$ volts
C17B	$30 \mathrm{mfd}, 150$ volts $\}$ elect.......67C 7-41

位 $30 \mathrm{mfd}, 150$ volts
C17C 20 mfd, 150 volts

COILS, TRANSFORMERS, ETC.

Symbol	Description Part No.
L1	Antenna, Iron Core69B 167-1
L2	Coil, Oscillator69A 39-7
Tl	Transformer, 1st IF72B 28-1
T2	Transformer, 2nd IF72B 28-62
T3	Transformer, Output98A 21
M1	Speaker ($3^{1 / 2^{\prime \prime}}$ PM) and Output Trans. \qquad .78B 58-2
M2	Rectifier, Selenium93A 1-4
Sl	Switch, On-OffPart of R8
S2	Switch, Power Change77A 46 Couplate (includes R10, R11, R12, R13, C10, Cl1, Cl2, Cl3, Cl4)63B 6-6

MISCELLANEOUS PARTS

 Part No.
Bracket, Antenna SupportA3911 (Includes fiber insulator support)
Chassis Cover \qquadA3904 Clip, IF Transformer Mounting ...72B 28-10

[^1]
cord prongs into the power switch through the two slots provided in the bottom of chassis. These slots are at the right hand edge of chassis as viewed from

TUBE REPLACEMENT

Do not replace tubes or batteries unless switch on the volume control is turned completely off. In case of tube failure be sure to turn the receiver off immediately.
Four tubes (Plus selenium rectifier) are used. Type numbers and locations are shown in the tube diagram label located inside the cabinet. If tubes are that the receiver is turned off when replacing the tubes in their proper sockets. that the receiver is turned off when replacing the tubes in their proper sockets.
Failure to replace tubes in their proper sockets may result in damage to the tube, or to the receiver, or both.

SERVICE DATA

 definitely proved not to be the cause.
BRATED TEST OSCILLATOR WITH SOME TYPE OF OUTPUT MEASURING DEVICE BE USED WHEN ALIGNING THE RECEIVER AND THAT THE PROBE INSENSITIVE AND THE DIAL CALIBRATION WILL BE INCORRECT. THE TRIMQERS WILL BE REFERRED TO BY THEIR FUNCTION AS INDICATED
ON THE PARTS DIAGRAM.

NOILV77V1SNI A8311V8

BATTERY INSTALLATION: Before installing new batteries or replacing old
ones, turn the volume control to the extreme left or "OFF" position.
Attach the connector with the snap-on fasteners to the "B" battery (90 Volt) and insert battery into the left hand side of the battery retaining area of the cabinet back so that the connector faces in the direction of the top of the re" A " battery ($4-1 / 2$ Volt) and place battery in cabinet back so that the connector faces the outside wall of cabinet.

This receiver will accommodate any of the batteries listed below: (No preference
is intended by the order of listing.)

ALIGNMENT PROCEDURE

GENERAL DATA. The alignment of this receiver requires the use of a test oscillator that will cover the frequencies of $455,600,1400$ and 1620 KC and an output meter ta be connected across the primary or secondary of the output transformer. If possible, all alignments should be made with the volume control on maximum and the test oscillator output as low as possible to prevent the AVC from operating and giving false readings.

ALIGNMENT PROCEDURE CHART

$\begin{aligned} & \text { STEP. } \\ & \text { ne. } \end{aligned}$	rosition OF enge	sicmal gemerator FREquency	gemerator comnection	DUMMY ARTENMA	ADUST* MENT	TPPE OF ADUSTMENT
1	Any moint there no interfering signal is recsived	$\begin{aligned} & \text { Exactly } \\ & \text { Uss IC } \end{aligned}$	Migh side to grid of IRS tube. Low side to common negative	. 05 MFD Condenser	-Slug at top of 2nd. I. F. (T2) and then each of the slugs of the lst. I. F.	For Maximum Output.
2	$\begin{aligned} & \text { Eractly } \\ & \text { 16D } 10 \end{aligned}$	Exactly 1620 KC.		2 Turns of hookup wire	Front Gang. Trimner	For Maximum Output.
3	Approx 1000 me	Approx 1400 IC	DUMAY	6° in Diameter. (place approximately	Rear Gang Trimmer	For Maximum Output.
4	$\begin{aligned} & \text { Exactly } \\ & 000 \text { ic } \end{aligned}$	$\begin{aligned} & \text { Exactly } \\ & 000 \text { KC } \end{aligned}$	AMTEMMA	end of, and in same axis as loop.)	Slug in Oscillator Coil. (L2)	For Maximu Output.
5					$\begin{gathered} \text { Repeat } \\ \text { Steps } \\ 2 \text { and } 3 . \end{gathered}$	

PARTS LIST

C5 N-6375 Condenser, Ceranic 50 MMFS. 500 V . $\mathrm{C}, \mathrm{Cl} 3 \mathrm{~N}-4894$ Condenser, Paper .005 MFO. 600 V .

$\begin{gathered} C 7, C 8 \\ \omega \end{gathered}$	$\begin{aligned} & \mathrm{N}-1345 \\ & \mathrm{~N}-1351 \end{aligned}$	Condenser, Paper Condenser, Paper	.05 MFD. 200 V. .1 MFD. 200 V
C 10, C21	H-6377	Condenser, Paper	. 002 MFD. 600
CII	$\mathrm{N}-1346$	Condenser, ${ }^{\text {¢ Paper }}$. 05 MFD. 400
C12	N-60	ndenser,	100

N-668I Speaker, 4^{n} P.M N-8328 Coil, Loop - Iron Rod Type

N-7981 Coil, Ist, I.F.
H-8326 Coil, 2nd, 1.F.

N-832 Coil, Oscillator
M-8329 Transformer, Output

N-833I Rectifier, Selenium
N-5951 Switch, Power Changeover

PARTS LIST

schematic part LCATIOM MUMEER

PARTS LIST
SCHEMATIC PART
LOCATION MUMBER DESCRIPTION

This-
receiver may be operated on either AC or DC, 105-125 volts, 50-60 cycles.

| FM | . | . | 88 to 108 MC. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| AM | 540 to 1700 KC. | | |

Antenna Connections:

It is equipped with built-in. AM and FM antennae so that in primary listening areas an outside antenna is not necessary. WHEN LISTENING TO FM BY USING THE BUILT-IN ANTENNA,•KEEP THE ELECTRIC LINE CORD EXTENDED TO ITS FULL LENGTH.

For weak or distant stations there are provisions made in the rear for antenna connections. A terminal strip with two screw connections for the lead-in wires from the FM antenna, also a wire coming out the back of the receiver for an external AM antenna.

When using the built-in antenna on FM, the lug coming out between the two screw connections on the terminal strip in the rear, must be connected to the screw connection marked "ANT." When using an external FM antenna disconnect this wire and connect external antenna lead-in wires to the two screw connections.

Station Selector:

The knob on the extreme right hand side of the cabinet operates the tuning condenser on both $A M$ and $F M$ and simultaneously moves the indicating pointer. Ease and accuracy in tuning is made possible due to a reduction drive.

Band Switch:

The second knob from the right is the AM-FM band switch. This is a two position switch. When the switch is in the counterclockwise position, AM (Standard Broadcast) stations may be tuned in. When the switch is in the clockwise position, FM (Frequency Modulation) stations may be tuned in.

Volume Control and Power Switch

The third knob from the right is the volume control and power switch. When the control is in the extreme counterclockwise position the power is "OFF." From this position, a slight clockwise rotation will turn the power "ON." By further rotation in this direction volume may be increased to any degree until the full output of the receiver is obtained.

Tone Switch:

The fourth knob from the right is the tone switch. For normal operation the switch should be clockwise. For increased bass response turn switch fully counterclockwise.

Notes:

Since this receiver has a loop-tenna on AM which has a directional effect, it may be necessary at times to turn the receiver for best reception. This set will operate properly only after the tubes are sufficiently heated. This may take two minutes after the power switch is turned "ON." If the receiver is being operated on DC (Direct Current) and no signals are heard after two minutes, reverse the line cord plug in the power
outlet. Should noticeable hum be detected when operating on AC (Alternating Current), reverse the line cord plug in the power outlet.

Servicing

(For Use of Radio Technician):

Alignment of the receiver will, in most cases, be unnecessary unless an RF or IF transformer is replaced or the adjustment has been tampered with. The IF slugs are slotted for a small size fiber screwdriver. Do not put excessive pressure on the aligning tool or the threads in the coil-form will be stripped and adjustments will be impassible.

IF Alignment:

Set bandswitch to AM position. Connect the signal generator, modulated at 400 cycles, through a 0.01 Mfd condenser to the grid of the 12AT7 converter tube. Connect the low side of the generator through a 0.1 Mfd condenser to the receiver chassis. Adjust the signal generator to 455 KC . Tune primary and secondary slugs of $\mathrm{T} 3 \& T 5$, AM-IF Transformers, for maximum output.

For FM alignment set bandswitch to FM position and leave generator connected to the grid of the 12AT7 converter tube. Adjust generator to 10.7 MC . Connect 20,000 ohm per volt or VTVM meter as in note " 1 " of schematic diagram. Tune primary of T 1 , bottom slug, and both primary and secondary of T2 \& T4 for maximum indication on meter. To align secondary of Ratio Detector Transformer connect meter as in note " 2 " of schematic diagram. Tune top slug through positive and negative indication and then slowly return until meter reads zero. This is in the center of the " S " curve.

RF Alignment:

Set bandswitch to AM position. Connect signal generator, modulated at 400 cycles, to external antenna lead and to ground through a 0.1 Mfd condenser and adjust to 1700 KC . Set dial pointer to 1700 KC and tune signal for maximum output with oscillator trimmer. Next set generator to 1500 KC and tune in this signal on the receiver. Then adjust RF trimmer for maximum output.
Set bandswitch to FM position. Connect in series with eachs generator lead a carbon 150 ohm resistor and connect to rear antenna terminal board. Adjust generator and dial pointer to 108 MC. Peak oscillator trimmer for maximum signal output. Next set generator to 105 MC and tune in this signal on receiver. Then peak RF trimmer for maximum output. No adjustment is necessary at the low end because a special compensated fixed padder is used. Set the generator to 94 MC and tune the FM antenna coil for maximum.
In all the IF and RF adjustments it is important to keep the signal generator output as low as possible. It is extremely necessary in making the RF adjustments, that the fundamental oscillator signal be tuned in and not the image frequency. This can be checked by the use of a calibrated wavemeter.

PAGE 23-4 ALLIED RADIO

GENERAL INFORMATION

TYPE - FM-AM Radio Phonograph Combination

```
TUNING RANGE - AM 535 to 1620 Kc AM IF - 455 Kc
    FM 88 to 108 Mc FM IF - 10.7 Mc
TUBE COMPLEMENT - 6BA6 - FM-AM RF Amplifier
    6BA7 - FM-AM Converter
    6BA6 - FM-AM IF Amplifier
    6BA6 - FM IF Amplifier
    6AL5 - FM Ratio Detector
    6AV6 - AM Det & lst Audio Amp
    6K6GT - Power Amplifier
    5Y3GT - Rectifier
```

POWER SUPPLY - 117 volts, 60 cycles AC only; 85 watts, including phono motor

INSTALLATION § OPERATING INSTRUCTIONS

ANTENNAS

No outside antenna or ground is normally required for standardbroadcast (AM) reception, as a loop antenna is located inside the cabinet. Antenna connections are shown in Figure 1. In locations where additional pick-up is desired, an external antenna may be connected to the clip marked "EXT BC ANT" on the loop antenna.

An FM antenna, built into the power cord, eliminates the need for an external $F M$ antenna when the receiver is used in normal FM service areas, such as are found in and for a few miles around metropolitan areas. In "fringe" or weak signal areas, improved FM reception can be obtained by using an outside FM antenna. The external antenna should be connected through a 300 ohm twin transmission line to the 1st and 2nd screws on the terminal strip on the chassis, as in Figure 1. The link between the 2nd and 3rd screws should be opened. Orient the antenna to obtain maximum volume of the FM stations.

For best FM reception from the built-in power line cord antenna, it is important to stretch the cord to its full length. Changing the direction or position of the line cord, or reversing the plug in the wall outlet, will often improve reception from weak stations. Connect the link between the 2nd and 3rdscrews on the terminal strip on the chassis when the built-in antenna is used.

FIGURE 1. ANTENNA CONNECTIONS

CONTROLS

Refer to Figure 2 for the locations of the radio operating controls.

Power for both the radio and the record changer is controlled by the VOL-ON-OFF knob.

The phonograph motor will not operate, however, until the PHONO-TONE-RADIO knob is rotated also to "PHONO".

Tuning of FM stations should be done very carefully, for best sound reproduction, not necessarily for the strongest volume received.

FIGIJRE 2. OPERATING CONTROLS

ALIGNMENT

GENERALINFORMATION

1. Maximum performance can be obtained only if extreme care is exercised during alignment.
2. Use a small fibre screwdriver for aligning the IF transformers.
3. Refer to Figure 4 for the location of all alignment trimmers and cores.
4. As the stages are brought jnto alignmeat, reduce the signal generator output to a low value to avoid over loading the receiver.

ORDER OF ALIGNMENT AND EQUIPMENT REQUIRED

1. AM Broadcast Band IF \& RF Alignment a. 455 to 1620 Kc AM signal generator
b. Low range output meter.

2(A) FM Band IF \& RF Alignment (preferred method) a. $\quad 10.7$ to 108 Mc FM signal generator
b. Oscilloscope
(B) FM Band IF \& RF Alignment (alternate method) a. 10.7 to 108 Mc signal generator (unmodulated) b. Low range DC electronic voltmeter

AM BROADCASTBAND-IF\&RFALIGNMENT

1. Connect the AM signal generator as in chart below, with 400 cycle, 30% modulation.
2. Connect the output meter across the speaker voice coil. Throughout alignment, reduce the generator output to a level which produces less than 1.27 volts (. 5 watt) across the voice coil to avoid overloading
the receiver.
3. Set the bandswitch to the AM position.
4. Turn the receiver volume control to maximum.
5. Proceed as shown in the following chart.

STEP	DUMMY ANT ENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	GANG SETTING	ADJUST	REMARKS
IF ALIC 1.	GNMENT .1 mf	Grid of conv. V-2 (pin 7, 6BA7)	455 Kc	Fully opened	$\begin{aligned} & 1,2,3 \& 4 \\ & \text { (IF cores) } \end{aligned}$	Adjust for maximum.
RF ALI 2.	GNMENT .1 mf	Grid of conv. $\mathrm{V}-2(\operatorname{pin} 7,6 \mathrm{BA} 7)$	1620 Kc	Fully opened	$\stackrel{5}{(\mathrm{AM} \mathrm{Osc})}$	Adjust for maximum. *
3.	-	-	-	-	-	Connect AM loop to chassis.
4.	- -	Across :adiation loop**	1400 Kc	Tune in signal	$\begin{gathered} 8 \\ \text { (AM Ant) } \end{gathered}$	Adjust for maximum.

5. If, after the receiver has been aligned as above, it is found to be badly off calibration, it will be necessary to adjust oscillator core (7) as follows: connect the generator to the grid of the converter tube and, with the gang fully closed, adjust core (7) at 535 kc . It is advisable to repeat the oscillator adjustments at 1620 kc and 535 kc several times until the tuning range is correct. Core (7) has been pre-set at the factory and normally should require no retuning.

* If difficulty is encountered in tuning trimmer (5), adjust trimmer (6) to $1 / 2$ turn from tight.
** Connect generator output across $5^{\prime \prime}$ diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least 12" apart.

FM BAND-IF\&RFALIGNMENT (PREFERRED METHOD)

1. The following $F M$ alignment procedure, using an $F M$ signal generator and an oscilloscope, is to be preferred because the actual response pattern may be observed on the scope and adjusted for best symmetry and maximum amplitude.
2. Connect the vertical input terminals of the oscilloscope between the chassis and the junction of resistor $\mathrm{R}-18(47 \mathrm{~K})$ and capacitor $\mathrm{C}-23$ (1000 mmf).
3. Connect the $F M$ signal generator sync voltage output terminals, through a phase shifting network, to the
horizontal input terminals of the scope, as in Figure 5. (Other values of resistance and capacitance may be required, depending upon the scope). The phasing control should be adjusted to give only one trace on the scope. NOTE: If the FM generator has a built-in phase control, the phase shifting network is not necessary.
4. Set the bandswitch to the FM position.
5. Throughout alignment, reduce the generator output to keep the signal just above the noise level, to evoid

SERVICE NOTES

TO REMOVE CHASSIS FROM CABINET:

1. Remove the screws from the cabinet back.
2. Disconnect the phono power lead, the phono pick-up lead, the speaker leads, the line cord, and the antenna loop leads.
3. Remove the pointer escutcheon by pulling it downward.
4. Turn the tuning knob counterclockwise until the pointer reaches the extreme low frequency end of the dial scale.
5. From the back of the cabinet, loosen the pointer adjustment setscrew (see Figure 3) and pull the pointer and shaft assembly from the chassis. CAUTION: Do not remove the nut from the front of the pointer, $\overline{\mathrm{as}}$ the detent ball and spring will fall out, and may become lost.
6. Pull off the control knobs.
7. Remove the three chassis mounting screws, from
beneath the chassis.
8. Slide the chassis from the cabinet.

TO CALIBRATE DIAL:

1. Turn the tuning knob counterclockwise until the end of its travel is reached.
2. From the back of the cabinet, loosen the pointer adjusument setscrew (see Figure 3). CAUTION: Do not remove the nut from the front of the pointer.
3. Move the pointer until it is in a horizontal position (at the low frequency end of the dial scale).
4. Tighten the adjustment setscrew.

NOTE: If the pointer is moved by hand accidentally, it will be releasedfrom a detent in the pointer collar, and no damage to the tuning mechanism will result. To reset the pointer, move it back and forth until it again engages in the detent.

FIGURE 3. POINTER AND DRIVE CORD RESTRINGING DETAIL

FIGURE 4. TUBE AND TRIMMER LOCATIONS

FIGURE 5
FM SIGNAL GENERATOR \& OSCILLOSCOPE HOOK-UP

FIGURE 6. RATIO DETECTOR WAVEFORM
6. Proceed as shown in the following chart.

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	TUNER SETTING	ADJUST	REMARKS
IF ALI 1.	NMENT 1000 mmf	Grid of 2nd IF Amp V-4 (pin 1, 6BA6)	$\begin{gathered} 10.7 \mathrm{mc} \\ \pm 100 \mathrm{kc} \mathrm{dev} \end{gathered}$	Fully opened	$\stackrel{9}{(\text { ratio det pri) }}$	Adjust for maximum amplitude of pattern.
2.	1000 mmf	$\begin{aligned} & \text { Grid of 2nd IF } \\ & \text { Amp V-4 (pin } 1 \text {, } \\ & 6 \mathrm{BA} 6 \text {) } \end{aligned}$	$\begin{gathered} 10.7 \mathrm{mc} \\ \pm 100 \mathrm{kc} \mathrm{dev} \end{gathered}$	Fully opened	$\begin{aligned} & 10 \\ & \text { (ratio det sec) } \end{aligned}$	Adjust for symmetrical curve, as shown in Figure 6.
3.	-	-	-	-	-	Repeat steps 1 \& 2 for maximum amplitude and best symmetry.
4.	1000 mmf	```Grid of 1st IF Amp V-3 (pin 1, 6BA6)```	$\begin{gathered} 10.7 \mathrm{mc} \\ \pm 100 \mathrm{kc} \mathrm{dev} \end{gathered}$	Fully opened	$\begin{aligned} & 11 \& 12 \\ & \text { (2nd IF sec \& } \\ & \text { pri) } \end{aligned}$	Adjust for maximum amplitude of pattern.*
5.	1000 mmf	Grid of conv. V-2 (pin 7, 6BA7)	$\begin{gathered} 10.7 \mathrm{mc} \\ \pm 100 \mathrm{kc} \mathrm{dev} \end{gathered}$	Fully opened	$\begin{aligned} & 13 \& 14 \\ & \text { (1st IF sec \& } \\ & \text { pri) } \end{aligned}$	Adjust for maximum amplitude of pattern. *
6.	1000 mmf	Grid of conv. $\begin{aligned} & \text { V-2 (pin } 7, \\ & 6 B A 7) \end{aligned}$	$\begin{gathered} 10.7 \mathrm{mc} \\ \pm 100 \mathrm{kc} \mathrm{dev} \end{gathered}$	Fully opened	$11,12,13$	Readjust for maximum amplitude and best symmetry.
RF AL	GNMENT					
7.	270 ohms	FM terminal 18 on rear of chassis (open link)	$\begin{gathered} 87.5 \mathrm{mc} \\ \pm 22-1 / 2 \mathrm{kc} \mathrm{dev} \end{gathered}$	Fully closed	$\begin{gathered} 15 \\ \text { (osc core) } \end{gathered}$	Adjust for maximum amplitude of pattern.*
8.	-	-	-	Fully closed	$\text { (RF }^{16} \text { core) }$	Turn counterclockwise until core is at bottom of pipe, then turn four turns clockwise.
9.	270 ohms	FM terminal 18 on rear of chassis	$\begin{gathered} 90 \mathrm{mc} \\ \pm 22-1 / 2 \mathrm{kc} \mathrm{dev} \end{gathered}$	Tune in signal	$\begin{gathered} 17 \\ \text { (RF tuning } \\ \text { plug) } \end{gathered}$	Adjust for maximum amplitude of pattern. *
10.	270 ohms	FM terminal 18 on rear of chas sis	$\begin{gathered} 105 \mathrm{mc} \\ \pm 22-1 / 2 \mathrm{kc} \mathrm{dev} \end{gathered}$	Tune in signal	$\begin{gathered} 16 \\ \text { (RF } \left.\begin{array}{c} \text { core } \end{array}\right) \end{gathered}$	Adjust for maximum amplitude of pattern.*
11.	-	-	-	-	-	Repeat steps 9 \& 10, until no further adjustment is necessary.

[^2] the scope, however, since it will not show symmetry of the curve.
FM BAND-IF \& RFALIGNMENT (ALTERNATE METHOD)

> Throughout alignment reduce the signal generator volt rise abo've no signal voltage, to avoid overloading the receiver.
> 6. In step 2 below, connect two 100 K ohm resistors in series across R-19. Connect the electronic voltmeter between the volume control side of resistor with the low side of the meter at the 100 K resistors, 7. Proceed as shown in the following chart.

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{aligned} & \text { TUNER } \\ & \text { SETTING } \end{aligned}$	ADJUST	REMARKS
IF ALIGNMENT						
1.	1000 mmf	Grid of conv. V-2 (pin 7, 6Bf. 7)	10.7 mc	Fully opened	$\begin{aligned} & 9,11,12,13 \& 14 \\ & \text { (IF cores) } \end{aligned}$	Adjust for maximum.
2.	1000 mmf	Grid of conv. V-2 (pin 7, 6BA7)	10.7 mc	Fully opened	$\begin{gathered} 10 \\ \text { (ratio det sec) } \end{gathered}$	Adjust for zero (connect meter as in step 6 above.)
RF ALIGNMENT						
3.	270 ohms	FM terminal 18 on rear of chassis (open link)	87.5 mc	Fully closed	$\begin{gathered} 15 \\ \text { (osc core) } \end{gathered}$	Adjust for maximum.
4.	-	-	-	Fully closed	$\begin{gathered} 16 \\ \text { (RF core) } \end{gathered}$	Turn counterclockwise until core is at bottom of pipe, then turn four turns clockwise.
5.	270 ohms	FM terminal 18 on rear of chassis	90 mc	Tune in .signal	$\begin{gathered} 17 \\ \text { (RF tuning plug) } \end{gathered}$	Adjust for maximum.
6.	270 ohms	FM terminal 18 on rear of chassis	105 mc	Tune in signal	$\begin{gathered} 16 \\ \text { (RF core) } \end{gathered}$	Adjust for maximum.
7.	-	-	-	-	-	Repeat steps 5 \& 6 until no further adjustment is necessary.

REPLACEMENT PARTS LIST

NOTE: When ordering parts, specify model number of set in addition to part number and description of part.

Ref. No.	Part No.	Description	$\begin{aligned} & \text { Ref. } \\ & \text { No. } \end{aligned}$	Pert No.	Description
CHASSIS PARTS - ELECTRICAL			R-8	6R2108	47 20\% 1/2W
			R-9	6R5725	8200 10\% 2W
Capecitors			R-10	17A690973	Wire wound: 360 10\% 3 W ; centertapped \qquad
C-1	198691877	Variable, 2-gang	R-11	6R2039	$6810 \% 1 / 2 N .$.
C-2	21877286	Ceramic: 100 mimf 500V	R-12	6R5725	8200 10\% 2W
C-3	21 K 478410	Ceramic: 1000 mmf 500V	R-13	6R5551	120 10\% 1/2W
C-4	21 K 481377	Ceramic: 500 mmf 500 V	R-14	6R6056	47,000 20\% 1/2W
C-5	21 K 482726	Ceramic, disc type: 10,000 mmf 450 V	R-15	6R3927	2.2 meg 20\% 1/2W
C-6	21 K 77373	Ceramic: 47 mmp 500 V	R-16	6R6377	470,000 10\% 1/2W
C-7	21BT7286	Ceramic: 100 mpf 500V	R-17	6R5732	15,000 10\% $2 W$..................
C-8	8R9816	Paper: . 05 mf 400V	R-18	6R6056	47,000 20\% 1/2W
C-9	$21 \mathrm{KT7373}$	Ceramic: 47 mmf 500V	R-19	6R6410	33,000 10\% 1/2W.................
C-10	214690688	Ceramic: 85 mmf 500V	R-20	18A600974	Volume control: 2 meg; tapped at
C-11	21 K 482726	Ceramic, disc type: $10,000 \mathrm{mmf} 450 \mathrm{~V}$			600,000 ohms ; includes on-off ow
C-12	238690975	Electrolytic: $40 \mathrm{mf} / 300 \mathrm{~V}$, $40-40 \mathrm{of} /$ 250V, $40 \mathrm{mf} / 25 \mathrm{~V}$	$\mathrm{R}-21$ $\mathrm{R}-22$	$\begin{aligned} & \text { 6R2109 } \\ & \text { 6R6410 } \end{aligned}$	
C-13	214470789	Ceramic, disc type: 5000 mep 450 V	R-23	6R6032	470,000 20\% 1/2W
C-14	21×482726	Ceramic, disc type: 10,000 mmf 450V	R-24	188600683	Tone control: 1 meg; with phono-
C-15	21A470789	Ceramic, disc type: $5000 \mathrm{mmi} 450 \mathrm{~V} .$.			radio switch
C-16	8R9809	Paper: . 01 mf 400V	R-25	6R5593	470 10\% 1W
C-17	21×482726	Ceramic, disc type: 10,000 menf 450 V			
C-18	21 K 790912	Ceramic: 2000 minf 500 V	R-26	6R6015	220,000 20\% 1/2W
C-19	$21 K 482726$	Ceramic, disc type: 10,000 mmi 450 V			
C-20 $\mathrm{C}-21$	2114478410 218484337		Switc		
C-22	23 K 690543	Electrolytic: 3 mf 50V	S-1	408690538	Bandewitch, AM-FM
C-23	21 K 478410	Ceramic: 1000 mp 500V	S-2	-	Phono-radio owitch (on tone control)
C-24	8 R 9809	Paper: . 01 uf 400 V			
C-25	8R490232	Thbular, molded: . 0477 mf $400 \mathrm{~V}$.	Tranaf	orners	
C-26	8R9813	Paper: . 005 mf 600V			
C-27	8R9809	Paper: . 01 mf 400V	T-1	244690544	FM Antenna Input Transformer
C-28	21877286	Ceranic: 100 w-mp 500V	T-2	24 K 691878	
C-29	8R9813	Paper: . 005 mf 600V			red dot
C-30	8R9813	Paper: . 005 nf 600V	T-3	258600684	Pover Transformer
C-31	8R9847	Paper: . 002 ar 600 V	T-4	248690540	lst FM IF Transformer (orange dot):
C-32	21K482726	Ceramic, disc type: 10,000 mim 450 V			10.7 mc ; complete with capacitors and cores; less shield
Pllot Light				248485553	AM IF Transformer (green dot): 455 kc; complete with capacitors,
I-1,2	65×10867	Bulb, pilot light: ${ }^{414}$; 6-8V; . 25 anp; clear; bayonet baise		248690541	cores, and shield 2nd FM IF Transformer (yellow dot): 10.7 mc ; complete with capacitore
Coils			T-7	24K485555	and cores; less shield AM Diode Transformer (pink dot):
L-1	240690896	AM Loop Antema			455 kc ; complete with capacitors,
L-2	244692148	RF Choke			cores, and shield
L-3	24,900064	RF Choke	T-8	24×600893	Ratio Detector Transforser: 10.7 me;
L-4	$24 \mathrm{C690584}$	Inductor and Capacitor Asseably: FM RF; less tuning core			complete with capacitors, cores and shield
L-5	24K600519	Inductor and Capacitor Assembly: FM osc; less tuning core	T-9	258600969	Audio Output Transformer
L-6	24A791081	RF Choke			
Speaker			Part Number		Description
LS-1	$50 c 601038$	Speaker: $8^{\prime \prime}$ PM; 3.2 ohm VC exch	CHASSI	PARTS - ME	CHANICAL
			1×6907	Brac sho	t Assembly, tuning core mtg: includes der rivet and anti-backlash clip...
Resistors			7A6009	5 Brack	t, pllot light mtg
Note: All resistors are insulated carbon type unleas			786008 7AT733	$\begin{array}{ll} \text { Bracke } \\ 57 & \text { Brack } \\ \text { Bracke } \end{array}$	t, pointer mtg t, tuner mitg (gang mtg) t, tuning shaft
R-1	6R6004	1 meg 20\% 1/2W	434890	$397 \begin{aligned} & \text { Bushivo } \\ & \text { with } \end{aligned}$	8, line cord strain relief (use 43K890398)
R-2	6R5551	120 10\% $1 / 2 N$....................	43 K 990	98 Buehin	g, line cord retainer (use with
R-3 R-4	6R5725 6R2089	8200 10% 2W			0397)
$R-4$ $\mathrm{R}-5$	GR6028		42 K 690	61 Clip,	anti-backlash: single (on core mig et) ..
R-6	6R6410	33,000 10\% 1/2W.................	42A690		anti-backlash: double (on tuner wtg
R-7	6R6056	47,000 20\% 1/2W		brkt	

$\begin{aligned} & \text { Part } \\ & \text { Number } \end{aligned}$	Description	Part Number	Description
424485548	Clip, coil can mtg (AM IF transformer)	SS5405	Terminal, pin (on speaker leads)...
42 B 482867	Clip, spring: blued finish (holds FM IF	$4 A 70015$	Washer, "C" (tuning shaft metg)...... Washer, "C" (holds pointer etg bhait
	transformer) Cord, dial (pointer drive)		Wabler, puiley)
11 M 8944	Cord, dial (core drive)	44600676	Washer, dog (AM-FM ewitch mtg).....
30 K 21859	Cord, line: with plug; 9 ft long	457582	Washer, flat: $1 / 2 \times .195 \times .033$ stl; cad pl (pointer drive pulley etg).......
468692164	Core, iron and screw: green dot (FM Osc tuning core)		
46 K 692165	Core, iran and screw (FM RF tuning core)	MODEL	CAbiner Part
154600877	Cover, volume control: with insulator...	43 43326	Ball, steel: $1 / 8^{\prime \prime}$ diameter (pointor
5S7866	Eyelet: . $125 \times .091$ brass; nkl pl (core drive cord retainer)	43 A 326	detent) …….......................
1x600495	Lead and Plug Assembly, phono pick-up...	38 K 691915	Button, plug on rocord changer).......
459751	Lockwasher, int-ext: f0; cad pl (pointer drive pulley mtg) \qquad		Cabinet, console: red-brown mahogany; camplete lese pointer escutcheon and
2S7019	Nut, hex: $4-40 \times 1 / 4$; cad pl (FM tuning core mtg) \qquad	13 K 600651	
287051	Nut, hex palnut: $3 / 8-32 \times 9 / 16$; cad pl	$\begin{aligned} & 15 \mathrm{C} 600874 \\ & 340600819 \end{aligned}$	Cover, cabinet back Dial scale
35K691846	Pad, rubber: 1-hole (gang mig)	$34 \mathrm{K600817}$	Escutcheon, pointer
35A691845	Pad, rubber: 2-hole (gang mtg)	557870	Eyelet: brase (on RC draver panel-holds
$28 \mathrm{K71775}$	Plug, phono pick-up		
1×600828	Pulley Assembly, pointer \& gang drive (Includes $3-1 / 2^{\prime \prime}$ \& $1-1 / 4^{\prime \prime}$ pulleys)...	$5 A 600963$	Eyelet, chassis mitg: pierced; 1/8n
494690562	Pulley, core drive: brass		long
94600040	Receptacle, phono motor: 3-prong; includes shell	$36 \mathrm{K601052}$	Knob, control (Vol-On-Off): valnut-mahog.
588497	Rivet: . $088 \times 1 / 8 \mathrm{stl}$; nkl pl (ant1backlash clip mtg)	36 K 001056	Knob, control (Phono-Tone-Radio): walmutmanogany
58777	Rivet: $088 \times 3 / 16$ stl; nkl pl (min	$36 \mathrm{~K} 601057$	Knob, control (AM-FM) : walnut-mahogany...
$5 \mathrm{~S} 77{ }^{4}$		4 S 7657	Knob, control (Tuning): walnut-mahog Lockwasher, ext: \#8; cad pl (apkr
	socket mtg) .o.0.0.0.0.0.0.0.0.0.0.		
$5 S 7707$	Rivet: . $122 \times 5 / 32$ stl; nkl pl (term strip mitg)	2S7005	Nut, hex: 6-32 $\times 1 / 4$ stl; cad pl (pointer mtg)
557701	Rivet: $122 \times 3 / 16$ otl; nkl pl (ant term strip mtg)	25700	Nut, hex: $8-32 \times 5 / 16$; cad pl (splr mtg)
557700	Rivet: $122 \times 1 / 4 \mathrm{stl}$; nkl pl (octal socket mtg) \qquad	62K70581	Overlay, logotype: "Motorola"; gold lacquer finish
5 K 3896	Rivet, shoulder (on core mig brikt)....	1×600851	Pointer and Collar Assembly (less ohaft
357106	Screw, machine: $8-32 \times 1 / 4$ plain hex head; cad pl (pointer drive pulley atg).	55 K 600653	
357205	Screw, machine: $8-32 \times 1 / 4$ slotted locxing hex head; cad pl (gang mtg)	$3 \mathrm{K600655}$	Screv, machine: 8-32 $\times 1 / 2$ cross slot head; statuary bronze finish (RC
352695	Screw, sheet metal: \#6 $\times 3 / 16$ PKZ piain hex head; cad pl (tuner brkt mtg)..	357536	draver pull mtg) Screw, sheet metal: $\# 6 \times 3 / 8$ PKA slotted
357454	Screw, sheet metal: \#8 x 1/4 PKZ plain hex		acorn head; antique copper finish (back cover mtg)
	heed; cad pl (pmr.....................	3 K 653	Screv, speaker mtg: $8-32 \times 1-1 / 4^{n}$; copper
357103	Setscrev: 8-32 $\times 1 / 8$ Allen head; cad pl (core drive pulley \& pointer mig)........	14690738	axide finish Shaft and Sleeve Assembly, pointer: lesa
1 K 601085	Shaft and Pulley Assembly, pointer mtg...		detent spring and ball, and pointer.....
1×500489	Shaft, tuning: complete with pulley......	55K600654	Slide, record changer (on Bides of RC
15A690616	Shell, receptacle (on phono motor receptacle)	28400199	Speednut: for . 050 stud (dial scale
26 K 485936	Shield, coil (for FM IF tranaformers)....		mtg) .o................................
$9 \mathrm{K600968}$	Socket, pilot light	$4 S 1765$	Spring, caupression (pointer detent).0.
9 K 484167	Socket, tube: minlature; 7-prong......... Socket,		pl (pointer mtg)
$9 A 485495$ $9 A 76209$		457629	Washer, flat: $1 / 2 \times 3 / 16 \times .048$ atl; cad
414690598	Spring, coil: 7 turns; cosmoline dipped (FM RF core mtg)	4 A690729	pl (sphr mtg) Washer, spring (pointer atg)
41K691840	Spring, coil: 8 turns; cop pl (FM obc core mtg		
41 A14244	Spring, tension (core \& pointer drive cord)	MODEL 8FME	CABINST PARTS -Same as 8FM21 except:
31×37504	Strip, terminal: 1 insulated lug; \#1 mige $3 / 8$ " spacing	$16 \mathrm{K600650}$	Cabinet, console: blonde; complete, less pointer escutcheon and dial scale........
31×76184	Strip, terminal: 2 insulated lugs; \#l gnd; $3 / 8^{\prime \prime}$ spacing	$\begin{aligned} & 13 K 600652 \\ & 36 \mathrm{~K} 601058 \end{aligned}$	Cloth, Erille: 17-1/2" x 18-1/4"; eggehell Knob, control (Vol-On-Off): tan
31 K 26235	Strip, terminal: 3 insulated luga; \#l gnd; 3/8" apacing	$36 K 601063$ 36 K 601064	Knoo, control (Phono-Tone-Radio): tan.... Knob, control (AM-FM): tan
31к26658	Strip, terminal: 5 insulated lugs; \#3 gnd; $3 / 8^{\prime \prime}$ spacing	$\begin{aligned} & 36 K 601062 \\ & 3 K 600656 \end{aligned}$	Knob, control (Tuning): tan Screv, machine: $8-32 \times 1 / 2$ cross slot heod;

ARVIN PAGE 23-1

ELECTRICAL AND MECHANICAL SPECIFICATIONS

FREQUENCY RANGE	
TUBES AND FUNCTIONS	
6AV6 .---	
5Y3 Rectifier

POWER OUTPUT
Type: Beam tube

Plate Load \qquad 5000 Ohms

LOUD SPEAKER

Type. Permanent magnet, 2.15 oz., Alnico 5
Size: 8 inch
Voice coil impedance \qquad 3.2 Ohms

CHASSIS FEATURES

Automatic Volume Control
Built-in Loop
Underwriter's Listed

OPERATING CONTROLS

1. Right knob \qquad Tuning and Phono-Radio
2. Left knob \qquad ON-OFF, Volume and Tone

PHYSICAL DIMENSIONS

Length \qquad 15-1/8 inches Width \qquad 8 inches
Height \qquad 9-5/8 inches

- John F. Rider

ARVIN PAGE 23-3

PAGE 23-4 ARVIN

HOW TO ORDER PARTS

Replacement parts should be ordered by Arvin part number, description and model number of receiver from your Arvin Distributor. The Distributor will order direct from the factory. All prices subject to changes in accordance with O.P.S. regulations. Parts shipments are F.O.B. Columbus, Indiana.

SPECIFICATIONS

FREQUENCY RANGE

TUBES AND FUNCTIONS

6BA6	FM R. F. Amp.
12AT7	FM Converter
6BE6	AM Converter
6BA6	AM-FM-IF Amp.
6BA6	.- FM, IF Amp.
6T8.	IST Audio AVC
6V6GT-. Output
6X	Rectifier
POWER OUTPUT	
Undistorted 1.5 Watts
Maximum	---- 2.5 Watts
Plate load	. 5500 Ohms

LOUD SPEAKER
Type: Permanent magnet, 68 oz . Alnico 5
Size: 5 Inch

CHASSIS FEATURES

Automatic Volume Control
Built-in Loop-AM
Underwriters' Listed
Built-in Line Cord Antenna-FM
OPERATING CONTROLS

PHYSICAL DIMENSIONS

Colors are as follows: Ivory, Willow Green, Sandalwood and Rosewood.

THE ANTENNA

AM - This receiver has a built-in loop which gives satisfactory reception in most locations. If the receiver is located some distance from a broadcasting station, or where the electrical interference is high, an outside antenna connected to the terminal marked AM on the antenna terminal strip will improve reception.
FM-A Built-in Line Cord Antenna is connected to the FM antenna. Terminals are provided on the antenna terminal strip to connect an outside FM antenna, they are labeled FM \& G.

TECHNICAL INFORMATION

AM Tuning range - 540 Kc . to 1600 Kc . Intermediate Frequency 455 Kc . I. F. and R. F. rieasurements made at 500 milliwatts output - approximately 1.27 volts on a recerver type voltmeter connected across speaker voice coil. Approximate input for 500 MW output: I.F. $300 \mathrm{uv} ;$ R.F. with standard loop: at 600 Kc . $1200 \mathrm{uv} / \mathrm{m}$; at $1000 \mathrm{Kc} .900 \mathrm{uv} / \mathrm{m}$; at $1400 \mathrm{Kc} .800 \mathrm{uv} / \mathrm{m}$.

FM Tuning range - 88 megacycles to 108 megacycles. Inter mediate frequency 10.7 megacycles .I.F. and R.F. measurements made at 500 milliwatts output - approximately 1.27 volts on a rectifier type voltmeter connected across speaker voice coil. Approximate input for 500 MW output: I. F. 300 uv ; R.F. "Absolute Measurements": 91 megacycles 100 uv; 105 megacycles, 100 uv.

ALIGNMENT PROCEDURE

Output meter connection -......... Across speaker voice coil Output meter reading to indicate 500 MW 1.27 volts Generator Modulation 30%, 400 cycles Position of volume control Fully clockwise

Set dial pointer -....... Horizontal, variable condenser closed Set band switch
----...-. To left for AM alignment, right for FM alignment

AM ALIGNMENT

Position of Variable	Generator Frequency	Dummy	Generator Connection (high)	Generator Connection Ground Lead	Adjust Trimmers In Order	Trimmer Function
					Shown For	
		. 05 mfd .	Mixer Grid	Chassis	Max. Output A1, A2, A3, A4,	
Open	1650 Kc	. 05 mfd .	Mixer Grid	Test Loop	A1, A2, A3, A4,	Oscillator
1400 Kc	1400 Kc		*'Test Loop	Test Loop	A6	Antenna
**600 Kc	600 Kc		*'Test Loop	Test Loop	Check Point	Antenna

* Connect generator lead to Standard Hazeltine Test Loop, Model 1150, placed two feet from the set loop, or three turns of wire about six inches in diameter, placed about one foot from the set loop. Or the generator can be connected with the high side lead to the AM antenna screw terminal and the ground lead to the chassis. **With a generator signal of 600 Kc , tune the set to the point where maximum output is obtained, which shoul be approximately 600 Kc on the dial. Adjust antenna section plates of variable for maximum output. The alignment procedure should be repeated in the original order for greatest accuracy.
Always keep the output from the signal generator at its lowest possible value to make the A.V.C. action of the receiver ineffective.

FM ALIGNMENT

1. Turn band switch to FM, (right).
2. Connect (FM) I. F. generator to the second 6BA6 I.F. amp. grid, (lug No. 1) through a .01 uf mica dummy. Connect oscilloscope across volume control. With the I. F. generator tuned to 10.7 mc with 150 Kc deviation, and the same audio voltage used as horizontal sweep on the scope that is used to modulate the generator, adjust the ratio detector transformer slugs A7-A8 for the characterístic. " S " curve (See Fig. 1), with maximum vertical height on the scope. After this adjustment the top slug of the ratio detector should not be moved during the rest of the alignment.
3. Connect I. F. generator to mixer grid through .01 mica dummy. Using 23 Kc deviation at 10.7 Mc , adjust for maximum output. Maximum output may be indicated by maximum vertical height on the scope or maixmum voltage on a standard output meter across the voice coil of the receiver. After the two I.F. transformers have been aligned the bottom slug A8 of the ratio detector should also be peaked.
The characteristic "S" curve of the complete I. F. channel should be checked by applying a 10.7^{Mc} signal with 150 Kc deviation to the mixer grid and observing the " S " curve on the scope. It should not be very much different from that observed in step 2.

Connect R.F. (FM) generator (88 to 108 Mc) to the antenna terminals through the standard 300 ohm dummy (150 ohm in each side of generator leads).

Use R.F. generator with 23 Kc deviation. With the variable condenser completely open and Signal Generator tuned to 108.5 Mc adjust oscillator trimmer A12 (small ceramic trimmer) for maximum reading on output meter.
Then tune receiver to low end of band (variable completely closed) and Signal Generator to 87.5 Mc . If the receiver does not tune to this frequency the FM oscillator coil L4 will either have to be squeezed together or lengthened to cover the band, (squeezing lowers and lengthening raises the frequency). Any change in the coil will have to be completed by the trimmer at the high end of the band.
5. With the same Signal Generator connections as per paragraph 4 tune Signal Generator and set to 105 Mc . Tune R.F. trimmer A13 for maximum output at the same time rock variable back and forth through the frequency, (Rocking is necessary because slight oscillator pulling causes erroneous maximum readings).

Tune Signal Generator and set to $\mathbf{9 0} \mathbf{~ M c . ~ A d j u s t ~ R . ~ F . ~}$ coil L3 length for maximum output by squeezing or lengthening. Any change in the coil will have to be compensated at 105 Mc by the R.F. trimmer A13.
6. Aiter Steps 4 and 5 are finished check calibration and band coverage. Steps 4 and 5 may have to be repeated if set is off calibration. Band coverage should be 87.5 Mc to 108.5 Mc . Sensitivity should be approximatcly 100 uv at $105 \mathrm{Mc}, \mathbf{9 8} \mathrm{Mc}$ and 90 Mc .

HOW TO ORDER PARTS

Replacement parts should be ordered by Arvin part number, description and model number of receiver from your Arvin Distributor. The Distributor will order direct from the factory, except in the case of tubes, which should be obtained through regular tube distribution channels.

Schematic Location	Part Number	PARTS PRICE LIST FOR 580TFM					
		Description List	Price	Schematic Location	Part Number	Description List	Price
L3	D24770	Antenna Loop Assembly	1.00		E23241-1	Crystal, Dial	1.00
	A23829-1	Cabinet, Rosewrood	4.25		AC23302-1	Dial Plate Assembly [Rosewood]	. 35
	A23829-2	Cabinet, Ivory	4.25		AC23302-2	Dial Plate Assembly [Ivory]	. 35
	A23829-3	Cabinet, Willow Green	4.25		AC23302-3	Dial Plate Assembly [Willow Green]	. 35
	A23829-4	Cabinet, Sandalwood	4.25		AC23302-4	Dial Plate Assembly [Sandalwood]	. 35
Ll	AA22648-1	Choke, High Frequency, 1.5uh	. 30	L10	AA24772-1	Choke, R.F.	. 50
L2	AA21445-1	Choke, High Frequency, 7.5uh	. 50	C40	C20069-501	Capacitor, P.T., .0005ui, 600V	. 20
L7	AA22597-1	Choke, High Frequency, 3uh	. 30		A244642	Knob, IVOTY	. 30
L8	A21673	Choke, R.F. Iron Core, 14uh	. 40		D23242	Pointer, Dial	. 40
19	C24308-1	Choke, Line Cord	. 50	R1, R5,			
14	A22593	Coil, R.F. FM	. 10	R12, R22	C20060-105	Resistor, 1 megohm, 20\% 1/4 W.	.10
L5	A22594	Coil, Oscillator, FM	. 10	R2, R13,			
L6	AC22587-1	Coil, Oscillator, AM	. 50	R17 ${ }^{\text {a }}$	C20060-680	Resistor, 68 ohms, 20% 1/4 W.	10
$\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3,$		Capacitor, Variable, 4 gang		R3	C20070-682	Resisitor, 6.8K ohms, 10\% 1 W.	. 15
	D24773		4.15	R4	C20060-222	Resistor, 2200 ohms, 20% 1/4 W.	. 10
C4A	A22724	Capacitor, Oscillator Trim. Cor. 5-25uuf	. 80	R6, R9	C20060-103 C20060-223	Resistor, 10 K ohms, $20 \% 1 / 4 \mathrm{~W}$. Resistor, 22K ohms, 20% V/4 W.	.10 .10
	C20203-470	Capacitor, Ceramic, 47 uuf, 350 V.	. 20	$\begin{aligned} & \text { R8, F10. } \\ & \text { R15, R19 } \end{aligned}$	C20060-223	Resistor, 22K ohms, $20 \% 1 / 4 \mathrm{~W}$. Resistor, 1K ohm, $20 \% \mathrm{y} / 4 \mathrm{~W}$.	.10 .10
	A21674	Capacitor, Disc, 5Kuuf, 350 V.	. 25	Rll	C20070-822	Resistor, 8.2X ohms, $10 \% 1 \mathrm{~W}$.	. 15
$\underset{\mathrm{C} 27}{\mathrm{C}}, \mathrm{C} 23,$				R14	C20070-103	Resistor, 10K ohms, $10 \% 1 \mathrm{~W}$.	. 15
	A22295	Capacitor, Disc. 10Kuuf, 350 V.	. 25	R16, R24	C20060-104	Resistor, 100K ohms, $20 \% \mathrm{Y} / 4 \mathrm{~W}$.	. 10
$\begin{aligned} & \mathrm{C}, \mathrm{Cl2}, \\ & \mathrm{C} 28, \mathrm{C} 31, \\ & \mathrm{C} 33, \mathrm{C} 38, \\ & \mathrm{C} 44 \end{aligned}$				R18	C20070-332	Resistọ, 3.3X ohms, $10 \% 1 \mathrm{~W}$.	. 15
				R20	C20061-181	Resistor, 180 ohms, 20% 1/4 W.	. 10
	C20203-101	Capacitor, Ceramic, 100uuf, 350 V.	. 20	R21	C20120-393	Resistor, 39K ohms, 10% 1/4 W.	. 10
C9	C20205-20	Capacitor, Ceramic, 3.3uuf, 500 V.	. 30	R23	C20060-224	Resistor, 220X ohms, 20\% 1/4 W.	. 10
$\begin{aligned} & \mathrm{C} 10, \mathrm{C} 13, \\ & \text { C16, C18, } \\ & \text { C12, C32, } \\ & \text { C42 } \end{aligned}$	C20205-20			R25	C22381-153	Resistor, 15K ohms, 10% 1/2 W.	. 10
				R27	A24774	Resistor, 1000 ohms, 10 W . Wire	. 55
	A23078			R28	C20060-106	Resistor, 10 megohms, $20 \% \mathrm{~V} / 4 \mathrm{~W}$.	. 10
C11	A20238-3	Capacitor, Ceramic, 1.5uuf, gimmic	. 10	R29	C20060-334	Resistor, 330X ohms, 20% 1/4 W.	. 10
C14	C20205-5	Capacitor, Ceramic, 50uuf, 500 V., N750	. 20	R30 R31	C20060-154	Resistor, 150 K ohms, 20% Y/4 W. Resistor, 120 ohms, $1 \mathrm{~W} . \mathrm{Wire}$. 10
C17, C36	C20068-103	Capacitor, P.T., . Oluuf, 400 V.	. 20	R32	C20060-474	Resistor, 470K ohms, 20\% 1/4 W.	. 10
C19	C20067-503	Capacitor, P.T., .05uuf, 200 V.	20	R33	C20070-271	Resistor, 270 ohms, 10\% 1 W.	. 15
C25	C20203-150	Capacitor, Ceramic, 15 uuf, 350 V.	. 20		A22957	Shaft, Tuning	. 15
C33	C20069-302	Capacitor, P.T., .003uuf, 600 V.	. 20	SPR	C22760	Speaker, 5" P.M.	3.45
C34	A22659	Capacitor, Electrolytic, 4 uf, 25 V .	. 65		A19133	Spring, Dial Cord 10 for	
C35	C20203-221	Capacitor, Ceramic, 220uuf, 350 V.	. 20	P.S. 2	AA22334-1	Suppressor Assembly Parasitic, AM	. 20
C37A, B, C	A22806	Capacitor, Electrolytic, 20-20-40uf, 250 V.		P.S. 1 SW-1	AA22345-1	Suppressor Assembly Parasitic, FM Switch, Band, FM-AM	. 20
C39	C20068-203	Capacitor, P.T., .02uf, 400 V.	. 20	T2	C22352	Transformer, I.F. $4 \div 5 \mathrm{Xc}$., AM	1.35
C41	A22602	Capacitor, Electrolytic, 10uf, 25V.	. 65	T1	C22590	Transformer, 1st I.F. $10.7 \mathrm{Mc}, \mathrm{FN}$	1.35
C43	C20249-103	Capacitor, Molded, . 01 uf, 400 V .	. 20	T3	AC22967-1	Transformer, 2nd I.F., 10.7Mc, FM	. 75
R26, SW-2	C22963	Control, Volume \& Switch, 500K ohms	. 80	T4	C24771	Transformer, I.F. 455Kc, AM	1.35
	A19132	Cord, Dial Drive 10 for	. 25	T5	AD22592-1	Transformer, Ratio Detector	1.80
	B20138-17	Cord, Power, with Plug	. 45	T 6	AC22995	Transformer, Output	1.75
	C23299	Cover, Cabinet, Rear	. 25	77	D22959	Transformer, Yower	4.20

TUBES AND FUNCTIONS

6BE6	Mixer-oscillator
6BA6	-------- IF Amp.
6AV6	DET-AVC AF Amp.
6V6	---------------------. Output
Y3	Rectifier

POWER OUTPUT

Undistorted	3.5 Watts
Maximum	4.5 Watts
Plate load	5000 Ohm

LOUD SPEAKER

Type: Permanent magnet, 2.15 oz . Alnico 5
Size: 8 Inch
Voice coil impedance
3.2 Ohms

CHASSIS FEATURES

Automatic Volume Control
Built-in Loop
Underwriters' Listed

OPERATING CONTROLS

1. Left knob \qquad ON-OFF, Volume and Tone
2. Right knob \qquad Tuning and Phono-Radio

PHYSICAL DIMENSIONS

Length
Height
Depth --1.-16 in

Models 554CCM and 554 CCB have the same radio chassis and changer. They differ only in cabinet trim, and knobs; 554CCM with Mahogany Cabinet and 554CCB with Blonde Cabinet.

PRELIMINARY:

ALIGNMENT PROCEDURE

Output meter connection
Across loudspeaker voice coil
Output meter reading to indicate .5 W (standard output) 1.26 volts

Generator inodulation 30\% 400 cycles
Position of volume and tone control Fully clockwise
Position of dial pointer with variable fully closed. .To left

1. Connect signal generator lead through a .05 uf . condenser to converter grid. Open tuning condenser. Set signal generator to 455 Kc . Tune I. F. Trimmers A1, A2, A3, and A4 for maximum output.
2. Close tuning condenser and set pointer to left. Open tuning condenser. Connect signal generator to test loop or to blue lead on set loop. Set signal generator to 1650 Kc . Tune A5 trimmer on oscillator section of tuning condenser for maximum output.
3. Set signal generator to 1400 Kc . Adjust tuning shaft until maximum output is obtained. Tune antenna trimmer A6 on tuning condenser for greatest output. Reset tuning shaft until output is again maximum. Retune antenna trimmer. Repeat this cycle of operations at 1400 Kc . until no further increase of output can be obtained. Keep generator output at a low value to prevent detuning by A. V. C. action.
4. Set signal generator to 600 Kc . Adjust tuınng shaft for maximum output. Adjust tuning condenser plates for maximum output if necessary.

Approximate sensitivities with 117 V . AC line voltage and .5 W . output across voice coil, should be: Antenna lead 600 Kc .600 uv $/ \mathrm{m} ., 1000 \mathrm{Kc}-400 \mathrm{uv} / \mathrm{m}$., $1400 \mathrm{Kc} .-300 \mathrm{uv} / \mathrm{m}$.

ARVIN PAGE 23-11

SPECIFICATIONS

FREQUENCY RANGE

Broadcast (AM)	-1600
FM	88-108
	10.7

TUBES AND FUNCTIONS

LOUD SPEAKER
Type: Permanent magnet, 1.47 oz . Alnico 5
Size: 8 Inch
Voice coil impedance \qquad 3.2 Ohms

CHASSIS FEATURES
Automatic Volume Control
Built-in Loop
Underwriters' Listed
OPERATING CONTROLS

1. Left knob ON-OFF Sw and Volume
2. Right knob
\qquad
3. Center knob \qquad Program Sw

PHYSICAL DIMENSIONS
Width \qquad 22 inches
 Depth \qquad 16 inches

Models 582CFM, and 582CFB have the same Chassis, they differ only in Cabinet, trim and knobs.

THE ANTENNA

AM-This receiver has a built-in loop which gives satisfactory reception in most locations. If the receiver is located some distance from a broadcasting station, or where the electrical interference is high, an outside antenna connected to the terminal marked AM on the antenna terminal strip will improve reception.
FM - An 8^{\prime} length of wire is connected to the FM antenna terminal for an indoor FM antenna. Terminals are provided on the antenna terminal strip to connect an outside FM antenna, they are labeled FM \& G.

TECHNICAL INFORMATION

AM
Tuning range - 540 Kc . to 1600 Kc . Intermediate Frequency - 455 Kc . I. F. and R. F. measurements made at 500 milliwaits output - approximately 1.27 volts on a recerver type voltmeter connected across speaker voice coil. Approximate input for 500 MW output: I. F. 300 uv ; R.F. with standard loop: at $600 \mathrm{Kc} .1200 \mathrm{uv} / \mathrm{m}$; at $1000 \mathrm{Kc} .900 \mathrm{uv} / \mathrm{m}$; at $1400 \mathrm{Kc} .800 \mathrm{uv} / \mathrm{m}$.

FM Tuning range - 88 megacycles to 108 megacycles. Inter mediate frequency 10.7 megacycles .I.F. and R.F. measurements made at 500 milliwatts output - approximately 1.27 volts on a rectifier type voltmeter connected across speaker voice coil. Approximate input for 500 MW output: I. F. 300 uv ; R.F. "Absolute Measurements": 91 megacycles 100 uv; 105 megacycles, 100 uv.

| ALIGNMENT | | |
| :--- | :---: | :---: |\quad PROCEDURE

AM ALIGNMENT

Position of Variable	Generator Frequency	Dummy Ant.	Generator Connection (high)	Generator Connection Ground Lead	Adjust	
					Trimmers	
					In Order Shown For	Trimmer Function
					Max. Output	
Open	455 Kc	. 05 mfd .	Mixer Grid	Chassis	A1, A2, A3, A4,	I. F.
Open	1650 Kc		*Test Loop	Test Loop	A5	Oscillator
1400 Kc	1400 Kc		*Test Loop	Test Loop	A6	Antenna
**600 Kc	600 Kc		*Test Loop	Test Loop	Check Point	Antenna

* Connect generator lead to Standard Hazeltine Test Loop, Model 1150, placed two feet from the set loop, or three turns of wire about six inches in diameter, placed about one foot from the set loop. Or the generator can be connected with the high side lead to the AM antenna screw terminal and the ground lead to the chassis.
$* * W$ ith a generator signal of 600 Kc , tune the set to the point where maximum output is obtained, which shoul be approximately 600 Kc on the dial. Adjust antenna section plates of variable for maximum output. 'The alignment procedure should be repeated in the original order for greatest accuracy.
Always keep the output from the signal generator at its lowest possible value to make the A. V.C. action of the receiver ineffective.

FM ALIGNMENT

1. Turn band switch to FM, (right).
2. Connect (FM) I. F. generator to the second 6BA6 I. F. amp. grid, (lug No. 1) through a .01 uf mica dummy. Connect oscilloscope across volume control. With the I. F. generator tuned to 10.7 mc with 150 Kc deviation, and the same audio voltage used as horizontal sweep on the scope that is used to modulate the generator, adjust the ratio detector transformer slugs A7-A8 for the characteristic " S " curve (See Fig. 1), with maximum vertical height on the scope. After this adjustment the top slug of the ratio detector should not be moved during the rest of the alignment.
3. Connect I. F. generator to mixer grid through .01 mica dummy. Using 23 Kc deviation at 10.7 Mc , adjust for maximum output. Maximum output may be indicated by maximum vertical height on the scope or maixmum voltage on a standard output meter across the voice coil of the receiver. After the two I.F. transformers have been ligned the bottom slug A8 of the ratio detector should also be peaked.
The characteristic " S " curve of the complete I. F. channel should be checked by applying a 10.7 Mc signal with 150 Kc deviation to the mixer grid and observing the " S " curve on the scope. It should not .be very much different from that observed in step 2.
4. Connect R.F. (FM) generator (88 to 108 Mc) to the antenna terminals through the standard 300 ohm dummy (150 ohm in each side of generator leads).

Use R.F. generator with 23 Kc deviation. With the variable condenser completely open and Signal Generator tuned to 108.5 Mc adjust oscillator trimmer A12 (small ceramic trimmer) for maximum reading on output meter.
Then tune receiver to low end of band (variable completely closed) and Signal Generator to 87.5 Mc . If the receiver does not tune to this frequency the FM oscillator coil L4 will either have to be squeezed together or lengthened to cover the band, (squeezing lowers and lengthening raises the frequency). Any change in the coil will have to be completed by the trimmer at the high end of the band.
5. With the same Signal Generator connections as per paragraph 4 tune Signal Generator and set to 105 Mc . Tune R.F. trimmer A13 for maximum output at the same time rock variable back and forth through the frequency. (Rocking is necessary because slight oscillator pulling causes erroneous maximum readings).
Tune Signal Generator and set to $\mathbf{9 0}$ Mc. Adjust R.F. coil L3 length for maximum output by squeezing or lengthening. Any change in the coil will have to be compensated at 105 Mc by the R. F. trimmer A13.
6. After Steps 4 and 5 are finished check calibration and band coverage. Steps 4 and 5 may have to be repeated if set is off calibration. Band coverage should be 87.5 Mc to 108.5 Mc. Sensitivity should be approximately 100 uv at $105 \mathrm{Mc}, 98 \mathrm{Mc}$ and 90 Mc .

ARVIN PAGE 23-13
MODELS 582CFB, 582CFM, Ch. RE-310

\square

Replacement parts should be ordered by Arvin part number, description and model number of instrument from your Arvin Distributor.

Replacement parts for the V-M Changer must be obtained direct from the V-M Corporation, Benton Harbor, Michigan.
PARTS PRICE LIST FOR 582-CFM \& 582-CFB, RE-310

Schematic Location	Part Number	Description List		Schematic Location	Part Number	Description Lis	List Price
	D24770	Antenna Loop Assembly	1.00		A 24464	Knobs, Ph-AM-FM [Mahogany]	. 20
	B22953	Bracket, Antenna Loop Mounting	. 10		A24464-4	Knob, Tuning, On-Off, PH-AM-FM	
	C24724	Bracket, Dial [2 used]	. 10			[Blonde]	. 20
	R24692-1	Cabinet, Mahogany [with Carton]	72.00		A24464-3	Knob, Tuning, On-Off, PH-AM-FM [Mahogany]	. 20
	R24692-2	Cabinet, Blonde [with Carton]	80.00		A19351	Lamp, Dial, Mazda No. 47	. 20
$\underset{\mathrm{C} 4}{\mathrm{Cl}, \mathrm{C} 2, \mathrm{C} 3}$	D24773	Capacitor, Variable, 4-gang	4.15		C20138-17	Line Cord \& Plug	. 45
C4A	A22724	Capacitor, FM Oscillator Trimmer, 5-25uuf		PS-1	AA22345-1	Parasitic Suppıessor FM	. 20
			. 80	PSO2	AA22334-1	Parasitic Suppressor AM	. 20
Cl1	A20238-3	Capacitor, 1.5uuf, 350V, Gimmick	. 10	R3,	C20070-682	Resistor, 6.8 K ohms, $10 \%, 1 \mathrm{~W}$.	. 15
C25	C20203-150	Capacitor, 15uuf, 350V. Ceramic	. 20	R2, R13,	C20060-680	Resistor, 68 ohms, 20\%, 1/2 W.	. 10
C5, C15	C20203-470	Capacitor, 47uuf, 350V. Ceramic	. 20				
C14	C20205-5	Capacitor, 50uuf, 500V., Ceramic	. 20	R31	A23933	Resistor, 120 ohms, $10 \%, 1 \mathrm{~W}$.	. 15
$\begin{aligned} & \text { C8, C12, } \\ & \text { C28, C33, } \\ & \text { C31, C38 } \end{aligned}$				R20	C20060-181	Resistor, 180 ohms, 10%, 1/2 W.	. 10
				R34	C20070-271	Resistor, 270 ohms, $10 \%, 1 \mathrm{~W}$.	. 15
	C20203-101	Capacitor, 100uuf, 350V., Ceramic	. 20	R8, R10,	C20060-102	Resistor, 1 K ohms, 20%, $1 / 2 \mathrm{~W}$.	. 10
C35	C20203-221	Capacitor, 220uuf, 350V., Ceramic	. 20	R15, R19		Resistor, IK ohms, 20%, $1 / 2 \mathrm{~W}$.	
$\begin{aligned} & \mathrm{C} 10, \mathrm{C13}, \\ & \text { C16, C18, } \\ & \text { C21, C32 } \end{aligned}$				R4	C20060-222	Resistor, 2.2 K ohms, 20%, 1/2 W.	. 10
	C23078	Capacitor, 1000uuf, 350V., Ceramic	. 20	R18	C20070-332	Resistor, 3.3K ohms, $10 \%, 1 \mathrm{~W}$.	. 15
C30	C20069-302	Capacitor, . $003 \mathrm{mfd} ., 600 \mathrm{~V}$., Paper	. 20	R11	C20070-822	Resistor, 8.2K ohms, 10\%, 1 W .	. 15
$\begin{aligned} & \mathrm{C} 6, \mathrm{C} 20, \\ & \text { C22, C24, } \\ & \text { C26, C29 } \end{aligned}$				R14	C20070-103	Resistor, 10K ohms, 10\%, 1 W.	. 15
				R25	C22381-153	Resistor, 15K ohms, 10%, $1 / 2 \mathrm{~W}$.	. 10
	A21674	Capacitor, 5000uuf, 350V., Disc Ceramic . 25		R7	C20060-223	Resistor, 22 K ohms, $20 \%, 1 / 2 \mathrm{~W}$.	. 10
${ }_{\mathrm{C} 27}^{\mathrm{C} 2 \mathrm{C}^{2}}$	A22295	Capacitor, 10,000uuf, 350V., Disc Ceramic	. 25	R6, R9	C20060-103	Resistor, 10K ohms, 20%, $1 / 2 \mathrm{~W}$.	. 10
				R21	C20120-393	Resistor, 39 K ohms, 20%, $1 / 2 \mathrm{~W}$.	. 10
C40 ${ }^{\prime}$	C20068-103	Capacitor, . $01 \mathrm{mfd} ., 400 \mathrm{~V}$., Paper	. 20	R28	A24774	Resistor, 1000 ohms, 10 W. Wire	. 55
C42	C20249-103	Capacitor, $01 \mathrm{mfd} ., 400 \mathrm{~V}$., Phenolic	. 20	R16, R24	C20060-104	Resistor, 100K ohms, 20%, 1/2 W.	. 10
C9	C20205-20	Capacitor, Ceramic, 3.3uuf, +.05 $\mathrm{mmf}, 500 \mathrm{~V}$.		R23	C20060-224	Resistor, 220 K ohms, 20%, $1 / 2 \mathrm{~W}$.	. 10
			. 30	R30	C20060-334	Resistor, 330 K ohms, $20 \%, 1 / 2 \mathrm{~W}$.	. 10
C39	C20068-203	Capacitor, 02 mfd ., 400V., Paper	. 20	R32	C20060-474	Resistor, 470K ohms, $20 \%, 1 / 2 \mathrm{~W}$.	. 10
C19, C41	C20067-503	Capacitor, $05 \mathrm{mfd} ., 200 \mathrm{~V}$., Paper	. 20	R1, R5,	C20060-105	Resistor, 1 megohm, 20%, $1 / 2 \mathrm{~W}$.	. 10
C34	A22659	Capacitor, $4 \mathrm{mfd} ., 25 \mathrm{~V}$., Electrolytic	. 65	R12, R22			
C37A, B, C	A22806	Capacitor, 20-20-40 mfd., 250V., Electrolytic	1.65	R29	C20060-106	Resistor, 10 megohms, 20\%, 1/2 W.	. 10
				R27	C20060-681	Resistor, 680 ohms, 20%, 1/4 W.	. 10
	E23593-1	Changer, 3 -speed Record [See VN Bulletin]			A19551	Socket, AC, Phono Motor	. 2.5
L1	AA22648-1	Choke, 1.5 uh	. 30		A24345-1	Socket, Dial Lamp	. 25
L7	AA22597-1	Choke, 3 uh	. 30		A19552	Socket, Phono Pickup	. 10
L2	AA 23144-1	Choke, 7.5 uh	. 50		A19579	Socket, Speaker	. 10
L8	A2 1673	Choke, 14 uh, Iron Core	. 40		AD23693-1	Speaker Assy. 8' ${ }^{\prime \prime}$ PM with Cable	
L6	AC22587-1	Coil, Oscillator, AM	. 50			\& Plug	4.00
L5	A22594	Coil, Oscillator, FM	. 10		A19133	Spring, Dial Cord 10	0 for .25
L4	A22593	Coil, RF, FM	. 10		C23485	Switch, Band	. 80
R26	C22963	Control, Volume \& Switch, 500K ohms	. 80		A22960	Terminal Strip, Antenna	. 10
	C24726	Cover, Cabinet Rear	. 06	T1	C22590	Transformer, I.F., 1st F.M. [10.7 M.c]	c] 1.35
	C23578	Cover, Record Changer Bottom	. 15	T4	C22352	Transformer, I.F., AM [455Kc]	1.35
	A24449	Dial Pointer [Mahogany]	. 30	T3	AC22967-1	Transformer, I.F., 2nd FM [10.7 Mc]	c] . 75
	A24449	Dial Pointer [Blonde]	. 30	T6	AC23669-1	Transformer, Output	1.75
	C24709	Dial Scale [Mahogany]	. 85	T7	D22959	Transformer, Power	4.20
	C24709	Dial Scale [Blonde]	. 85	T5	AD22592-1	Transformer, Ratio Detector	1.80
	C24723	Escutcheon \& Crystal	2.10		A22957	Tuning Shaft	15

ARVIN PAGE 23-15

John F. Rider

MODELS 650P, 652P, 654P, Ch. RE-292

ALIGNMENT

A. Connect to 117 V. A.C. line and turn set on with volume control at full volume.
B. With variable condenser closed set pointer to end mark on dial back.
C. Connect signal generator high side through .05 uf or larger condenser to Pin 6 on 1R5 tube.
D. Open variable condenser.
E. With signal generator set at 455 KC , increase output of generator until output is heard in speaker. Adjust all I.F. trimmers until maximum output meter reading is obtained, reducing signal generator output as adjustment progresses so that final adjustment is made with lowest input consistent with good signal to noise ratio.

NOTE: After I.F. alignment, the set must be provided with a bottom cover, or test jig which is the equivalent of the bottom cover, and the rest of the R.F. alignment carried out with this in place.
F. With signal generator at 455 KC and connected to a radiating loop, adjust R.F. transformer coupling condenser until output meter reading is a minimum. Final adjustment is to be made with high signal input so that an accurate adjustment can be made.
G. With signal generator connected to radiating loop and set to 1650 KC adjust oscillator trimmer on variable condenser until output is maximum. Variable condenser is to be fully opened during adjustment.
H. Set signal generator to 1400 KC and rotate variable condenser until output is maximum. Adjust R.F. trimmer on variable condenser until output increases to a new maximum. Rotate variable condenser slightly to obtain another maximum output. Re-adjust trimmer until output is again a maximum. Repeat this cycle until no further increase in output can be obtained. Final adjustment to be made with signal generator output at sensitivity limit given below or lower.
I. Set signal generator to 1000 KC and tune radio to maximum output. Read sensitivity. Adjust R.F. section of variable blades for maximum output.
J. Set signal generator to 600 KC and proceed as in I. above.
K. Set signal generator to 540 KC and make sure that radio will tune to maximum output slightly before variable condenser is fullv closed.

LOCATION OF PARTS UNDER CHASSIS

ARVIN PAGE 23-17

John F. Rider
HOW TO ORDER PARTS

ALIGNMENT PROCEDURE

1. Connect to 117 V . AC line and turn set on with volume control at full volume.
2. Connect output meter across the speaker voice coil.
3. Connect the signal generator to the mixer grid, pin 7 , using a .05 mfd condenser in series with the "hot" generator load. Connect the ground side of the generator to floating ground.
4. Set generator to 455 Kc modulated 400 cycles at 30%, tune the I.F. transformers for maximum output. Reduce the generator output as the signal increases so that final adjustment is made with lowest input possible to give a good signal to noise ratio at the output.
5. Connect generator to a radiating loop, set to 1400 Kc . Close the variable condenser and set the pointer to 540 Kc . This is indicated by a notch in the top of the dial plate. First notch to the left is 540 , second $600 \mathrm{Kc}, 1000 \mathrm{Kc}$, and 1400 Kc . After setting the pointer tune to 1400 Kc trim the oscillator and antenna stages for maximum output. Repeat trimmer adjustments until no further increase is obtained.
6. Set generator at 600 Kc . Tune receiver to 600 Kc . Adjust antenna section condenser plates for maximum output.
7. Check calibration and coverage after alignment coverage must be 535 Kc to 1650 Kc .

ELECTRICAL TEST FOR CLOCK

A. By turning right hand knob set alarm disc to an even hour number.
B. Turn left hand clock knob to the "AUTO" position:
C. Turn rear knob or time set knob until radio goes on.
D. There should not be more than seven minutes difference between alarm disc and time shown by the hands on clock face.
E. Check sleep switch by setting to the 60 minute position. Rotate time set knob until radio shuts off. Time shown by the hands on the clock face should be one hour plus or minus seven minutes.
F. Clock switch must have a definite snap action on the ON-OFF-AUTO switch.

John F. Rider

HOW TO ORDER PARTS

Replacement parts should be ordered by Arvin part number, description and model number of receiver from your Arvin Distributor. The Distributor will order direct from the factory, except in the case of tubes, which should be obtained through regular tube distribution channels.

Part No.	Description	Part No.	Description
AD25191-1	Antenna Rod and Rear Cover	A25233-1	Knob, Clock
R25169-1	Cabinet, Willow Green	A25170-1	Knob, Radio
R25169-2	Cabinet, Ivory	C20138	Line Cord
C20065-680	Capacitor, 68uuf 500V Mica, C3	IF25259	Pointer (Radio)
C20292-103	Capacitor, .01 400V, C4	C20061-470	Resistor 47 ohm $1 / 2 \mathrm{w} 20 \%$, R2
C20292-473	Capacitor, 047 400V, C7 C6	C22381-121	Resistor 120 ohm 1/2w 10\%, R6
C20291-473	Capacitor, 047 200V, C2	C20061-334	Resistor 330 ohm $1 / 2 \mathrm{w}$ 20\%, R9
A25196	Capacitor, Electrolytic 50-30/150, C5	C20070-122	Resistor 1200 ohm 1w 10\%, R7
C25195	Capacitor, Variable, $\mathbf{C 1}$	C20061-223	Resistor 22K ohm $1 / 2 \mathrm{w}$ 20\%, R1
D25171	Clock Crystal	C20061-225	Resistor 2.2 meg $1 / 2 \mathrm{w} 20 \%$, R3 R5
C25229	Clock Face Mat	A19551	Socket, Power
D25189.1	Clock Timer	C25194	Speaker 5" PM
AC25192.1	Coil, Oscillator, L2	A25186	Speaker Mtg. Bracket
A20222-1D	Clip, Push on (Mtg. Clock Crystal)	AC25174-1	Speaker Baffle Assy.
A19361	Clip, Hairpin (Tuning Shaft)	A25263	Shielded Lead
A21792	Clip, Spring (IF Mtg.)	A19133	Spring (Dial Cord Tension)
C25197	Control, Volume, R4	A19124	Snap Buttons, Speaker Baffle Mtg.
A25257	Couplate, CP2	A25633	Tuning Shaft
A25264	Couplate, CP1	C21797-6	Transformer, IF, T1, T2
C25185-2	Dial Plate (All Willow Green)	A25263	Transformer, Audio Output, T3
A22941	Flapper Stud, Read Cover Mtg.		

CLOCK REPAIR AND PARTS

For the address of the Telecron service station nearest you, contact your Arvin Distributor or write to the Arvin Factory.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

FREQUENCY RANGE	
Broadcast .. 540-1600 kc	
kc	
TUBES AND FUNCTIONS	
6BE6 .. Mixer-oscillator	
6BA6 ...---.-. I.F. AMP	
6AV6 .. Detector - AVC-AF.	
6V6 ... Output	
5Y3 ${ }^{\text {a }}$.. Rectifier	
POWER OUTPUT	
Type: Beam tube	
Undistorted 3.5 Watts
Maximum	4.5 Watts

LOUD SPEAKER

Type: Permanent magnet, 2.15 oz., Alnico 5 Size: 9×6 inch
Voice coil impedance 3.2 Ohms

CHASSIS FEATURES
Automatic Volume Control Built-in-Loop Underwriter's Listed
OPERATING CONTROLS

1. Right knob...........................Tuning and Phono-Radio 2. Left knob.......................ON-OFF, Volume and Tone PHYSICAL DIMENSIONS Length...$- ~$
Width inches
Height
 Height 9 inches

ALIGNMENT PROCEDURE

PRELIMINARY:
Output meter connection
Across loudspeaker voice coil
Output meter reading to indicate .5 W (standard output) 1.26 volts

Connection of generator ground lead .Chassis
Generator Modulation. 30\% 400 cycles
Position of volume \& tone control. Fully clockwise
Position of dial pointer with variable fully closed. To left

1. Connect signal generator lead through a .05 uf condenser to converter grid. Open tuning condenser. Set signal generator to 455 Kc . Tune I.F. Trimmers A1, A2, A3 and A4 for maximum output.
2. Close tuning condenser and set pointer to left. Open tuning condenser. Connect signal generator to test loop or to blue lead on set loop. Set signal generator to 1650 Kc . Tune A5 trimmer on oscillator section of tuning condenser for maximum output.
3. Set signal generator to 1400 Kc . Adjust tuning shaft until maximum output is obtained. Tune antenna trimmer A6 on tuning condenser for greatest output. Reset tuning shaft until output is again maximum. Retune antenna trimmer. Repeat this cycle of operations at 1400 Kc . until no further increase of output can be obtained. Keep generator output at a low value to prevent detuning by A.V.C. action.
4. Set signal generator to 600 Kc . Adjust tuning shaft for maximum output. Adjust tuning condenser plate for maximum output if necessary.
Approximate.sensitivities with 117 V . AC line voltage and .5 W . output across voice coil should be: Antenna lead 600 KC - $600 \mathrm{uv} / \mathrm{m} ., 1000 \mathrm{Kc}$ - $400 \mathrm{uv} / \mathrm{m} ., 1400 \mathrm{Kc}$. $300 \mathrm{uv} / \mathrm{m}$. 751TM, Ch. RE343

LOCATION OF PARTS UNDER CHASSIS

HOW TO ORDER PARTS

parts should be ordered by Arvin part number, description and model number of receiver from your Arvin Distributor. The Distributor will order direct from the factory. All prices subject to changes in accordance with O.P.S. regulations. Parts shipments are F.O.B. Columbus, Indiana.

Schematic Location	Part Number	Description	List	Schematic Location	Part Number	Description	List
L1	D24777	Antenna Loop Assembly	1.50		A24443-2	Knob, Tone, Tuning	. 20
C1A, B	C24305	Capacitor, Variable, 2 Gang			A19351	Lamp, Dial Mazda No. 47	. 20
		with Trimmers	2.10		B20138-15	Line Cord	. 75
C2	C20067-503	Capacitor, 05 mfd .200 V P.T.	. 20		A19552	Phono Jack	. 10
C3, C4,					AC24475-1	Pointer, Shaft \& Bracket Ass'y.	.35
C5, C6	C20069-503	Capacitor, . 05 mfd 600 V P.T.	. 20	R1	C20061-223	Resistor, 22K ohm, $20 \% 1 / 2 \mathrm{w}$. 10
C7, 88	C20065:101	Capacitor, 100 mmfd , 500 V , Mica	. 30	R2	C20302-223	Resistor, 22K ohm, 10% 2w	. 10
C9	C20067-502	Capacitor, $.005 \mathrm{mfd}, 200 \mathrm{~V}, \mathrm{P} . \mathrm{T}$.	. 20	R3	C20061-332	Resistor, 3.3K ohm, $20 \% 1 / 2 \mathrm{w}$. 10
C10	C20068-502	Capacitor, $.005 \mathrm{mfd}, 400$ V, P.T.	. 10	R4	C20061-225	Resistor, 2.2 megohm, $20 \% 1 / 2 \mathrm{w}$. 10
C11	C20065-251	Capacitor, $250 \mathrm{mmfd}, 500 \mathrm{~V}$,		R5	C20061-680	Resistor, 68 ohm, 20% 1/2w	. 10
		Mica	. 20	R6	C20070-473	Resistor, 47K ohm, 10% 1w	.10
C12, C13	C20068-103	Capacitor, $.01 \mathrm{mfd}, 400 \mathrm{~V}$, P.T.	. 20	R7, R9	C20061-473	Resistor, 47K ohm, $20 \% 1 / 2 \mathrm{w}$. 10
C14	A22602	Capacitor, $10 \mathrm{mfd}, 25 \mathrm{~V}$,		R10	C20061-685	Resistor, 6.8 megohm, $20 \% 1 / 2 \mathrm{w}$. 10
		Electrolytic	. 65	R11, R12	C20061-474	Resistor, 470K ohm, 20\% 1/2w	. 10
C15 C16A,	C20069-502	Capacitor, $005 \mathrm{mfd}, 600$ V, P.T.		R13	$\begin{aligned} & \text { C20070-271 } \\ & \text { or } \end{aligned}$	Resistor, 270 ohm 10\% 1w	. 15
\mathbf{B}, \mathbf{C}	C24415	Capacitor, 20-20-20 mfd, 450 V ,			A24891	Resistor, 270 ohm 10% 1w Wire	
		Electrolytic . 600 V	1.75	R14	C20070-821	Resistor, 820 ohm, 10% 1w	. 15
C17,	D20358-103	Capacitor, $.01 \mathrm{mfd}, 600 \mathrm{~V}$,		R15	C23970-14	Resistor, 750 ohm 10% 5w Wire	. 40
		Molded	. 50	R16	A24761	Resistor, 2 ohm $10 \% 1 / 2 \mathrm{w}$ Wire	. 10
L2	AC24482-1	Coil, Oscillator Assembly	. 50		A24435-1	Socket, Dial Lamp, Left	.15
R8A, B	C40389	Control, Volume and Tone, Dual			A24435-2	Socket, Dial Lamp, Right	.15
		500K-500K ohms	1.80		A19551	Socket, AC Phono Motor	. 25
	A19132	Cord, Dial Drive 10 for	. 25	SPK	D24402	Speaker, 6" x 9" P.M.	6.10
	D40404	Cover, Cabinet Rear, Blonde			A24653	Spring, Dial Drive Cord	. 15
	D40404-1	Cover, Cabinet Rear, Mahogany	. 35	SW-1	C40388	Switch, Phono-Radio	1.60
	C24449	Dial, Pointer	. 30	T1	C21797-16	Transformer, 1st I.F.	1.20
	E24447	Dial, Crystal	2.75	T2	C21797	Transformer, 2nd I.F.	1.25
	AD40399-1 AD40399-2	Grille, Assembly, Blonde	1.00 1.00	T3	C24776-2	Transformer, Output	1.35
	A24442-2	Knob, Volume, Radio-Phono	. 30	T4	D24440	Transformer, Power	3.75

> K INDIGATES IOO OHMS. M INDICATES MEGOHMS. UNMARED CONDENSER VALUES ARE MFD. * NOTE ' x ' DENOTES PLUG AND SOCKET ON RE 306 . ITGROUND TO CHASSIS. $\frac{1}{T}$ QURVED LINE INDICATES OUTSIDE FOIL.

TUBE SOCKETS ARE VIEWED FROM UNDERSIDE OF CHAS SIS.
VOTAGE REAONGS SHWN AT SOCKET PRONGS ARE TO CHASSIS
AND ARE TAKEN WIT NO SIGNAL AC UNE VOTAGE AT IITV. AG.
VOLTAGE MEASURED WITH VACUUM' TUBE VOLTMETER.

STRINGING DIAGRAM

SPECIFICATIONS

Speaker Voice Impedance
TUBES AND FUNCTION

12BE6	Converter
12BA6	I.F. Amplifier
12AV6	Det. 1st Audio
50C5	Output

35W Rectifier

PHYSICAL DIMENSIONS
Length
L DIMENSIONS
Height
137/8 inches
Depth
\qquad 65/8inches

TECHNICAL INFORMATION FOR SERVICE MEN

AM Tuning range- 540 Kc to 1600 Kc . Intermediate Frequency- 455 Kc . I.F. and R.F. measurements made at 500 milliwatts output-approximately 1.27 volts on a rectifier type voltmeter connected across speaker voice coil.
Approximately input for 500 MW output: R.F. with standard loop: at $600 \mathrm{Kc}, 480 \mathrm{uv} / \mathrm{m}$, at $1000 \mathrm{Kc}, 360 \mathrm{uv} / \mathrm{m}$; at $1400 \mathrm{Kc}, 240 \mathrm{uv} / \mathrm{m}$.
PRELIMINARY:
Output meter connection \qquad Across speaker voice coil
Output meter reading to indicate 500 MW 1.27 volts
Generator Modulation 30%, 400 cycles
Position of volume control. Fully clockwise
Set band switch \qquad To left for AM alignment, to right for SW alignment

AM Alignment						
Position of Variable	Generator Frequency	Dummy Ant.	(high) Generator Connection	Generator Connection Ground Lead	Adjust Trimmer In Order Shown For Max. Output	Trimmer Function
Open	455 Kc	.05 mid.	Mixer Grid	Floating Grnd.	A1, A2, A3, A4,	I.F.
Open	1670 Kc		Test Loop	Test Loop	A6	Oscillator
Closed	535 Kc		Test Loop	Test Loop	A5	Osc. Pad.
1400 Kc	1400 Kc		Test Loop	Test Loop	A7	Antenna
600 Kc	600 Kc		Test Loop	Test Loop	A5	Osc. Pad.

[^3]SHORT WAVE R．F．ALIGNMENT
Before attempting short wave alignment the Broad IF Alignment procedure must be completed．
1．Turn band switch clockwise to Short Wave position．（hank discos）．A 50 MMF＂Dum the＂high－side＂of the generator－lead and the generator＂groundlead＂connects directiy to the ground－terminal． In aligning the short wave band some trouble may be experienced with image frequencies．The image frequency is use the following procedure to assure the receiver oscillator is above the incoming signal：

gradually tighten the trimmer until a signal is heard．This is the correct frequency．Now if the variable condenser
 3．Set generator to 6 Mc ．The set must tune to maximum output slightly before variable is completely closed． ．Set Generator to 16 Mc ．Rotate variable until the 16 Mc signal is heard at two points near the open position of the variable．Again the desired signal is the one with the variable open the farthest．Adjust the trimmer，A9，as for maxi－
mum outut．Rotate variable very slightly for a new maximum and repeak trimmer A9．Repeat this operation until TUNING SW－BC ON－OFF VOLUME

응ㅇㅇ을
 Resistor， 2.2 megohm
Resistor， 4.7 megohm

Cabinet，Sea－Mist

앙우 응응융으으․

Distributor．The Distributor will order direct from the factory．
Prices are subject to change without notice． \square
$\stackrel{\infty}{\infty}$
O甘の ñơN～M

List
List
.20

容

 Ưভ゙ভ゙ভ゙
 $=$
0
0

Pric
気言

0
新 fitu
art
Schematic
Location Description

LOGATION OF．PARTS UNDER CHA
TUBE LAYOUT

 ．

PAGE 23-28 ARVIN
MODEL 655SWT, Ch. RE-327

© John F. Rider

MODEL 651T, Ch. RE-323

ALIGNMENT PROCEDURE

PRELIMINARY:

Output meter connection.
Across speaker voice coil
Output meter reading to indicate 500 milliwatts (standard output)
1.27 volts

Dummy antenna value to be used in series with generator output...See chart below
Connection of generator output lead.. See chart below

Generator modulation.. 30\% 400 cycles
Position of volume control. Fully clockwise
Position of dial pointer with variable fully closed
Last mark at left end of dial

Position of Variable	Frequency of Generator	Dummy Antenna	Generator Output Connection	Trimmers Adjusted in Order Shown for Maximum Output	Function of Trimmer
Open	455	.05 mfd	12BE6 Grid (Stator of C1A)	A1, A2, A3, A4	IF
1400	1400		*Test Loop	A5, A6 on Variable Condenser	Osc. Ant.
600	600		*Test Loop	Check Point	

*Standard Hazeltine Test Loop Model 1150 or 3 turns of wire about 6 " in diameter placed about one foot from the set loop.
The alignment procedure should be repeated in the original order for greatest accuracy. Always keep the output from the signal generator at its lowest possible value to make the AVC action of the receiver ineffective.

TUBE LAYOUT

3 TURNS LI

LOCATION OF PARTS UNDER CHASSIS

John F. Rider

HOW TO ORDER PARTS

parts should be ordered by Arvin part number, description and model number of receiver from your Arvin Distributor. The Distributor will order from the factory.

Parts shipments are F.O.B. Columbus, Indiana. Prices are subject to change without notice.

REPLACEMENT PARTS LIST FOR 651T

AUTOMATIC PAGE 23-1

ELECTRICAL SPECIFICATIONS

Power Supply	115 to 125 volts 60 cycles AC only	$\begin{array}{r} \text { This } \\ \text { 1-12BE6 } \end{array}$	the following tubes: .Mixer
Frequency Range	538 to 1650 KC	1-12BA6	I.F. Amplifier
Speaker	. 5 inch PM	1-50C5	Power Output
Power Output	1.5 watts maximum	1-35W4	Rectifier

SERVICE NOTES

Voltages taken from different parts of the circuit to the common ground above chassis are measured with volume control in maximum position, all tubes in their sockets, no signal applied, and with a voltmeter having a resistance of 20,000 ohms per volt. These voltages are shown on the voltage chart on the back of this sheet. All voltages should be measured with an input voltage of 118 volts AC only. To check for open bypass condensers, shunt each condenser with a known good condenser of the same capacity and voltage rating.

AEFGNHNG INSTRUCTIONS

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that other components, such as tubes, resistors, condensers, etc., are normal before proceeding with re-alignment. If re-alignment is necessary follow the instructions given below under the heading "Alignment Procedure." After the re-alignment has been completed, repeat the procedure as a final check.

To remove the chassis for servicing, remove the three chassis screws from the bottom of the cabinet and remove the cabinet back, volume control knob and tuning knob. Remove the bracket securing the clock to the cabinet and slide out the chassis and clock.

ALIGNMENT PROCEDURE

Volume Control - Maximum, all adjustments.
No signal applied to antenna.
Power Input - 115 to 125 volts, 60 cycle AC.
Connect dummy antenna in series with output lead of signal generator.
Connect ground lead of signal generator to common ground above chassis.
Repeat alignment procedure as a final check.

The following equipment is necessary for proper alignment:
Signal generator that will provide the test frequencies as listed, modulated 400 cycles, 30%. Non-metallic screwdriver.
Output meter.
Dummy antenna - . 1 MFD condenser.
For alignment points refer to Schematic Diagram

Dial Setting	Generator Frequency	Dummy Antenna	Generator Connection	Trimmer Reference	Trimmer Adjustment	Trimmer Function
1. Fully open	455 KC	. 1 MFD	12BE6 Grid	L3 Top \& Bot.	Maximum	Output I.F.
2. Fully open	455 KC	. 1 MFD	12BE6 Grid	L2 Top \& Bot.	Maximum	Input I.F.
3. Fully open	1650 KC	. 1 MFD	12BE6 Grid	CV2	Maximum	Oscillator
4. Tune in signal from generator	1400 KC		Loosely couple signal generator to "Magna Loop"	CV1	Maximum	Antenna R.F. Trimmer

		PARTS LIST	
Schematic Diagram Reference	Part No.	Description	List Price
CONDENSERS			
C1	CC200	100 MMFD Ceramic	\$. 25
C2	C208	. 1 MFD 400 volt	. 35
C3	CC500	500 MMFD Ceramic	. 25
C4	CC201	200 MMFD Ceramic	. 25
C5, C6, C7	C206	. 01600 volt	. 30
C8	C204	. 05400 volt	. 35
C9L	C14L	. 1 MFD 400 volt con-denser-choke assbly.	. 50
CE-601	CE-601-U	Dual 50 MFD 150 volt electrolytic	2.50
CV1, CV2	CV-149	2 section variable	2.75
RESISTORS			
R1	R306	$20 \mathrm{~K} \mathrm{ohm} 1 / 2$ watt 20%	. 10
R2	R310	2 megohm $1 / 2$ watt 20%	. 10
R3	R311	1.0 megohm $1 / 2$ watt 20%	. 10
R4, R9	R307	$250 \mathrm{~K} \mathrm{ohm} 1 / 2$ watt 20%	. 10
R5	R308	500 K ohm $1 / 2$ watt 20%	. 10
R6	R320	150 ohm $1 / 2$ watt 20%	. 10
R7	R321	$27 \mathrm{ohm} 1 / 2$ watt 20%	. 10
R8	R314	1.5 K ohm 1 watt 20%	. 20
RV-152	RV-152	3/4 megohm volume	1.00
COILS AND TRANSFORMERS			
L1	L-A51	Magna-Loop Antenna	1.50
L2	1655-16	1st I.F. Transformer	2.00
L3	1655-16	2nd I.F. Transformer	2.00
L4	L201	R.F. Oscillator Coil	1.00
MISCELLANEOUS			
$\begin{aligned} & \mathrm{T}-47 \\ & \mathrm{PM}-300 \end{aligned}$	T-47	Pilot Light	. 15
	PM-300	Speaker, 5" PM, includes	6.40
	H-152B	Blond Cabinet	10.50
	H-152M	Mahogany Cabinet	9.50
	H-164B	De Luxe Blond Cabinet	12.00
	H-101	Knob	. 20
M	C57G27	Electric Clock	9.00
M	C57G84	Electric Clock	10.00
AR-152	AR-152	Appliance Socket	. 40
DIAL PARTS			
	H-102	Dial Pointer	. 35
	H-103	Dial Pulley	. 05
	H-152	Dial Window	. 30
	H-104	String, Dial Drive	. 05
	H-105	Spring, Dial Drive String Tension	. 10

- John F. Rider

Model 753F_"The Cascade"-Cherry Cabinet
Model 753M_'The Marion'"-Mahogany Cabinet
Model 753W -"'The Bedford''-Blond Oak Cabinet

SPECIFICATIONS

POWER REQUIREMENTS:
105-120 volts, 60 cycles A.C. only POWER CONSUMPTION:

Radio and Clock_-35 Watts Appliance outlet may be used for any electrical appliance rated at 1100 Watts or less.
RADIO I.F. FREQUENCY:
RADIO TUNING RANGE:

LOUDSPEAKER:
1 Watt undistorted
4" PM

V3 12AT6 Demodulator, AVC, and
V4 50C5 Ast Audio Amplifier
V1 12BE6 Converter
V2 12BA6 I.F. Amplifier
V5 35W4 Rectifier
Special Switch Permits Use of Automatically Controlled Appliance Outlet without Turning on Radio.

Realizing the importance of prompt dissemination of service information to the field, this first in a series of newsletters is released. We suggest that the information furnished in this and subsequent releases be passed on to your dealers and service organizations to assist them in their service problems on our products. These releases will, if properly filed, serve a ready reference for your future use.

Model 753 Clock Radio

If set remains on regardless of position of Off-Auto-On switch, check to see that production jumper is still connected across the lines to this switch. The jumper must be removed for proper switch operation.

Failure of oscillator, when receiver is tuned to the low end of the band, may be corrected by substituting a lead $63 / 4^{\prime \prime}$ in length for the original one connecto ing pin $\# 7$ of the 12BE6 to the antenna section of the gang condenser. Sets involved will only be those with serial numbers from 10,001 to 11,550 .

Switch Adiustment for the Clock Radio

When this switch fails to operate in the "Auto" or "On" position it can be adjusted in the following manner.

1. Locate the slotted adjusting screw which is on the back of the clock just to the left of the lower mounting bolt for the switch assembly.
2. With a small screw driver turn this screw in the clockwise direction approximately $3 / 4$ of a turn. (Take precautions not to over adjust this screw, to do so will not permit the switch to operate in the "Off "position)
CAUTION: For any further adjustments or repairs to the clock mechanism it will be necessary to disassemble the clock from the radio completely and send it to the nearest Sessions clock repair station. Information concerning the repair stations locations may be obtained from the Bendix distributor.

FIG. 2 - BOTTOM VIEW OF CHASSIS

Removal of the Clock and Switch Assembly

1. Remove the two top screws from the cabinet back.
2. Unscrew the four chassis bolts and take the radio from the cabinet.
3. Remove the clock mounting board by turning the four clip springs around the outer edge in either direction with a screw driver until they are free from the grooves in the top and sides of the cabinet. (Since this mounting board also holds the dial glass in place precautions must be taken to prevent it from falling and breaking.)
4. The clock is dismantled from the mounting board by turning the four clip springs located around the inside opening with a screw driver until they are free from the clock face.
5. Unsolder the three leads (Brown, Black and Blue) from the radio,
6. Securely pack the assembly for shipment to the nearest Sessions clock repair station.
7. In order to reassemble the clock in the radio cabinet, just reverse the procedure outlined above making sure that the three leads are fed through the mounting board before they are connected to their respective points within the radio chassis.

ALIGNMENT PROCEDURE

An isolation transformer should be used between the $A C$ power line and the receiver for protection of any test equipment that must be operated from the same power line.
Turn tuning gang fully closed and set pointer
directly over reference mark on dial (see Fig. 4). Volume control should be set at maximum position. Keep output of signal generator as low as practical at all times and make adjustments with an insulated alignment screw driver.

Signal Generator Coupling	Signal Generator Frequency	Dial Setting	Connect	Adiust	Remarks
High side through . 01 to pin 7 (Grid) of 12BE6 Low side to $B-$	455 KC	Max. to right	Output Meter across voice coil	T3, T2	Adjust in order given for max. meter reading
A loop fashioned of several turns of wire radiating the signal into the receivers antenna	1640	To the correct dial marking See Fig. 4	Same	Cld	Adjust for max. meter reading
Same	1475	To correct dial marking See Fig. 4	Same	C1b	Adjust for max. meter reading

PAGE 23-4 BENDIX
MODELS 753F, 753M, 753W

FIG. 4 - DIAL BACK PLATE REFERENCE MARKS

FIG. 5 - DIAL CORD DIAGRAM

PARTS LIST

ELECTRICAL COMPONENTS

PART NUMBER	SYMBOL NUMBER	DESCRIPTION	LIST PRICE
RC23A223M	R1	RESISTOR-Comp. 22K 1/2W $\pm 20 \%$. 10
RC23A335M	R2	RESISTOR-Comp. 3.3 Meg 1/2W $\pm 20 \%$. 10
RC23A680M	R3	RESISTOR-Comp. 68 ohms 1/2W $\pm 20 \%$. 10
RC23A473M	R4	RESISTOR-Comp. $47 \mathrm{~K} 1 / 2 \mathrm{~W} \pm 20 \%$. 10
CH262022-5	R5	POTENTIOMETER-. 5 Meg 1/4W $\pm 30 \%$, Volume	. 80
RC23A475M	R6	RESISTOR-Comp. $4.7 \mathrm{Meg} \mathrm{l} / 2 \mathrm{~W} \pm 20 \%$. 15
RC24A151K	R9	RESISTOR-Comp. 150 ohms 1W $\pm 10 \%$. 15
RC24A220M	R10	RESISTOR-Comp. 22 ohms $1 \mathrm{~W} \pm 20 \%$. 15
RC25A152M	R11	RESISTOR-Comp. 1.5K $2 \mathrm{~W} \pm 20 \%$. 20
CH274249-1	$\left\{\begin{array}{l} \text { R7 } \\ \text { R8 } \\ \text { C10, C11 } \\ \text { C12 } \end{array}\right.$	$\text { MOLDED COUPLING UNIT-500K } \left.1 / 5 \mathrm{~W}, \begin{array}{r} 250 \mathrm{~K} \\ -125 \mathrm{mmf} 5 \mathrm{~K} \end{array}\right\}$. 54
LH260016	Cla, b, c, d	CAPACITOR-Variable	2.70
CM22A470M	C2	CAPACITOR-Mica $47 \mathrm{mmf} \pm 20 \%$ 500V	. 25
CH267001-503	C3, 14	CAPACITOR-Tub. Paper $.05 \mathrm{mfd} \pm 20 \% 400 \mathrm{~V}$. 29
CH267003-602	C9	CAPACITOR-Tub. Paper . $006 \mathrm{mfd}+40 \%-20 \% 600 \mathrm{~V}$. 24
CH267001-203	C13	CAPACITOR-Tub. Paper . $02 \mathrm{mfd} \pm 20 \% 400 \mathrm{~V}$. 26
CH267013-2	C15a, b	CAPACITOR-Electrolytic (40-60, 150V)	1.20
CH267001-104	C16	CAPACITOR-Tub. Paper . $1 \mathrm{mfd} \pm 20 \% 400 \mathrm{~V}$. 38
LH259151-1	T1	TRANS. ASSY.-Oscillator	. 83
CH259038-1	T2, C4, 5	TRANS.-I.F. Input	1.42
LH259152-1	T3, C6, 7, 8	TRANS.-I.F. Output	1.56
LH265062-1	T4	TRANS.-Audio Output	1.89
NH274248		TIMER ASSY.-Sessions Clock Co.	7.50
CH268910-6,	P1	CORD-Power (\#16 wire)	. 70
LH251234-1		BACK \& LOOP ASSEMBLY	1.20
LH256017-3		SPEAKER-4" PM	4.00
CH270629-1		POINTER	. 15
AH266055	J2	RECEPTACLE-2 contacts "Appliance Outlet"	. 29
AH258033	S2	SWITCH-Slide - S.P.S.T. "Radio Off-On"	. 21

CABINET COMPONENTS

PART NUMBER	$753 M$	$753 W$	753 F	DESCRIPTION	LIST PRICE
LH257636-1	X	X	X	DIAL-Glass	2.50
CH269081-1	X	X	X	KNOB-Clock Controls	.29
LH269082-1	X	X	X	KNOB-Radio Controls	.28
RH255122-1	X	X		CABINET-Mahogany	8.10
RH255122-3		X	x	CABETNET-Blond	CABINET-Cherry Wood

TUBES

LIST PRICE					
V1	12BE6	1.90	V4	50C5	LIST PRICE
V2	12BA6	1.90	V5	$35 W 4$	2.00
V3	12AT6	1.55			1.30

ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE

MODEL R701,
AM-FM Tuner

R7O1 SPECIFICATIONS

POWER CONSUMPTION: 60 watts, 117 volts, 60 cps .
TUBES: 1-6BK7-A, 1-6AB4, 4-12AT7, 2-6BA6, 1-6BE6, 3-6AU6, 1-6AL5, 1-6X4
(14 tubes including rectifier).
SENSITIVITY: FM: Input required for $\mathbf{3 0} \mathbf{d b}$ quieting: $\mathbf{3}$ microvolts.
AM. 5 microvolts.
FREQUENCY RANGE: FM: 88-108 MC.
AM: $530-1650 \mathrm{KC}$
HUM \& NOISE: $F M, A M$: -65 db below 100% modulation.
TV, PHONO: -65 db below 2 volts.
AUDIO OUTPUT: 3 volts at 6000 ohms.
DISTORTION: 3 volts at $.2 \%$.
TONE CONTROL: At 60 cycles: 17 db boost, 19 db cut.
At 60 cycles: 17 db boost, 19 db cut.
At 10,000 cycles: 15 db boost, 18 db cut.
At 15,000 cycles: 17 db boost, 21 db cut.
FREQUENCY RESPONSE: FM: $\mathbf{2 0 - 2 0 , 0 0 0} \mathrm{cps} \pm .5 \mathrm{db}$.
AM: 20-4,000 cps $\pm .5 \mathrm{db}$ normal position
$20.7,500 \mathrm{cps} \mp .5 \mathrm{db} \mathrm{Hi}-\mathrm{Fi}$ position

PHONO PREAMPLIFIER: 35 db gain and 21 db equalization at 30 cycles. AM SELECTIVITY: Normal: at $8 \mathrm{KC}: 6 \mathrm{db}$. $\begin{array}{ll}\text { Normal: } & \text { at }{ }^{8} \mathrm{KC}:{ }^{6} \mathrm{db} \text {. } \\ \mathrm{Hi}-\mathrm{Fi}: & \mathrm{at} 15 \mathrm{KC}: 6 \mathrm{db} \text {. }\end{array}$

FM SELECTIVITY: $180 \mathrm{KC}: 6 \mathrm{db}$.
Discrimination peak to peak separation: 375 KC .
ANTENNA INPUT: AM: Low impedance loop or high impedance external antenna.
FM. $\mathbf{3 0 0}$ ohms
CONTROLS: 1. Volume, 2. Bass, 3. Function Switch (Off, phono, AM normal AM Hi-Fi, FM, TV), 4. Treble, 5. Tuning.

FM DRIFT: $\pm 20 \mathrm{KC}$ with AFC defeated.
$\pm 3 \mathrm{KC}$ with AFC in.
SIZE: $\quad 15^{\prime \prime} \times 81 / 2^{\prime \prime} \times 9^{\prime \prime}$.
SHIPPING WEIGHT: 17 lbs.

CONNECTIONS: All connections are made at the rear of the chassis.
Power input: AC power is supplied to the tuner through the attached line cord. Plug this cord into an AC receptacle.

AC power output: The two AC receptacles are supplied with AC power when the tuner is turned on. By plugging other units of the reproducing system into these receptacles, power control can be centralized.

Antenna: All antenna connections are made to the numbered terminal strip. In areas of normal signal strength a loop antenna, made from the cable supplied with the tuner, will provide good reception with low noise on both the $A M$ and $F M$ bands. Tack the cable around the rear of the cabinet to form a single or double turn loop of the largest possible cross-sectional area. Connect the two lead lugs to terminals 1 and 4, and the shorting jumper between terminals 2 and 3.
In areas where FM signals are weak, an outdoor FM antenna may be used in conjunction with the indoor loop for AM. Connect an FM antenna to terminals 1 and 2, the shorting jumper between terminals 2 and 3, and the loop to terminals 3 and 4 .
In AM fringe areas an external antenna may be used to increase AM sensitivity. Connect the $A M$ antenna to terminal 4, disconnect the jumper from terminals 2 and 3, and connect the FM antenna to terminals 1 and 2.

Audio input: The signals from a TV set and a record player can be connected to the tuner at the jacks marked TV and PHONO. When the connections are made, the signal to be delivered to the amplifier is selected by the control knob on the front of the chassis.

Audio output: The amplifier used with the tuner is to be connected to the jack marked OUTPUT. The output of the tuner may be simultaneously recorded without affecting the operation of the amplifier by connecting a recorder to the DETECTOR jack. In order to reduce the possibility of hum pickup, the connections to the tuner should be made with single conductor shielded wire, not exceeding 7 feet in length.

CONTROLS: Selector: Turning the selector knob from OFF to PHONO:

1) Supplies power to the A.C. receptacles on the rear of the chassis.
2) Supplies power to warm up the tuner tubes.
3) Supplies signal from the record player to the OUTPUT and DETECTOR jacks.

MODEL R701,
 AM-FM Tuner

Further movement of the selector knob selects AM NORM, AM HI_FI, FM, and TV. For most programs the AM NORM position will provide reception with a minimum of background noise and interference. The AM HI-FI position enables the listener to take full advantage of the high-fidelity programs broadcast by some AM stations.

AFC DEFEAT: If, while attempting to tune in a weak FM station, the tuner "jumps" to a stronger adjacent station, hold down the pushbutton marked AFC DEFEAT, located on the front of the chassis. This will disconnect the Automatic Frequency Control and permit tuning of the weak station. Release the button when the station is tuned in. The AFC will then center the station and hold it in tune.
If recordings are being made, it is recommended that the tuner be adjusted to the exact frequency of the station being recorded. This may be accomplished by defeating the AFC as described above, tuning the station to its exact frequency, and releasing the AFC DEFEAT pushbutton.

PREAMPLIFIER: A preamplifier is included in the Model R701 to supply the additional amplification and equalization needed when a magnetic type phono pickup, such as the G.E. cartridge is used. Since the preamplifier is not required when the phono pickup is a crystal type, it can be disconnected by the switch at the rear of the chassis. Place this switch in the MAG position when using a magnetic pickup, and in the CRYS position when using a crystal pickup.

SERVICE: The tuner should not require any service other than a periodic check of vacuum.tubes. The critical adjustments all have a high degree of stability over long periods of time and should not be tampered with. The adjustment of a modern high fidelity receiver such as the R70l should be made by competent, experienced personnel with proper visual alignment equipment. Ordinary meters or aural methods are in general unsatisfactory for alignment.

ALIGMMENT PROCEDURE
Note: Use insulated sorewdriver for adjustment

Step No.	Bandswitch Setting	Generator Frequency	Generator Modulation	Signal Input Point	Indicator	Indicator Connection Point	$\begin{aligned} & \text { Dial } \\ & \text { Setting } \end{aligned}$	Adjust	Remarks
1	AM NORM	455 Ko	30% AM	$\text { 6BE6 Pin } \frac{A M A}{\# 7}$	$\begin{aligned} & \text { IGNMENT } \\ & \text { AC VTVM or PA } \\ & + \text { output meter } \end{aligned}$	Audio output	-	2. AM IF transformers	For maximum output
2	same	600 Kc	same	AM Antenna terminal thru 200 mmf condenser	same	same	600 Kc	BC OsC coil BC RF coil BC antemna coil	same
3	same	1500 Kc	same	same	same	same	1500 Kc	BC osc. trimmer $B C$ IF trimmer BC antenna trimmer	same. Repeat steps 2 and 3
4	FM	10.7 Mc	300 Kc deviation Fm at 60 cycles	$\begin{aligned} & \text { FMA AI } \\ & \text { 6BA6 IF AMP } \\ & \text { PIn \#1 } \end{aligned}$	LIGNMENTDC VTVM Oscilloscope	"A" on schematic through 100 K	-	All FM IF transformers	For maximum gain and symmetry
5	same	same	same	same	same	"B"	-	Piscr. transformer + 2nd LIM coil	For balanced discriminator S pattern of max. amplitude
6	same	106 Mc	same	FM antenna terminal through 300 ohms	same	"A" on schematic through 100 K	106 Mc	FM osc + RF + Antenna trimmer	For maxdmum output
7	same	90 Mc	same	same	same	same	90 Mc	-	Check for tracking
8	AM NORM	10 Kc	none	"C" on schematic	AC VTVM	Audio output	-	10 Kc whistle filter	For maximum dip

INSTALLATION INSTRUCTIONS: Installation of the R701 tuner should be carefully planned, specifically with the following in mind:

1) Ventilation: Adequate air circulation will prolong the life of the tuner. This can best be accomplished by providing air vents near the top and bottom of the cabinet enclosure.
2) Ease of manipulation: Tuner should be mounted so that the dial can be read easily; control knobs should be kept clar of any cabinet projections.
3) Ease of accessibility: Tuner should be mounted in such a way that it may be easily removed for servicing. Tubes, pilot lights and connections at the rear of the chassis shoumd be readily accessible.
4) Loop antenna: If a loop antenna is used, it should be kept as far as possible from any metal parts to insure good signal pick up.
5) Tuner position: Tuner may be mounted either horizontally or vertical

ASSEMBLY INSTRUCTIONS:

1) Cut out front panel in accordance with attached front panel template.
2) Mount 4 shockmounts on side of chassis as indicated by dotted sketch on front panel template.
3) Mourt the escutcheon in the opening of the escutcheon plate. Fasten securely by bending the tabs at the top and bottom edges of the escutcheon firmly over the escutcheon plate.
4) Place the escutcheon assembly on the mounting surface, carefiully aligning all cutouts. Fasten to the mounting surface with two \#2 woodscrews as indicated on the template. Bend the tabs extending from the protruding angle bracket of the escutcheon plate firmly over the mounting surface.
5) Move the tuner forward on the mounting surface until the glass dial is $1 / 16^{\prime \prime}$ behind the protruding bracket. Check centering of shafts and dial in the cutouts. Mark with an awl the position of 4 holes on the chassis mounting board through the center of the shock mounts.
6) Cut out the 4 marked holes with a $\frac{1}{4}$ drill, and fasten the tuner chassis by inserting the \#10 machine screws from the bottom of the mounting board.
7) Mount knobs on shafts and make all rear connections.

MATERIAL SUPPLIED WITH TUNER:

```
knobs
    l escutcheon
    1 escutcheon plate with two #2 woodscrews
    4 phono plugs
    4 shockmounts with 8 self-tapping screws
    4 #10 machine screws
    l loop antenna cable
```

BOGEN PAGE 23-5
MODEL R701, AM-FM Tuner

PAGE 23-6 BOGEN

ALIGNMENT DATA

I. F. Alignment:

T1 and T2 at 455 Kc - tuning condenser plates completely closed. Connect generator with modulated RF signal to pin 8 - mixer grid 12SA7. Keep output of signal generator as low as possible so as not to overload IF amplifier or audio amplifier stages, volume control at maximum. Peak by audio signal from speaker, or an A. C. voltmeter connected across speaker.
R. F. Alignment:

1. Set pointer with condenser plates completely closed so that it is horizontal.
2. Turn tuning drive so that pointer reads 1400 KC .
3. Adjust tuning condenser trimmer C_{O} for maximum response. Volume control at maximum, modulated signal from generator as small as possible.
4. Adjust C_{T} for maximum response as in step 3.
5. Repeat if necessary steps 1-5.

DIAL STRING

PAGE 23-2 CBS-COLUMBIA
MODELS 533, 534,
535, 536, 530 Series

BOTTOM VIEW

MODELS 533, 534,
535, 536, 530 Series

SCHEMATIC
LOCATION

C 1
C 2
C 5
C 6
C 7
$C 8$
C 9
Clo
CII
C12
C 13
C14
L 2
R 5
4275

LI
$R 1$
$R 2$
R 3
R 4
R 6
R 7
R 8
R 9

T3
TI
T 2

54172
39137
PART
NUMBER

1686
PE 196-98
1666
PE |91-15
PE |9|-3|
PE 196-1/2
PE I 9|-35
PE |96-97
PE | $91-40$
PE 196-107
PE 196-108
PA 20136
PP 19105
28210
2471

28159
4145
PE 230-2281
PE 230-2325
PE 230-2309
PE 230-2333
PE 230-2305
PE 233-2257
PE 230-2337
PE 232-1107
18110
5868
1770
3535

DESCRIPTION

Cabinet (Walnut or Ivory)
Capacitor, Paper,. 002 MFD 400 V
Capacitor, Variable
Capacitor, Mica 47 MMF
Capacitor, Mica 220 MMF
Capacitor, Paper. 05 MFD 400 V
Capacitor, Mica 330 MMF
Capacitor, Paper. 001
Capacitor, Mica 510 MMF
Capacitor, paper. 01
Capacitor, Paper. 02 MFD 400 V
Capacitor, Electrolytic 40-40 el50
Capacitor, Paper . 05 MFD 600 V
coil, oscillator
Control, Volume w/switch
Dial Crystal
Drive Shaft Assembly
Knob (Walnut or Ivory)
Loop Antenna
Pointer
Resistor, 22000 ohm $\frac{1}{4} w$
Resistor, $1,500,000$ ohm $\frac{1}{4} w$
Resistor, 330,000 ohm $\frac{1}{4} w$
Resistor, $3.3 \mathrm{megohm} \frac{1}{4} w$
Resistor, 220,000 ohm $\frac{1}{4} w$
Resistor, 2200 ohm $2 w$
Resistor, $4.7 \mathrm{megohm} \frac{1}{4} w$
Resistor, 18 ohm $1 w$
Socket, octel wafer
Speaker w/output transformer
Transformer, Ist. l.F.
Transformer, 2nd. I.F.

CHASSIS DESCRIPTION

C-305, C-318
The C-282 and C-318 are both 11 tube AM-FM Radio Chassis. The C-305 is a 10 tube AM-FM Radio Chassis and the C-284 is an 11 tube chassis designed for reception of $A M$ signals only.

All of these chassis contain push-pull audio output amplifiers which are used for radio and phonograph reproduction and al so television sound when the chassis are used in "3-way" combination instruments. The C-282 and C-305 chassis are wired for use of the C-295 Phono Pre-Amplifier Chassis which is used in conjunction with the Model 333A-VR Record Changer employing the Variable Reluctance type pickup. The C-284 and C-318 chassis are wi red for use wi th the Model 333A Record Changer which employs a crystal pickup. In all of the above models, the on-off switch on the radio chassis controls the power source for all functions of the receiver. Volume and Tone controls on the radio chassis also function for phonograph and television as well as radio operation.
NOTE: With the Operation Selector (Band Switch) in the phonograph position, the record changer will automatically shut off the power source to the entire instrument when it has played the last record. When the Operation Selector is then switched to either TV or Radio, the power source will again, automatically, be turned on.

Radio Tuning Range:
AM Band 540 KC to 1620 KC
FM Band 88 MC to 108 MC
C-282 \& C-318 Radio Chassis Tube Complement: Type
6BA6. AM FM RF Amplifier
6RE6. AM Converter-Osci1lator
1 2AT 7.
6BA6.
6BA6
6AL5
SQ7
6SQ7
6V6GT (2)
5Y3GT.
Total: 11 tubes, including one Rectifier.
C-305 Radio Chassis Tube Complement:

CHASSIS C-282, C-284, C-305, C-318

C- 295 Pre-Amplifier Chassis Tube Complement:
Type
Description
6SC7
1st \& 2nd Pre- Amplifiers
Speaker (Used for all types of operation)... 12 inch PM
Audio Output... . . 12 watts
Power Source.. 105 to 125 volts, 60 cycle AC only
Equipment Required

ALIGNMENT INSTRUCTIONS

AM (broadcast band) IF and RF Alignment

1. Calibrated RF Signal Generator (range, 455 KC to 1620 KC)
2. Low Range Output Meter.

FM (Frequency Modulation) IF \& RF Alignment

1. FM Sweep Generator (range 10.7 mc to 108.5 mc)
2. Oscilloscope
3. RF Signal Generator (range $\mathbf{1 0 . 7} \mathrm{mc}$ to 108.5 mc)
4. Vacuum tube Voltmeter

AMAlignment ($I F$ \& $R F$)
C-305
a. Set Operation Selector to AM position
b. See that the-dial pointer coincides with the calibration marks at the extremes of the dial scale.
c. Connect the Output Meter cable to Speaker socket on receiver.
d. Turn set on and adjust Volume to maximum.

STEP	CONNECT GEN ERATOR	$\begin{gathered} \text { SET } \\ \text { GENERATOR } \\ \text { AT } \end{gathered}$	$\begin{aligned} & \text { SET } \\ & \text { GANG } \\ & \text { AT } \end{aligned}$	ADJUST	$\begin{gathered} \mathrm{TO} \\ \text { OBTAIN } \end{gathered}$
1	Green lead on mixer coil	455 KC	fully open	T104, T105 \& T108 Top \& Bottom slugs	M
2	Loose Couple to loop Ant.	1620 KC	1620 KC	C102F, AM 0sc. coil Trimmer	M
3	Same	1500 KC	1500 KC	C 102 B , Ant. Trimmer, C102D, AM Mixer coil Trimmer	$\begin{gathered} \text { M } \\ 0 \\ 0 \\ \text { U } \end{gathered}$
4	Same	600KC	600KC	T102, AM Mixer coil Slug	$\begin{aligned} & \mathrm{T} \\ & \mathrm{P} \end{aligned}$
5	Same	537 KC	fully closed	T101 AM 0sc. coil Slug	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~T} \end{aligned}$

C-282 and C-318

ST EP	CONNECT GENERATOR	$\begin{gathered} \text { SET } \\ \text { GENERATOR } \\ \text { AT } \end{gathered}$	$\begin{gathered} \text { SET } \\ \text { GANG } \\ \text { AT } \end{gathered}$	ADJUST	$\begin{gathered} \text { TO } \\ \text { OBTAIN } \end{gathered}$
1.	Grid of AM Conv., 6BE6 (pin 7 of V103) Through . 1 mfd .	455KC	Fully Open	$\begin{aligned} & \text { T102, T104 \& T } 106 \\ & \text { (IF Slugs) } \end{aligned}$	$\begin{array}{ll} \mathrm{M} \\ \mathrm{~A} & 0 \end{array}$
2.	ant. Section of Gang (through . 1 mfd.)	1620 KC	1620 KC	$\begin{aligned} & \text { C156, AM Osc. Trim. } \\ & \& \text { C154, AM Conv.Trım } \end{aligned}$	$\begin{array}{ll} X & U \\ I & T \end{array}$
3.	- Same -	1500 KC	1500 KC	C 152. AM Ant. Trim.	M^{P}
4.	- Same -	600KC	600 KC	L 103, Loop Loading Coil \& L111* AM Osc. Coil	$\begin{array}{ll} \mathrm{U} & \mathrm{U} \\ \mathrm{M} & \mathrm{~T} \end{array}$
5.	$\begin{aligned} & \text { "Ant" Terminal (on } \\ & \text { rear of chassis) with } \\ & \text { Loop connected. } \end{aligned}$	455 KC	Quiet Point	L 102, Wave Trap (on Loop Ant.).	Minimum Output

[^4]CAPEHART-FARNSWORTH PAGE 23-3
CHASSIS C-282, C-284, C-305, C-318

STEP	CONN ECT GENERATOR	$\begin{gathered} \text { SET } \\ \text { GENERATOR } \\ \text { AT. } \end{gathered}$	$\begin{gathered} \text { SET } \\ \text { GANG } \\ \text { AT } \end{gathered}$	ADJUST	$\begin{gathered} \text { TO } \\ \text { OBTAIN } \end{gathered}$
1.	Grid of Mixer, 6SA7 (pin 5 of V102) through . 1 mfd .	455 KC	Fully Open	$\begin{aligned} & \text { IF Slugs T102, T103 \& } \\ & \text { T } 104 \end{aligned}$	MAXIMUM OUTPUT
2.	RF Section of Gang through 1. mfd.	1620 KC	1620KC	$\begin{aligned} & \text { C102C 0sc. Trim. } \\ & \text { (on gang) } \end{aligned}$	$\begin{aligned} & \text { MAXIMUM } \\ & \text { OUTPUT } \end{aligned}$
3.		1500KC	1500KC	C10 2A, Ant. Trim. C102B, RF Trim. (on gang)	MAXIMUM OUTPUT
4.		600KC	600 KC	L103, Loop Loading Coil and L104* Osc. Coil	MAXIMUM OUTPUT
5.	Terminal " A " Ant. Term. Strip (with Loop connected)	455 KC	Quiet Point	L 102, Wave Trap on Loop	MINIMUM OUTPUT

FM Alignment

a. Connect the oscilloscope and FM or RF Generator as shown in the chart.
b. Set the Operation Selector in the FM position.
c. Turn the Receiver on.
d. During alignment, reduce the generator output to keep the signal just above noise level to avoid overloading.
e. For maximum signal transfer, Signal Generator should be balanced to 300 ohm FM Antenna terminal input.
C-282 and C- 318

IF SECTION

STEP	CONN ECT FM (SWEEP GENERATOR	$\begin{gathered} \text { SET } \\ \text { GENERATOR } \\ \text { AT } \end{gathered}$	$\underset{\text { GANG }}{\underset{\text { AT }}{\text { SET }}}$	CONNECT OSCILLOSCOPE	ADJUST	REMARKS
1	Grid 6BAE 2nd I-F Amp. pin \#1, V105	$\begin{aligned} & \text { 10. } 7 \mathrm{MC} \\ & \pm 100 \mathrm{KC} \\ & -\operatorname{dev} . \end{aligned}$	fully open	Across C138 (Grd. lead to chassis)	Top \& bottom slugs of T105	Adjust for " S " curve and centered so that the two curved portions are symmetrically spaced from the center.
2	Grid of 6BA6 (1st IF amp) pin \#1, V104	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \pm 100 \mathrm{KC} \\ & \mathrm{dev} . \end{aligned}$	open	Same	Top \& bottom slugs of T 103	Adjust for Max. Ampplitude of "S" curve \qquad
3	Grid of 12AT7 (FM Mixer) pin \#2, V102, through 1000 uuf.	$\begin{aligned} & 10.7 \mathrm{M} \mathrm{C} \\ & \pm 100 \mathrm{KC} \\ & \mathrm{dev} . \end{aligned}$	open	Same		Ratio Det. "S" Curve

C-282 and C-318
RF SECTION

STEP	CONNECT SIGNAL GENERATOR	SET GENERATOR AT	SET GANG AT	CONNECT VTVM	ADJUST	REMARKS
1.	High Side of FM dipole thru 330 ohms	106 MC	106	Across R132	C155, FM Osc. Trim.	Adjust for Maximum
2.	-Same-	$105 M C$	$105 M C$	- Same -	C153, FM Mi xer Trim. $\&$ C151, FM Ant. Trim.	Adjust for Maximum while rocking gang condenser

PAGE 23-4 CAPEHART-FARNSWORTH

CHASSIS C-282, C-284, C-305, C-318 C-305 IF SECTION							
STEP	$\begin{aligned} & \text { CONNECT } \\ & \text { FM (SWEEP) } \\ & \text { GENERATOR } \end{aligned}$	$\begin{aligned} & \text { SET } \\ & \text { GENERATOR } \\ & \text { AT } \end{aligned}$	$\begin{gathered} \text { SETT } \\ \text { GANG } \\ \text { AT } \end{gathered}$	CONNECTOSCILLOSCOPE		ADJUST	REMARKS
1	Grid 6BA6 (2nd I-F Amp) pin \#1, V104	$\begin{gathered} 10.7 \mathrm{M} \mathrm{C} \\ \pm 100 \mathrm{KC} \\ \mathrm{dev} . \end{gathered}$	$\begin{aligned} & \text { fully } \\ & \text { open } \end{aligned}$	Across C130 (Grd lead to chassis)		$\begin{gathered} \text { Top \& } \\ \text { bottom } \\ \text { s lu gs } \\ \text { of } \\ \text { T107 } \end{gathered}$	Ãdjust for "S" curve and centered so that athe two curved portions are symmetrically spaced from the center.
2	$\begin{aligned} & \text { Grid of 6BA6 } \\ & \text { (IF amp) pin } \\ & \# 1, \text { V103 } \end{aligned}$	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \pm 100 \mathrm{KC} \\ & \mathrm{dev} . \end{aligned}$	open	Same		$\begin{aligned} & \text { Top \& } \\ & \text { bottom } \\ & \text { slug s } \\ & \text { of T105 } \end{aligned}$	Adjust for Max. Ampplitude of "S" curve Ratio Det. "S" Curve
3	Contact D10 of section 2 rear of the Band Switch	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \pm \mathrm{i} 00 \mathrm{KC} \\ & \mathrm{dev} . \end{aligned}$	open	Same		Top \& slugs of T103	
C-305							
RF SECTION							
STEP	$\begin{gathered} \text { CONNECT } \\ \text { RF } \\ \text { GENERATOR } \end{gathered}$	$\begin{gathered} \text { SET } \\ \text { GENERATOR } \\ \text { AT } \end{gathered}$				UST	REM ARKS
1.	To FM Ant. Terminals	$\begin{aligned} & \text { Modulated } \\ & \text { 106MC } \end{aligned}$		6MC	*L103 o by adj. of turn	coil spacing	For Max. Sound Output
2.	Same	$\begin{aligned} & \text { Modulated } \\ & 90 \mathrm{MC} \end{aligned}$		MC	Plates tuning	f FM Csc. apacitor	If necessary adjust the end plates of the FM Osc. Section of the gang for Max. Output.
3.	Repeat adjustment of L103 (Step 1) to calibrate dial pointer at 90 MC and 106 MC respectively, with the R-F Unit Shield in place.						
4.	To FMAnt. terminals	$\begin{gathered} \text { Modul ated } \\ 106 \text { MC } \end{gathered}$	106 MC		C102D FM trimmer on Mix. Sec.		Max. output while rocking gang
5.	Same	Same	Same		C102A FM trimmer on Ant. section		Maximum Output
$\begin{aligned} & 6 . \\ & 7 . \end{aligned}$	Same Same	$\begin{aligned} & \text { Modulated } \\ & 90 \mathrm{MC} \\ & \text { Same } \end{aligned}$	90MCSame		* L103 (mixer)L102 FMAnt. Coil		Check coils with a vuning wand. If neccessary expand or compress coil turns for max. output

* Cement both coị!s on L103 after adjusting.

Check calibration of dial against known $A M$ and $F M$ stations.

CAPEHART-FARNSWORTH PAGE 23-5

RADIO CHASSIS C-282 \& C-318
-

MODELS 110AM, Ch. C-318; 1008M, 1009F, 1010B, Ch. C-282

DIAL STRINGING C-282 \& C-3I8.

* PEAK AT GOOKC

WHILE ROCKING GANG
CONDENSER

DIAL STRINGING C-284

CHASSIS C-284

MODELS 1008AM, 1009AF,
1010AB, Ch. C-305

PARTS LIST RADIO CHASSIS C-282 \& C-318

- CAPACITORS -

CHASSIS C-282, C-318

Parts List Radio Chassis C-282 \& C-318 Cont'd.
Ref. no. Description Part no. List

- INDUCTANCES -

T10 1	T104	Transformer, 1st FMM IF.	$650251 \mathrm{~A}-1$	1.40
T102,		Transformer, 1st \& 2nd AM IF.	4520 19A-1	1. 60
T103		Transformer, 2nd FM IF..	. $4520{ }^{\prime} /{ }^{\prime} \mathrm{A}^{\text {-1 }}$	1. 45
T105		Transformer, Ratio Detector.	452028A-1	2.00
T106		Transformer, 3rd AM IF..	$450336 \mathrm{~A}-1$	1. 50
T107		Transformer, AM Converter.	38961	1. 20
T 108		Transformer, Power.	750 182A-1	11. 10
T109		Transformer, Output.	650 245A-1	3.50
L 101		Loop Antenna Assembly (AM)	750 165A-1	5.35
L 102		Wave Trap Coil (Part of Ass'y		
L 103		Coil Assembly, Loop Ioading.	. 38963	. 60
L 104		Coil Assembly, FM Antenna.	38958	. 55
L 106		Coil Assembly, FM Mixer.	38959	. 50
L107		Coil Assembly, FM Oscillator.	38960	. 55
L 111.		Coil Assembly, AM Oscillator.	. $452030 \mathrm{~A}-1$. 80
L 105,	L 108,			
L 110,	L 112,	-RF Choke Coil........	38884	. 20

- miscellaneous

PARTS LIST PRE-AMPLIFIER CHASSIS C-295 295$\frac{\text { PARTS LIST PRE-AMPLIFIER }}{-R E S I S T O R S}$
Ref. no. Description Part no.
R106 $22 \mathrm{~K}, \mathrm{~W}, 10 \%$ 3229A- 223
R105 R104
Carbon, $47 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \%$. 3229 A- 473
Carbon, $100 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \%$ 3229A-104
R103
Carbon, $220 \mathrm{~K}, 1 / 2 \mathrm{~W}, 10 \%$. 3229 A- 224
 $3229 \mathrm{~A}-334$ R 101
$3229 \mathrm{~A}-685$
List 10
Assembiy, FM Antenna.5055 201. 60
45204 1AG165
Dial Glass (FM) (C- 282 only)750 16 1B235
Channel (Dial Glass).051471010 20
36
Dial Glass (FM) (C-318 only) 750 284A- 1
$750284 \mathrm{~A}-2$ 36
- CAPACITORS

Ref. no.	Description	Part no.	List
C10 2	OPT, . 047 ufd, 200 V .	2246A-4730	. 20
C103	OPT, . 001 ufd, 600 V .	2248A-1020	20
C10 1, C105	OPT, . 0022 ufd, 600 V .	2248A-2200	. 20
C104	Mica, 330 uuf, 500 V .	$650162 A-9$. 20
C106	Elect, 10 ufd, 450 V .	452203A-1	1. 25
- MISCELLANEOUS -			
Description		Part no.	List
Pickup Cable.		. 22169	1.00
Output Cable.		22170	. 75
Power Cable.	. . . - ${ }^{\text {- }}$.	. $650258 \mathrm{~A}-1$. 90

PARTS LIST RADIC CHASSIS C-305

RESI STORS

CHASSIS C-282, C-305

PAGE 23-16 CAPEHART-FARNSWORTH

SPECIFICATIONS

Tube Complement:

Type	Purpose
IR5	
1U4 ..I-F Amplifier	
1U5Detector, AVC \& Ist Audio Amplifier	
V4	ver Output

Frequency Range:
AM Broadcast Band \qquad .532 KC to 1620 KC
Power Source:

Rating

0.25 Amp . at $11 / 2$ VDC \& 9.8 Milliamps at $671 / 2$ VDC
"A" Battery1.5 volts (Flashlight type D)
"B" Battery \qquad
\qquad .67 .5 volts

Loudspeaker:
Size and type \qquad Elliptical 2×3 inch PM Voice coil impedance 3.2 ohms

Antenna:
Built-in "ferrite rod" antenna in rear of cabinet.
Cabinet Dimensions:
Height: 55/8 inches
Width: $77 / 8$ inches
Depth: $21 / 4$ inches
Weight:
Including batteries: $31 / 4$ pounds

STAGE GAIN MEASUREMENTS

To facilitate troubleshooting and to determine proper operation of circuits, the following data is presented. To make these measurements, a signal generator (covering the specified frequencies) and a VTVM are required. The signal generator output should be maintained low to avoid AVC action. The listed values of gain may have tolerances of 20%.

Gain Measurements:

1R5 Conv. Grid (pin 6) to 1U4 Grid (pin 6)
$25 @ 1000 \mathrm{KC}$
1U4 Grid (pin 6) to 1U5 Diode plate (pin 4) 74 @ 455KC 1U5 Diode Plate (pin 4) to 3V4 Grid (pin 6) 37 @ 455KC 3V4 Grid (pin 6) to Speaker Voice Coil 19 @ 400 C.P.S.

PAGE 23-18 CAPEHART-FARNSWORTH

MODEL 10,
Ch. C-312

1. Remove the cabinet back cover and pull off the tuning knob.
2. Remove both the " A " and " B " batteries.
3. Remove the 3 chassis mounting screws (refer to the chassis layout drawing below.
4. Lift the chassis out of the cabinet from the bottom first
and pull down to clear the volume knob at the top. To operate the chassis outside the cabinet, solder two short clip leads to a flashlight cell and connect them to the "A" battery leads on the chassis (observe polarity). The "B" battery can be connected normally. Note: To prevent damage to the gang condenser, do not place the chassis face down on the service bench

Equipment required:

1. Calibrated R.F. Signal Generator (Signal from 455 KC to 1620 KC).
2. Low Range Output Meter.

Alignment:
a. Turn set on. adiust volume to maximum.
b. See that dial pointed coincides with calibration marks at extremes of dial scale.
c. Connect output meter across the speaker voice coil.
$\left.\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { Step No. } & \begin{array}{c}\text { Set RF } \\ \text { Generator At }\end{array} & \begin{array}{c}\text { Connect RF } \\ \text { Generator To }\end{array} & \begin{array}{c}\text { Set Gang } \\ \text { Condenser To }\end{array} & \text { Adjust } & \begin{array}{c}\text { To } \\ \text { Obtain }\end{array} \\ \hline 1 & \begin{array}{c}455 \mathrm{KC} \\ (400 \sim \text { Mod.) }\end{array} & \begin{array}{c}\text { To Grid of 1U4 } \\ \text { (pin } 6 \text { of V102) }\end{array} & \text { Fully Closed } & \text { IF Slugs } \\ \text { T103 }\end{array}\right] \begin{array}{c}\text { Max. } \\ \text { Output }\end{array}\right]$

Note 1: Make a loop of the R-F Generator leads (Connect the leads together through a .01 mfd capacitor) and loosely couple to the Rod Antenna.

MODEL 10, Ch. C-312

BATTERY REPLACEMENT

Both the "A" and "B" batteries are easily removable from the rear of the cabinet. To remove the cabinet back grasp the handle with the fingers, placing the thumb on the top of back cover (see illustration) exert thumb pressure down and away from the case. To replace the case, insert the bottom first. Exert downward pressure on back and close at top. A drawing showing proper location of the batteries is included on the inside of the back cover. When replacing batteries always try the "A" battery first. Under intermittent operating conditions, battery life is estimated at approximately 40 hours for the " B " battery and approximately 10 hours for the "A" battery. The batteries can be replaced with the following types or their equivalent: "A" battery-Everyready type 950. "B" batteryEveryready type 467. Do not allow run down batteries to remain in the cabinet. If the receiver is not to be used for a long period of time, the batteries should be removed.

PARTS PRICE LIST-

REF. NO.

DESCRIPTIONS

CAPACITORS

C1, A, B, D, \& C	Tuning Capacitor
C2	.047 ufd, 200V
C3	47 uuf, 400V Ceramic 10 $\%$
C4, 5, 8	5000 uuf, 400V Ceramic Disc
C6, 7	Part of Diode Filter part no. 452171A-1
C 9	10 ufd, 70V Electrolytic
C10	.0047 ufd, 200V
C11	100 uuf, Ceramic 20%

RESISTORS

R1, 4 R2 R3 R5 R6 R7

100 uff, Ceramic 20%
$3.3 \mathrm{meg}, 1 / 2 \mathrm{w}, 10 \%$
$100 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \%$
$15 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \%$
Part of Diode Filter part no. 452171A-1
Volume Control \& On-Off Switch
$10 \mathrm{meg}, 1 / 2 \mathrm{w}, 10 \%$
390 ohm, $1 / 2 \mathrm{w}, 10 \%$
INDUCTANCES
Oscillator Coil
I-F Transformer
Output Transformer
Rod Antenna

MISCELLANEOUS
*Cabinet Assembly (Green)
*Cabinet Assembly (Taupe)
*Cabinet Assembly (Burgundy)
Tuning Knob (for Taupe Cabinet)
Tuning Knob (for Burgundy Cabinet)
Tuning Knob (for Green Cabinet)
Volume Knob (for Green Cabinet)
Volume Knob (for Taupe \& Burgundy Cabinets)
Set Screw for Volume Control
Dial Background
Dial Pointer
Speaker
Mtg. Clips for I-F Transformer
Diode Filter (R5, C6, C7)
Printed Circuit
"A" Battery Clip
Cabinet Back Cover (Taupe)
Cabinet Back Cover (Burgundy)
Cabinet Back Cover (Green)
Cabinet Handle (Taupe)
Cabinet Handle (Burgundy)
Cabinet Handle (Green)
Handle Link

PART NO:
LIST PRICE

$650448 \mathrm{~A}-1$	$\$ 3.30$
$650450 \mathrm{~A}-473$.30
$2240-006$.20
$450469 \mathrm{~A}-1$.25
$452132 \mathrm{~A}-2$.90
$650450 \mathrm{~A}-472$.20
$2240-014$.20

2240-01420

3229-335

3229-104 . 10
3229-153 . 10
750276A-1 1.20
3229-106 . 10
3229-391 . 10

452610A-1 . 80
750273A-1 1.55
452612A-1 1.90
$452614 \mathrm{~A}-1$ 1.10
$452815 \mathrm{~A}-\mathrm{G4} \quad 3.70$
452815A-G1 3.70
452815A-G3 3.70
452750A-1 . 40
452750A-3 . 40
452750A-4 . 40
452749B-2 . 30
452749B-1 . 30
2041-122 . 10
$452781 \mathrm{~A}-1$. 10
452748A-1 . 20
$650451 \mathrm{~A}-1$ 5.55
452647A-1 . 10
452171A-1 . 55
452615A-2 . 85
452814A-1 . 10
750278A-1 . 95
750278A-3 . 95
750278A-4 . 95
650491A-1 . 30
650491A-3 . 30
650491A-4 . 30
452818A-1 . 10

[^5]

The C-297 \& CR-36 are 5 tube radio chassis, designed for reception of AM (Broadcast Band) signals only. Since the chassis are operated in conjunction with an electric clock mechanism, they are to be operated only from an alternating current (AC) source. The two chassis are identical with exception that the CR-36 includes an appliance outlet.

The power source for the chassis is turned "on" and "off" by the Control Knob on the clock. When the Control Knob is in the "On" position, the radio
chassis power source is on and it is not controlled by the clock. When the Control Knob is in the "Off" position, the power source to the chassis is off and it cannot be turned on by the clock. When the Control Knob is in the "Auto" position, the power source is off, however, it will be turned on automatically by the clock mechanism at the time to which the clock alarm is set.

NOTE: The clock motor will be energized at all times when the line cord is connected to the power source.

SPECIFICATIONS

Tube Compliment:

Type	P
12BE6Oscillator-Converter	
12BA6I-F Amplifier	
12AV6..Detector, AVC \& 1st Audio Amplifier	
	t
	Rectifier

Frequency Range:
AM Broadcast Band
540 KC to 1620 KC

Power Source:

Rating \qquad 105-125 volts, 60 cycle AC only Power Consumption

Appliance Outlet: (Model TC-101 only)
Maximum Rating
1100 watts
Loudspeaker:
Size and type 4 inch PM
Voice Coil Impedance
.3.2 ohms
Power Output:
1.5 watts

Antenna:

Built-in loop in rear of cabinet.

Cabinet Dimensions:

Height $55 / 3$ inches, Width $117 / 8$ inches, Depth $57 / 8$ inches.

OPERATING INSTRUCTIONS

TO SET ALARM FOR EITHER AUTOMATIC RADIO OPERATION OR "BUZZER" OR COMBINATION OF BOTH

Pull out Alarm Knob and Turn to the left; this motion will rotate the small disk in the center of the clock face. Turn the knob until the small red pointer indicates the desired time on the disk. When the Control Knob is on "AUTO", the radio will turn on automatically. Of course, the radio should be pre-tuned to a station and the Volume Control should be pre-set to the desired level to obtain proper automatic radio operation. If the

Alarm Knob is in the out position, the "buzzer" will be sounded shortly after the radio turns on.

If it is desired to have the alarm only, independent of the radio, pull the Alarm Knob out and set the Control Knob to "Off".

TO SET CLOCK

Rotate the knob on the rear of the cabinet in the clockwise direction. This will cause the clock hands to move in the normal direction. Do not cause the clock hands to move backward.

MODELS TC-100,
Ch. CR-36; TC -
101, Ch. C-297

CONTROL KNOB
TO PLAY RADIO MANUALLY

1. Set the Control Knob to the "ON" position.
2. Adjust the Tuning Knob for the desired station.
3. Set the Volume Control so that some sound is heard from the speaker. Then re-adjust the Tuning Knob for the desired station, in the conventional manner, by setting the calibrations on the outer ring of the Tuning Knob against the small indicator located directly above it. Slight mis-adjustment of tuning will cause distortion, therefore, the

Tuning Knob should be used to adjust for the clearest sound and the Volume Control for the proper sound volume.

TO TURN ON APPLIANCE AUTOMATICALLY (TC-101 ONLY)

Plug electrical appliance into outlet on rear of radio, set Control Knob at "Auto" position and the appliance will be turned on at the time determined by the setting of the Alarm Knob. The radio will operate at the same time, but if radio music is not desired the Volume Knob should be turned fully to the left.

ALIGNMENT INSTRUCTIONS

Equipment required:

1. Calibrated R.F. Signal Generator (Signal from 455 KC to 1620 KC).
2. Low Range Output Meter.

Alignment:

a. Turn set on, adjust volume to maximum.
b. Connect output meter across the speaker voice coil.
c. Make a loop of the R-F Generator leads (connect the leads together through a .01 mfd capacitor) and loosely couple to the Loop Antenna.

Step	Set RF Generator At	Set Condenser Gang At	Adjust	To Obtain
1	455 KC	Tune To Quiet Point	$\begin{aligned} & \text { IF Slugs } \\ & \text { T103 } \\ & \text { T102 } \end{aligned}$	Max. Output
2	1620 KC	'Fully Open	Osc. Trimmer C103D	Same
3	1500	1500	$\begin{aligned} & \text { RF Trimmer } \\ & \text { C103B } \end{aligned}$	Same
4	600 KC	600 KC	*T101 Osc. Slug	Same

Adjust as Tuning Gang is Rocked
© John F. Rider

MODELS TC-
100, Ch. CR-
36; TC-101,
Ch. C-297

removal and service of clock mechanism

SERVICE

When it is determined that the clock requires adjustment or repair, remove the clock mechanism from the cabinet (as per the following instructions) and return the clock mechanism to your Capehart distributor or an agency specified by him. If the clock mechanism is to be shipped by mail or express, be certain that it is adequately protected and properly packed.

TO REMOVE CLOCK

1. Remove the back of the cabinet by pulling off.

Note the loop antenna is fastened to the cabinet back and care should be exercised not to break off the leads.
2. Remove the two hex nuts which fasten the clock to the metal cover. Keep the metal cover and hardware (2 hex nuts, and 2 fibre washers) with the cabinet, do not return this material with the clock.
3. Pull clock out from the front of the cabinet.
4. Unsolder four (4) electrical leads from the clock. (See sketch below).
5. Remove clock.

NOTE: To re-install the clock follow the above procedure in reverse.

MODELS TC-100, Ch. CR-36;
TC-101,
Ch. C-297
SCHEMATIC DIAGRAM

$$
\begin{aligned}
& \text { VIO4 } \\
& \text { 5OC5 } \\
& \text { OUTPUT }
\end{aligned}
$$

V103
12 AVG
DET. AVC-IST VI02
I2BA6

$$
\begin{aligned}
& \text { VIOI } \\
& \text { I2BE } 6 \\
& \text { OSC.-CONV. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MEASUREMENTS MADE WITH VO } \\
& \text { VOLTAGES MEASURED FROM B- }
\end{aligned}
$$

NOTE: UNLESS OTHERWISE NOTED, RESISTORS $1 / 2$ W. CARBON 10%
TOLERANCE, CAPACITORS 600 V .
-

$$
/ \sqrt{\mathrm{CLOCK}}
$$

John F. Rider

Ref. No.	DESCRIPTION	Part No.	List
INDUCTANCES			
L101	Loop Antenna	750207A-1	\$1.00
T101	Oscillator Coil	452242A-1	. 75
T102	1st IF Transformer	452243A-1	1.40
T103	2nd IF Transformer	452243A-1	1.40
T104	Output Transformer (Pa	204A-1)	
RESISTORS			
R102	$22 \mathrm{~K}, 1 / 2 \mathrm{~W}, 10 \%$	3229-223	. 10
R103	$1 \mathrm{Meg} ., 1 / 2 \mathrm{~W}, 10 \%$	3229-105	. 10
R104	3.3 Meg., 1 WW, 10%	3229-335	. 05
R105	500K Volume Control	452241A-1	. 80
R106	$220 \mathrm{~K}, 1 / 2 \mathrm{~W}, 10 \%$	3229-224	. 10
R107 \& R109	$150 \mathrm{Ohm}, 1 / 2 \mathrm{~W}, 10 \%$	3229-151	. 10
R108	1500 Ohm, 1W, 10%	3232-152	. 10
	Printed Circuit	452244 A -1	. 90

CAPACITORS

C103A,B,C,D
C101
C102
C104
C105
C106
C107
C108
C109

Variable Tuning Capacitor	$650327 \mathrm{~A}-1$	2.85
$470 \mathrm{mmf} .20 \%$ Ceramic	$2239-013$.20
$56 \mathrm{mmf} .10 \%$ Ceramic	$2241-554$.25
.047 mf .200 V (MOPT)	$2246 \mathrm{~A}-4730$.20
$150 \mathrm{mmf} .20 \%$ Ceramic	$2240-021$.20
(a. 50 mf .150 V Electrolytic)		
(b. 50 mf .150 V Electrolytic)	$650326 \mathrm{~A}-1$	2.10
.01 mf .600 V Paper	$2248-1030$.20
.022 mf .600 V (MOPT)	$2244-2230$.30
.047 mf .600 V (MOPT)	$2244-4730$.35

MISCELLANEOUS

PM Speaker and Output Trans. Assy.	$750204 \mathrm{~B}-1$	5.90
Clock Mechanism	$750311 \mathrm{~A}-1$	1.65
Line Cord (TC-100)	$650171 \mathrm{~A}-4$.60
Line Cord (TC-101)	$650171 \mathrm{~A}-3$.60
Capehart Insignia	$452188 \mathrm{~B}-1$.25
Clock Knob	$452233 \mathrm{~A}-2$.10
TC-100 Cabinet Assy. (Brown)	$850206 \mathrm{~A}-1$	4.85
TC-100 Cabinet Assy. (Ivory)	$850206 \mathrm{~A}-4$	4.85
TC-101 Cabinet Assy. (Grey Blue)	$850206 \mathrm{~A}-6$	4.85
TC-100 Dial Knob (Brown)	$650325 \mathrm{~A}-8$.35
TC-100 Dial Knob (Ivory)	$650325 \mathrm{~A}-10$.35
TC-101 Dial Knob (Grey Blue)	$650325 \mathrm{~A}-1$.30
TC-100 Radio Knob (Brown)	$452240 \mathrm{~A}-8$.15
TC-100 Radio Knob (Ivory)	$452240 \mathrm{~A}-10$.15
TC-101 Radio Knob (Grey Blue)	$452240 \mathrm{~A}-1$.10
Loop Antenna (TC-100)	$750310 \mathrm{~A}-1$	1.10
Loop Antenna (TC-101)	$750310 \mathrm{~A}-2$	1.10
Appliance Outlet 117V AC		
1100 Watts Max. (TC-101)	$450427 \mathrm{~A}-1$.30

MODEL 15,
Ch. CR-48

The Capehart Portable Radio, Model 15, consists of a five tube superheterodyne chassis housed in a molded polystyrene case. The radio can be operated from self-contained batteries or from 117 volts A.C. or D.C. Reception is obtained on the standard broadcast band of 537 Kc . to 1620 Kc . Three normal operating controls are available for use: On-Off Volume Control, Tone Control and Station Tuning. A three gang vari-
able tuning capacitor is used in conjunction with seven tuned circuits to provide the high selectivity and image rejection needed in a portable type radio. To aid in providing this selectivity a "ferrite rod" type built-in antenna is used. In addition to being small in size and providing excellent signal pickup, this antenna eliminates the pickup of electrostatic type interference.

Warning! Do Not Remove Any Circuit Tubes While Instrument Is Turned On

MODEL 15 SPECIFICATIONS

Tube Complement:

Type
1T4 R.F. Amplifier
1R5 Osc.-Convertor
1U4 I.F. Amplifier
1U5 Det AVC Audio
3V4 Power Output
Frequency Range:
AM Bdcst. Band $537 \mathrm{Kc}-1620 \mathrm{Kc}$

Loudspeaker:

Size \& Type
V. C. Impedance

4 inch PM
3.2 ohms

Antenna:

Built-in "Ferrite Rod"
Cabinet Specifications:
Height $71 / 2$ in. Width $101 / 2$ in.
Depth $41 / 2$ in. Weight (tot) $71 / 2 \mathrm{lbs}$.
Power Source:
AC/DC Operation \qquad .12 watts at $105-125 \mathrm{~V}$ DC or 60 cycle A.C.
Battery Operation \qquad .50 MA at 9 V DC \& 11 MA at 90 V
Battery Type \qquad Eveready No. 756 or equivalent

TO REMOVE CHASSIS FROM CABINET

1. Remove cabinet back cover by lifting the handle up and pulling outward at the top rear of the cabinet. After the top is disengaged the back is completely removed by disengaging the hinges at the bottom.
2. Remove two screws that hold chassis to cabinet (see chassis layout drawing).
3. With the cabinet front setting upright, the
chassis can be removed by grasping the handle and sliding the chassis out the back.
4. The battery can be removed or left on the chassis as desired. Care must be exercised that the battery does not slide from the battery carrier when the chassis is being removed. Damage to the battery cable can result.

ALIGNMENT INSTRUCTIONS

Equipment Required:

1. Calibrated R.F. Signal Generator.
(455 KC to 1620 KC)
2. Low Range Output Meter

Alignment:

1. Turn set on and adjust to maximum volume.
2. Connect output meter across speaker voice coil
3. If alignment is done with A.C. power an isolation transformer should be used.

Step No.	Set R.F. Generator At	Connect R.F. Generator To	Set Gang Condensor To	Adjust	To Obtain
1.	455 Kc . (400 Cy Mod)	Pin 6 V103 thru .1 mfd capacitor. Ground lead to B-.	Fully Closed	I.F. Transformer	Maximum
2.	"	Pin 6 V102 thru . 1 mfd capacitor. Ground lead to B-.	"	I.F. Transformer	"
3.	537 Kc. (400 Cy Mod)	"	"	$\begin{gathered} \text { T102 } \\ \text { Osc. Slug } \end{gathered}$	"
4.	$\begin{gathered} 1620 \mathrm{Kc} \\ (400 \mathrm{Cy} \mathrm{Mod}) \end{gathered}$	"	Fully Open	C101F Osc. Trimmer	"
5.	1500 Kc . (400 Cy Mod)	Pin 6 V101 thru .1 mfd capacitor. Ground lead to B-.	1500 Kc . Rock Gang	$\begin{gathered} \text { C101D } \\ \text { Mixer Trimmer } \end{gathered}$	- "
6.	600 Kc . (400 Cy Mod)	. \quad	$\begin{gathered} 600 \mathrm{Kc.} \\ \text { Rock Gang } \end{gathered}$	T101 Mixer Slug	"
7.	$\begin{gathered} 1500 \mathrm{Kc} . \\ (400 \mathrm{Cy} \mathrm{Mod}) \end{gathered}$	Form a loop and loosely couple to antenna.	1500 Kc .	C101B Antenna Trimmer	"
8.	600 Kc . $(400 \mathrm{Cy} \mathrm{Mod})$	"	600 Kc .	L101 ${ }^{*}$ Adjust turns on loop Ant.	"

[^6]MODEL 15,

John F. Rider

Ref. No.	PARTS - PRICE LIST	MODEL 15, Ch. CR-48
	CAPACITORS	
	Description Part No.	List Price
C101A-B-C-D-E-F	Tuning Capacitor ...650549A-1	\$ 3.20
C102A-B-C-D	Filter Capacitor ..750090B-31	3.40
C103 C105		
C106 C116		. 20
C104	.1mfd. 600V. ..2244A-1040	. 5.5
C107	270mmf. Ceramic ...650501A-18	. 20
C108		. 20
C109	150mmf. Ceramic ...2240A-021	. 20
C110	47mmf. Ceramic .. 006	. 20
C111	.01mfd. 200V. ...2246A-1030	. 20
C114	.0022mfd. 600V. ...2248A-2220	. 20
C115	.001mfd. 600V. ..2248A-1020	. 20
C117	56mmf. Ceramic ...2241A-754	. 25
C118	2.2mmf. Ceramic ...650030'A-3	. 10
RESISTORS		
R101	220K 1/2W 20\%\% ..3230A-224	. 10
R102	1.5 Meg. 1/2W 10%..3229A-155	. 10
R103 106	6.8 Meg. 1/2W 10\% ..3229A-685	. 10
R105	100K 1/2W 20%..3230A-104	. 10
R107	22K 1/2W 10\% ..3229A-223	. 10
R109	3.3 Meg. 1/2W 20%...3230A-335	. 10
R110	Volume Control \& Sw. ...750276A-2	1.30
R111	$10 \mathrm{Meg} .1 / 2 \mathrm{~W} 20 \%$..3230A-106	. 10
R112	4.7K 1W 10\%3232A-472	. 15
R113	33 1W 10\% WW ..650101A-19	. 20
R114	2.4K 10W WW ...750288A-4	. 85
R115	1.2K 1/2W 10\% ...3229A-122	. 10
R116		. 10
R117 118	2.7K 1/2W 10\% ..3229A-272	. 10
INDUCTANCES		
L101	Loop Antenna ...650547A-1	1.45
T101	Mixer Coil453074B-1	1.25
T102	Osc. Coil ..452629B-1	. 85
T103. 104	I. F. Transformer ..	1.55
T105	Output Transformer ..453028A-1	1.95
	MISCELLANEOUS	
SW2	Switch (AC-DC Bat.) ...452625A-1	. 90
SW3	Switch (Tone Control) ..453029A-1	. 80
SR101	Rectifier (Selenium) ...650150D-5	1.60
PC101	Speaker .650546A-1	4.20
	Printed Circuit ..452615A-1	. 85
	Diode Filter ...4452171A-1	. 55
	Battery Cable ..650548A-1	. 65
	CABINET	
	Cabinet, front (Taupe) ..453037A-G1	2.90
	Cabinet, front (Burgundy)453037A-G2	2.90
	Cabinet, back (Taupe) .453038A-G1	2.40
	Cabinet, back (Burgundy) ...453038A-G2	2.40
	Grille Clothe \& Baffle ...650541A-1	1.60
		. 60
	Knob (tuning) ..750326A-1	. 90
	Knob (volume) .452749C-3	. 30
		. 30

MODEL T-30,
Ch. C-300

CHASSIS DESCRIPTION

The C-300 chassis used in the Model T-30 is a five tube radio chassis designed for reception of AM (Broadcast band) signals. The chassis contains a single ended 50L6 Power Output amplifier in conjunction with a $5^{\prime \prime}$ speaker for sound reproduction. It can be operated on either AC or DC.

SPECIFICATIONS

TUBE COMPLIMENT:

Type:
12BE6 \qquad Oscillator-Converter ..IF Amplifier
12BA6 \qquad
12SQ7 \qquad Detector, AVC \& 1st Aud. Amp.
50L6 .Power Output
35Z5
.Rectifier

FREQUENCY RANGE:

AM Broadcast Band \qquad .540 KC to 1620 KC

POWER SOURCE
Rating
$.105-125$ volts, AC-DC
Power Consumption \qquad
\qquad .35 watts

ALIGNMENT INSTRUCTIONS

EQUIPMENT REQUIRED:

1. Calibrated RF Signal Generator
(Signal from 455 KC to 1620 KC).
2. Low Range Output Meter.

ALIGNMENT:

a. Turn set on, adjust volume to maximum.
b. See that dial pointer coincides" with calibration marks at extremes of dial scale.
c. Connect output meter across the speaker voice coil.
d. Make a loop of the RF Generator leads (connect the leads together through a .01 mfd capacitor) and loosely couple to the Loop Antenna.

STEP	SET RF GENERATOR AT	SET CONDENSER GANG AT	ADJUST	TO OBTAIN
1	455 KC	Fully Open at some quiet point	IF Slugs T103 T102	Maximum Output
2	1620 KC	1620 KC	Osc. Trim- mer C103D	Same
3	1500	1500	Ant. Trimmer C103B (on loop)	Same
4	537 KC	537 KC	T101 Osc. Slug	Same

LOUDSPEAKER:
Size \& Type
.5 inch PM
Voice Coil Impedance .. Shms

POWER OUTPUT: \qquad 1.75 watts

ANTENNA:

Built-in Loop in rear of cabinet (Terminal on rear of cabinet for connection of outdoor aerial.)

CABINET DIMENSIONS:

Height $65 / 8^{\prime \prime}$, Width $121 / 2^{\prime \prime}$, Depth $5 \frac{7^{\prime \prime}}{16}$.

PARTS LIST C-300 (T-30)

ref. no.
part description
PART NO.
LIST

TRANSFORMERS

L101
T101
T102
T103
T104
Loop Antenna
Oscillator Coil
IF Transformer
IF Transformer
Output Transformer-(Part of 750220A-1)

RESISTORS

R102
R103
R104
R105
R106
R107, R109
R108
$\begin{array}{ll} & 22 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \% \\ & 1 \mathrm{meg}, 1 / 2 \mathrm{w}, 10 \% \\ & 3.3 \mathrm{meg}, 1 / 2 \mathrm{w}, 10 \% \\ & \text { Control }(\text { Volume \& Switch }) \\ & 220 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \% \\ \mathrm{R} 109 & 150 \mathrm{ohms}, 1 / 2 \mathrm{w}, 10 \% \\ & 1500 \mathrm{ohms}, 1 \mathrm{w}, 10 \% \\ & \text { Printed Circuit } \\ & \\ & \end{array}$
$22 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \%$
$1 \mathrm{meg}, 1 / 2 \mathrm{w}, 10 \%$
$3.3 \mathrm{meg}, 1 / 2 \mathrm{w}, 10 \%$
Control $($ Volume \& Switch $)$
$220 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \%$
$150 \mathrm{ohms}, 1 / 2 \mathrm{w}, 10 \%$
$1500 \mathrm{ohms} 1 \mathrm{w}, 10 \%$
Printed Circuit
CONDENSERS
$22 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \%$
$1 \mathrm{meg}, 1 / 2 \mathrm{w}, 10 \%$
$3.3 \mathrm{meg}, 1 / 2 \mathrm{w}, 10 \%$
Control $($ Volume \& Switch $)$
$220 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \%$
$150 \mathrm{ohms}, 1 / 2 \mathrm{w}, 10 \%$
$1500 \mathrm{ohms} 1 \mathrm{w}, 10 \%$
Printed Circuit
CONDENSERS
C101, C110 $\quad 470 \mathrm{mmf} ., 20 \%$, Ceramic
C102 $\quad 56 \mathrm{mmf} ., \quad 10 \%$, Ceramic
C103, A B C D
C104
C105
C106, A B

C107
C108
C112
Tuning Gang
.047 mfd ., 200 V , MOPT
150 mmf ., 20%, Ceramic
Electrolytic

$$
\text { (a) } 50 \mathrm{mfd} 150 \mathrm{~V}
$$

(b) 50 mfd 150 V
$.01 \mathrm{mfd} ., 600 \mathrm{~V}$, MOPT
$.022 \mathrm{mfd} ., 600 \mathrm{~V}, \mathrm{MOPT}$
$.1 \mathrm{mfd} ., 600 \mathrm{~V}, \mathrm{MOPT}$

3229A-223
. 10
3229A-105
. 10
3229A-335 . 05
452312A-1
.80
3229A-224 . 10
3229A-151
. 10
3232A-152
. 10
$452244 \mathrm{~A}-1$
.90

2239A-013
. 20
2241A-554
. 25
650349A-1 3.10
2246A-4730 . 35
2246A-470

MISCELLANEOUS

Cabinet Ass'y (Green)	452554A-G1	5.75
Knobs (2) (Green)	$452321 \mathrm{~A}-\mathrm{G} 1$.35
Cabinet Ass'y (Burgundy')	$452554 \mathrm{~A}-\mathrm{G} 2$	5.75
Knobs (2) (Burgundy)	$452321 \mathrm{~A}-\mathrm{G} 2$.35
Cabinet Ass'y (Ivory)	$452554 \mathrm{~A}-\mathrm{G} 3$	5.75
Knobs (2) (Ivory)	$452321 \mathrm{~A}-\mathrm{G} 3$.35
Cabinet Ass'y (Black)	$452554 \mathrm{~A}-\mathrm{G} 4$	5.75
Knobs (2) (Black)	$452321 \mathrm{~A}-\mathrm{G} 4$.35
Back Cover		
Speaker, PM 5" \& Output Transformer	850135A-1	. .35
Line Cord	750220A-1	8.00
Mounting Clips for IF Transformers	$650171 \mathrm{~A}-4$.60
		58514

CHASSIS DESCRIPTION

The CR-71 is a 6 tube radio chassis, designed for reception of AM (Broadcast Band) signals only. Since the chassis is operated in conjunction with an electric clock mechanism, it is to be operated only from an alternating current (AC) source.

The power source for the chassis is turned "on" and "off" by the Control Knob on the clock. When the Control Knob is in the Manual position, the radio chassis power source is on and it cannot be turned on or off automatically by the clock. When the Control Knob is in the Off position, the power source to the chassis is off and it cannot be turned on by the clock. However, with the Control in the Off position the power source can be turned on by
adjusting the Sleep Knob for a time period up to 60 minutes and at the expiration of this time period, the power source will be turned off. (The Sleep control is a mechanical timing device which mechanically actuates the "on-off" switch which is also manually actuated by the Control Knob). When the Control Knob is in the Wake-Up position, the power source is off, however, it will be turned on automatically by the clock mechanism at the time to which the clock alarm is set. The function of the Sleep Knob is the same in this Control Knob position as it is in the Off position.

NOTE: The clock motor will be energized at all times when the line cord is connected to the power source.

SPECIFICATIONS

Tube Compliment:

Type
12BA6 \qquad R-F Amplifier
12BE6 \qquad .Oscillator-Converter
12BA6 \qquad I-F Amplifier
12AV6..Detector, AVC \& 1st Audio Amplifier 35C5 \qquad .Power Output
35W4 \qquad Rectifier
Frequency Range:
AM Broadcast Band \qquad 540 KC to 1620 KC

Power Source:

Rating105-125 volts, 60 cycle AC only Power Consumption \qquad 35 watts

Appliance Outlet:

Maximum Rating 1100 watts

Loudspeaker:

Size and type
4 inch PM
Voice Coil Impedance3.2 ohms
Power Oułput:
1.5 watts

Antenna:

Built-in loop in rear of cabinet
(terminal on rear of cabinet for connection of \cdot outdoor aerial.)

Cabinet Dimensions:

Height $5_{\overline{1}-\frac{-}{6}}$ inches, Width $123 / 8$ inches, Depth $51 / 2$ inches.

MODEL TC-62,

 Ch. CR-71
OPERATING INSTRUCTIONS

TO SET ALARM FOR EITHER AUTOSAATIC RADIO OPERATION OR "BUZZER" OR COMBINATION OF BOTH

Pull out Alarm Knob and turn to the left, this motion will rotate the small disk in the center of the clock face. Set the pointer attached to the hour hand to the desired time indicated on the disk. When the Control Knob is on Wake-Up the radio will turn on automatically. Of course, the radio should be pre-tuned to a station and the Volume Control should be pre-set to the proper level to obtain proper automatic radio operation.

If the Alarm Knob is in the out position the "buzzer" will be sounded shortly after the radio goes on.

If it is desired to have the alarm only, independent of the radio pull the Alarm Knob out and set the Control Knob to Off.

Another combination of operations is provided with the Sleep Knob, which will turn off the radio automatically at night (see "TO TURN RADIO AND APPLIANCE OFF AUTOMATICALLY") and, provided the Control Knob is in Wake-Up position, the radio will turn on automatically in the morning.

CONTROL KNOB

TO SET CLOCK

SLEEP KNOB

REMOVAL AND SERVICE OF CLOCK MECHANISM

SERVICE

The clock mechanism used in this unit is not to be serviced by anyone other than an authorized Telechron Service Agency (see pages 7 and 8 of this manual for a listing of these agencies). When it is determined that the clock requires adjustment or repair, remove the clock mechanism from the cabinet (as per the following instructions) and return the clock mechanism to your Capehart distributor or an agency specified by him. If the clock mechanism is to be shipped by mail or express, be certain that it is adequately protected and properly packed.

TO REMOVE CLOCK

1. Remove (pull off) the three knobs from the front of the clock.
2. Remove the six (6) Phillips-head screws which fasten the back of the cabinet.
3. Remove the four (4) Phillips-head screws which secure the clock to the inside of the cabinet.
4. Remove the 35 W 4 and 35C5 tubes to facilitate removal of the clock.
5. Pull clock out of the cabinet by sliding it to the left and back.
6. Remove the three hex nuts which fasten the metal cover to the clock. Keep the metal cover and hardware (4 Phillips screws, 3 hex nuts, and 3 fibre washers) with the cabinet, do not , return this material with the clock.
7. Unsolder four (4) electrical leads from the clock.

NOTE: To re-install the clock follow the above procedure in reverse.

MODEL TC-62,
Ch. CR-71

TC-62 ALIGNMENT INSTRUCTIONS

Equipment required:

1. Calibrated R.F. Signal Generator (Signal from 455 KC to 1620 KC).
2. Low Range Output Meter.

Alignment:

a. Turn set on, adjust volume to maximum.
b. See that dial pointer coincides with calibration marks at extremes of dial scale.
c. Connect output meter across speaker voice coil.

Step No.	Set R.F. Generator At	Connect Generator To	Set Gang Condenser To	Adjust	To Obtain
1	455 Kc .	Antenna section of Gang Condenser	Fully open. Disable osc. section of tuning gang.	$\begin{aligned} & \text { I.F. slugs } \\ & \text { T103 } \\ & \text { T104 } \end{aligned}$	Max.
2	1620 Kc.	Antenna section of Gang Condenser	Fully open.	Osc. Trimmer C103D	Max.
3	537 Kc .	Antenna section of Gang Condenser	Fully closed.	Osc. Coil T102	Max.
4	1500 Kc.	Antenna section of Gang Condenser	1500 Kc.	Mixer Trimmer C103E	Max.
5	600 Kc .	Antenna section of Gang Condenser	600 Kc .	Mixer Coil T101	Max.
6	1500 Kc.	Loosely couple to Loop antenna	1500 Kc.	Antenna Trimmer C103F	Max.

CHASSIS LAYOUT

MODEL TC-62,

Ch. CR-71
Ref. No. Description PARTS PRICE LIST Part No. List

INDUCTANCES

L101	Loop Antenna ...750207A-2	\$ 1.30
T101	Mixer Coil ...453247B-1	1.30
T102	Oscillator Coil ..453248A-1	. 90
T103	1st I. F. Transformer ...452243A-1	1.40
T104	2nd I. F. Transformer ..452243A-1	1.40

T105

RESISTORS
R101, 109, 110
R102
R103
R104
R105
R107
R108

150 ohm 1/2 w. 10%...	3229-151	. 10
$1 \mathrm{~K} 1 / 2 \mathrm{w} .101 /$	3229-102	. 10
$22 \mathrm{~K} 1 / 2 \mathrm{w} .10 \%$	3229-223	. 10
$220 \mathrm{~K} 1 / 2 \mathrm{w} .10 \%$	3229-224	. 10
500K Volume Control	452241 A-1	. 80
1500 ohm 1 w. 10\%	.3232-152	. 10
3.3 meg. $1 / 2$ w. 20%	.3230-335	. 10

CAPACITORS

MISCELLANEOUS

Speaker and Output Transformer Assembly750373A-1	6.00
Clock ..750377A-1	17.15
Appliance A. C. Outlet ..450427A-1	. 30
Line Cord ..650171A-3	. 60
Speaker Grille ..650634A-1	1.20
Clock Grille ..650323A-1	. 85
Clock Grille (Sage Green) ...650323A-2	1.25
Capehart Insignia ..452188B-2	. 25
Decorative Stud ..452235A-1	. 10
Speednut ..452696A-14	. 10
Clock Escutcheon ...750198A-1	2.05
Clock Escutcheon (Ivory) ..750198A-2	2.05
Insignia "Deluxe 6" ..453314A-2	. 15

CABINET PARTS

CROSLEY PAGE 23-1

MODELS E30BE, E30GN, E30MN, E30TN, Ch. 30E, 30E-1

Model No.	Cabinet Color
E30BE	Blue
E30GN	Green
E30MN	Maroon
E30TN	Tan

DESCRIPTION

TYPE: Seven-tube, two-band, superheterodyne.
FREQUENCY RANGE: Standard Broadcast Band (AM); 540 to 1620 kc .
Frequency Modulation Band (FM); 88 to 108 megacycles.
INTERMEDIATE FREQUENCY: Standard Broadcast Band; 455 kc .
Frequency Modulation Band; 10.7 mc .
FM ANTENNA INPUT IMPEDANCE: 75 ohms balanced.
POWER SUPPLY: a.c.-d.c.
VOLTAGE RATING: 105-125 volts.
POWER CONSUMPTION: 40 watts at normal power supply voltage (117 volts).
POWER OUTPUT: 1 watt maximum.

TUBE COMPLEMENT:

Symbol No.	Type	Function
V1	12BE6	Converter (AM)
V2	35C5	Audio Output
V3	12BA6	R.F. Amplifier (FM)
V4	12BA6	I.F. Amplifier (AM \& FM)
V5	12BA6	2nd I. F. Amplifier \& AVC (FM)
V6	12AT7	Oscillator \& Mixer (FM)
V7	19T8	Detector \& 1st, A.F. Ampl. (AM \& FM); AVC (AM)
SR1	Selenium Rectifier	
DIAL BULB: 7 w., 120 v., Candelabra Base		

No. 440

MODELS E30BE, E30GN, E30MN, E30TN, Ch. 30E, 30E-1

CHASSIS TOP VIEW SHOWING ALIGNMENT ADJUSTMENTS

When using direct current it may be necessary to reverse the position of the power plug in the electric outlet for correct polarity.

Reversing the position of the power plug when alternating current is used may reduce power hum.
Under no circumstances should a ground be connected to this receiver.
Never place the receiver chassis on a metal bench or grounded object when the power plug is connècted to the electric outlet. To avoid shock when making repairs or adjustments, do not permit any part of the body to contact grounded metal objects.

ALIGNMENT PROCEDURE

This receiver has been aligned at the factory for best performance and no attempt should be made to realign it unless the proper test equipment is available.

1. Turu the tuning condenser to full mesh, against stop, and set the dial pointer to the reference point at the " 88 " end of the dial.
2. Set the tone control knob to the full treble position (extreme right).
3. For Amplitude Modulated signal readings, connect output meter across voice coil (3.2 ohms).
4. All Amplitude Modulated input signals are modulated 30% at 400 cycles with the High side of the signal generator connected to receiver as indicated in the alignment chart. Connect the low side of signal generator through a 0.1 mfd . condenser to the receiver chassis. If hum is encountered, use a 1 to 1 isolating transformer between the power line outlet and the receiver power line cord. Then connect the low side of the signal generator directly to the receiver chassis.
5. All Frequency Modulated signals are modulated 30% at 400 cycles. 30% modulation is equal to a deviation of 22.5 kilocycles.
6. Turn the volume control to maximum clockwise position and adjust signal generator output to produce a noticeable output meter reading. Keep signal generator output as low as possible to prevent AVC action in the receiver.
7. Disconnect short wire, with spade lug, from F.M. Antenna Terminal.

ALIGNMENT CHART

Alignment Sequence	Signal Generator Output			Position of		Adjust	Type of Selectivity Curve	Remarks
	Frequency	In Series With	To	Range Switch	Tuning Dial or Tun. Cap.			
1	455 kc .	. 05 mfd .	V4 grid pin 1	AM	Open	A \& B	Single peak	
2	455 kc .	. 05 mffd .	V1 grid pin 7	AM	Open	C \& D	Single peak	Retouch A \& B
3	10.7 mc .	. 05 mfd .	V5 grid pin 1	FM	Closed	E	Single peak	See note 1 \& 2
4	10.7 mc .	. 05 mfd .	V5 grid pin 1	FM	Closed	F	-	Balance to zero volts. Note 3
5	10.7 mc .	. 05 mfd .	V4 plate pin 5	FM	Closed	E \& G	Single peak	See note 4 repeat adj. of $E \& G$ for max. alignment
6	10.7 mc .	. 05 mfd .	V4 grid pin 1	FM	Closed	H	Single peak	Note 4
7	10.7 mc .	. 05 mfd .	Stator center gang section	FM	Closed	$\begin{aligned} & \mathrm{J}, \mathrm{~K} \\ & \& \mathrm{H} \end{aligned}$	Single peak	Note 4 \& 5
8	98 mc .	FM Dummy *Antenna	FM Ant. Term.	FM	98 mc .	L	-	Note 6
19	104 mc .	FM Dummy *Antenna	FM Ant. Term.	FM	104 mc .	M	-	Note 7
10	92 mc .	FM Dummy *Antenna	FM Ant. Term.	FM	92 mc .	P	-	Note 8
11	Repeat steps 9 and 10 until no further improvement is noted:							
12	1400 kc .	200 mmf .	Ext. Ant. Term.	AM	1400 kc .	R \& S	_	Adjust S for max. output

MODELS E30BE, E30GN, E30MN, E30TN, Ch. 30E, 30E-1

* DUMMY ANTENNA

ALIGNMENT NOTES

1. Use an unmodulated signal generator with approximately $100,000 \mathrm{mv}$. output.
2. Connect the electronic voltmeter across the 27,000 ohm diode load resistor (R6).
3. Connect two 100,000 ohm 5% carbon resistors in series, connect these resistors across the 4 mfd . stabilizing capacitor (C 17) in the diode circuit, connect the electronic voltmeter between the output of the RF filter network (C22) and the midpoint of the two 100,000 ohm resistors. Align secondary core (F) of T3 for zero volts, first using a high scale on the electronic voltmeter and then switching to the lowest scale for close balance.
4. Use an unmodulated signal. Electronic voltmeter connected across 27,000 ohm load resistor (R6). Limit output of signal generator so that the reading on the electronic voltmeter will not exceed 5 volts.
5. Remove the two 100,000 ohm resistors and electronic voltmeter after alignment .
6. Adjust turns on FM oscillator coil by spreading or squeezing together, so that 98 megacycle signal falls on 98 megacycles on the dial.
7. Rock gang while adjusting FM. RF trimmer until maximum output meter reading is obtained, or align for maximum noise level at zero signal.
8. Adjust turns on FM. RF coil until maximum output meter reading is obtained.

MEGACYCLES TO CHANNEL NUMBERS "FM" BAND

Frequency in Megacycles	Channel No.	Frequency in Megacycles	Channel No.
87.9	200	98.9	255
88.9	205	99.9	260
89.9	210	100.9	265
90.9	215	101.9	270
91.9	220	102.9	275
92.9	225	103.9	280
93.9	230	104.9	285
94.9	235	105.9	290
95.9	240	106.9	295
96.9	245	107.9	300
97.9	250		

To find the frequency in megacycles for CHANNEL NUMBERS between those given above, add .2 megacycles for every whole number added to the CHANNEL NUMBER; for example Channel 204 would be 88.7 megacycles and 251 would be 98.1 megacycles.

PAGE 23-6 CROSLEY
MODELS E30BE, E30GN, E30MN, E30TN, Ch. 30E, 30E-1

PARTS LIST

$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description	$\begin{array}{\|c} \text { Symbol } \\ \text { No. } \end{array}$	Part No.	Description
C1	W-145913-2	Capacitor, $110 \mathrm{mmf} ., 5 \%, 500 \mathrm{v}$., ceramic	R19	39373-67.	Resistor, 47,000 ohm, 1/2 w.
C3	C-137727-1	Capacitor, 100 mmf ., 500 v., ceramic	R20	39373-87	Resistor, 470,000 ohm, $1 / 2 \mathrm{w}$.
C4	C-144675-2	Capacitor, . $005 \mathrm{mfd} ., 500 \mathrm{v}$. , disc ceramic	R21	39374-15	Resistor, 150 ohm, 10%, $1 / 2 \mathrm{w}$.
C5A	C-152824	Capacitor, Variable	R22	39373-87	Resistor, $470,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.
C5B		Capacitor, Variable Four Sectio	R23	39373-107	Resistor, 10 megohm, $1 / 2 \mathrm{w}$.
C5C		Capacitor, Variable Four Section	R24	39374-185	Resistor, 47 ohm, 10%, 2 w .
C5D		Capacitor, Variable	R25	39374-202	Resistor, 1200 ohm, 10%, 2.w.
C6A	C-144675-7	Capacitor, . $001 \mathrm{mfd} ., 500 \mathrm{v}$.] Two section	R26	39374-25	Resistor, 1000 ohm, $10 \%, 1 / 2 \mathrm{w}$.
C6B		Capacitor, $.001 \mathrm{mfd} ., 500 \mathrm{v}$. $\}$ cisc ceramic	R27	39374-33	Resistor, 4700 ohm, $10 \%, 1 / 2 \mathrm{w}$.
C7	C-137727-98	Capacitor, 22 mmf ., $2 \%, 500 \mathrm{v}$., ceramic	R29	39373-3	Resistor, $15 \mathrm{ohm}, 1 / 2 \mathrm{w}$ (chassis 30E-1
C8	C-137727-109	Capacitor, $39 \mathrm{mmf} ., 10 \%$, 200 v ., ceramic			only)
C9	C-137727-121	Capacitor, 5000 mmf ., 500 v., ceramic	CA1	C-132300-6	Cable \& Plug Assy., Power
C10	C-137727-90	Capacitor, 100 mmf ., $5 \%, 500 \mathrm{v}$., ceramic	CA4	B-139727-9	Cable \& Plug Assy. (chassis 30E-1 only)
C11	39001-17	Capacitor, $.05 \mathrm{mfd} ., 600 \mathrm{v}$., paper	I1	W-145851	Bulb (Dial), 7 w., 120 v., Candelabra
C12	39001-17	Capacitor, $.05 \mathrm{mfd} ., 600$ v., paper			Base
C13A	C-144675-7	Capacitor, $.001 \mathrm{mfd} ., 500 \mathrm{v}$. $\}$ Two section	SP1	C-145768	Speaker
C13B		Capacitor, $.001 \mathrm{mfd} ., 500 \mathrm{v}$. ${ }^{\text {dise ceramic }}$	SP2	AD-151190-1	Speaker 5.1/4"E.M.
C14	C-137727-121	Capacitor, 5000 mmf ., 500 v., ceramic	SR1	B-145370	Rectifier, Selenium
C15	C-137398-5	Capacitor, $3.3 \mathrm{mmf} ., 500 \mathrm{v}$.	SW 1	W-145300-2	Switch, Band Change
C16A	C-144675-7	Capacitor, . $001 \mathrm{mfd} ., 500 \mathrm{v}$.\} Two section	SW 2	Part of R18	Switch, Power
C16B		Capacitor, $.001 \mathrm{mfd} ., 500 \mathrm{v}$. $\}$ disc ceramic	T1	AC-139919-3	Transformer, 1st I.F. (455 kc.)
C17	B-142958	Capacitor, 4 mfd ., 50 v., Electrolytic	T2	D-145025-1	Transformer, 2nd IF. (10.7 mc .)
C18	C-137727-121	Capacitor, 5000 mmf ., 500 v ., ceramic	T3	C-145193-1	Transformer, Ratio Detector
C22	C-144675-12	Capacitor., $.001 \mathrm{mfd} ., 500 \mathrm{v}$. Two section	T4	D-145025-3	Transformer, 1st I.F. (10.7 mc.)
C22		Capacitor, . $0001 \mathrm{mfd} ., 500 \mathrm{v}$. ${ }^{\text {disc ceramic }}$	T5	AC-139919-3	Transformer, 2nd I.F. (455 kc.)
C24	C-137727-109	Capacitor, $39 \mathrm{mmf} .10 \%, 200$ v., ceramic	T6	138131-1	Transformer, Output
C25A	C-144675-18	Capacitor, .0001 mfd ., 500 v . Three sec-	L1	B-143322	Coil, F.M. Antenna Primary
C25B		Capacitor, .004 mfd ., 500 v . tion disc	L2	AW-145724	Coil Assy., F.M. Antenna Secondary
C25C		Capacitor, . 004 mfd ., 500 v . ceramic	L3	AW-143837	Choke Assy., R.F. (F.M.)
C26	39001-13	Capacitor, $.01 \mathrm{mfd} ., 600$ v., paper	L4	AA-151747	Coil Assy., R.F. (F.M.)
C27A	C-144675-1	Capacitor, . 0002 mfd ., 500 v . ${ }^{\text {a }}$ Four sec-	L5	AA-151746	Coil Assy., Oscillator (F.M.)
C27B		Capacitor, . 002 mfd ., 500 v . Four sec-	L6	AC-152448	Coil Assy., Oscillator (A.M.)
C27C		Capacitor, $.005 \mathrm{mfd} ., 500 \mathrm{v}$. ${ }_{\text {tion disc }}^{\text {ceramic }}$	L7	AW-143934	Choke Assy., R.F.
C27D		Capacitor, $.0002 \mathrm{mfd} ., 500 \mathrm{v}$. ${ }^{\text {ce }}$	L8	AW-143934	Choke Assy., R.F.
C28	39001-13	Capacitor, .01 mfd ., 600 v., paper	L9	AC-152873	Loop Antenna, Back \& Power Cable Assy.
C29	39001-17	Capacitor, .05 mfd ., 600 v., paper	L10	AW-149187	Choke Assy.
C30A	B-149183	Capacitor, $100 \mathrm{mfd} ., 150 \mathrm{v}$. ${ }^{\text {d }}$ Three sec-	L11	AW-149187	Choke Assy.
C30B		Capacitor, 30 mfd ., 150 v.$\}$ tion elec-	L12	AC-149187	Choke Assy.
C30C		Capacitor, $10 \mathrm{mfd} ., 150 \mathrm{v} . \int$ trolytic	L13	AC-143837	Choke Assy.
C31	B-143686-1	Capacitor, 50 mmf ., 500 v., molded disc ceramic	P1	$\begin{aligned} & \mathrm{W}-139900 \\ & \mathrm{C}-152811 \end{aligned}$	Plug, Interlock Background, Dial
C32	39001-85	Capacitor, .08 mfd ., 600 v., paper		AB-149145-2	Baffle Assembly, Speaker
C33	C-144675-14	Capacitor, 1000 mmf ., 500 v ., disc ceramic		AW-149073	Bracket Assembly, Dial Pointer
C34	39001-20	Capacitor, $.15 \mathrm{mfd} ., 600 \mathrm{v}$. , paper		AW-145697	Bushing \& Insulator, Drive Shaft
. C35	W-137398-5	Capacitor, 3.3 mmf ., 500 v .		AC-152861-4	Cabinet (E 30 BE)
C36	39001-74	Capacitor, . 002 mfd ., 600 v., paper		AC-152861-3	Cabinet (E 30 GN)
C38	Part of T4	Capacitor, 17 mmf ., 3\%		AC-152861-2	Cabinet (E 30 MN)
C39	Part of T1	Capacitor, $106 \mathrm{mmf} ., 5 \%$		AC-152861-1	Cabinet (E 30 TN)
C40	Part of T1	Capacitor, 131 mmf . 5%		W-131154-1	Cotter (External), Drive Shaft
C41	Part of T2	Capacitor, 17 mmf ., 3%		C-152832-4	Dial (E 30 BE)
C42	Part of T2	Capacitor, 17 mmf ., 3%		C-152832-3	Dial (E 30 GN)
C43	Part of T5	Capacttor, 131 mmf ., 5%		C-152832-2	Dial (E 30 MN)
C44	Part of T5	Capacitor, 106 mmf ., 5%		C-152832-1	Dial (E 30 TN)
C45	Part of T3	Capacitor, 43 mmf ., 5\%		W-138853	Insulator, Volume Control
46A	B-151670	Capacitor, $20 \mathrm{mfd} ., 150 \mathrm{v}$.$\} Two section$		B-149065-1	Knob (E 30 TN)
46B		Capacitor, 20 mfd ., 150 v . ${ }^{\text {c }}$ Electrolytic		B-149065-2	Knob (E 30 GN)
C47	C-137727-121	Capacitor, 5000 mmf ., $500 \mathrm{v} .$, ceramic		B-149065-6	Knob (E 30 MN)
C48	C-137727-121	Capacitor, 5000 mmf ., 500 v ., ceramic		B-149065-7	Knob (E 30 BE)
CR49A	C-14295i-12	Capacitor, 500 mmf ., 500 v . $]$ Capacitor-		C-151652	Lens, Dial
CR49B		Resistor, 680,000 ohm, $1 / 5 \mathrm{w}$ Resistor unit.		B-148080-4	Medallion
R2	39373-92	Resistor, 1 megohm, $1 / 2 \mathrm{w}$.		A-152814	Pointer, Dial
R3	39373-44	Resistor, $3300 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		W-143206-4	Shaft, Dial Drive
R4	39373-92	Resistor, 1 megohm, $1 / 2 \mathrm{w}$.		AB-152842	Shaft \& Gear Assy., Dial Pointer
R5	39373-14	Resistor, 100 ohm, $1 / 2 \mathrm{w}$.		W-139040	Shock Mount, Sub-Chassis
R6	39374-42	Resistor, $27,000 \mathrm{ohm}, 10 \% 1 / 2 \mathrm{w}$.		$\begin{aligned} & \text { AB- } 152902 \\ & \mathrm{~W}-144732 \end{aligned}$	Socket \& Bracket Assy., Dial Light Socket, Tube (V6)
R7	$39374-41$ $39373-26$	Resistor, 22,000 ohm, $10 \%, 1 / 2 \mathrm{w}$. Resistor, 470 ohm, $1 / 2 \mathrm{w}$.		$\begin{aligned} & W-144732 \\ & W-145607 \end{aligned}$	Socket, Tube (V6) Socket, Tube (V7)
R88	$39373-26$ $39373-97$	Resistor, 470 ohm, $1 / 2 \mathrm{w}$ - Resistor, $2.2 \mathrm{megohm}, 1 / 2$		W-142761	Socket, Tube (V1, V3)
R10	39373-100	Resistor, 3.3 megohm, $1 / 2 \mathrm{w}$.		39462-1	Socket, Tube (V2)
R11	39373-33	Resistor, $1000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		39462-2	Socket, Tube (V4, V5)
R12	39373-67	Resistor, 47,000 ohm, $1 / 2 \mathrm{w}$.		W-149096	Spring, Gear
R13	39373-67	Resistor, $47,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		W-51752	Spring, Drive Cord
R14	39373-33	Resistor, $1000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		$\begin{aligned} & \mathrm{W}-139121 \\ & \mathrm{~W}-138976 \end{aligned}$	Stud (Insulated), Chassis Mtg. Washer (Shouldered), Volume Control
R15 R16	$39373-92$ $39373-60$	Resistor, 1 megohm, $1 / 2 \mathrm{w}$. Resistor, 22,000 ohm, $1 / 2 \mathrm{w}$.		$\begin{aligned} & \mathrm{W}-138976 \\ & \mathrm{~W}-134916 \end{aligned}$	Washer (Spring), Drive Shaft
R17	39373-33	Resistor, 1000 ohm, $1 / 2 \mathrm{w}$.			
R18	B149184	Control,Volume (3 megohm- Tap. $300,000 \mathrm{ohm}$)			

MODELS E15BE, CE, SL, TN, WE, E20GN, GY, MN, TN, Ch. 15-20E

DESCRIPTION

TYPE: Five-tube, single band, Superheterodyne.
FREQUENCY RANGE: 540 to 1600 kc .
INTERMEDIATE FREQUENCY: 455 kc .
POWER SUPPLY: a.c.-d.c.
VOLTAGE RATING: 105-125 volts.
POWER CONSUMPTION: 30 watts maximum.
POWER OUTPUT: 1 watt maximum.

TUBE COMPLEMENT:

Type	Function
12BE6	Converter
12BA6	I.F. Amplifier
12AV6	Detector, AVC, 1st A.F. Amplifier
50C5	A.F. Power Output
35W4	Rectifier

When using direct current it may be necessary to reverse the position of the power plug in the electric outlet for correct polarity.

Reversing the position of the power plug when alternating current is used may reduce hum.
Under no circumstances should a ground be connected to this receiver.
PHONOGRAPH CONNECTION - To use a record player with this receiver insert the pickup plug of the record player into the Phono jack on back of receiver. Then slide the Radio-Phono Switch on the back of the receiver to the "Phono" position. Connect the power cord of the record player to a convenient electric outlet of the correct voltage and frequency. Operate the record player in the normal manner.

ALIGNMENT PROCEDURE

Note: Before removing the chassis from the cabinet, turn the tuning control completely counterclockwise and push the dial pointer down so as to clear opening in grille.

1. Connect an output meter across the speaker voice coil.
2. The r.f. signal input from the signal generator should be connected as indicated in the alignment chart. Connect the signal generator ground to lug as shown in Chassis Top View.
3. Turn the volume control on full and adjust the signal generator output to produce approximately midscale deflection of the output meter, but maintain signal generator output as low as possible to prevent AVC action in the receiver.

MODELS E15BE, CE, SL, TN, WE, E20GN, GY, MN, TN, Ch. 15-20E
ALIGNMENT CHART
Alignment adjustment locations are shown on page 9 "CHASSIS, TOP VIEW."

Alignment Sequence	Signal Generator Output			Position of Dial pointer	Adjust for Maximum Output
	Frequency in KC	In Series with	To		
1	455	200 mmf .	External Ant. Screw	1620	A, B, C \& D (See Note 1.)
2	1620	200 mmf .	External Ant. Screw	1620	E (See Note 2.)
3	1400	200 mmf .	External Ant. Screw	Tune to Signal	F (See Note 2.)

ALIGNMENT NOTES

1. Repeat adjustments (A, B, C \& D) in sequence, until maximum output is obtained.
2. The loop antenna must be positioned with respect to the chassis to simulate its position when chassis and loop are fastened in cabinet.
3. After the chassis is installed in the cabinet, set the pointer for proper dial calibration.

John F. Rider

PARTS LIST

Symbol No.	Part No.	Description	$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description
C1A	151844	Capacitor, Variable $\}$ Two Section		151773-4	Bridge (E20GY)
C1B		Capacitor, Variable $\}$ Two Section		151773-2	Bridge (E20TN)
C2	137727-109	Capacitor, 39 mmf ., 10\%, 200 v ., ceramic		153567-1	Cabinet (E15WE)
C3	Part of T1	Capacitor, 106 mmf .		153567-2	Cabinet (E15BE)
C4	Part of T1	Capacitor, 131 mmf .		153567-3	Cabinet (E15TN)
C5	39001-85	Capacitor, . 08 mfd ., 600 v., paper		153567-4	Cabinet (E15SL)
C6	Part of T2	Capacitor, 131 mmf .		153567-5	Cabinet (E15CE)
C7	Part of T2	Capacitor, 106 mmf .		153007	Cabinet (E20MN)
C8A	144675-1	Capacitor, .0002 mfd ., 500 v . Four Sec		153008-3	Cabinet (E20GN)
C8B	144675-1	Capacitor, $.002 \mathrm{mfd} ., 500 \mathrm{v} . \quad \begin{aligned} & \text { Four Sec- } \\ & \text { tion disc }\end{aligned}$		153008-4	Cabinet (E20GY)
C8C		Capacitor, $.005 \mathrm{mfd} ., 500 \mathrm{v}$.$\} ceramic$		153008-2	Cabinet (E20TN)
C8D C9		Capacitor, . 0002 mfd ., 500 v . Capacitor, $100 \mathrm{mmf}_{\mathrm{o}}, 500 \mathrm{v}$., Molded disc		$\begin{aligned} & 139921 \\ & 131154-1 \end{aligned}$	Clip, I.F. Transformer Mtg. Cotter (External), Pointer Pulley
C9	143686-3	Capacitor, 100 mmf , 500 v., Molded disc ceramic		$\begin{aligned} & 131154-1 \\ & 153291-1 \end{aligned}$	Escutcheon, Dial (E15WE)
C10	39001-85	Capacitor, $.08 \mathrm{mfd} ., 600 \mathrm{v}$., paper		153291-2	Escutcheon, Dial (E15BE, E15TN,
C11	39001-74	Capacitor, . 002 mfd ., 600 v ., paper			E15SL, E15CE)
C12	142951-12	Capacitor-Resistor		151674-1	Escutcheon (E20MN)
C13	142951-11	Capacitor-Resistor		151674-3	Escutcheon (E20GN)
C14	39001-85	Capacitor, . 08 mfd ., 600 v , paper		151674-4	Escutcheon (E20GY)
C15	39001-17	Capacitor, 05 mfd ., 600 v., paper		151674-2	Escutcheon (E20TN)
C16A	147174	Capacitor, $100 \mathrm{mfd} ., 150 \mathrm{v}$.) Three Sec-		150423	Foot (Felt in metal cup)
${ }^{\text {'C16B }}$		Capacitor, $30 \mathrm{mfd} ., 150 \mathrm{v}$. tion Elec-		153862	Grille Assembly
C16C		Capacitor, 10 mfd ., 150 v . ${ }^{\text {d }}$ trolytic		151627	Grille Cloth \& Baffle Assy.
C17	39001-13	Capacitor, . 01 mfd ., 600 v., paper		153552-1	Knob (E15WE)
R1	39374-41	Resistor, $22,000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.		153552-2	Knob (E15BE)
R2	39374-69	Resistor, 2.2 megohm, 10%, $1 / 2 \mathrm{w}$.		153552-3	Knob (E15TN)
R3	39374-49	Resistor, 100,000 ohm, 10\%, 1/2 w.		153552-4	Knob (E15SL)
R4	39374-34	Resistor, $5600 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.		153552-5	Knob (E15CE)
R5	39374-85	Resistor, 10 megohm, 10\%, 1/2 w.		152996-1	Knob (E20MN)
R6	151845	Control,Volume (3 megohm, Táp 300,000 ohm)		152996-3	Knob (E20GN)
R7	Part of C13	Resistor, 47,000 ohm, 1/2 w.		152996-4	Knob (E20GY)
R8	39374-57	Resistor, 470,000 ohm, 10\%, 1/2 w.		152996-2	Knob (E20TN)
R9	39374-57	Resistor, 470,000 ohm, 10\%, $1 / 2 \mathrm{w}$.		153540-2	Medallion (E15WE)
R10	39374-15	Resistor, 150 ohm, $10 \%, 1 / 2 \mathrm{w}$.		153540-3	Medallion (E15BE, E15TN, E15SL, E15CE)
R11	Part of C12 $39374-189$	Resistor, 680,000 ohm, $1 / 2 \mathrm{w}$. Resistor, $100 \mathrm{ohm}, 10 \%, 2 \mathrm{w}$.		153289-1	Moulding, Trim (E15WE)
R13	39374-114	Resistor, 1200 ohm, $10 \%, 1 \mathrm{w}$.		153289-2	Moulding, Trim (E15BE, E15TN,
R14	39374-25	Resistor, 1000 ohm, 10\%, 1/2 w.			E15SL, E15CE)
R16	39374-1	Resistor, $10 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.		147275	Mounting, Rubber (2 used)
CA1	132300-1	Cable \& Plug Assy., Power		45580-2	Mounting, Rubber (1 used)
CO1	136998	Connector, Phono		94704-19	Nut (Push-On), Escutcheon
L1	153571	Loop \& Back Assy. (E15WE, E15BE, E15TN, E15SL, E15CE)		153380-2	Pointer, Dial (E15BE, E15TN, E15SL, E15CE)
L1	152994	Loop \& Back Assy.,(E20MN, E20GN, E20GY, E20TN)		$\begin{aligned} & 153380-1 \\ & 151854 \end{aligned}$	Pointer, Dial (E15WE) Pointer, Dial (E20MN, E20GN,
L2	153405	Coil, Oscillator			E20GY, E20TN)
SP1	145956-2	Speaker (5-1/4" P.M.)		151946	Pulley, \& Shaft Assy., Dial Pointer
SW1	Part of R6	Switch, Power		39482-18CL	Screw, Bridge Mtg. (E15WE)
SW2	148260	Switch, Phono		39178-29CL	
T1	139919-3	Transformer, 1st I.F.			E20GY, E20TN)
T2	$139919-3$ 147171	Transformer, 2nd I.F. Transformer, Output		39462-2 51752	Socket, Tube Spring, Drive Cord
T3	147171 147784	Transformer, Output Shield, Tube (V2)		51752 136630	Spring, Drive Cord ${ }^{\text {Stud, Trimount (E20MN, E20GN, }}$
TS2	147784	Shield, Tube (V3)			E20GY, E20TN)
	147934	Bottom, Chassis		153582	Stud, Trimount (E15WE, E15BE,
	153290-1	Bridge ${ }^{\text {(E15WE) }}$			E15TN, E15SL, E15CE)
	153290-2	Bridge (E15BE, E15TN, E15SL, E15CE)		$\begin{aligned} & 147216 \\ & 148775-2 \end{aligned}$	Suction Cup
	$\begin{aligned} & \text { 151773-1 } \\ & 151773-3 \end{aligned}$	$\begin{aligned} & \text { Bridge (E20MN) } \\ & \text { Bridge (E20GN) } \end{aligned}$		148775-2	Support \& Bushing Assy., Pointer Pulley

Model No.	Color
E10BE	Blue
E10CE	Chartreuse
E10RD	Red
E10WE	White

DESCRIPTION

TYPE: Five-tube, single band, Superheterodyne.
FREQUENCY RANGE: 540 to 1600 kc .
INTERMEDIATE FREQUENCY: 455 kc . POWER SUPPLY: a.c.-d.c.

VOLTAGE RATING: 105-125 volts.
POWER CONSUMPTION: 30 watts maximum. POWER OUTPUT: 1 watt maximum.

TUBE COMPLEMENT:

Type	Function
12BE6	Converter
12BA6	I. F. Amplifier
12AV6	Detector, AVC, 1st A. F. Amplifier
50C5	A. F. Power Output
35W4	Rectifier

CHASSIS, TOP VIEW

MODELS E10BE, CE, RD,

WE, Ch. 10E, 10E-1
When using direct current it may be necessary to reverse the position of the power plug in the electric outlet for correct polarity.

Reversing the position of the power plug when alternating current is used may reduce hum.
Under no circumstances should a ground be connected to this receiver.

ALIGNMENT PROCEDURE

1. Connect an output meter across the speaker voice coil.
2. The r.f. signal input from the signal generator should be connected as indicated in the alignment chart. Connect the signal generator ground through a 0.1 mfd . condenser to B - (pin 2 on 12BA6 tube socket).
3. Turn the volume control on full and adjust the signal generator output to produce approximately midscale deflection of the output meter, but maintain signal generator output as low as possible to prevent AVC action in the receiver.

ALIGNMENT CHART

Alignment adjustment locations are shown on page11, "CHASSIS, TOP VIEW."

Alignment Sequence	Signal Generator Output			Position of Dial pointer	Adjust for Maximum Output
	Frequency in KC	In Series with	To		
1	455	200 mmf .	High Side of Loop	1620	A, B, C \& D (See Note 1.)
2	1620	Radiated to Loop		1620	E (See Note 2.)
3	1400	Radiated to Loop		Tune to Signal	F (See Note 2.)

ALIGNMENT NOTES

1. Repeat adjustments ($A, B, C \& D$) in sequence, until maximum output is obtained.
2. Place signal generator output lead near the loop antenna. The loop antenna must be positioned with respect to the chassis to simulate its position when chassis and loop are fastened in cabinet.

MODELS E10BE, CE, RD,
WE, Ch. 10E, 10E-1

PARTS LIST

$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description	$\left\lvert\, \begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}\right.$	Part No.	Description
C1A	153497	Capacitor, Tuning \& Pulley Assembly	R12	39374-1	Resistor, 10 ohm, $1 / 2$ w. ($10 \mathrm{E}-1$ chassis)
C1B		Capacitor, Tuning \& Pulley Assembly	CA1	142769-4	Cable \& Plug Assembly, Power
C2	137727-109	Capacitor, $39 \mathrm{mmf} ., 10 \%$, 200 v ., Ceramic	L1	153872	Loop \& Back Assembly
C3	Part of T1	Capacitor, 106 mmf .	L2	153405	Coil, Oscillator
C4	Part of T1	Capacitor, 131 mmf .	SP1	148400-1	Speaker (4" PM), 10E chassis
C5	39001-85	Capacitor, $.08 \mathrm{mfd} ., 600 \mathrm{v} .$, paper	SP2	135632	Speaker (4"EM), 10E-1 chassis
C6	Part of T2	Capacitor, 131 mmf .	TS1	147784-1	Shield, Tube (V5)
C7	Part of T2	Capacitor, 106 mmf .	SW1	39379-1	Switch, ON-OFF
C8A	151550-1	Capacitor, 220 mmf .)	T1	139919-3	Transformer, 1st I.F.
C8B		Capacitor, .002 mmf .	T2	139919-3	Transformer, 2nd I.F.
C8C		Capacitor, 125 mmf . Assembly	T3	138131-1	Transformer, Audio, Output
C8D		Capacitor, 5000 mmf .		153866	Baffle \& Grille Cloth Assembly
C8E		Capacitor, 125 mmf .		153851	Bracket \& Baffle Assembly, Pointer Shaft
C11	39001-80	Capacitor, .02 mfd ., 600v., paper			Bushing
C12	39001-85	Capacitor, $.08 \mathrm{mfd} ., 600 \mathrm{v}$., paper		153887-1	Cabinet, Model E-10WE
C13	39477-45	Capacitor, .047 mfd .600 v ., molded paper		153887-2	Cabinet, Model E-10CE
C14A	154280	Capacitor, $50 \mathrm{mfd} ., 150 \mathrm{v} .$,$\} Electrolytic$		153887-3	Cabinet, Model E-10RD
C14B		Capacitor, $30 \mathrm{mfd} ., 150 \mathrm{v} .$, , (10E chassis).		153887-4	Cabinet, Model E-10BE
C15A	151617	Capacitor, $20 \mathrm{mfd} ., 150 \mathrm{v} .$, , Electrolytic		131154-1	Cotter (External), Drive Shaft
C15B		Capacitor, $20 \mathrm{mfd} ., 150 \mathrm{v}$.$\} (10E-1 chassis)$		153855-1	Knob (2 used), Model E-10WE
R1	39374-41	Resistor, 22,000 ohm, 10\%, 1/2 w.		153855-2	Knob (2 used), Model E-10CE
R2	39374-1	Resistor, 10 ohm, 10\%, $1 / 2 \mathrm{w}$.		153855-3	Knob (2 used), Model E-10RD
R3	39374-69	Resistor, 2.2 megohm, 10\%, $1 / 2 \mathrm{w}$.		153855-4	Knob (2 used), Model E-10BE
R4	39374-45	Resistor, 47,000 ohm, 10%, $1 / 2 \mathrm{w}$.		94704-7	Nut (Push on type), 4 used
R5A	Part of C8	Resistor, 6.8 megohm		153846	Pointer, Dial
R5B	Part of C8	Resistor, 470,000 ohm $\}$ Assembly		153848	Pulley \& Shaft Assembly, Dial Pointer
R5C	Part of C8	Resistor, 470,000 ohm		153588-1	Shaft, Diai Cord Drive
R6	39378-13	Control, Volume (1 megohm, tapped 300,000 ohm)		39462-2 51752	Socket, Tube Spring, Drive Cord
$\begin{aligned} & \text { R9 } \\ & \text { R11 } \end{aligned}$	$\begin{aligned} & 39374-15 \\ & 39374-26 \end{aligned}$	Resistor, 150 ohm, 10%, $1 / 2 \mathrm{w}$. Resistor, 1200 ohm, $10 \%, 1 / 2 \mathrm{w}$. (10E chassis)		132124	Stud (Trimount, 4 used), Back \& Loop Assembly

CROSLEY PAGE 23-15

Chassis 75E
Models: E-75 CE, E-75 RD, E-75 GN, E-75-TN

Chassis 85E
Models: E-85 CE, E-85 RD, E-85 GN, E-85 TN

BESCRIPTION

TYPE: Five-tube, single band, Superheterodyne.
FREQUENT RANGE: 540 to 1600 kc .
INTERMEDIATE FREQUENCY: 455 kc .
POWER SUPPLY: 60 cycle, a.c. only.
VOLTAGE RATING: $105-125$ volts.
POWER OUTPUT: 1 watt maximum.
POWER CONSUMPTION. 35 watts.

SLEEP SWITCH. Set it for up to 90 minutes operation of radio or appliance - turns them off automatically. (85E only.)

ELECTRIC CLOCK of highest accuracy. The jewel-like clock has a black face set off by hour and minute hands in blue, sweep-second hand in gold, and alarm set hand in red. Clock controls in sparkling clear plastic.

ALARM CONTROL. Set it for time radio (or appliance 85 E only) is to turn on automatically.

RADIO SWITCH has three positions: "Off" to turn off radio; "Auto" to turn radio (or appliance 85 E only) on automatically at pre-s ${ }^{+}$"Are; "On" for manual radio operation.

APPLIANCE OUTLET is provided at rear of set for connecting any appliance (not exceeding 1100 watts) to be controlled by timing device. (85E only.)

TUBE COMPLEMENT:

Type	Function
12BE6	Converter
12BD6	I. F. Amplifier
12AT6	Detector, AVC, 1st. A. F. Amplifier
50C5	A. F. Power Output
35W4	Rectifier

TIME SET, for setting clock to time of day.
DRIFT-FREE TUNING, accomplished by Crosley's frequency stabilized oscillator, keeps receiver aligned precisely with station to which you have tuned.

ECEPTIONALLY FINE TONE - the result of advanced engineering of the Crosley circuit and components.

INCREASED SENSITIVITY AND STABILITY. Permeability tuned (iron core) I.F. transformers give greater stability and sensitivity so that distant station can be received with minimum interference.

AUTOMATIC VOLUME CONTROL holds the volume as you set it.

BUILT-IN ANTENNA consists of a sturdy highefficiency loop which receives stations sharply and clearly.

ALIGNMENT PROCEDURE

1. Connect an output meter across the speaker voice coil (3.2 ohms).
2. Feed an R.F. signal modulated 30% at 400 cycles to the high side of loop (inside winding of loop) as indicated in the alignment chart. Connect signal generator ground through a 0.1 mfd capacitor to B- .
3. Turn the Radio Switch (top knob on clock dial) to the "ON" position.
4. Turn the volume control to maximum clockwise position and adjust the signal generator output to produce approximately mid-scale deflection of the output meter, but maintain signal generator output as low as possible to prevent AVC action.

ALIGNMENT CHART

Alignment locations are shown on page 17.

Alignment Sequence	Signal Generator Output			Position of Tuning Gang	Adjust for Max. Output	Remarks
	Freq. in KC.	In Series With	To			
1	455	200 mmf .	Hi side of loop	Open	A\&B	See note 1
2	455	200 mmf 。	Hi side of loop	Open	C\&D	See note 1
3 Repeat adjustments 1 and 2 until maximum output is obtained.						
4	1620	Radiated Signal	Loop	Open	E	See note 2
5	1400	Radiated Signal	Loop	Tune in Sig.	F	See note 2

Notes:

1. The speaker must be removed from the chassis in order to adjust the bottom slugs on the $I_{0} F_{\text {。 }}$ Transformers. DO NOT REMOVE THE WIRES FROM THE SPEAKER.
2. The signal can be radiated to the loop antenna by placing the output lead of the signal generator close to the loop.

For oscillator and antenna trimmer alignment, the loop antenna must be positioned with respect to the chassis to simulate position when chassis and loop are fastened in the cabinet so that no further adjustment of the antenna trimmer (F) will be necessary when the chassis and loop are mounted in the cabinet.

SOCKET VOLTAGE CHART

PARTS LIST

Symbol No.	Part No.	Description	$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description
C1A	154962	Capacitor, Tuning $\}$ Assembly	L2	153405	Coil, Oscillator
C1B		Capacitor, Tuning $\}$ Assembly	SP1	138762-8	Speaker P.M. (4")
C2	137727-109	Capacitor, 39 MMF., 10\%, 200 v., Ceramic	TS1	147784	Shield, Tube
C3	Part of T1	Capacitor	SW1	Part of CL1	Switch, ON-OFF, Power
C4	Part of T1	Capacitor	T1	155007-1	Transformer, 1st I.F.
C5	39477-46	Capacitor, . 068 MFD.,600 v., Molded Paper	T2	155007-1	Transformer, 2nd İF.
C6	Part of T2	Capacitor	T3	155015	Transformer, Audio Output
C7	Part of T2	Capacitor	CO1	155016	Appliance Outlet \& Bracket Assembly
C8A	151550-1	Capacitor, 220 MMF .			(Chassis 85E only)
C8B		Capacitor, . 002 MFD .	CL1	154971	Clock Assembly (Chassis 75E)
C8C		Capacitor, 125 MMF. $\}$ Assembly	CL1	155107	Clock Assembly (Chassis 85E)
C8D		Capacitor, . 005 MFD .		155214-1	Cabinet, Model E-75CE
C8E		Capacitor, 125 MMF.		155214-2	Cabinet, Model E-75RD
C9	137727-8	Capacitor, 1000 MMF.,10\%,300v.,Ceramic		155214-3	Cabinet, Model E-75TN
C11	39477-43	Capacitor, . 002 MFD.,600v., Molded Paper		155214-4	Cabinet, Model E-75GN
C12	39477-45	Capacitor, $047 \mathrm{MFD} ., 600 \mathrm{v}$.,Molded Paper		155214-5	Cabinet, Model E-85CE
C13	39477-46	Capacitor, 068 MFD., 600 v .,Molded Paper		155214-6	Cabinet, Model E-85RD
C14A	155006	Capacitor, 50 MFD., 150v. \} Electrolytic		155214-7	Cabinet, Model E-85TN
C14B		Capacitor, $30 \mathrm{MFD} ., 150 \mathrm{v}$. $\}$ Electrolytic		155214-8	Cabinet, Model E-85GN
R1	39374-61	Resistor, 1 meg OHM, $10 \%, 1 / 2 \mathrm{w}$ 。		155017-1	Grille, Model E-75CE
R2	39374-41	Resistor, 22,000 OHM, 10%, 1/2 w.		155017-2	Grille, Model E-75RD
R3	39374-1	Resistor, 10 OHM, 10\%, 1/2 w.		155017-3	Grille, Model E-75TN
R4	39374-69	Resistor, 2.2 Meg OHM, 10\%, 1/2 w.		155017-4	Grille, Model E-75GN
R5	39374-45	Resistor, 47,000 OHM, $10 \%, 1 / 2 \mathrm{w}$.		155021-1	Grille \& Bar Assembly, Model E-85CE
R6	154961	Control, Volume, 1 Meg OHM		155021-2	Grille \& Bar Assembly, Model E-85RD
R7	39374-15	Resistor, 150 OHM, $10 \%, 1 / 2 \mathrm{w}$.		155021-3	Grille \& Bar Assembly, Model E-85TN
R8A	Part of C8			155021-4	Grille \& Bar Assembly, Model E-85GN
R8B		Resistor, 470,000 OHM $\}$ Assembly		155061-1	Knob, Volume Control
R8C		Resistor, 470,000 OHM		154062-1	Knob, Tuning
R9	39374-114	Resistor, 1200 OHM, $10 \%, 1 \mathrm{w}$.		155003	Name Plate, Crosley (Used on 75 models only)
CA1	149780-3	Cable \& Plug, Power (85E only)		154347-3	Name Plate, Crosley (Used on 85 models only)
CA1	142769-5	Cable \& Plug, Power (75E only)		39462-2	Socket, Tube (V1, V2, V3, V4, V5)
L1	154987	Loop Antenna \& Back Assembly (75 E only)		132124	Stud (Trimount 3 used) Loop \& Back Assembly
L1	155042	Loop Antenna \& Back Assembly (85E only)		154963	Washer, Extruded (4 used), Clock Mounting

CHASSIS 75E, 85E

subject: TO ADD CLOCK REPLACEMENT PARTS TO CHASSIS 75E AND CHASSIS 85E PARTS LIST.

The following parts are now available for replacement on Clock Assemblies, part numbers 154971 and 155107.

PARTS LIST

Part No.	Description	Part No.	Description
156208-1	Dial Crystal (Plastic)	156208-8	Sleeve, Hand (Second)
156208-2	Bezel (Model E-75)	156208-9	Minute, Hand
156208-3	Knob (3 used on model E-75) (4 used on model E-85)	156208-10	Hour, Hand
156208-4	Timer Switch	156208-11	Indicator, Hand (Alarm)
		156208-13	Filler
156208-6	Adjusting Screw For Timer Switch	156208-14	Filler (Black)
156208-7	Bezel (Model E-85)		

A glass crystal is found on some of the above clock assemblies which were used in early production. Since the glass is not available, the following parts must be used for replacement.

Part No.	Description
$156208-1$	Dial Crystal, Plastic (1 used)
$156208-13$	Filler (3 used)
$156208-14$	Filler, Black (1 used)

The filler, 156208-14, with the black surface, should be placed next to the bezel, with the black surface facing the bezel. Figure 1 shows the assembly of these-parts.

Figure 1

CHASSIS 90E
Models: E-90WE, E-90CE, E-90GY, E-90RD, E-90BK

DESCRIPTION

TYPE: Five-tube, single band, Superheterodyne
FREQUENCY RANGE: 540 to 1600 kc .
INTERMEDIATE FREQUENCY: 455 kc .
POWER SUPPLY: 60 cycle, a.c. only.
VOLTAGE RATING: 105-125 volts.
POWER OUTPUT: 1 watt maximum.
POWER CONSUMPTION:
\qquad
Clock 2 watts

SLEEP SWITCH - Set it up to 60 minutes operation of radio or appliance - turns them off automatically.

ELECTRIC CLOCK of highest accuracy. Framed in gold-color, the jewel-like clock has a black face set off by hour and minute hands in blue and sweep second hand in gold. Clock controls in clear plastic.

RADIO SWITCH has three positions: "Off" to turn off radio; "Auto" to turn radio or appliance on automatically; "On" for manual radio operation.

APPLIANCE OUTLET is provided at rear of set for connecting any appliance (not exceeding 1100 watts) to be controlled by timing device.

TIME SET, for setting clock to time of day.
ALARM CONTROL - Set it for time radio or appliance is to turn on automatically. Pull out

TUBE COMPLEMENT:

Type	Function
12BE6	Converter
12BD6	I. F. Amplifier
12AT6	Detector, AVC, 1st. A. F. Amplifier
50C5	A. F. Power Output
35W4	Rectifier

to have buzzer sound a few minutes after radio turns on.
DRIFT-FREE TUNING, accomplished by Crosley frequency stabilized oscillator, keeps receiver aligned precisely with station to which you have tuned.
EXCEPTIONALLY FINE TONE - The result of advanced engineering of the Crosley circuit and components.
INCREASED SENSITIVITY AND STABILITY. Permeability tuned (iron core) IF transformers give greater stability and sensitivity so that distant stations can be received with minimum interference.

AUTOMATIC VOLUME CONTROL holds the volume as you set it.
BUILT-IN ANTENNA consists of a sturdy highefficiency loop which receives stations sharply and clearly.

MODELS E-90BK, CE, GY, RD, WE, Ch. 90E
Under no circumstances should a ground be connected to this receiver.

ALIGNMENT PROCEDURE

1. Connect an output meter across the speaker voice coil (3.2 ohms).
2. Feed an $R-F$ signal modulated 30% at 400 cycles to the high side of loop (inside winding of loop) as indicated in the alignment chart. Connect signal generator ground through a 0.1 mfd capacitor to B -.
3. Turn the Radio Switch to the "ON" position.
4. Turn the Volume Control to maximum clockwise position and adjust the signal generator output to produce approximately mid-scale deflection of the output meter, but maintain signal generator output as low as possible to prevent AVC action.

ALIGNMENT CHART

Alignment locations shown on page 23 ,

Alignment Sequence	Signal Generator Output			To	Position of Tuning Gang	Adjust for Max. Output
	Freq. in KC.	In Series With	Remarks			
	455	200 mmf.	Hi side of loop	Open	A \& B	See note 1
2	455	200 mmf.	Hi side of loop	Open	C \& D	See note 1
3 Repeat steps 1 and 2 until maximum output is obtained						
4	1620	Radiated Sig.	Loop	Open	E	See note 2
5	1400	Radiated Sig.	Loop	Tune in Signal	F	See note 2

Notes:

1. The speaker must be removed from the chassis in order to adjust the bottom slugs on the I-F Transformers. DO NOT REMOVE THE WIRES FROM THE SPEAKER.
2. The signal can be radiated to the loop antenna by placing the output lead of the signal generator close to the loop. For oscillator and antenna trimmer alignment, the loop antenna must be positioned with respect to the chassis to simulate position when chassis and loop are fastened in the cabinet so that no further adjustment of the antenna trimmer (F) will be necessary when the chassis and loop are mounted in the cabinet.

SOCKET VOLTAGE CHART

CROSLEY PAGE 23-23
MODELS E-90BK, CE, GY, RD, WE, Ch. 90E

SCHEMATIC DIAGRAM

CHASSIS - TOP VIEW

MODELS E-90BK, CE, GY, RD, WE, Ch. 90E

CLOCK ADJUSTMENTS

Procedure for checking timer switch and vibrator:

1. With the time set knob, turn the clock hands so as to advance the time at least one (1) hour. (For ease in checking, it is recommended that the time be set to the hour.)
2. Attach test light to switch leads.
3. Turn switch knob to "ON" position - light must go on.
4. Turn switch knob to "OFF" position - light must go out.
5. Set alarm disc so that small pointer on hour hand reads two (2) hours in advance of the time of the clock. EXAMPLE: If the clock hands are set to read 7 o'clock, set the alarm disc to read $9 o^{\prime}$ clock.
6. Turn sleep switch to " $60^{\prime \prime}$ - test light must go on.
7. Turn time set knob advancing clock hands to next hour - light must go out and SLEEP SWITC H SEC TOR GEAR must be completely disengaged within one (1) hour plus or minus eight (8) minutes.
8. Manually push SLEEP SWITCH SECTOR GEAR in until it touches its mating pinion WITHOUT meshing - light must go on.
9. Turn switch knob to "AUTO" position.
10. Turn time set knob to advance clock hands so they read 15 minutes until the next hour. Then slowly advance the hands until the test light lights, which indicates the contacts are closed. The contacts must close somewhere between 14 minutes to the hour and 4 minutes past the hour.
11. Remove test light and connect 110 volt supply to the motor terminals.
12. Turn time set knob to advance the clock hands 4 minutes - vibrator must NOT buzz. Then advance the hands 14 minutes - vibrator MUST buzz within this 14 minute period.

Adjusting Contacts

1. Set the switch to "AUTO" position so that the SWITCH CAM FOLLOWER rests on the TIMING CAM. Contacts shall be adjusted at $.020^{\prime \prime}$ minimum gap.
2. With switch in "OFF" position contacts shall remain open as in step one and there shall be clearance between SWITCH CAM FOLLOWER and TIMING CAM.
3. With switch in "ON" position, contacts shall be closed. Check for proper contact pressure by depressing LOWER CONTACT strip, using a small pointed tool. If UPPER CONTACT strip follows the LOWER CONTACT strip, a noticeable amount before the contacts separate, the pressure is sufficient.
4. Set the switch to "AUTO" position; pull out and turn alarm set knob counter-clockwise until the SWITCH CAM FOLLOWER drops into the slot of TIMING CAM. The contacts shall be closed. Check contact pressure as previously described in step three.
5. SWITCH ARM should clear CAM by .008 " minimum when in the "AUTO" position.

Timing

1. Adjust timer for contact closure at 6:55 o'clock. On repeat tests, contacts shall close at $6: 55$ plus or minus 3 minutes. At all other settings the contacts shall close between 12 minutes before and 2 minutes after the setting time.
2. Check time keeping for a minimum of twelve hours with power applied to the motor. Clock must be run with vibrator (buzzer) shut off.

Vibrator Adjustment:

1. Vibrator shall start buzzing 10 minutes plus or minus 5 minutes after contact closure occurs.
2. When the alarm set knob is pushed in ("shut-off" position of vibrator) the shut-off spring shall lift the vibrator sufficiently above the cam, so that the cam will not contact the vibrator in any position.
3. Adjust vibrator for good sounding position.
4. Vibrator shall be manually shut off before completion of buzzing period. CLOCK LUBRICATION
5. Center stack bearing in base plate and hole in back gear pinion should be lubricated with Nye watch oil or equivalent.
6. Path of switch locating spring on bracket should be lubricated with Dixon graphite grease.

$\begin{gathered} \text { Symbol } \\ \text {. No } \end{gathered}$	Part No.	Description	Symbol No.	Part No.	Description
P1A	154962	Capacitor, Tuning ${ }^{\text {a }}$ Assembly	L1	155042	Loop Antenna \& Back Assembly
E1B		Capacitor, Tuning Assembly	L2	153405	Oscillator Coil
C2	137727-109	Capacitor, 39 mmf ., 10\%, 200 V., Ceramic	SP1	138762-8	Speaker 4 inch (P.M.)
C3	Part of T1	Capacitor	TS1	147784	Shield Tube
4	Part of T1	Capacitor	SW1	Part of CL1	Switch, ON - OFF, Power
C5	39477-46	Capacitor, 68 mfd , 600 V., Molded Paper	T1	155007-1	Transformer, 1st IF
¢6	Part of T2	Capacitor	T2	155007-1	Transformer, 2nd IF
27	Part of T2	Capacitor	T3	155015	Transformer, Audio Output
-8A	151550-1	Capacitor, 220 mmf .)	CO1	155016-2	Bracket \& Appliance Outlet, Assembly
C8B		Capacitor, . 002 mfd .	CL1	155631	Clock Assembly
C8C		Capacitor, 125 mmf . ${ }^{\text {c }}$ Assembly		155214-9	Cabinet, Model E-90 CE
28D		Capacitor, .005 mfd .		155214-10	Cabinet, Model E-90 RD
-8E		Capacitor, 125 mmf .)		155214-11	Cabinet, Model E-90 GY
C9	137727-8	Capacitor, 1000 mmf ., 10\%, 300 V., Ceramic		155214-12	Cabinet, Model E-90 WE
C11	39477-43	Capacitor, $022 \mathrm{mfd} ., 600$ V., Molded Paper		155214-13	Cabinet, Model E-90 BK
C12	39477-45	Capacitor, $047 \mathrm{mfd} ., 600$ V., Molded Paper		155022	Gasket, Grille
こ13	39477-46	Capacitor, 068 mfd., 600 V., Molded Paper		155074	Grille, Metal
C14A	155006	Capacitor, $50 \mathrm{mfd} ., 150 \mathrm{~V}$.$\} Electrolytic$		155061-1	Knob, Volume Control, Model E-90 BK
C14B		Capacitor, $30 \mathrm{mfd} ., 150 \mathrm{~V}$.		155061-2	Knob, Volume Control, Model E-90 GY
C15	143686-1	Capacitor, 50 mmf ., 500 V., Ceramic		155061-3	Knob, Volume Control, Model E-90 WE
R1	39374-61	Resistor, 1 Megohm, 10\%, 1/2 W.		155061-4	Knob, Volume Control, Model E-90 RD
R2	39374-41	Resistor, 22,000 ohm, $10 \%, 1 / 2 \mathrm{~W}$.	.	155061-5	Knob, Volume Control, Model E-90 CE
R3	39374-1	Resistor, $10 \mathrm{ohm}, 10 \%$, $1 / 2 \mathrm{~W}$.		154062-1	Knob, Tuning, Model E-90 BK
R4	39374-69	Resistor, 2.2 Megohm, 10\%, 1/2 W.		154062-2	Knob, Tuning, Model E-90 GY
R5	39374-45	Resistor, 47,000 ohm, $10 \%, 1 / 2 \mathrm{~W}$.		154062-3	Knob, Tuning, Model E-90 WE
R6	154961	Control, Volume, 1 megohm		154062-4	Knob, Tuning, Model E-90 RD
R7	39374-15	Resistor, 150 ohm, 10\%, 1/2 W.		154062-5	Knob, Tuning, Model E-90 CE
R8A	Part of C8	Resistor, 6.8 megohm		155003	Name Plate (Crosley), Model E-90 BK
R8B		Resistor, 470,000 ohm Assembly		155347-3	Name Plate (Crosley), Models E-90 GY
R8C		Resistor, 470,000 ohm			E-90 WE, E-90 RD, \& E-90 CE
R9	39374-114	Resistor, 1200 ohm, 10%, 1 W .		39462-2	Socket, Tube (V1, V2, V3, V4, V5)
R10	39374-9	Resistor, 47 ohm, $10 \% 1 / 2 \mathrm{~W}$.		132124 Stud (T	rimount 3 Used), Loop \& Back Assembly
CA1	149780-3	Cable \& Plug, Power		154963 Washe	, Extruded (4 Used), Clock Mounting

CLOCK REPLACEMENT PARTS

Part No.	Description	Part No.	Description
$151389-15$	Alarm Dial	$151389-19$	Knob, Radio Switch
$151389-11$	Bezel	$151389-19$	Knob, Sleep Switch
$151389-12$	Bezel Color Ring	$151389-8$	Knob, Time Set
$151389-13$	Crystal	$151389-10$	Rotor Unit (60 cycle)
$151389-14$	Dial, Black		
$151389-9$	Field \& Coil (60 cycle)		
$151389-16$	Hands, Hour \& Minute		
$151389-17$	Hand, Sweep Second		
$151389-18$	Knob, Alarm Set		

MODELS F-100BE, BK, CE, GN, RD, Ch. 100F

DESCRIPTION

The above models are four-tube superheterodyne, battery portable radio receivers combined with a spring wound clock timer that can be set to automatically turn the radio on or off. The receiver is designed for reception of Standard Broadcast (AM) stations with frequencies between 540 and 1600 kilocycles.

The receiver uses long-life " A " batteries, with provision made to use standard flash-light batteries (" D " cells) in localities where the long-life batteries are not available, with a resultant decrease in "A". battery life.

TYPE: Four-tube, single band Superheterodyne.
FREQUENCY RANGE: 540 to 1600 Kc .
INTERMEDIATE FREQUENCY: 455 Kc .
MAXIMUM POWER OUTPUT: 170 Milliwatts.
"A" BATTERY: Two $11 / 2$ Volt Eveready \#964.
"B" BATTERY: One 75 Volt Eveready \#437.
TUBE COMPLEMENT:

Type	Function
1 U 5	Detector - AVC - 1st Audio Amplifier
1R5	Converter
3 V 4	Audio Output
1 U 4	IF Amplifier

NOTE: Complete Battery Kit No. EV-1
(Crosley Part No. 156292)
Consists of $\left\{\begin{array}{l}\text { Two } 11 / 2 \text { volt "A" Batteries \# } 964 . \\ \text { One } 75 \text { volt " }{ }^{2} \text { " Batter }\end{array}\right.$
Available at your Crosley Distributor.

SOCKET VOLTAGE CHART

REMOVING THE CHASSIS

1. Slip the tuning knob from the shaft of the tuning gang, and pull the knobs from the clock.
2. Open the cabinet back by lifting up on the handle and pushing down and out with the thumb on the top edge of the cabinet back; then remove the back.
3. Remove the " A " and " B " batteries.
4. Remove the chassis (Chassis is fastened to the front of the cabinet by five cross recess screws)

AlIGNMENT PROCEDURE

1. Connect an output meter across the speaker voice coil (3.2 ohms).
2. Connect " A " and " B " batteries to the receiver.
3. Turn the "TIMER SWITCH" to the on position.
4. Apply an R-F signal, modulated 30% at 400 cycles to the receiver as indicated in the alignment chart. Connect the signal generator ground lead to chassis.
5. Turn the volume control to maximum, set the POWER SAVER SWITCH for maximum power output and the INDOOROUTDOOR SWITCH to the Outdoor position.
6. Adjust the signal generator to produce mid-scale deflection on the output meter, but maintain output as low as possible to prevent AVC action.

ALIGNMENT CHART

ALIGNMENT SEQUENCE	SIGNAL GENERATOR			POSITION OF TUNING GANG	ADJUST FOR MAX. OUTPUT	REMARKS
	FREQ. IN KC.	SIGNA L	TO			
1.	455	in series with . 05MFD	Mixer Grid	OPEN	A \& B	
2.	455	in series with . 05MFD	Mixer Grid	OPEN	C \& D	
3. Repeat steps 1 and 2 until maximum output is obtained.						
4.	1620	Radiated	Built-in Antenna	OPEN	E	See Note 1
5.	1400	Radiated	Built-in Antenna	Tune-in sig.	F	See Note 1 \& 2

NOTES:

1. The signal can be radiated to the built-in antenna by placing the output lead of the signal generator close to the antenna.
2. Replace the chassis in the cabinet by reversing the order of the removal procedure listed above.

MODELS F-100BE, BK,
CE, GN, RD, Ch. 100F

CHASSIS, REAR VIEW

CHASSIS, BOTTOM VIEW

CHASSIS 100F

To install a new insert, first remove the old insert; then remove the paper backing from the adhesive on the new insert and press the insert firmly in place. NOTE: When replacing a tuning knob insert, it is possible to install the new insert up-side-down. To eliminate this possibility, do not remove the tuning knob from its shaft while changing the insert.

MODEL	ORIGINAL PART NO.	CORRECT PART NO.	DESCRIPTION
F-100BE	$155238-1$	$156779-1$	Cabinet front
F-100BK	$155238-2$	$156779-2$	Cabinet front
F-100GN	$155238-3$	$156779-3$	Cabinet front
F-100RD	$155238-4$	$156779-4$	Cabinet front
F-100CE	$155238-5$	$156779-5$	Cabinet front
F-100BE	$155272-1$	$156545-1$	Knob, tuning
F-100BK	$155272-2$	$156545-2$	Knob, tuning
F-100GN	$155272-3$	$156545-3$	Knob, tuning
F-100RD	$155272-4$	$156545-4$	Knob, tuning
F-100CE	$155272-5$	$156545-5$	Knob, tuning
F-100BE	$155286-1$	$156289-1$	Handle
F-100BK	$15.5286-1$	$156289-2$	Handle
F-100GN	$155286-1$	$156289-3$	Handle
F-100RD	$155286-1$	$156289-4$	Handle
F-100CE	$155286-1$	$156289-5$	Handle

SUBJECT: WARNING AGAINST PARTIAL WINDING OF THE CLOCK USED ON THE F-100 SERIES CLOCK RADIOS.

Several cases have been noted where the user of a F-100 Series Clock Radio failed to wind the clock completely and then reported that the clock was defective and would not continue running more than a few hours. To meet such complaints and to prevent future complaints of the same sort, the following information is directed to all Sales and Service personnel.

On the F-100 Series Clock Radio, both the clock and the alarm are operated by the same spring. Generally, the first few turns of the wind shaft (until a click is heard after each revolution) store the energy needed for alarm operation, while any further turns store energy for the clock.

Here is why the user may fail to wind the clock completely.
Example A: Let us assume the clock is run-down, including the alarm, and that we begin winding it. For the first few turns, a certain amount of resistance in the wind shaft is felt. Then a point is reached where more resistance is noted and where a click is heard each time the wind shaft makes one revolution. A careful user would, most likely, stop winding for fear of causing damage. In actuality the clock has, at this point, been wound only enough for the alarm and a small portion of the clock's running time. If we want to get the full running time of 30 hours, we must continue winding comparatively for a much longer time - until the spring is fully wound (wind shaft will no longer turn without literally forcing it). Only then can the clock be considered fully wound.

Example B: For a slightly different situation let us assume that, six hours after the clock has been fully wound, the alarm goes off and runs down completely. Most of the potential energy for the clock's operation is still stored in the spring. If we wish to re-set the alarm and fully rewind the clock, we experience the same resistance as before, i.e., when starting with the clock run down. Now, when that point is reached where maximum alarm potential energy is again stored in the spring, the resistance increases more sharply than it would if the whole spring were run down. At this point, the same clicking as described in Example A is heard.

Mechanically the alarm and the clock are both operated by only one spring; three turns of the wind shaft are required to complete one revolution of the spring shaft. Fifteen to twenty complete revolutions of the spring shaft are required to wind the clock to its maximum running time of 30 hours. But, when the alarm goes off, it uses only one complete revolution of the spring shaft for its operation. When the spring shaft has been wound the first complete turn, maximum potential energy is stored in the spring for the operation of the alarm, but less than 10% is stored for clock operation. It is here that there is the tendency to stop winding.

DESCRIPTION

The above Models are four tube superheterodyne, battery operated portable radio receivers. The receiver is designed for reception of Standard Broadcast (AM) stations with frequencies between 540 and 1600 kilocycles.

The receiver uses long-life "A" batteries, with provision made to use standard flash-light batteries ("D" cells) in localities where the long-life batteries are not available, with a resultant decrease in "A" battery life.

TYPE: Four-tube, single band, Superheterodyne
FREQUENCY RANGE: 540 to 1600 Kc INTERMEDIATE FREQUENCY: 455 Kc

POWER OUTPUT: 200 Milliwatts
"A" BATTERY: Two $1 ½$ volt Eveready \#964.
"B" BATTERY: One 75 volt Eveready \#437.
TUBE COMPLEMENT

Type	Function
1U5	Detector, AVC, 1st Audio Ampl.
1R5	Converter
$3 V 4$	Audio Output
1 U 4	IF Amplifier

NOTE: Complete Battery Kit No. EV-1
(Crosley Part No. 156292)
Consists of $\left\{\begin{array}{l}\text { Two } 11 / 2 \text { volt "A" Batteries \# } 964 . \\ \text { One } 75 \text { volt "B" }\end{array}\right.$
Available at your Crosley Distributor.

REMOVING THE CHASSIS

1. Slip the tuning knob from the shaft of the tuning gang.
2. Open the cabinet back by lifting up on the handle and pushing down and out with the thumb on the top edge of the cabinet back; then remove the back.
3. Remove the " A " and " B " batteries.
4. Remove the chassis (Chassis is fastened to the front of the cabinet by five cross-recess screws).

Alignment Procedure

1. Connect an output meter across the speaker voice coil (3.2 ohms).
2. Connect " A " and " B " batteries to the receiver.
3. Slide the "ON-OFF SWITCH" to the "ON" position.
4. Apply an R-F signal, modulated 30% at 400 cycles to the receiver as indicated in the alignment chart. Connect the signal generator ground lead to chassis.
5. Turn the volume control to maximum, set the POWER SAVER SWITCH for maximum power output.
6. Adjust the signal generator to produce mid-scale deflection on the output meter, but maintain output as low as possible to prevent AVC action.

ALIGNMENT CHART

ALIGNMENT SEQUENCE	SIGNAL GENERATOR			POSITION OF TUNING GANG	ADJUST FOR MAX. OUTPUT	REMARKS
	FREQ. IN KC.	IN SERIES WITH	TO			
1	455	. 05 mfd .	Mixer grid	Open	A \& B	
2	455	. 05 mfd .	Mixer grid	Open	C \& D	
3 Repeat steps 1 and 2 until maximum output is obtained.						
4	1620	Radiated	Built-in Ant.	Open	E	Note 1
5	1400	Radiated	Built-in Ant.	Tune-in Sig.	F	Note 1 \& 2

NOTES:

1. The signal can be radiated to the built-in antenna by placing the output lead of the signal generator close to the antenna.
2. Replace the chassis in the cabinet by reversing the order of the removal procedure listed above.

MODELS F-110BE, BK,
CE, GN, RD, Ch. 110F

MODELS F-110BE, BK, CE, GN, RD, Ch. 110F

NOTES:
2. VOLTAGES MEASURED WTH AN ELECTRONIC VOLTMETER FROM SOCKET LUG TO CHASSIS.
3. BATTERY SUPPLY VOLTAGES "A" BATTERY $15 V$. " B " BATTERY 75 V .
4. BATTERY SWITCH IN "MAX. POWER OUTPUT" POSITION. "OUTDOOR
INDOOR" SWITCH IN "OUTDOOR'POSITION.
5. N.C. $=$ NO CONNECTION, W. J. $=$ WIRE JUNCTION.
6. SOCKET VOLTAGE TOLERANCE $\pm 10 \%$

SOCKET VOLTAGE CHART

PARTS LIST

$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description	$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description
C1A C1B	155290	$\left.\begin{array}{l}\text { Capacitor, Tuning } \\ \text { Capacitor, Tuning }\end{array}\right\}$ Assembly		155254-2	Button, ''Indoor - Outdoor Switch', Model F-110 BE
C2	137727-109	Capacitor, 39 mmf , $10 \% .200 \mathrm{~V} .$. ceramic		155254-3	Button, 'Max Battery Life Switch',
C3	Part of T1	Capacitor			Model F-110 BK
C4	Part of T1	Capacitor		155254-4	Button; 'Indoor - Outdoor Switch',
C5	39433-10	Capacitor, . $002 \mathrm{mfd} ., 150 \mathrm{~V} .$, paper			Model F-110 BK
C6	144675-2	Capacitor, . $005 \mathrm{mfd} ., 500$ V., disc ceramic		155254-5	Button, "Max Battery Life Switch",
C7	Part of T2	Capacitor			Model F-110 GN
C8	Part of T2	Capacitor		155254-6	Button, ''Indoor - Outdoor Switch',
C9A	151550-3	Capacitor, 5000 mmf ., 450 V. ,			Model F-110 GN
C9B		Capacitor, 5000 mmf ., 450 V. ; Assembly		155254-7	Button, 'Max Battery Life Switch",
${ }_{\text {C10A }}$	142951-2	Capacitor, $100 \mathrm{mmf} ., 450 \mathrm{~V}$. Capacitor, 100 mmf., 450 V. .		155254-8	Model F-110 RD Button, 'Indoor - Outdoor Switch',
C10B		Capacitor, $100 \mathrm{mmf},$.500 V. \} Assembly			Model F-110 RD
C11	39433-11	Capacitor, . 005 mfd ., $150 \mathrm{~V} .$, paper		155254-9	Button, "Max Battery Life Switch",
C12	39433-14	Capacitor, . $05 \mathrm{mfd} ., 150 \mathrm{~V} .$, paper			Model F-110 CE
C13	39433-14	Capacitor, . $05 \mathrm{mfd} ., 150 \mathrm{~V}$. ; paper		155254-10	Button, 'indoor - Outdoor Switch",
C14	144675-28	Capacitor, . 001 mfd ., $500 \mathrm{~V} .$, disc ceramic			Model F-110 CE
C15	137727-121	Capacitor, . $005 \mathrm{mfd} ., 10 \%$, $500 \mathrm{~V} .$, ceramic		155811-1	Cabinet Assembly, Model F-110 BE
C16	155355	Capacitor, $10 \mathrm{mfd}, 80 \mathrm{~V}$., Electrolytic		155811-2	Cabinet Assembly, Model F-110 BK
R1	39374-49	Resistor, 100, $000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{~W}$.		155811-3	Cabinet Assembly, Model F-110 GN
R2	39374-77	Resistor, 4.7 megohm. 10\%, $1 / 2 \mathrm{~W}$.		155811-4	Cabinet Assembly, Model F-110 RD
R3	39374-25	Resistor, 1000 ohm, 10\%, 1/2W.		155811-5	Cabinet Assembly, Model F-110 CE
R4	Part of C10	Resistor, 47, 000 ohm		155239-1	Cabinet, Back, Model F-110 BE
R5	39374-39	Resistor, 15, 000 ohm , 10\%, 1/2W.		155239-2	Cabinet, Back, Model F-110 BK
R6	39374-73	Resistor, 3.3 megohm, $10 \%, 1 / 2 \mathrm{~W}$.		155239-3	Cabinet, Back. Model F-110 GN
R7.	155786	Control, Volume, 1 megohm		155239-4	Cabinet. Back, Model F-110 RD
R9A	Part of C9	Resistor, 1 megohm ,		155239-5	Cabinet. Back, Model F-110 CE
R9B		Resistor, 2.2 megohm ; Assembly		155813-1	Cabinet, Front, Model F-110 BE
R9C		Resistor, 4.7 megohm		155813-2	Cabinet, Front, Model F-110 BK
R10	39374-45	Resistor, 47, $000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{~W}$.		155813-3	Cabinet, Front, Model F-110 GN
R11	39374-85	Resistor, 10 megohm, $10 \%, 1 / 2 \mathrm{~W}$.		155813-4	Cabinet, Front, Model F-110 RD
R12	39374-20	Resistor, 390 ohm., 10%, $1 / 2 \dot{W}$.		155813-5	Cabinet, Front, Model F-110 CE
R13	39374-20	Resistor, 390 ohm, $10 \%, 1 / 2 \mathrm{~W}$.		156182-1	Escutcheon, Model F-110 BE
R14	39374-25	Resistor, 1000 ohm, $10 \%, 1 / 2 \mathrm{~W}$.		156182-2	Escutcheon, Model F-110 BK
L1	155415	Antenna \& Rod, Assembly		156182-3	Esicutchone, Model F-110 GN
L2	155329	Oscillator Coil, Assembly		156182-4	Escutcheon, Model F-110 RD
SP1	155159	Speaker, 4 inch (P. M.)		156182-5	Escutcheon, Model F-110 CE
SW1	155242	Switch, ON - OFF, Power		155286-1	Handle
SW2	155315	Switch Bracket Assembly, "Max Battery Life"		156086-1	Knob, Tuner Model F-110 BE
T1	145025-7	Transformer, 2nd. IF		156086-2	Knob, Tuner Model F-110 BK
T2	1450025-8	Transformer, 1st. IF		156086-3	Knob, Tuner Model F-110 GN
T3	Part of SP1	Transformer, Audio Output		156086-4	Knob, Tuner Model F-110 RD
CO1	155314	Connector Assembly, "A" Battery		156086-5	Knob, Tuner Model F-110 CE
CO2	155210	Spring Grounding, "A' Battery		155262-1	Knob, Volume Control
CO3	155210	Spring Grounding, "A" Battery		155280	Link (2 used), Handle Mtg.
CO 4	155205	Connector, "B' Battery		153540-3	Medallion
	155254-1	Button, "Max Battery Life Switch",		94704-35	Nut, Push On Type
		Model F-110 BE		155340-1	Pin, Indicator
				155308	Washer, Felt

subject - CORRECT PART NUMBERS FOR CABINET FRONTS, TUNING KNOBS FOR F-110 SERIES

	ORIGINAL PART NO.	CORRECT PART NO.	DESCRIPTION
F-110BE	$155813-1$		
F-110BK	$155813-2$	$156779-1$	Cabinet front
F-110GN	$155813-3$	$156779-2$	Cabinet front
F-110RD	$155813-4$	$156779-3$	Cabinet front
F-110CE	$155813-5$	$156779-4$	Cabinet front
		$156779-5$	Cabinet front
F-110BE	$156086-1$	$156547-1$	Knob, tuning
F-110BK	$156086-2$	$156547-2$	Knob, tuning
F-110GN	$156086-3$	$156547-3$	Knob, tuning
F-110RD	$156086-4$	$156547-4$	Knob, tuning
F-110CE	$156086-5$	$156547-5$	Knob, tuning
F-110BE	$155286-1$	$156289-1$	Handle
F-110BK	$155286-1$	$156289-2$	Handle
F-110GN	$155286-1$	$156289-3$	Handle
F-110RD	$155286-1$	$156289-4$	Handle
F-110CE	$155286-1$	$156289-5$	Handle

subject- ADDITIONAL PART NUMBERS PORTABLE RADIOS

The part numbers in the table below should be added to the parts list

MODEL	PART NO.	DESCRIPTION
F-110 Series	156179	Insert, Tuning Knob
	156173	Insert, Escutcheon

To install a new insert, first remove the old insert; then remove the paper backing from the adhesive on the new insert and press the insert firmly in place.

NOTE: When replacing a tuning knob insert, it is possible to install the new insert up-side-down. To eliminate this possibility, do not remove the tuning knob from its shaft while changing the insert.

MODELS F-25BE, BK, GN, MN, Ch. 25F

DESCRIPTION

TYPE: Five-tube, single band, Superheterodyne. FREQUENCY RANGE: 540 to 1600 kc .

INTERMEDIATE FREQUENCY: 455 kc .
POWER SUPPLY: 60 cycle, a.c. only.
VOLTAGE RATING: $105-125$ volts.
POWER OUTPUT: 1 watt maximum.
POWER CONSUMPTION:
Radio and Clock... 2 watts
Clock
SLEEP SWITCH - Set it up to 60 minutes operation of radio or appliance - turns them off automatically.

ELECTRIC CLOCK of highest accuracy. The face is provided with luminous hour and minute hands for easy reading in the dark. Sweep second hand of red; clock controls of same color as cabinet.

RADIO SWITCH has three positions: "Off" to turn off radio; "Auto" to turn radio or appliance on automatically; "On" for manual radio operation.

APPLIANCE OUTLET is provided at rear of set for connecting any appliance (not exceeding 1100 watts) to be controlled by timing device.

TIME SET, for setting clock to time of day.
ALARM CONTROL - Set it for time radio or appliance is to turn on automatically. Pull out

TUBE COMPLEMENT:

Type	Function
12BE6	Converter
12BA6	I. F. Amplifier
12AT6	Detector, AVC, 1st. A. F. Amplifier
50C5	A. F. Power Output
35W4	Rectifier

to have buzzer sound a few minutes after radio turns on.

DRIFT-FREE TUNING, accomplished by Crosley frequency stabilized oscillator, keeps receiver aligned precisely with station to which you have tuned.

EXCEPTIONALLY FINE TONE - The result of advanced engineering of the Crosley circuit and components.

INCREASED SENSITIVITY AND STABILITY. Permeability tuned (iron core) IF transformers give greater stability and sensitivity so that distant stations can be received with minimum interference.

AUTOMATIC VOLUME CONTROL holds the volume as you set it.

BUILT-IN ANTENNA to provide satisfactory rereption from AM broadcast stations within range of the receiver.

Under no circumstances should a ground be connected to this receiver.

ALIGNMENT PROCEDURE

1. Connect an output meter across the speaker voice coil (3.2 ohms).
2. Feed an R-F signal modulated 30% at 400 cycles to the receiver, as indicated in the alignment chart. Connect signal generator ground through a 0.1 mfd capacitor to B -.
3. Turn the Radio Switch to the "ON" position.
4. Turn the Volume Control to maximum clockwise position and adjust the signal generator output to produce approximately mid-scale deflection of the output meter, but maintain signal generator output as low as possible to prevent AVC action.

ALIGNMENT CHART

Alignment locations shown on page 41.

Alignment Sequence	Signal Generator Output			Position of Tuning Gang	Adjust for Max. Output	Remarks
	Freq. in KC.	$\begin{aligned} & \text { In Series } \\ & \text { With } \end{aligned}$	To			
1	455	200 mmf .	Mixer grid, pin 7 of V5	Open	A \& B	See note 1
2	455	200 mmf .	Mixer grid, pin 7 of V5	Open	C \& D	See note 1
3 Repeat steps 1 and 2 until maximum output is obtained.						
4	1620	Radiated Sig.	Antenna	Open	E	See note 2
5	1400	Radiated Sig.	Antenna	Tune in Signal	F	See note 2

Notes:

1. The bottom slugs of the I. F. Transformers can be adjusted through the holes in the front plate opposite the transformers.
2. The signal can be radiated to the antenna by placing the output lead of the signal generator close to the antenna rod.

CLOCK ADJUSTMENTS

Procedure for checking timer switch and vibrator:

1. With the time set knob, turn the clock hands so as to advance the time at least one (1) hour. (For ease in checking, it is recommended that the time be set to the hour.)
2. Attach test light to switch leads.
3. Turn switch knob to "ON" position - light must go on.
4. Turn switch knob to "OFF" position - light must go out.
5. Set alarm disc so that small pointer on hour hand reads two (2) hours in advance of the time of the clock. EXAMPLE: If the clock hands are set to read 7 o'clock, set the alarm disc to read 9 o'clock.
6. Turn sleep switch to " 60 " - test light must go on.
7. Turn time set knob advancing clock hands to next hour-light must go out and SLEEP SWITCH SECTOR GEAR must be completely disengaged within one (1) hour plus or minus eight (8) minutes.

MODELS F-25BE, BK, GN, MN, Ch. 25F
8. Manually push SLEEP SWITCH SECTOR GEAR in until it touches its mating pinion WITHOUT meshing - light must go on.
9. Turn switch knob to "AUTO" position.
10. Turn time set knob to advance clock hands so they read 15 minutes until the next hour. Then slowly advance the hands until the test light lights, which indicates the contacts are closed. The contacts must close somewhere between 14 minutes to the hour and 4 minutes past the hour.
11. Remove test light and connect 110 volt supply to the motor terminals.
12. Turn time set knob to advance the clock hands 4 minutes - vibrator must NOT buzz. Then advance the hands 14 minutes - vibrator MUST buzz within this 14 minute period.

Adjusting Contacts

1. Set the switch to "AUTO" position so that the SWITCH CAM FOLLOWER rests on the TIMING CAM. Contacts shall be adjusted at . 020 " minimum gap.
2. With switch in "OFF" position contacts shall remain open as in step one and there shall be clearance between SWITCH CAM FOLLOWER and TIMING CAM.
3. With switch in "ON" position, contacts shall be closed. Check for proper contact pressure by depressing LOWER CONTACT strip, using a small pointed tool. If UPPER CONTACT strip follows the LOWER CONTACT strip a noticeable amount before the contacts separate, the pressure is sufficient.
4. Set the switch to "AUTO" position; pull out and turn alarm set knob counter-clockwise until the SWITCH CAM FOLLOWER drops into the slot of TIMING CAM. The contacts shall be closed. Check contact pressure as previously described in step three.
5. SWITCH ARM should clear CAM by . 008" minimum when in the "AUTO' position.

Timing

1. Adjust timer for contact closure at $6: 55$ o'clock. On repeat tests, contacts shall close at $6 ; 55$ plus or minus 3 minutes. At all other settings the contacts shall close between 12 minutes before and 2 minutes after the setting time.
2. Check time keeping for a minimum of twelve hours with power applied to the motor. Clock must be run with vibrator (buzzer) shut off.

Vibrator Adjustment

1. Vibrator shall start buzzing 10 minutes plus or minus 5 minutes after contact closure occurs.
2. When the alarm set knob is pushed in ("shut-off" position of vibrator) the shut-off spring shall lift the vibrator sufficiently above the cam, so that the cam will not contact the vibrator in any position.
3. Adjust vibrator for good sounding position.
4. Vibrator shall be manually shut off before completion of buzzing period.

CLOCK LUBRICATION

1. Center stack bearing in base plate and hole in back gear pinion should be lubricated with Nye watch oil or equivalent.
2. Path of switch locating spring on bracket should be lubricated with Dixon graphite grease.

DESCRIPTION

These Crosley Models are five-tube, two band portable radio receivers employing a superheterodyne circuit and are designed to operate on an "A-B" battery pack or to operate directly from 105 to 125 volts, alternating current (50 to 60 cycles) or direct current power lines. A selenium rectifier supplies the " A " and " B " voltage when the receiver is being operated on the power lines. The tuning range covers the AM Broadcast Band, 540 to 1600 kilocycles, and the Shortwave Band, 8.4 to 15.4 megacycles.

Civilian Defense Emergency frequencies fall within the AM Broadcast Band, and the markers " CD " on the dial at 1240 Kc . and 640 Kc . designate the spot on the dial where stations may be received when they are operating on the emergency frequencies. Reception points for Standard Time Signal transmitted by U. S. Bureau of Standards' Station WWV are marked in red at 10 and 15 megacycles on the shortwave portion of the dial.

FREQUENCY RANGE: 540 to 1600 Kc .
8.4 to 15.4 Mc .

INTERMEDIATE FREQUENCY: 455 Kc .
POWER OUTPUT: 300 milliwatts
POWER CONSUMPTION: 13 watts at 117 volts A.C. or D.C.
POWER REQUIREMENTS: $105-125$ volts, 50 to 60 cycles A.C. 105-125 volts D.C.
Battery Pack (Crosley part number 156745) with 9 volts " A " and 90 volts "B".

TUBE COMPLEMENT:

TUBE TYPE	FUNCTION
1 U 4	R. F. Amplifier
1L6	Oscillator \& Mixer
$1 \mathrm{U4}$	I. F. Amplifier
1 U5	Diode Detector - AVC - 1st Audio Amplifier
3V4	Audio Output

MODELS F-115GN,
MN, TN, Ch. 115F

SERVICE ALIGNMENT PROCEDURE

1. Connect output meter across speaker voice coil (3.2 ohms).
2. Feed an R-F signal modulated 30% at 400 cycles to the receiver as indicated below in the alignment chart.
3. Preset gang trimmers, oscillator section open, mixer and R-F section closed.
4. Turn the volume control to full on and the tone control to high frequency position. Adjust the generator to produce approximately mid-scale deflection of the output meter, but maintain generator output as low as possible to prevent a-v-c action.
5. The "Dummy" shown in Fig. 1 is to be used in steps $2 \& 3$ in the alignment procedure.

Fig. 1. Shortwave Dummy

ALIGNMENT CHART							
SEQUENC E	SIGNAL GENERATOR OUTPUT			POSITION OF		ADJUST FOR MAX. OUTPUT	REMARKS
	FREQUENCY	$\begin{aligned} & \text { IN SERIES } \\ & \text { WITH } \end{aligned}$	TO	RANGE SWITCH	$\begin{aligned} & \text { TUNING } \\ & \text { DIAL } \end{aligned}$		
1	455Kc	. 05 mfd	Note 1	S.W.	Gang open	A,B,C,D	Note 1
	Repeat adjustm	ents to obt	in maximum	atput			Note 2
2	15.7 Mc	Dummy	S.W. Antenna	S.W.	Gang open	E	Note 3 \& 6
3	15 Mc	Dummy	S.W. Antenna	S.W.	Tune in Sig.	F,G	Note 3 \& 4
4	1620 Kc	Radiated	B.C. Antenna	B.C.	Gang open	H	Note 5
5	1400 Kc	Radiated	B.C. Antenna	B.C.	Tune in Sig.	I, J	Note 5

NOTES:

1. Low side of generator returned to B- on electrolytic capacitor, high side of generator connected to stator of gang capacitor, center section.
2. After aligning I-F Transformers, replace bottom cover of chassis.
3. Low side of generator returned to chassis, high side of generator connected to shortwave antenna through dummy.
4. Peak center trimmer (mixer section) and rear trimmer (antenna section by rocking gang to secure maximum output.)
5. Radiate signal from generator to rod antenna by placing wire attached to high side of generator close to the rod antenna opposite to the end that is wired to the gang stator.
6. Do not align the shortwave oscillator to image at 14 megacycles.

BATTERY INSTALLATION

To open the cabinet, lift up on the handle and use the thumb to push down and out on the top edge of the cabinet back. The back is hinged at the bottom. Place the battery pack under the flexible webbing strap, and insert the battery cable plug into the battery socket. To replace the back, place the curved portion of the hinge plates on the bottom of the cabinet back over the hinge pins on the bottom of the cabinet. Push the back forward until it locks into the top of the cabinet.

CAUTION: Never allow run-down batteries to remain in the cabinet, and remove the battery pack when the receiver is stored for an extended period.

Abstract

ANTENNAS

Two built-in antennas are provided: an iron core, high efficiency rod antenna for standard broadcast reception, and for shortwave reception, a vertical telescoping antenna that can be pushed down in the cabinet when not in use.

When removing or opening the back of the cabinet, be sure that the clip on the wire from the coil next to the tuning gang, is on the pin of the bracket that supports the telescoping antenna.

OPERATION

Battery Operation: - Open the back of the cabinet. It will be noted that a flat spring is located on the back of the chassis on the battery cable side, and also a slot in the chassis on the underside. For battery operation, one of the prongs of the power cord plug must be inserted in this slot and the other prong over the spring. This operates the line-battery switch (SW1). After inserting the plug, close the cabinet back.

AC or DC Operation: - For 105 to 125 volt, 50 to 60 cycle alternating current or direct current power line operation, remove the power cord plug from the receptacle on the chassis and connect to the electrical outlet. The power cord may be brought out of the cabinet through the slot provided at the lower right hand corner of the cabinet.

PARTS LIST

Symbol No.	Part No.	Description	Symbol No.	Part No.	Description
C1A	156174-1		R23	39374-12	Resistor, $82 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.
C1B		and Short wave Trimmers Assembly	R24	39374-15	Resistor, $150 \mathrm{ohm}, 10 \%$, $1 / 2 \mathrm{w}$.
C1C			R25	156307-1	Tone Control (5 megohm)
C2	137499-43	Capacitor, 397 mmf ., 2\%, 500v., Mica	R26	39374-16	Resistor, 180 ohm, 10%, $1 / 2 \mathrm{w}$.
C3	137727-99	Capacitor, 20 mmf ., N080, 500 v. , Ceramic	L1	$\begin{aligned} & 156533 \\ & 156653-1 \end{aligned}$	Rod Antenna (Broadcast) Antenna Coil (Short-wave)
C4	137727-142	Capacitor, 1000 mmf ., 300v.,	L3	156714	R.F. Choke
		Ceramic .	L4	156691-1	Oscillator Coil (Broadcast)
C5	137727-121	Capacitor, $5000 \mathrm{mmf}, 500 \mathrm{v}$. ,	L5	156655-1	Oscillator Coil (Short-wave)
		Ceramic	A1	156390-1	Telescopic Antenna
C6A	156491-1	Trimmer (Broadcast), 2-18 mmf.	P1	156689	Plug (Battery) and Cable
C6B		Trimmer (Broadcast), $1-8 \mathrm{mmf}$.	T1	145025-7	Transformer, 2nd I.F.
C6C		Trimmer (Broadcast), 2-18 mmf.	T2	156756-1	Transformer, R.F.
C8	137499-46	Capacitor, 470 mmf ., 2%, 500v.,	T3	145025-8	Transformer, 1st I.F.
		Mica	T4	156321-1	Transformer, Audio Output
C9	152999-2	Capacitor, 39 mmf ., N5600, 300v.	SR1	156366-1	Selenium Rectifier, 75 ma .
C10	137398-3	Capacitor, 1.5 mmf ., $500 \mathrm{v} .$,	SP1	156420	Spealser 5" PM
		Disc Ceramic	CA1	142769-6	Power Cable and Plug
C11	137727-99	Capacitor, 20 mmf ., N080, 500v., Ceramic	$\begin{aligned} & \text { SW1 } \\ & \text { SW2 } \end{aligned}$	$\begin{aligned} & 153347-1 \\ & \text { Part of } 156260 \end{aligned}$	Switch, Line-Battery Switch, On-Off
C12	Part of T3	Capacitor, 47 mmf .	SW3	156523-1	Switch, Range
C13	Part of T3	Capacitor, 62 mmf .		156745	Battery Pack
C14	137727-121	Capacitor, 5000 mmf ., 500v., Ceramic		156285-1	Bracket, Chassis Mounting (R.H.)
C15	39001-17	Capacitor, .05 mfd ., 150v., Paper		156285-2	Bracket, Chassis Mounting (L.H.)
C16	39433-14	Capacitor, 05 mfd ., 150v., Paper		156397	Bracket, Telescopic Antenna
C17	137727-121	Capacitor, 5000 mmf ., 500v., Ceramic		156368-1	Cabinet, Back (Model F-115MN)
C18	Part of T1	Capacitor, 62 mmf .		156368-2	Cabinet, Back (Model F-115GN)
C19	Part of T1	Capacitor, 47 mmf .		156368-3	Cabinet, Back (Model F-115TN)
C20A	142951-13	$\begin{aligned} & \text { Capacitor, } \\ & 100 \mathrm{mmf} ., 500 \mathrm{v} ., \text { Resistor (R10)- } \end{aligned}$		156367-1	Cabinet, Front (Model F-115MN) Cabinet, Front (Model F-115GN)
C20B		$\left.\begin{array}{l} \text { Capacitor, } \\ 100 \mathrm{mmf} ., 500 \mathrm{v} ., \end{array}\right\} \text { Capacitor Unit }$		$\begin{aligned} & 156367-3 \\ & 145420 \end{aligned}$	Cabinet, Front (Model F-115TN) Clip (Fuse Type), Cabinet (2 used)
C21	137727-121	Capacitor, 5000 mmf ., 500v., Ceramic		157055	Dial
C22A	151550-4	Capacitor, $5000 \mathrm{mmf} .$, ,		156487	Dial Background
C22B		Capacitor, 2000 mmf ., Couplate		156363	Escutcheon
C22C		Capacitor, 50 mmf .,		131154-1	External Cotter (Dial Drive Shaft)
C23	39477-45	Capacitor, $.047 \mathrm{mfd} ., 600 \mathrm{v}$. , Molded Paper		155286-3	Handle Hinge Clip, Cabinet Back (2 used)
C24	39433-25	Capacitor, . $002 \mathrm{mfd} ., 400 \mathrm{v}$., Paper		156379	Hinge Clip, Cabinet Front (2 used)
C25A	150975-1	Capacitor, $50 \mathrm{mfd} ., 150 \mathrm{v}$.		156302-1	Knob, Range Switch (Model F-115MN)
C25B		Capacitor, $30 \mathrm{mfd} ., 25 \mathrm{v}$. $\}$ Electrolytic		156302-3	Knob, Range Switch (Model F-115GN)
C25C		Capacitor, $200 \mathrm{mfd}, 10 \mathrm{v}$. ${ }^{\text {chectrolytic }}$		156302-5	Knob, Range Switch (Model F-115TN)
C25D		Capacitor, $30 \mathrm{mfd} ., 100 \mathrm{v}$.		156315-1	Knob, Tone Control (Model F-115MN)
C26	39477-45	Capacitor, $.047 \mathrm{mfd} ., 600 \mathrm{v}$. , Molded Paper		$\begin{aligned} & 156315-2 \\ & 156315-3 \end{aligned}$	Knob, Tone Control (Model F-115GN) Knob, Tone Control (Model F-115TN)
C27	39433-14	Capacitor, 05 mfd ., 150v.; Paper		156302-2	Knob, Volunie and Tuning Controls
C28	39433-14	Capacitor, . 05 mfd ., 150v., Paper			(Model F-115MN)
C29	39433-25	Capacitor, $.002 \mathrm{mfd} ., 400 \mathrm{v}$. , Paper		156302-4	Knob, Volume and Tuning Controls
C30	137727-121	Capacitor, 5000 mmf ., 500v., Ceramic			(Model F-115GN) .
C31	137727-128	Capacitor, 22 mmf ., N080, 500 v. , Ceramic		156302-6	Knob, Volume and Tuning Controls (Model F-115TN)
C32	137727-139	Capacitor, $100 \mathrm{mmf} ., 500 \mathrm{v}$. , Ceramic		155280	Link, Handle (2 used)
C33	137727-121	Capacitor, $.005 \mathrm{mfd} ., 500 \mathrm{v}$. , Ceramic		94704-39	Nut (Push-on), Escutcheon Mounting (4 used)
C34	137727-141	Capacitor, 5000 mmf ., 500 v ., Ceramic			(4 used)
C35	137727-121	Capacitor, 5000 mmf ., $500 \mathrm{v} .$, Ceramic		94704-45	Nut (Push-on), Speaker Mounting (4 used)
R1	39374-73	Resistor, 3.3 megohm, $10 \%, 1 / 2 \mathrm{w}$.			(4 used)
R2	39374-77	Resistor, 4.7 megohm, 10\%, 1/2 w.		156669	Pin, Telescopic Antenna Bracket
R3	39374-25	Resistor, 1000 ohm, 10%, $1 / 2 \mathrm{w}$.		156724	Plate (Metal) Battery Strap
R4	39374-52	Resistor, 180,000 ohm, 10\%, 1/2 w.		156461	Pointer, Dial
R5	39374-40	Resistor, 18,000 ohm, $10 \%, 1 / 2 \mathrm{w}$.		137959-2	Pulley, Idler (2 used)
R6	39374-77	Resistor, 4.7 megohm, $10 \%, 1 / 2 \mathrm{w}$.		137940-1	Rivet, Idler Pulley (2 used)
R7	39374-46	Resistor, 56,000 ohm, $10 \%, 1 / 2 \mathrm{w}$.		156481	Shaft, Dial Drive
R8	39374-25	Resistor, 1000 ohm, $10 \%, 1 / 2 \mathrm{w}$.		147784	Shield, Tube (V1, V2, V5)
R9	39374-73	Resistor, 3.3 megohm, 10\%, 1/2 w.		148346	Socket, Tube (5 used)
R10	Part of C20	Resistor, 47,000 ohm		156612	Spring, Contact (Receptacle on
R11	156260	Volume Control (1 megohm, Tapped at 300,000 ohm)		145757	chassis for line-cord) Spring, Dial Drive Cord
R12	39374-45	Resistor, 47,000 ohm, $10 \%, 1 / 2 \mathrm{w}$.		157611-1	Spring, Fuse Clip
R13	39374-85	Resistor, 10 megohm, $10 \%, 1 / 2 \mathrm{w}$.		156662	Strap, Battery
R14A	Part of C22	Resistor, 1 megohm, $1 / 2 \mathrm{w}$.		156595	Strip (Fish Paper), Dial Pointer
R14B		Resistor, 4.7 megohm, $1 / 2 \mathrm{w}$. Resistor, 2.2 megohm, $1 / 2 \mathrm{w}$.		156692	Support and Bracket Assembly (Rod Antenna)
R17	39374-187	Resistor, 68 ohm, 10%, 2 w .		156278-1	Support, Handle \& Chassis
R18	3937,4-117	Resistor, 2200 ohm, 10%, 1 w.			Bracket (R.H.)
R19	156643-1	Resistor, 2200 ohm, $3 \%, 7$ w., Wire Wound		156278-2	Support, Handle \& Chassis Bracket (L.H.)
R20	39374-19	Resistor, $330 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.		156684	Support and Terminal Assembly
R21	39374-16	Resistor, 180 ohm, $10 \%, 1 / 2 \mathrm{w}$.			(Rod Antenna)
R22	39374-14	Resistor, 120 ohm, $10 \%, 1 / 2 \mathrm{w}$.		$\begin{aligned} & 155308-2 \\ & 134916 \end{aligned}$	Washer, Felt (3 used) Washer (Spring), Dial Drive Shaft

100-125V A.C. 60 CYCLES ONLY

The DeWald Model F-523 is a combination self-starting electric clock and superheterodyne receiver. The receiver can automatically be turned on or off by the clock. The receiver range is from 525 to 1700 kilocycles.
NOTE: The receiver and clock operate on 105-125 volts 60 cycles A.C. ONLY! Your local Power Company will help you make certain that you have the correct power.

CONTROLS

1. The left-hand knob on the receiver is the volume control.
2. The right-hand knob on the receiver is the station selector.
3. The "Radio Switch" knobis located at the nine o' clock position of the clock.
4. The "Sleep Switch" knob is located at the six o' clock position.
5. The "Alarm Set" knob is located at the three o'clock position.

OPERATION

Your self-starting Telechron clock will start automatically when the set is plugged into the proper outlet. Set the correct time by means of the small knob at the right REAR of the cabinet. Turn ONLY in the direction shown on the back cover.
A. TO TURN RADIO ON MANUALLY:

Turn "Radio Switch" knob to "On" position. Be sure that the line cord is plugged in. Allow approximately one minute for the tubes to heat up. The receiver is then ready for operation. Select the desired station by turning the station selector knob and adjust the volume to the desired level.
B. TO TURN RADIO OFF MANUALLY:

Turn "Radio Switch" knob to the "Off" position.
C. TO TURN RADIO ON AUTOMATICALLY:

Pullout "Alarm Switch" knob and turn in counter-clockwise (arrow) direction until pointer is over hour figure and minute marks desired. After setting the desired time, push in the "Alarm Set" knob. Turn the radio "On" and set to the station and volume desired. (See "A" above). Then turn the "Radio Switch" knob to the "Auto" position. This operation turns the radio off, butitwill automatically turn on again at the time set.
D. TO TURN RADIO OFF AUTOMATICALLY:

While the radio is playing, turn the
"Sleep Switch" knob clockwise for playing time desired. Estimate time in minutes between 0 and 60 marks along arrow.

Set "Radio Switch" knob to the "Off" position. Radio will continue playing, but will turn off automatically at the pre-set time.
E. TO TURN ON BUZZER ALARM WITH RADIO SILENCED:
Turn "Radio Switch" knob to "Off" position. Pull out "Alarm Switch" knob and turn in counter-clockwise (arrow) direction until the pointeris set ten minutes ahead of the hour figure and minute marks desired. For example: Should you desire the buzzer to sound at 7, set alarm pointer to 6:50. To shut off the buzzer, push in the "Alarm Set" knob.
F. TO TURN RADIO AND BUZZER ON AUTOMATICALLY:
Follow procedure as outlined under "C" above, with the exception that having set the desired time, do not push in the "Alarm Set" knob. Buzzer sounds approximately 10 minutes after the radio comes on. To shut off the buzzer, push in the "Alarm Set" knob. The radiowill continue to play until the "Radio Switch" knob is turned to the "Off" position.
G. TO TURN RADIO OFF AUTOMATICALLY, THEN ON AGAIN AUTOMATICALLY, WITH BUZZER OFF:
Adjust the "Sleep Switch" knob as described in "D" above, but set the "Radio Switch" knob to the "Auto" position. Set the "Alarm Switchn knob as described in paragraph "C". The radio will continue playing for the amount of time set on the "Sleep. Switch" and then shut off, but will come on again automatically at the pre-set time. NOTF: Make sure that the "Alarm Set" knob is pushed in.
H. TO TURN RADIO OFF AUTOMATICALLY, THEN ON AGAIN AUTOMATICALLY, WITH BUZZER ON:
Follow the procedure outlined in "G" above, but make sure that the "Alarm Set ${ }^{n}$ knob is pulled out. The buzzer will then sound approximately ten minutes after the radio goes on.
I. TO TURN THE RADIO OFF AUTOMATICALLY, THEN TURN JHE BUZZER ALARM ON:
Follow the instructions given in paragraphs "D" and "E".

ANTENNA

The "Looptenna" incorporated in the DeWald Model F-523 receiver makes use of an outside antenna unnecessary in most localities. If additional pick-up is desired, connect an external antenna to the flexible lead which is brought out of the rear of the cabinet for this purpose. The "Looptenna" has a directional effect and therefore it may be necessary to change the angle of the receiver for the best reception.

1073	Antenna Loop	3004	RESISTORS - 2 WATT
1028	Oscillator Coil	6049	Dial Scale
1091	IST I.F. CoIL	7009	Speaker
1091	2ND I.F. CoIL	8001	Pilot Lamp Socket
2000	Paper Condensers	9109	SHAFT
2063	Ceramic Condensers	9069	Drive Spring
2005	Comb. Electrolytic	4077	Cabinet
2003	Variable Condenser	8081	Clock
3029	RESISTORS - 1/2 WATT	\#47	Pilot Lamp
2066	Det-Audio Couplate	1048	Output Transformer

\square

MODEL G-404

This model is a four tube superheterodyne receiver with full automatic volume control. A Loop Antenna coil is used with this receiver and is designed to pick up strong local stations without requiring an outside Antenna. An external Antenna is recommended; connect to external lead for additional signal pick up. The range coverage is $535-1700$ Kilocycles. The receiver has been designed to operate at 105-125 volts, 40-60 cycles A. C. - D. C. unless otherwise specified.

OPERATION:

Insert the receiver line cord plug in electric outlet. Turn lower right knob in a clockwise direction; Allow approximately one minute for the tubes to heat up and receiver is then ready for operation.

NOTE:

If the receiver is being operated on D.C. and no signals are heard after it has been turned "on" for one minute, reverse the line plug.

Volume Control:
The lower knob of the receiver is used as the power switch and volume control. Rotation of this knob in a clockwise direction turns the receiver "on". Further rotation in this direction increases the volume.

STATION SELECTOR:

The upper knob operates the tuning in of stations.

John F. Rider.

This model is a five tube superheterodyne receiver with full automatic volume control. A self-contained loop tenna is incorporated which makes the use of an antenna unnecessary. The range coverage is 525-1720 kilocycles. The receiver has been designed to operate at 105-125 volts, $40-60$ cycles A.C. -D. C. unless otherwise specified.

OPERATION:

Insert the receiverline cord plug in electric outlet. Turn left knob in a clockwise direction. Allow approximately one minute for the tubes to heat up and receiver is then ready for operation.

NOTE:

If the receiver is being operated on D.C. and no signals are heard after it has been turned "on". for one minute, reverse the line plug.

ANTENNA:

The receiver operates satisfactorily without an antenna. If additional pick-up is desired, an antenna may be connected by following instructions on cabinet back.

VOLUME CONTROL:

The left knob of the receiver is used as the power switch and volume control. Rotation of this knob in a clockwise direction turns the receiver "on". Further rotation in this direction increases the volume.

STATIOM SELECTOR:

The right hand knob operates the tuning in of stations and pointer. Ease and accuracy in tuning is provided because of a reductior drive.

I MPORTANT :

Since the "looptenna" used has a directional effect, it may be found necessary to change the angle of the receiver.

VOLTAGE CHART

Tube No.	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7
V1	-10 V	0	10 V	22 V	+80 V	+80	-1
V2	-1.1 V	0	32 V	20 V	+80 V	+80	0
V3	-0.7 V	0	0	10 V	-0.5 V	0	+30
V4	0	+4.5 V	32 V	78 V	+110 V	+80	
V5			75 V	117 V	117 VAC	+110 V	

All measurements with respect to chassis use Precision VTVM.

RESISTANCE CHART

Tube No.	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7
V1	24 K	0.6	14Ω	20Ω	50 K	50 K	3 meg
V2	3 meg	0	30Ω	20Ω	400 K	300 K	0
V3	$4.7 \mathrm{me} \frac{0}{}$	0	0	12Ω	400 K	0	700 K
V4	500 K	150Ω	30Ω	80Ω	400 K	300 K	NC
V5	NC	NC	80Ω	110Ω	110Ω	NC	500 K

All measurements with respect to chassis use Triplet VTVM Model 650

RESISTORS

R1	$22 \mathrm{~K} \Omega$
R2	100Ω
R3	2.2 meg
R4	4.7 meg
R5	$1 / 2 \mathrm{meg}$ Vol. Control
R6	$470 \mathrm{~K} \Omega$
R7	$470 \mathrm{~K} \Omega$
R8	150Ω
R9	1500Ω

COILS AND TRANSFORMERS
I. F. Coil

Audio Output Transformer

EMERSON PAGE 23-1
MODELS 602A, Ch. 120072A; 602B, Ch. 120072B; 602C, Ch. 120102A

DESCRIPTION

TYPE: Single band (FM) superheterodyne
FREQUENCY RANGE: 88-108 mc.
INTERMEDIATE FREQUENCY: 10.7 mc .
TYPE OF TUBES:
1-6BJ6, \triangle r-f amplifier
1-12BA7, converter
1-12BA6, first i-f amplifier
1-12BA6 or 6BJ6, Δ second i-f amplifier
1-12S8G I, ratio detector, a.v.c., a-f amplifier
1-35B5, power output
1-35W4, rectifier
POWER SUPPLY: A.c. or d.c.
VOLTAGE RATING: $105-125$ volts
POWER CONSUMPTION: 30 watts
CURRENT DRAIN: 25 amp . at 117 volts a.c. \triangle Chassis 120102A only.

GENERAL NOTES

1. If replacements are made or the wiring disturbed in the r-f section of the circuit, the receiver should be carefully realigned. The position of tuned circuit components and connecting leads is critical. Carefully dress all leads after part replacement to correspond to the original position.
2. For operation on d.c. it may be necessary to reverse the line plug for proper polarity.
3. The color coding of the output transformer leads is as follows:
Plate-blue
Rectifier cathode-red

this receiver
 ALIGNMENT PROCEDURE

1. To position pointer, turn variable condenser fully closed and set pointer to reference mark at low-frequency end of dial.
2. Volume control should be set at maximum position; output of signal generator should be no higher than necessary to obtain an output reading. Use an insulated alignment tool for all adjustmente.
3. For step 2 in alignment with AM signal generator, connect two 100 K resistors in series from point "B" to ground.
4. For alignment with FM signal generator, use frequency modulated signal with 60 -cycle modulation and 450 KC sweep. Use 120 cycle sweep voltage in scope for horizontal deflection.
RATIO DETECTOR AND IF ALIGNMENT USING AM SIGNAL GENERATOR AND VTVM

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{gathered} \text { RADIO } \\ \text { DIAL } \\ \text { SETTING } \end{gathered}$	$\begin{gathered} \text { CONNECT } \\ \text { VTVM } \end{gathered}$	ADJUST	REMARKS
1	. 005 mfd .	High side to pin 1 (grid) of V3, second i-f. Low side to chassis.	10.7 MC (Unmodulated).	Tuning cond. fully open.	Connect d.c. probe to point "B". Common to chassis.	A2 (Bottom of ratio det. trans. T3).	Adjust for maximum output.
2	. 005 mfd .	"	"	"		A1 (Top of ratio det. trans. T3).	Adjust for minimum output.
3	. 005 mfd .	High side to plin 2 (ose. grid) of V1, converter. Low side to chassis Disconnect internal antenna lead from term. strip.	"	"	Connect d.e. probe to point to chassis.	A3, A4 (2nd i-f trans. T2).	Adjust for maximum output.
4	. 005 mfd .	from term. strip.	"	"	"	A5, A6 (lst i-f trans. T1).	Adjust for maximum output. Continue with r-f alignment.

RATIO DETECTOR AND IF ALIGNMENT USING FM SIGNAL GENERATOR AND SCOPE

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{gathered} \text { RADIO } \\ \text { DIAI } \\ \text { SETTING } \end{gathered}$	CONNECT SCOPE	ADJUST	REMARKS
1	. 005 mfd .	High side to pin 1 (grid) of V3, second i-f Low side to chassis.	10.7 MC (450 KC. sweep).	Tuning cond. fully open.	Vertical Input through 10 K resistor to point to chassis.	A2, A1 (Ratio det. trans. T3).	Adjust A2 for max. amplitude and lineority of double " S -shaped response curve. Adjust Al to Move cross-over point to center of pattern (equal sections above and below intersection).
2	. 005 mfd .	High side to pin 2 ose. grid of V1, converter. Low side to chassis. Disconm \|nect internal anterna lead from term. strip.	*	"	Vertical input across voice coil.	A3, A4, A5, A6 (2nd \& 1st i-f trans. T2 \& T1).	Adjust for maximum amplitude and symmetry of sine wave output. Continue with r.f. alignment.

GJohn F. Rider

PAGE 23-2 EMERSON
MODELS 602A, Ch. 120072A; 602B, Ch. 120072B; 602C, Ch. 120102A

	ANTENNA DUMMY	SIGNAL GENERATOR COUPLING	$\begin{array}{\|c\|} \text { SIGNAL } \\ \text { GENERATOR } \\ \text { FREQUENCY } \end{array}$	$\begin{aligned} & \text { RADIO } \\ & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { VTVM } \end{gathered}$	ADJUST	REMARKS
1	150 ohm resistor in series with each gen. lead.	High side to term. "A"; low side to term. "G" at rear of chassis.	108.0 MC (Unmodulated).	Tuning cond. fully open. (108.0 MC).	Connect d.c. probe to "B". Common to chassis.	A7. (Trimmer cond. C4).	Adjust for maximum output.
!	$"$	"	106.0 MC.	Tune for maximum deflection.	"	A8 (Trimmer cond. C3).	"

RF ALIGNMENT

INSTRUCTIONS FOR VOLTAGE AND RESISTANCE READINGS

1. Voltage readings are in volts and resistance readings in ohms unless otherwise specified.
2. All measurements made with voltohmyst.
3. Socket connections are shown as bottom views.
4. Measured values are from socket pin to common negative, unless otherwise specified.
5. Line voltage maintained at 117 volta for voltage readings.
6. Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in voltage and resistanca readings.
7. Volume control at maximum, no signal applied, for voltage measurements.

VOLTAGE READINGS

SYMBOL	$\begin{aligned} & \text { TUBE } \\ & \text { TYPE } \end{aligned}$	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V1	12BA7	98	-3.8	0	$\begin{cases}38 & \mathrm{AC} \\ 43 & \mathrm{AC}\end{cases}$	$\begin{cases}50 & \mathrm{AC} \\ 31 & \mathrm{AC}\end{cases}$	0	0
V2	12BA6	-. 8	0	$\left\{\begin{array}{l} 26 A C \\ 19 A C \Delta \end{array}\right.$	$\begin{cases}38 & \text { AC } \\ 31 & \text { AC } \triangle\end{cases}$	92	92	0
V3	12BA6 or 6BJ6	-. 8	0	$\left\{\begin{array}{l} 26 A C \\ 19 A C \Delta \end{array}\right.$	13 AC	92	92	0
V4	12S8GT	-. 5	${ }_{5}$	$-.5$	0	$. .5$	50	$\begin{aligned} & 13 \mathrm{AC} \\ & \mathrm{NC} \end{aligned}$
V5	35B5 35W4	O NC	5.7 0.	50 AC 82	82 AC 117 AC	$\begin{aligned} & 110 \\ & 115 \mathrm{AC} \end{aligned}$	92 NC	$\begin{aligned} & \text { NC } \\ & 116 \end{aligned}$
V6	35W4 $68 J 6 \Delta$	inc	. 8	82 43 AC	49 AC	92	92	

RESISTANCE READINGS

SYMBOL	$\begin{aligned} & \text { TUBE } \\ & \text { TYPE } \end{aligned}$	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V1	12BA7	1K*	22K	0	$\left\{\begin{array}{l} 38 \\ 48 \Delta \end{array}\right.$	$\left\{\begin{array}{l} 50 \\ 34 \Delta \end{array}\right.$	0	0
V2	12BA6	2.2 Meg.	0	$\left\{\begin{array}{l} 25 \\ 21 \Delta \end{array}\right.$	$\left\{\begin{array}{l} 38 \\ 34 \Delta \end{array}\right.$	1000*	1000*	0
V3	12BA6 or 6BJ6 \triangle	2.2 Meg.	0	$\left\{\begin{array}{l} 25 \\ 21 \Delta \end{array}\right.$	15	1100*	1100*	0
V4	$\begin{aligned} & \text { 6BJ6D } \\ & \text { 12S8GT } \end{aligned}$	620K	0	32K	0	620K	550K*	15
V5	35B5	470K	180	$\left\{\begin{array}{l} 50 \\ 54 \Delta \end{array}\right.$	86	160	1000*	NC
V6	35W4	NC	0	86	124	$\left\{\begin{array}{l}164 \\ 146 \Delta\end{array}\right.$	NC	0*
V7	6BJ6 \triangle	0	70	48	54	1000*	1000*	0

SYMBOL	$\begin{aligned} & \text { TUBE } \\ & \text { TYPB } \end{aligned}$	VOLTAGE		RESISTANCE	
		PIN 8	$\begin{aligned} & \text { PIN } 9 \\ & \text { or CAP } \end{aligned}$	PIN 8	$\begin{aligned} & \text { PIN } 9 \\ & \text { or CAP } \end{aligned}$
$\begin{aligned} & \mathbf{V 1} \\ & \mathbf{V 4} \end{aligned}$	$\begin{aligned} & \text { 12BAC } \\ & \text { 12S8GGT } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\stackrel{98}{1.3}^{1.3}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1000^{*} \\ & 4 \mathrm{Meg} . \end{aligned}$

* Measured to Pin 7 of V6, 35W4 NC=no connection; K=Kilohm;
Meg. $=$ megohm.
\triangle Chassis 120102A only.

TUBE LOCATIONS

FRONT

EMERSON PAGE 23-3

Symbol	\dagger Part No.	DESCRIPTION	Symbol	tPart No.	DESCRIPTION
V1	12BA7	Converter	C37	928004\#	500 mmF ., ceramic
V2	12BA6	First i-f amplifier	C38	$915040 \triangle$. 68 mmf ., molded
V3	12BA6 or	Second i-f amplifier	C39	$920250 \#$. 1 mfd ., 400 volt, paper
V4	12S8GT	Ratio det., a.v.c., a-f amplifier	L2	716028	Oscillator coil
V5	35B5	Power output	L3	705002	R-f choke, oscillator
V6	35W4	Rectifier	L4	705002	R-f choke, heater
V7	6BJ6 \triangle	R-f amplifier	L5	705002	R-f choke, heater
${ }_{C 1}$ ($\}$	900041	Two-gang, variable condenser	L6	710019Δ	Antenna coil
C2)			L7	705002Δ	R-f choke
C3	Part of	Trimmers, r-f and osc:	L8	$\begin{aligned} & 705002 \\ & 716028 \triangle \end{aligned}$	R-f choke R-f coil
C5	928029	5 mmf ., temp. comp.	R1	340810	22 kilohms, $1 / 2$ watt
C6	928003	. 001 mfd ., ceramic	R2	340250	100 ohms, $1 / 2$ watt
C7	928003	. 001 mfd ., ceramic	R3	351290	2.2 megohms, $1 / 2$ watt
C8	915005	2.2 mmf., molded	R4	340250	100 ohms, $1 / 2$ watt
C9	928015	75 mmf ., ceramic	R5	351290	2.2 megohms, $1 / 2$ watt
C10	928025	15 mmf., ceramic	R6	340250	100 ohms, $1 / 2$ watt
C11	928014	50 mmf., ceramic	R7	351370	4.7 megohms, $1 / 2$ watt
C12	928109	. 005 mfd ., ceramic	R8	390062	500 kilohms, volume control
C13	928022.	4700-4700 mmf., ceramic	R9	340930	is kilohms, $1 / 2$ watt
C14	928022	$4700-4700 \mathrm{mmf}$., ceramic	R10	340850	33 kilohms, $1 / 2$ watt
C15	910026	330 mmf ., mica	R11	351130	470 kilohms, $1 / 2$ watt
C16	910026	330 mmf., mica	R12	351130	470 kilohms, $1 / 2$ watt
C17	928004	500 mmf ., ceramic	R13	340310	180 ohms, $1 / 2$ watt
C18	925116	$5 \mathrm{mfd}, 25$ volt, elect.	R14	370150	39 ohms, 1 watt
C19	920090	.01 mfd ., 400 volt, paper	R15	340490	1000 ohms, $1 / 2$ watt
C20	920020	.02 mfd , 400 volt, paper	R16	370490	1000 ohms, 1 watt
C21	925117	50 mfd., 25 volt, electrolytic	R17	340250	100 ohms, $1 / 2$ watt
C22	920010	.002 mfd ., 609 volt, paper	R18	340250	100 ohms, $1 / 2$ watt
C23	928003	. 001 mfd ., ceramic	R19	340250	100 ohms, $1 / 2$ watt
C24	920030	. 05 mfd ., 400 volt, paper	R20	340210	68 ohms, $1 / 2$ watt
C25	928109	. 005 mfd ., ceramic	$\underset{\mathbf{T} 1}{\mathbf{R} 21}$	370090 720067	22 ohms, 1 watt First i-f transformer
C26	$\left\lvert\, \begin{aligned} & 925118 * \Delta \\ & \mid 925118 \# \end{aligned}\right.$	50-50-50 mfd., 150 volt, electrolytic		720067	(Alt. parts 720024, 720082) ${ }^{\circ}$
C 27	928109 ${ }^{\text {928109* } \triangle}$. 005 mfd ., ceramic	T2	720067	Second l.f. transformer (Alt. parts 720024, 720082) ${ }^{\circ}$
C 28	928109** 928109* \triangle	. 005 mfd ., ceramic	T3	720071	Ratio detector transformer
C30	928022\#	4700-4700 mmf., ceramic			(Alt. parts 720068, 720072) ${ }^{\circ}$
C31	928022\#	4700-4700 mmf., ceramic		734044	Output transformer
C32	$928022 \triangle$	$4700-4700 \mathrm{mmf}$., ceramic	$\begin{gathered} \text { SW1 } \\ \text { SP1 } \end{gathered}$	Part of R8 180055	Line switch P.M. speaker
C33	$928015 \triangle$ 928027	75 mmf., ceramic (button type)		$\begin{aligned} & 180055 \\ & \$ 583205 \end{aligned}$	P.M. speaker Line cord and internal
C35	928027\#	. 01 mfd., ceramic (button type)		[583205A\#	Line cord and in
C36	928027\#	. 01 mfd ., ceramic (button type)			

${ }^{\circ}$ Replace with part having same number,
\dagger Specify part numbers when ordering.

* Chassis 120072A only
\triangle Chassis 120102A only.
\# Chassis 120072B only.
CABINET AND DIAL PARTS

\dagger Part No.	DESCRIPTION	\dagger tPart No.	DESCRIPTION
140168	Cabinet, maroon plastic	460088	Knob, plastic
460078	Speaker grille	530002	Dial cord (31")
520068	Dial backplate	280055	Drive shaft
525033	Pointer	587040	Dial drive spring

MODEL 695B
CHASSIS 120146-B

DESCRIPTION

general notes

TYPE: Single-band superheterodyne, with clock-timer and appliance outlet.

FREQUENCY RANGE: 540-1620 kc.
TYPE OF TUBES:
V-1-12BE6, oscillator mixer
V-2-12BA6, first i-f amplifier
V-3-12AT6, detector, a-f amplifier
V-4-50C5, A. F. output
V-5-35W4, rectifier
POWER SUPPLY: A.C. 60 cycles only VOLTAGE RATING: 115 volts.

POWER CONSUMTION: 32 watts.

1. If replacements are made or the wiring disturbed in the r-f section of the circuit, the receiver should be carefully realigned.
2. This model has a self-contained antenna and does not require additional antenna connections. For permanent home installations, however, if it is desired to improve reception of weak stations, an additional outdoor antenna may be used. For this purpose a lead has been brought out in the rear. Use no ground connection.
3. The self-contained loop antenna operates at maximum efficiency when its position is at right angles to the broadcasting source. It is important, therefore, once the station is tuned in, to rotate the cabinet back and forth through a quarter of a circle (90 degrees), leaving it at the position where the station is received with maximum volume.
4. Appliance outlet and radio on-off switch located in back of chassis. For information on clock applications see instructions supplied with set.

Fig 3. TUBE LOCATION DIAGRAM OF CHASSIS 120146-B

ALIGNMENT

To set pointer, turn variable condenser fully closed and set pointer at mark near top end of dial backplate. Use isolation transformer if available. If not, connect a 0.1 mfd . condenser in series with low side signal generator and chassis. Volume control should be at maximum position; output of signal generator should be no higher than necessary to obtain an output reading. Use an insulated, alignment screwdriver for adjusting.

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	RADIO DIAL SETTING	METER OUTPUT	ADJUST	REMARKS
1	0.001 mfd .	High side to stator of rear section of tuning condenser. Low side to chassis.	455 kc	Variable condenser fully open.	Across voice coil.	$\begin{gathered} \text { A1, A2, } \\ \text { A3, A4 } \end{gathered}$	Adjust for maximum output.
2	200 mmfd .	High side to external antenna lead. Low side to external ground lead.	1620 kc	Variable condenser fully open.	Across voice coil.	A5	Adjust for maximum output.
3	200 mmfd .	High side to external antenna lead. Low side to external ground lead.	1400 kc	Tune for maximum output.	Across voice coil.	A6	Adjust for maximum output.

VOLTAGE READING FOR CHASSIS 120146-B

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	SPIN 4	PIN 5	PIN 6	PIN 7
V-1	12BE6	-6.3 DC	0	24 AC	12 AC	90 DC	90 DC	-. 8 DC
V-2	12BA6	--. 8 DC	0	24 AC	36 AC	90 DC	90 DC	1 DC
V.3	12AT6	-.9 DC	0	0	12 AC	-. 8 DC	-. 8 DC	38 DC
V-4	50C5	5.5 DC	0	80 AC	36 AC	0	90 DC	110 DC
V-5	35W4	0	0	80 AC	117 AC	115 AC	110 AC	120 DC

RESISTANCE READING FOR CHASSIS 120146B

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
	V-1	12BE6	2,400	0.4	26	14	300,000	300,000
V-2	12BA6	4 meg.	0	26	38	300,000	300,000	120
V-3	12AT6	10 meg.	0	0	0	14	500,000	4 meg.
V-4	50C5	150	470,000	90	38	470,000	300,000	350,000
V-5	35W4	N.C.	N.C.	90	125	150	120	350,000

Voltage and resistance reading instructions

1. Voitage readings are in volts and resistance readings in ohms unless otherwise specified.
2. D-C voltage measurements are at 20,000 ohms per volt; a-c voltage measured at 1,000 ohms per volt.
3. Measured values are from socket pin to common negative.
4. Line voltage maintained at 117 volts, 60 cycles for voltage readings.
5. Normal tolerance on component values makes possible a variation of $\pm 15 \%$ in voltage and resistance readings.
6. Volume control at maximum, no signal applied for voltage measurements.

CHASSIS PARTS LIST (Chassis 120146-B)

$\begin{aligned} & \text { SYM- } \\ & \text { BOL } \end{aligned}$	PART NO.	DESCRIP TION	$\begin{aligned} & \text { LIST } \\ & \text { PRICE } \end{aligned}$	$\begin{aligned} & \text { SYM- } \\ & \text { BOL } \end{aligned}$	PART NO.	DESCRIP TION		$\left\|\begin{array}{l} \text { LIST } \\ \text { PRICE } \end{array}\right\|$
C-1A)	900084	$\left\{\begin{array}{l} \text { Variable Capacitor - r.f. Section } \\ \text { Variable Capacitor - osc. Section } \end{array}\right\}$	3.30	R-4	351452	10 megohm. Carbon	1/2W $\pm 20 \%$. 14
C-1B ${ }^{\text {d }}$				R-5	351132	470,000 ohm. Carbon	$1 / 2 W \pm 20 \%$. 14
$\mathrm{C}-2$	Pt. of C-1A	Trimmer - r.f. Section		R-6	351132	470,000 ohm. Carbon	$1 / 2 \mathrm{~W} \pm 20 \%$. 14
C-3	Pt. of C-1B	Trimmer-osc. Section 400 V		R-7	340292	150 ohm. Carbon	$1 / 2 \mathrm{~W} \pm 10 \%$. 17
C-4	923554		. 25	R-8	340072	18 ohm. Carbon	1/2W W 10\%	. 14
C-5A		220 mmf .		R-9	380.532	1,500 ohm. Carbon	1/2W $\pm 20 \%$. 16
C-5B	470310	. 002 mf . $\}$ Multiple Condenser	. 75	SP-1		120 ohm. Carbon $1 / 2 \mathrm{~W} \pm 10 \%$. 14
$\binom{C-5 C}{C-5 D}$		$\left.\begin{array}{l}220 \mathrm{mmf} . \\ .005 \mathrm{mf} .\end{array}\right\}$ Multiple Condenser				Speaker - PM - $\mathbf{4 n}^{1}$		4.20
C-6	923524	.02 mf . Paper 400 V	. 25					
C-7	923554	.05 mf . Paper 400 V	. 25	SW-1	510083	On - Off Switch - Radi		. 25
C-8	922200	.047 mf. Paper Molded 400 V 50 mf. Electrolytic 150 V 50 mf. Electrolytic 150 V	2. 10					
C-9A)	925212			T-1	720055	1st I.F. Transformer		1.85
C-9B				T-2	720033	2nd I.F. Transformer		2. 15
L-1	700062	Loop Antenna \& Back	1.75					
L-2	716064	Oscillator Coil	. 95	T-3	734068	Output Transformer		1.95
M-1	470672	Clock Movement		V-1	800525	Vacuum Tube - 12BE6		1.80
				V-2	800524	Vacuum Tube - 12BA6		1.80
P-1	583036	Line Cord \& Plug		V-3	800523	Vacuum Tube - 12AT6		1.50
				$\mathrm{V}-4$	800032	Vacuum Tube - 50C5		2.00
R-1	Pt. of L-2	22,000 ohm. Carbon $1 / 2 \mathrm{~W} \pm 10 \%$		V -5	800526	Vacuum Tube - 35N4		1.25
R-2	351332	3.3 megohm. Carbon $1 / 2 \mathrm{~W} \pm 20 \%$. 14					
R-3	390186	500,000 ohm. Volume Control		X-1	500029	Appliance Outlet		. 35

CABINET PARTS LIST FOR (Model 695B)

MODEL $695 B$	DESCRIP TION	LIST PRICE
140430	Cabinet - (Mottled Br.)	3.40
140432	Cabinet - (lvory)	6.00
470672	Clock Movement	17.95
460242	Crystal - Clock	.25
450124	Knob - Radio - (Mottled Br.)	.20
450123	Knob - Radio - (lvory)	.15
460245	Switch Knob - Clock	
280181	Time Set Knob - Clock	
542069	Speed Nut - Crystal	.01

PRICES SUBJECT TO CHANGE WITHOUT NOTICE
Fig 2. DIAL CORD STRINGING MODEL 695B

MODEL 703B

DESCRIPTION

TYPE: Model 703B is a Single band superheterodyne receiver with a 3 -speed automatic record changer.

FREQUENCY RANGE: 540-1620 kc.

TYPE OF TUBES:

Models 703B - chassis 120097B
1-12BE6, converter
1-12BA6, i-f amplifier
1-12AT6, detector, a.v.c., a-f amplifier
1-50B5, power output
1-35W4, rectifier

POWER SUPPLY: 115 volts, 60 cycles a.c. only

POWER CONSUMPTION-50 watts.

GENERAL NOTES

1. This model is equipped with an automatic record changer that plays $33-1 / 3,45$ and 78 rpm records, using a cartridge type needle.
2. If replacements are made or the wiring disturbed in the r-f section of Model 703 B , the receiver should be carefully realigned.
3. Model 703B has a self-contained antenna and does not
require an additional antenna. For permanent installations, however, if it is desired to improve reception of weak stations, an additional outdoor antenna may beconnected to the colored lead at the res of the cabinet.
4. The self-contained loop antenna has directional properties. It is important, therefore, once a station is tuned in, that the cabinet be rotated back and forth through a quarter-turn and left at that position where maximum volume is obtained.

CONDITIONS FOR VOLTAGE AND RESISTANCE READINGS

1. Voltages indicated are positive d.c., resistances are in ohms, unless otherwise indicated.
2. Measurements made with voltohmyst or equivalent.
3. Line voltage maintained at 120 volts a.c. for voltage measurements.
4. Socket connections are shown as bottom views, with measurements from pin to common negative.
5. Volume control at maximum; radio-phono switch in radio position; no signal applied for Model 703 B measurements.
6. Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in voltage and resistance readings.
7. On the diagrams, upper values are voltage; lower values are resistance. NC denotes no connection, K is kilohms, MEG is megohms, INF. is infinity. Resistances marked * are measured to pin 7 of rectifier ($\mathbf{B +}$).

ALIGNMENT INSTRUCTIONS — MODEL 703B

1. To position pointer, turn variable condenser fully closed and set pointer to reference mark at low-frequency end of dial backplate.
2. Use isolation transformer if available. If not, connect a .1 mfd . condenser in series with low side of signal generator and $B-$ -
3. Volume control should be at maximum position; radio-phono switch in radio position. Output of signal generator should be no higher than necessary to obtain an output reading. Use an insulated screw driver for adjusting.

JULY 18, 1951

PAGE 23-10 EMERSON
MODEL 703B, Ch.
120097-B, 120108-B

STEP	DUMMY ANTENNA	SIGNAL GENERA'TOR OUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{aligned} & \text { RADIO } \\ & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { OUTPUT } \\ & \text { METER } \end{aligned}$	ADJUST	REMARKS
1	.1 mfd .	High side to grid (pin 7) of V1 (12BE6). Low side to chassis.	455 KC	Variable condenser fully cpen.	Across voice coil.	T2, T1	Adjust for maximum output. If isolation transformer is not used, reduce dummy ant. to .001 mfd to reduce hum modulation.
2	200 mmf.	Form loop of several turns and radiate signal into receiver.	1620 KC	"	Across voice coil.	$\begin{aligned} & \text { Trimmer C-4. } \\ & \text { (Osc.) } \end{aligned}$	Adjust for maximum output.
3	200 mmf .	"	1400 KC	Tune for maximum output.	Across voice coil.	$\underset{\text { (Ant.) }}{\text { Trimmer }} \text { C.3. }$	Adjust for maximum output.

950137

FIG. 2-VOLTAGE AND RESIṠTANCE CHECK. CHART (CHASSIS 120097B)

EMERSON PAGE 23-11
MODEL 703B, Ch. 120097 -B, 120108-B

PT. No. 950130
©John F. Rider

MODEL 703B, Ch. 120097-B, 120108-B

CHASSIS PARTS LIST (CHASSIS - 120097•B)

Symbol	Part No.	DESCRIPTION	Price List	Symbol	Part No.	DESCRIPTION	Price List
C-1		Variable Condenser-Tuning	2.75	R-2	Pt. of L-1	22,000 Ohm Carbon $1 / 2 \mathrm{~W} \pm 10 \%$	
C-2 3	900	Variable Condenser-Oscillator		R-3	340272	120 Ohm Carbon $1 / 2 \mathrm{~W} \pm 10 \%$. 14
C-3	Pt . of $\mathrm{C}-1$	Trimmer		R-4	351332	3.3 Megohm	
C-4	Pt . of $\mathrm{C}-2$	Trimmer				Carbon $1 / 2 \mathrm{~W} \pm 20 \%$. 14
C-5	Pt . of $\mathrm{T}-1$			R-5	510069-1	500,000 Ohm Volume Control	3.25
C-6	Pt . of $\mathrm{T}-1$			R-6	351452	10 Megohm	
C-7	Pt . of $\mathrm{T}-2$					Carbon 1/2W $\pm 20 \%$. 14
C-8	Pt . of T-2			R-7	351132	470,000 Ohm Carbon $1 / 2 \mathrm{~W} \pm 20 \%$. 14
C-9A		220 MMF)		R-8	351132	470,000 Ohm Carbon $1 / 2 \mathrm{~W} \pm 20 \%$. 14
C-9B $\}$	470310	2000 MMF) Multiple Condenser	. 75	R-9	340292	150 Ohm Carbon $\quad 1 / 2 \mathrm{~W} \pm 10 \%$. 17
C-9C		220 MMF) Multiple Condenser		R-10	370492	1,000 Ohm Carbon $1 \mathrm{~W} \pm 10 \%$. 16
C-9D		5000 MMF)		$\mathrm{R}=11$	370152	. 39 Ohm Carbon 1 W $\pm 10 \%$. 17
C-11	923554	. 05 MF Paper 400.V	. 25	SP-1	180052	PM Speaker - 5*	4.90
C-12	925163	50 MF Electrolytic ${ }^{150 \mathrm{~V}}$	1.45				
C-13 $\}$	925163	50 MF Electroiytic 150V	1.45	SW-1	Pt. of R-5	On-Off Switch	
C-14	923554	.05 MF Paper 400V	. 25	SW-2	Pt. of R-5	Radio-Phono Switch	
C-15	923554	.05 MF Paper 400V	. 25	SW-3	510068	Tone Control Switch	. 30
C-16	923554	.05 MF Paper 400V	. 25				
C-17	923315	.1 MF Paper 200V	. 25	T-1	720055	1st I.F. Transformer	1.85
C-10	923713	. 001 MF Paper 600V		T-2	720055	2nd I.F. Transformer	1.85
C	923514	.01 MF (Chassis 120108B only)	. 25	T-3	734055	Output Transformer	1.30
		(Chassis 120097B only)	. 25	V-1	800525	Vacuum Tube - 12BE6	
C-18	Pt. of L-2	2.2 MMF Ceramic		V-2	800524	Vacuum Tube - 12BA6	
				V-3	800523	Vacuum Tube - 12AT6	
L-1	716061	Oscillator Coil	. 95	V-4	800527	Vacuum Tube - 50B5	
L-2	700064	Loop	1.29	V-5	800526	Vacuum Tube - 35W4	
P-1	583028 P	Line Cord \& Plug	. 60	V-6	807000	Dial Light	. 09
P-2	505015	Pickup Plug	. 10	X-1	585051	Cable \& Socket Assy. - Motor	. 45
				X-2	508003	Pickup Socket	. 10

PRICES SUBJECT TO CHANGE WITHUUT NOTICE

CABINET PARTS LIST (MODEL 703B)

Part No.	DESCRIPTION	PRICE LIST
140438	Cabinet	90.00
470092	Lid Support	.50
819063	Record Changer (3-Speed)	65.00
960143	Cartridge for Record Changer	8.20
960147	Needle for Cartridge	1.00
450099 S	Knob Assembly	.30
450064	Knob - Control	.25
450063	Knob - Radio - Phono	.25
587011	Spring Insert - Knobs	.01
520156	Glass Dial	.25
410863	Dial Holder	.01
700064	Loop Antenna	1.29

Prices subject to change without notice.

FIGURE 3. DIAL CORD STRINGING, MODEL 703B

DESCRIPTION
TYPE: Single-band (AM) superheterodyne. FREQUENCY RANGE: Broadcast $540-1620 \mathrm{kc}$ TYPE OF TUBES:

> V-1--12BE6, converter

V-2--12BA6, i-f amplifier
V-3--12AT6, or 12AV6, detector, a.v.c. a-f amplifier
V-4--50C5, or 50B5 power output
V-5--35W4, rectifier
POWER SUPPLY: A.C. or D.C.
VOLTAGE RATING: $105-125$ volts.
POWER CONSUMPTION: 30 watts.
CURRENT DRAIN: 0.24 amp . at 117 volts a.c.

GENERAL NOTES

1. If replacements are made or the wiring disturbed in the r-f section of the circuit, the receiver should be carefully realigned.
2. In operating the receiver on d.c., it may be necessary to reverse the line plug for correct polarity.
3. Model 706B has a self-contained antenna and does not require additional antenna connections.
4. The self-contained bar type antenna operates at maximum efficiency when its position is pointing to the broadcasting source. It is important, therefore, once the station is tuned in, to rotate the cabinet back and forth through a quarter of a circle (90 degrees), leaving it at the position where the station is received with maximum volume.

ALIGNMENT INSTRUCTIONS

Use isolation transformer if available. If not, connect a .1 mfd . condenser in series with low side of signal generator and B Volume control should be at maximum position. Output of signal generator should be no higher than necessary to obtain an output reading. Use an insulated screw driver for adjusting.

STEP	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	RADIO DIAL SETTING	OUTPUT METER	ADJUST	REMARKS
1	. 1 mfd .	High side to grid (pin 7) of V1 (12BE6). Low side to B -	455 KC	Variable condenser fully open.	Across voice coil.	$\begin{gathered} \text { T2, T1 } \\ \text { (A3, A4, } \\ \text { A1, A2) } \end{gathered}$	Adjust for maximum output. If isolationtransformer is not used, reduce dummy ant. to .001 mfd . to reduce hum modulation.
2		Form loop of severalturns and radiate signal into receiver	1620 KC	"	Across voice coil.	Trimmer C-4 (Osc.)	Adjust for maximum out put.
3		"	1400 KC	Tune for maximum output.	Across voice coil.	$\begin{aligned} & \text { Trimmer C-2 } \\ & \text { (Ant.) } \end{aligned}$	Adjust for maximum output.

MODELS 706B, 707B,

Ch. 120156-B CONDITIONS FOR VOLTAGE AND RESISTANCE READINGS

1. Voltages indicated are positive d.c., resistances are in ohms, unless otherwise indicated.
2. Measurements made with voltohmyst or equivalent.
3. Line voltage maintained at 117 volts a.c. for voltage measurements.
4. Socket connections are shown as bottom views, with measurements from pin to common negative.
5. Volume control at maximum; no signal applied for voltage measurements.
6. Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in voltage and resistance readings.
7. On the diagram, upper values are voltage; lower values are resistance. NC denotes no connection, K is kilohms, MEG is megohms. Resistances marked * are measured to pin 7 of rectifier ($B+$).

VOLTAGE READINGS FOR CHASSIS 120156-B

SYMBOL	- TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V-1	12BE6	-7.6	0	12 AC	24 AC	95	95	-. 5
V-2	12BA6	0	0	24 AC	36 AC	95	95	1.3
V-3	12AT6*	-1	0	0	12 AC	-. 65	0	45
V-4	50 C 5	6.5	0	36 AC	85 AC	0	95	120
V-5	35W4	N.C.	N.C.	85 AC	117 AC	110 AC	112 AC	130

RESISTANT READINGS FOR CHASSIS 120156-B

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V-1	12BE6	23 K	. 5	12	24	1500*	1500*	4 MEG
V -2	12 BA 6	18	0	24	36	1500*	1500*	120
V-3	12AT6*	6 MEG.	0	0	12	500 K	0	470*
V-4	50C5*	150	470 K	36	90	470 K	${ }_{\text {1500* }}$	$210 *$
V-5	35W4.	N. C.	N.C.	90	120	135	115	0 *

* In some models 12 AV6 may be used as alternate for 12AT6.
* The 50C5 may be substituted with a 50B5 but only when the alternate circuit is used shown in schematic diagram.

vOLTAGE AND RESISTANCE READING INSTRUCTIONS

1. Line voltage maintained at 115 volts for voltage readings.
2. D.C. and A.C. voltages measured with V.T.V.M. 4. All measurements measured with band switch on broadcast.
3. Measured values are from socket pin to B neutral. S. Volume control at maximum, no signal applied for voltage measurements.

BOTTOM VIEW

BOTTOM VIEW

EMERSON PAGE 23-15

CHASSIS PARTS LIST (Chassis 120156-B)

Prices subject to change without notice.

CABINET PARTS LIST 706B-707B

Part numbers		DESCRIPTION	$\begin{aligned} & \text { LIST } \\ & \text { PRICE } \end{aligned}$
MODEL 706B	$\begin{aligned} & \text { MODEL } \\ & \text { 707B } \end{aligned}$		
140450	140450	Cabinet Body - Walnut	1.70
140450A	140450A	Cabinet Body - Ivory	2.50
140450B	140450B	Cabinet Body - Grey	2.50
	140450C	Cabinet Body - Maroon	2.50
140450D	140450D	Cabinet Body - Pink	2.50
140450 E	140450E	Cabinet Body - Gunmetal	2.50
140450F	140450F	Cabinet Body - Yellow	2.50
140451		Front Plate - Sprayed Gold	. 60
	140452	Front Plate - Gold \& Silver	1.60
	140452A	Front Plate - Gold and Ruby	1.90
460274		Knob Tuning	. 50
	460314	Knob Tuning	. 50
460311	460311	Knob - Volume	. 10
542280	542280	Spring - Knob	. 02
587329	587329	Fastener - Front to Body	. 02
575839	575839	Cabinet Back	. 10
575877		Baffle	. 10
	575871	Baffle	. 40
180084	180084	$\begin{aligned} & \text { Speaker - P.M. } 4^{n} \\ & \text { (with Output Transformer) } \end{aligned}$	5.95
583037P	583037P	Line Cord \& Plug	. 80
807000	807000	Pilot Light	. 0 ?
700066	700066	Loop Antenna Assembly - Ferrite	1.85

TYPE: Single-band superheaterodyne, with clock-timer and appliance outlet.

FREQUENCY RANGE: 540-1620 kc.
TYPE OF TUBES:
V-1 - 12BE6, oscillator mixer
V-2 - 12BA6, first i-f amplifier
V-3 - 12AT6, detector, a-f amplifier
V-4 - 50C5, A. F. output
V-5 - 35W4, rectifier
POWER SUPPLY: A.C. 60 cycles only
VOLTAGE RATING: 115 volts.
POWER CONSUMPTION: 32 watts.

ALIGNMENT

Pointer will be correctly set when tuning gang is fully open and notch or rim of pointer pulley is in line with mark on pointer pulley mounting bracket. (See Figure 2.) Use isolation transformer if available. If not, connect a 0.1 mfd. condenser in series with low side signal generator and chassis. Volume control should be at maximum position; output of signal generator should be no higher than necessary to obtain an output reading. Use an insulated alignment screwdriver for adjusting.

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	RADIO DIAL SETTING	METER OUTPUT	ADJUST	REMARKS
1	0.001 mfd .	High side to stator of rear section of tuning condenser. Low side to chassis.	455 kc	Variable condenser fully open.	Across voice coil.	$\begin{aligned} & \mathrm{A} 1, \mathrm{~A} 2 \\ & \mathrm{~A} 3, \mathrm{~A} 4 \end{aligned}$	Adjust for maximum output.
2	200 mmfd.	High side to external antenna lead. Low side to external ground lead.	1620 kc	Variable condenser fully open.	Across voice coil.	A5	Adjust for maximum output.
3	200 mmfd .	High side ro external antenna lead. Low side to external ground lead.	1400 kc	Tune for maximum output.	Across voice coil.	A6	Adjust for maximum output.

1. If replacements are made or the wiring disturbed in the r-f section of the circuit, the receiver should be carefully realigned.
2. This model has a self-contained antenna and does not require additional antenna connections. For permanent home installations, however, if it is desired to improve reception of weak stations, an additional outdoor antenna may be used. For this purpose a lead has been brought out in the rear. Use no ground connection.
3. The self-contained bar loop antenna operates at maximum efficiency when it is pointed toward the broad- ${ }^{2}$ casting source. It is important, therefore, once the station is tuned in, to rotate the cabinet back and forth through a quarter of a circle (90 degrees), leaving it at the position where the station is received with maximum volume.
4. Appliance outlet and radio on-off switch located in back of chassis. For information on clock applications see instructions supplied with set. \because
\square

PAGE 23-18 EMERSON
MODEL 718B,
Ch. 120150-B

John F. Rider
 Ch. 120150-B-
VOLTAGE READING FOR CHASSIS 120150-B

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V-1	12BE6	-8.5 DC.	0	24.AC	12 AC	90 DC	90 DC	-. 6 DC.
V-2	12BA6	-.6 DC.	0	24 AC	36 AC	90 DC	90 DC	1 DC
V-3	12AT6	-.7DC.	0	0	12 AC	-. 8 DC.	- 8 DC.	42 DC
V-4	50C5	5.6 DC .	0	80 AC	36 AC	0	90 DC	110 DC
V-5	35W4	0	0	80 AC	117 AC	115 AC.	110 AC	120 DC
RESISTANCE READING FOR CHASSIS 120150-B								
SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V-1	12BE6	2.4 K	0.4	26	14	${ }^{*} 1600$		
V-2	12BA6	4 MEG.	0	26	38	${ }^{*} 1600$	*1600	130
V-3	12AT6	10 MEG .	0	0	14	. 5 MEG.	. 5 MEG.	*. 5 MEG.
V-4	50C5	160	. 5 MEG.	90	38	. 5 MEG.	* 1600	*200
V-5	35W4	N.C.	N.C.	90	125	150	120	${ }^{*} 0$

* with reference to Pin \#7, 35W4.

1. Voltage readings are in volts and resistance readings in ohms unless otherwise specifie 2. D-C voltage measurements are at 20,000 ohrs per volt; a-c voltage measured at 1,000 ohms per volt. 3. Measured values are from socket pin to common negative, unless otherwise specified.
Line voltage maintained at 117 volts, 60 cycles for voltage readings.
Normal tolerance on component values makes possible a variation of \pm 6. Volume control at maximum, no signal applied for voltage measurements.

CHASSIS PARTS LIST (Chassis 120150-B

$\begin{aligned} & \text { SYM- } \\ & \text { BOL } \end{aligned}$	PART NO.	DESCRIP TION	$\begin{array}{\|l\|} \hline \text { LIST } \\ \text { PRICE } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { SYM } \\ \text { BOOL } \end{array}$	PART NO.	DESCRIP TION		LIST
C-1A	900084	Variable Capacitor - r.f. Section		R-4	351452	10 megohm. Carbon	1/2W $\mathbf{2 0 \%}$. 14
C.18]		Variable Capacitor - osc. Section	3.30	R-5	351132	470,000 ohm. Carbon	1/2w 20%	. 14
C-2	Pt. of C-1A	Trimmer - r.f. Section		R-6	351132	470,000 ohm. . Carbon	1/2W $\pm 20 \%$. 14
C-3	Pt. of C-1B	Trimmer - osc. Section		R-7	340292	150 ohm. Carbon	1/2 $\mathrm{W} \pm 10 \%$. 10
C-4	923554	. 05 mf . Paper 400 V	. 25	R-8	340072	18 ohm. Carbon	1/2W W 10\%	. 14
C-5A		220 mmf .		R-9	380.532	1,500 ohm. Carbon	1W $+20 \%$. 16
C-58	470310	. $002 \mathrm{mf}$. . Multiple Condenser	. 75	R-10	340272	120 ohm. Carbon	$1 / 2 \mathrm{~W} \pm 10 \%$. 14
($\begin{aligned} & \text { C-5C } \\ & \text { C-5D }\end{aligned}$. $220 \mathrm{mmf}$. .		SP-1	-180087	Speaker - PM-4"		3.00
C-6	923524	. 02 mf . Paper 400 V	. 25					
C-7	923554	. 05 mf . Paper 400 V	. 25	SW-1	510083	On - Off Switch - Radio		. 25
C-8	922200	. 047 mf . Paper Molded 400 V	. 35					
C-9A ${ }^{\text {c }}$,	925212	50 mf . Electrolytic 150 V	1.60	T-1	720055	1st I.F. Transformer		1.85
C-98		50 mf . Electrolytic 150V		T-2	720033	2nd I.F. Transformer		1.80
L-1	700071	Bar Loop. Antenna	2.15					
L-2	716064	Oscillator Coil	. 95	T-3	734068	Output Transformer		1.50
M-1	470699	Clock Movement		v-1	800525	Vacuum Tube - 12BE6		
				$\mathrm{V}-2$	800524	Vacuum Tube - 12Ba6		
P-1	583036	Line Cord \& Pluy	1.30	V-3	800523	Vacuum Tube - 12AT6		
				V-4	800032	Vacuum Tube-50C5		
R-1	Pt. of L-2	22,000 ohm. Carbon $1_{2} \mathrm{~W} \pm 10 \%$		V-5	800526	Vacuum Tube - 35W4		
R-2	351332	3.3 megohm. Carbon $\quad 1 / 2 W \pm 20 \%$. 14	X 1		Appliance Outlet		
R-3	390206	500,000 ohm. Volume Control	. 90	X.1	or 500029	Appliance Outlot		. 25

PRICES SUBJECT TO ChANGE WITHOUT NOTICE

DESCRIPTION

MODEL 704
TYPE: Portable (battery operated) superheterody nê.

GENERAL NOTES

FREQUENCY RANGE: 540-1600 kc.

TYPE OF TUBES:
$1-1$ R5, converter
$1-1 U 4$, i-f amplifier
$1-1 U 5$, detector, a.v.c., a-f amplifier
$1-3$ V4, power output

POWER SUPPLY: " A " and " B " batteries.

VOLTAGE RATING:
" A "' Battery-1.5. volts
"B"' Battery-67.5 volts
CURRENT DRAIN:
"A" Battery -0.20 amp.
"B" Battery-0.0075 amp.

1. If replacements are made in the r-f section of the circuit, the receiver should be carefully realigned.
2. The receiver has a self-contained antenna and does not require additional antenna or ground connection.
3. The self-contained bar type antenna has directional properties. It is important, therefore, once the station is tuned in, to rotate the cabinet back and forth through a quarter of a circle (90 degrees), leaving it at the position where the station is received with maximum volume.
4. Remove batteries as soon as they are exhausted.
5. This receiver uses one Emerson 67.5 vole "B" battery No. EM 216 dimensions $5^{\prime \prime \prime} 4^{\prime \prime} \times 1^{\prime \prime} \times 17 / 8^{\prime \prime}$ and two Emerson 1.5 volt " A " batteries No. EM 236 dimensions are $13 / 8^{\prime \prime}$ dia. and $4^{\prime \prime}$ length.

ALIGNMENT INSTRUCTIONS

Volume control should be at maximum; output of signal generator should be no higher than necessary to obtain an output reading.

	$\begin{aligned} & \text { DUMMY } \\ & \text { ANTENNA } \end{aligned}$	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{gathered} \text { RADIO } \\ \text { DIAL } \\ \text { SETTING } \\ \hline \end{gathered}$	OUTPUT METER	ADJUST	REMARKS
1	.1 mfd.	High side to pin 6 (grid) of IR5. Low side to chassis.	455 KC .	Tuning condenser fully open.	Across voice coil.	$\begin{gathered} T 2 \text { and } \\ \text { T1 } \end{gathered}$	Adjust for maximum output.
2		Loop Ant connected to signal gen. and placed near bar loop ant.	600 KC .	Tuning condenser fully closed.	Across voice coil.	Osc. slug in $\mathrm{L}-2$	Adjust for maximum output.
3		Loop	1620 KC .	Tuning condenser fully open.	Across voice coil.	C4 (osc. trimmer)	Fashion loop of several turns of wire and radiate signal into loop of receiver. Adjust for maximum output.
4		Loop	1400 KC .	Tune for maximum output.	Across voice coil.	C3 (Ant. trimmer)	Adjust for maximum output.

CONDITIONS FOR VOLTAGE AND RESISTANCE READINGS

1. Voltages indicated are positive d.c., resistances in ohms, unless otherwise noted.
2. Measurements made with voltohmyst or equivalent.
3. All measurements taken between points and chassis, unless otherwise indicated.
4. Volume control at maximum, no signal applied, for voltage measurements.
5. Nominal tolerance in component values makes possible a variation of $\pm 15 \%$ in readings.
6. K is Kilohms, MEG in mehohms. Resistance marked * are measured to B + (Pin \#3, V-4).

RESISTANCE READINGS FOR CHASSIS 120154-B

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V-1	1R5	0	17^{*}	$15 K^{*}$	110 K	0	4 M	3.3
V-2	1U4	0	17^{*}	0^{*}	0^{*}	0	5 M	3.3
V-3	1U5	0	$1 \mathrm{M}^{*}$	$4.7 \mathrm{M}^{*}$	1 M	1 M	10 M	3.3
V-4	3V4	3.3	350^{*}	0^{*}	470	0	3 M	3.3

VOLTAGE READINGS FOR CHASSIS 120154-B

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V-1	1R5	0	58	38	-9	0	-.4	1.3
V-2	lU4	0	58	58	58	0	-0	1.3
V-3	1U5	0	19	16	-.7	-.8	-.1	1.3
V-4	3V4	1.3	56	58	-3.8	0	-3.8	1.3

All measurements taken between points and chassis unless otherwise indicated.

* Measured to B + (Pin \#3, V-4).
. For best results replacements should be made with genuine Emerson parts and genuine Emerson tubes.

EMERSONPAGE 23-23

John F. Rider
CHASSIS PARTS LIST (Chassis 120154-B)

$\begin{aligned} & \text { Sym- } \\ & \text { bol } \end{aligned}$	Part No.	Description		$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	$\begin{gathered} \text { Sym- } \\ \text { bol } \\ \hline \end{gathered}$	Part No.	Description		List Price
C-1	900085	Variable Capacitor - R.F. Section		3.05	R-4	351372	4.7 megohm Carbon	1/2W. $\pm 20 \%$. 14
C-2	Pt. of C-1	Trimmer - R. F. Section			R-5	340892	47,000 ohm Carbon	1/2W. $\pm 10 \%$. 17
C-3	Pt. of C-1	Variable Capacitor - Oscillator Section			R-6	390194	1 megohm Volume Control		1.65
C-4	Pt. of C-1	Trimmer-Oscillator Section			R-7	351452	10 megohm Carbon	1/2W. $\pm 20 \%$. 14
C-5	920507	. 05 mf Paper	200V	. 30	R-8	351372	4.7 megohm Carbon	1/2W. $\pm 20 \%$. 14
C. 6	920509	. 01 mf Paper	200V	. 25	R-9	341212	1 megohm Carbon	1/2W. $\pm 10 \%$. 14
C.7	920140	. 003 mf Paper	150V	. 25	R-10	351332	3.3 megohm Carbon	1/2W. $\pm 20 \%$. 14
C. 8	915032	3.3 mmf Ceramic	$\pm 20 \%$. 10	R-11	340412	470 ohm Carbon	1/2W. $\pm 10 \%$. 14
C. 9	928013	100 mmf Ceramic	- 500v	. 25					
C-10	Part of	200 mmf .			SP. 1	180085	Speaker - PM - 3 1/2'		4.90
C-11	Part of	. 001 mf							
C. 13	$\left.\begin{array}{l}\text { Part No. } \\ 928034\end{array}\right\}$. 01 mf (Multiple Condenser Ass'y		. 95	$\begin{aligned} & \text { SW-1 } \\ & \text { SW-2 } \end{aligned}$	Part of	On - Off Switch		
C-14		. 001 mf				Pr. No. 390194	On - Off Switch		95
C-15	920550	. 002 mf Paper 200 V .		. 20					. 95
C. 16	925217	10 mf Electrolytic	70V.	1.20	T-1	720152	1st I.F. Transformer		2.05
					T.2	720152	2nd I.F. Transformer		2.05
L-1	700069	Bar Antenna		2.15	T.3	734076	Output Transformer		1.75
L-2	716072	Oscillator Coil		1.15					
					V-1	810110	Vacuum Tube - 1R5		
		100,000 ohm Carbon	1/2W. $\pm 20 \%$. 17	V -2	800017	Vacuum Tube - 144		
R-2 R.3	340772 351332	15,000 ohm Carbon	1/2W. $\pm 10 \%$. 14	V-3	800019	Vacuum Tube - 105		
R.3	351332	3.3 megohm Carbon	1/2W. $\pm 20 \%$. 14	V-4	800018	Vacuum Tube - 3Y4		

CABINET PARTS LIST (Model 704)

PART NO.	DESCRIPTION	$\underset{\text { PRICE }}{\text { LIST }}$	PART NO.	DESCRIPTION	$\begin{aligned} & \text { LIST } \\ & \text { PRICE } \end{aligned}$
Model					
704	Cabinet	5.80	460291	Dial Knob	. 70
140461	Cabinet Front - with Handle	3.50	450139	Knob - Volume	. 20
140462	Cabinet Back	1.50	411241	Metal Ring - Knob	. 03
460286	Handle Plastic	. 80	542280	Compression Spring - Knob	. 02
411239	Handle Ring		460286	Emerson Script	. 50

[^7]John F. Rider

MODEL
708B
CHASSIS - 120165-B

DESCRIPTION

TYPE: Single-band (AM) superheterodyne.
FREQUENCY RANGE: Broadcast 540-1620 kc
TYPE OF TUBES:
V-1--12BE6, converter
V-2--12BA6, i-f amplifier
V-3-12ATG, detector, a.v.c. a-f amplifier
$\mathbf{V}-4-50 \mathrm{C} 5$, power output
V-5--35W4, rectifier
POWER SUPPLY: A.C. or D.C.
VOLTAGE RATING: 105-125 volts.
POWER CONSUMPTION: 30 watts.
CURRENT DRAIN: 0.24 amp . at 117 volts a.c.

GENERAL NOTES

1. If replacements are made or the wiring disturbed in the r-f section of the circuit, the receiver should be carefully realigned.
2. In operating the receiver on d.c., it may be necessary to reverse the line plug for correct polarity.
3. Models 708B and 713B have a self-contained antenna and do not require additional antenna connections.
4. The self-contained bar type antenna operates at maximum efficiency when its position is pointing to the broadcasting source. It is important, therefore, once the station is tuned in, to rotate the cabinet back and forth through a quarter of a circle (90 degrees), leaving it at the position where the station is received with maximum volume.

MODELS 708B, Ch. 120165-B;
 713B, Ch. 120156-B

CONDITIONS FOR VOLTAGE AND RESISTANCE READINGS

1. Voltages indicated are positive d.c., resistances are in ohms, unless otherwise indicated.
2. Measurements made with voltohmyst or equivalent.
3. Line voltage maintained at 117 volts a.c. for voltage measurements.
4. Socket connections are show n as bottom views, with measurements from pin to common negative.
5. Volume control at maximum; no signal applied for voltage measurements.
6. Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in voltage and resistance readings.
7. NC denotes no connection, K is kilohms, MEG is megohms. Resistances marked * are measured to pin 7 of rectifier ($\mathrm{B}+$).

ALIGNMENT INSTRUCTIONS

1. Use isolation transformer if available. If not, connect a .1 mfd . condenser in series with low side of signal generator and B 2. Volume control should be at maximum position. Output of signal generator should be no higher than necessary to obtain an output reading. Use an insulated screw driver for adjusting.

STEP	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	RADIO DIAL SETTING	OUTPUT METER	ADJUST	REMARKS
1	. 1 mfd .	High side to grid (pin 7) of V1 (12BE6). Low side to B -	455 KC	Variable condenser fully open.	Across voice coil.	$\begin{gathered} \text { T2, T1 } \\ \text { (A3, A4, } \\ \text { A1, A2) } \end{gathered}$	Adjust for maximum output. If isolationtransformer is not used, reduce dummy ant. to .001 mfd . to reduce hum modulation.
2		Form loop of severalturns and radiate signal into receiver	$1620 \mathrm{KC}$	"	Across voice coil.	$\begin{aligned} & \text { Trimmer C-4 } \\ & \text { (Osc.) } \end{aligned}$	Adjust for maximum output.
3		"	1400 KC	Tune for maximum output.	Across voice coil.	$\underset{\text { (Ant.) }}{\text { Trimmer C-2 }}$	Adjust for maximum output.

VOLTAGE READINGS FOR CHASSIS 120156-B and 120165-B

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V-1	12BE6	-7.6	0	12 AC	24 AC	95	95	-. 5
V-2	12BA6	0	0	24 AC	36 AC	95	95	1.3
V-3	12AT6 \oplus	-1	0	0	12 AC	-. 65	0	45
V-4	50C5	6.5	0	36 AC	85 AC	0	95	120
V-5	35W4	N.C.	N.C.	85 AC	117 AC	110 AC	112 AC	130

RESISTANT READINGS FOR CHASSIS 120156-B and 120165-B

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V-1	$12 B E 6$	$23 K$.5	12	24	1500^{*}	1500^{*}	4 MEG
V-2	12BA6	18	0	24	36	1500^{*}	1500^{*}	120
V-3	12AT6 \oplus	6 MEG	0	0	12	500 K	0	470^{*}
V-4	50C5	150	470 K	36	90	470 K	1500^{*}	210^{*}
V-5	$35 W 4$	N.C.	N.C.	90	120	135	115	0^{*}

\oplus In some models 12 AV6 may be used as alternate for 12 ATG.

* Resistances measured to pin 7 of rectifier (B^{+}).

VOLTAGE AND RESISTANCE READING INSTRUCTIONS

1. Line voltage maintained at 115 volts for voltage readings.
2. D.C. and A.C. voltages measured with V.T.V.M.
3. Measured values are from socket pin to B neutral.
4. Volume contiol at maximum, no signal applied for voltage measurements.

$\mathrm{V}-1$
I2BE6

PART NO. $\begin{array}{r}950228 \\ 950214\end{array}$

John F. Rider

PAGE 23-28 EMERSON
MODELS 708B, Ch. 120165-B;
713B, Ch. 120156-B
CHASSIS PARTS LIST (Chassis 120156-B and 120165-B)

SYM- BOL	$\begin{gathered} \text { PART } \\ \text { NO. } \end{gathered}$	DESCRIPTION	$\begin{array}{\|c\|} \text { LIST } \\ \text { PRICE } \end{array}$	$\begin{gathered} \text { SYM- } \\ \text { BOL } \end{gathered}$	$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{gathered} \text { LIST } \\ \text { PRICE } \end{gathered}$
C-1	900086	Variable Capacitor - R.F. Sec.Trimmer \quad RF Sec.Variable Capacitor- Osc. Sec.Trimmer \quad Osc. Sec.	3.25	P-1	583037P	Line Cord and Plug	. 55
C-2	PT. of C-1			R-1	Pt.of L-2	22000 ohm Carbon	
C-3	PT. of C-1			R-2	340272	120 ohm Carbon 1/2W $\pm 10 \%$. 14
C-4	PT. of C-1			R-3	351332	3.3 megohm Carbon 1/2W $\pm 20 \%$. 14
C-5				R-4	390205	500,000 ohm Volume Control	1.30
C-6	PT. of T-1			R-5	Part	6.8 megohm ${ }^{\text {c }}$	
C-7	PT. of T-2			R-6	of	470,000 ohm -R.C. Coupling	
C-8	PT. of T-2			$\mathrm{R}-7$	923024	470,000 ohm 」 Un	
C-9	923554	. 05 MFD Paper 400V.	. 25	R-8	340292	150 ohm Carbon 1/2W $\pm 10 \%$. 10
C-10		220 MMF		R-9	380532	1,500 ohm Carbon 1W $\pm 20 \%$. 16
C-11		. 002 MF		R-10	340072	18 ohm Carbon $1 / 2{ }^{\mathbf{W}} \pm 10 \%$. 14
C-12	-923024	250 MMF -R.C. Coupling	1.05	SP-1	180084 or	- Speaker-P.M. $-4^{\prime \prime}$ (with Output Trans:)	4.95
C-13		250 MMF Unit		SP-1	180088	For Chassis 120156 only.	6.55
C-14		. 005 MF]		SP-1	180086 or	Speaker-P.M.-4" (with Output Trans.)	
C-15	923554	. 05 MFD Paper 400V.	. 25	SP-1	180090	For Chassis 120165-B only.	6.55
				SW-1	Pt.of R-4	On-Off Switch	
C-16	925218	30 MF Electrolytic 150 V .	1.40	T-1	720033	1st I.F. Transformer	1.80
		S		T-2	720033	2nd I.F. Transformer	1.80
C-17	923554	.05 MFD Paper 400V.	. 25	T-3	Pt.of SP-1	Output Transformer	
C-18	923515	. 1 MFD Paper 400V.	. 30	V-1	800525	Vacuum Tube - 12BE6	
		Loop Antenna Assembly - Ferrite		V -2	800524	Vacuum Tube - 12BA6	
L-1	700066	For Chassis 120156-B Only	1.85	V-3	800523	Vacuum Tube - 12AT6	
		Loop Antenna Assembly - Ferrite		V-4	800032	Vacuum Tube - 50C5	
L-1	700072	For Chassis 120165-B Ọnly	1.85	V-5	800526	Vacuum Tube - 35W4	
L-2	716071	Oscillator Coil	. 95	V-6	807000	Pilot Light	

Prices subject to change without notice.

CABINET PARTS LIST - MODELS 708B, 713B

MODELS		DESCRIPTION	$\begin{gathered} \text { LIST } \\ \text { PRICE } \end{gathered}$
708B	713B		
140473		Cabinet	2.00
	140477	Cabinet - Wood	8.00
	140.452B	Front Plate - Gold \& Dull Silver	2.40
575897		Baffle	. 30
	575871	Baffle	. 40
460326		Knob-Tuning	. 45
	460312	Knob - Tuning	. 20
460311	460311	Knob - Volume	. 10
542280	542280	Spring - Knob	. 02
575898		Back	. 10
	575839	Back	. 10
635001		Jewel Amber	. 12

Prices subject to change without notice.

Fig. 2 Tube Location Diagram of Chassis 120i56-B, 120165-B

MODEL 729B

DESCRIPTION

TYPE: Single-band (AM) superheterodyne.
FREQUENCY RANGE: Broadcast 540-1620 kc

TYPE OF TUBES:
V-1--12BE6, converter
V-2--12BA6, i-f amplifier
V-3-12AT6, detector, a.v.c. a-f amplifier
V-4--50C5, power output
V-5--35W4, rectifier
POWER SUPPLY: A.C. or D.C.
VOLTAGE RATING: 105-125 volts.
POWER CONSUMPTION: 30 watts.
CURRENT DRAIN: 0.24 amp . at 117 volts a.c.

MODEL 779B

GENERAL NOTES

1. If replacements are made or the wiring disturbed in the rof section of the circuit, the receiver should be carefully realigned.
2. In operating the receiver on d.c., it may be necessary to reverse the line plug for correct polarity.
3. This model has a self-contained antenna and does not require additional antenna connections. For permanent home installations, however, if it is desired to improve reception of weak stations, an additional outdoor antenna may be used. For this purpose a lead has been brought out in the rear. Use no ground connection.
4. The self-contained loop antenna operates at maximum efficiency when its position is pointing to the broadcasting source. It is important, therefore, once the station is tuned in, to rotate the cabinet back and forth through a quarter of a circle (90 degrees), leaving it at the position where the station is received with maximum volume.

CONDITIONS FOR VOLTAGE AND RESISTANCE READINGS

1. Voltages indicated are positive d.c., resistances are in ohms, unless otherwise indicated.
2. Measurements made with voltohmyst or equivalent.
3. Line voltage maintained at 117 volts a.c. for voltage measurements.
4. Measurements taken from pin to B neutral.
5. Volume control at maximum; no signal applied for voltage measurements.
6. Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in voltage and resistance readings.
7. NC denotes no connection, K is kilohms, MEG is megohms. Resistances marked * are measured to pin 7 of rectifier $35 \mathrm{~W} 4(\mathrm{~B}+$).

ALIGNMENT INSTRUCTIONS

1. Use isolation transformer if available. If not, connect a .1 mfd . condenser in series with low side of signal generator and B-neutral
2. Volume control should be at maximum position. Output of signal generator should be no higher than necessary to obtain an output reading. Use an insulated screw driver for adjusting.

STEP	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{gathered} \text { RADIO } \\ \text { DIAL } \\ \text { SETTING } \end{gathered}$	OUTPUT METER	ADJUST	REMARKS
1	001 mfd .	$\begin{array}{\|c\|} \text { High side to } \\ \text { grid (pin 7) } \\ \text { of V1 (12BE6). } \\ \text { Low side to } \\ \text { B-neutral } \end{array}$	455 KC	Variable condenser fully open.	Across voice coil.	$\begin{gathered} \text { T2, T1 } \\ (\mathrm{A} 3, \mathrm{~A} 4, \\ \text { A1, A2) } \end{gathered}$	Adjust for maximum output.
2		Form loop of severalturns and radiate signal into receiver	1620 KC	n	Across voice coil.	$\begin{gathered} \text { Trimmer C-4 } \\ \text { (Osc.) } \end{gathered}$	Adjust for maximum output.
3		"	1400 KC	Tune for maximum output.	Across voice coil.	$\underset{\text { (Ant.) }}{\text { Trimmer C-2 }}$	Adjust for maximum output.

RESISTANCE READINGS FOR CHASSIS 120170-B

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V-1	12BE6	23 K	.5	12	24	1500*	1500**	4 MEG
V-2	12BA6	18	0	24	36	1500*	1500*	120
V-3	12AT6	6 MEG	0	0	12	500 K	0	470*
V-4	50C5	150	470 K	36	90	470K	1500*	210*
V-5	35W4	N.C.	N.C.	90	120	135	115	0 *

* Resistances measured to pin 7 of rectifier 35W4 (B+).

EMERSON PAGE 23-31 MODELS 729B, 779B,
Ch. 120170-B

CHASSIS PARTS LIST (Chassis 120170-B

$\begin{gathered} \text { SYM- } \\ \text { BOL } \end{gathered}$	PART NO.	DESCRIPTION	$\begin{gathered} \text { LIST } \\ \text { PRICE } \end{gathered}$	SYM-	$\begin{gathered} \text { PART } \\ \text { NO. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { LIST } \\ \text { PRICE } \end{gathered}$	
$\\| \begin{aligned} & C-1 \\ & C-2 \end{aligned}$. 900092	Variable Capacitor-R.F. Section Trimmer-R.F. Section Variable Capacitor - Oscillator Sec. Trimmer-Oscillator Section	3.30	R-1	Pr. of L-2	22,000 ohm Carbon		
	$\begin{array}{\|l\|} \text { PT. of C-1 } \\ \text { PT. of } \mathrm{C}-1 \end{array}$			R-2	340272	120 ohm Carbon 1/2W. $\pm 10 \%$. 10	
$\\| \begin{aligned} & C-3 \\ & C-4 \end{aligned}$				R-3	351332	3.3 megohm Carbon $1 / 2 \mathrm{~W} . \pm 20 \%$. 06	
	$\begin{aligned} & \text { PT. of } C-1 \\ & \text { PT. of } C-1 \end{aligned}$			R-4	390205	500,000 ohm volume control	1.30	
C-5	PT. of T-1			R-5		6.8 megohm)		
C-6				R-6	of	470,000 ohm R.C. Coupling Unit		
C-6	PT. of T-1			R-7)	923024	470,000 ohm		
C-8	PT. of T-2	05 mf P	. 25	R-8	350732	10,000 ohm Carbon 1/2W. $\pm 20 \%$. 05	
C-9	923554	.05 mf Paper	. 25	R-9	340292	150 ohm Carbon 1/2W. $\pm 10 \%$. 10	
$\left.\left\lvert\, \begin{array}{l} C-10 \\ C-11 \\ C-12 \\ C-14 \end{array}\right.\right\}$	$\begin{gathered} \text { Part } \\ \text { of } \\ 923024 \end{gathered}$	220 mmf		R-10	370512	1,200 ohm Carbon 1W. $\pm 10 \%$. 15	
		. 002 mf		R-11	370252	100 ohm Carbon 1W. $\pm 10 \%$. 15	
		. 005 mf R.C. Coupling Unit	1.05	R-12	340072	18 ohm Carbon 1/2W. $\pm 10 \%$. 14	
		250 mmf		R-13	351052	220,000 ohm Carbon 1/2W. $\pm 20 \%$. 05	
				SP-1	180095	Speaker - PM - ${ }^{\prime \prime}$	4.65	
C-15	923524	.02 mf Paper 400V.	. 25					
C-16	925234	30 mf Electrolytic 150 V .	1.40	$\left\lvert\, \begin{array}{r} S W-1 \\ X-1 \end{array}\right.$	$\begin{aligned} & \text { Pt. of R-4 } \\ & 555029 \end{aligned}$	Switch - Radio On-Off		
C-17	PT. of C-16	30 mf Electrolytic 150V.		T-1	720033	1 st. I. F. Transformer	1.80	
C-18	PT. of C-16	20 mf Electrolytic 150 V .		T-2	720033	2nd. I.F. Transformer	1.80	
$\mathrm{C}-19$	923554	. 05 mf Paper 400V.	. 25	T-3	734079	Output Transformer	1.60	
C-20	923515	.1 mf Paper 400V.	. 30					
C-21	923524	.02 mf Paper 400V.	. 25	V-1	800525	Vacuum Tube - 12BE6		
L-1	700076	Loop Antenna	1.40	V-2	800524	Vacuum Tube - 12BA6		
L-2	716076	Oscillator Coil	. 75	V-3	800523	Vacuum Tube - 12AT6		
				V-4	800032	Vacuum Tube - 50C5		
				V-5	800526	Vacuum Tube - 35W4		
P-1 $\mathrm{P}-2$	583037P 580285	Line Cord \& Plug Lead \& Pin Assembly - Speaker	. 55	V-6	807000	Pilot Light - \#47 Bulb	. 11	

Prices subject to change without notice.

PART NUMBERS		DESCRIPTION	$\begin{gathered} \text { LIST } \\ \text { PRICE } \\ \hline \end{gathered}$
$\begin{gathered} \text { MODEL } \\ 729 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{MODEL} \\ \mathrm{779B} \\ \hline \end{gathered}$		
140483		Cabinet Body - Ivory	5.95
140483C		Cabinet Body - Cherry Red	5.95
140483D		Cabinet Body - Cerulean Blue	5.95
140483E		Cabinet Body - Forrest Green	5.95
	140548	$\begin{aligned} & \text { Cabinet Body - Wood - } \\ & \text { Light Mahogany } \end{aligned}$	14.00
460339	460339	$\begin{aligned} & \text { Cabinet Front - for } \\ & 140483,140483 \mathrm{C} \& 140548 \end{aligned}$	2.50
460339A		Cabinet Front - for 140483D	2.50
460339B		Cabinet Front - for 140483E	2.50
470708	470708	Grille Assembly - Gold	. 55
180095	180095	Speaker - 6"	4.65
411387	411387	Dial Light Bracket	. 05
560326	560326	Baffle	. 30
541187	541187	Trimount Fastener	. 01
460312A		Knob - Tuning	. 20
.	460312B	Knob - Tuning	. 20
460311	460311	Knob - Volume	. 10
542280	542280	Spring - Knob	. 02

Prices subject to change without notice.

Fig. 2 - Tube Location Diagram of Chassis 120170-B

MODEL 744B
Chassis 120175-B

DESCRIPTION

TYPE: Single-band (AM) superheterodyne.
FREQUENCY RANGE: Broadcast 540-1620 kc
TYPE OF TUBES:
V-1--12BE6, converter
V-2--12BA6, i-f amplifier
V-3-12AT6, detector, a.v.c. a-f amplifier
V-4-50C5, power output
V-5--35W4, rectifier
POWER SUPPLY: A.C. or D.C.
VOLTAGE RATING: 105-125 volts.
POWER CONSUMPTION: 30 watts.
CURRENT DRAIN: 0.24 amp. at 117 volts a.c.

GENERAL NOTES

1. If replacements are made or the wiring disturbed in the rof section of the circuit, the receiver should be carefully realigned.
2. In operating the receiver on d.c., it may be necessary to reverse the line plug for correct polarity.
3. Model 744 B has a self contained antenna and normally does not require an additional antenna connection. For installation in a location where reception is weak, connect the outside antenna to the colored lead at the bottom of the cabinet. Do not use ground connection.
4. The self contained loop antenna has directional properties. It is important therefore, once the station is tuned in that the cabinet be rotated back and forth through a quarter of a circle (90 degrees), and left at a position where the station is received with maximum volume.
ttom views, with measurements from pin to
al applied for voltage measurements.
ALIGN makes possible a variation of $\pm 15 \%$
AMm, MEG is megohms. Resistances mar
INSTRUCTIONS
Use isolation transformer if available. If not, connect a .1 mfd . condenser in series with low side of signal generatorand B neutral. Volume control should be at maximum position Out of signal generator should be no higher than necessary to obtain an output reading. Use an insulated screw driver for adjusting.

STEP	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{gathered} \text { RADIO } \\ \text { DIAL } \\ \text { SETTING } \end{gathered}$	OUTPUT METER	ADJUST	REMARKS
1	. 001 mfd .	High side to grid (pin 7) of Vl (12BE6). Low side to B neutral	455 KC	Variable condenser fully open.	Across voice coil.	$\begin{aligned} & \mathrm{T}, \mathrm{~T} 1 \\ & \left(\mathrm{~A}_{3}, \mathrm{~N}_{4}\right) \end{aligned}$	Adjust for maximum output.
2		Form loop of severalturns and radiate signal into receiver	$1620 \mathrm{KC}$	"	Across voice coil.	$\underset{\text { (Osc.) }}{\text { Trimmer C-4 }}$	Adjust for maximum output.
3		"	1400 KC	Tune for maximum output.	Across voice coil.	$\underset{\text { (Ant.) }}{\text { Trimmer }} \text { C-2 }$	Adjust for maximum output.

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V-1	12BE6	23K	. 5	12	24	$1500 *$	1500*	4 MEG
V-2	$12 \mathrm{BA6}$	3.2 MEG	0	24	36	1500*	1500^{*}	
V-3	12AT6	6 MEG	0	0	12	500 K	0	$470{ }^{*}$
V-4	50C5 35 W	150 N.	470 K N.C.	36 90	+90	${ }_{135}^{\text {N.C. }}$	1500^{*} 115	${ }_{0} \mathbf{0} 0^{*}$

- Resistances measured to pin 7 of rectifier 35w4 (B+).

VOLTAGE READINGS ON SCHEMATIC DIAGRAM

EMERSON PAGE 23-35 MODEL 744B, Ch. 120175-B

PAGE 23-36EMERSON
MODEL 744B,
Ch. 120175-B

MODEL 641B

DESCRIPTION

TYPE: Single band (AM) superheterodyne

FREQUENCY RANGE: 540-1620 KC.

TYPES OF TUBES:
V-1-6BJ6 converter
V-2-6BJ6 oscillator
V.3-6BJ6 1st i.f. amplifier

V-4-6BJ6 2nd i.f. amplifier
V-5-12AT6 Detector, a.v.c., a-f amplifier
V-6-50C5 Power output
V-7-35W4 Rectifier

POWER SUPPLY: A.c. or d.c.

VOLTAGE RATING: 115 volts
POWER CONSUMPTION: 30 watts

CURRENT DRAIN: 0.26 amp . at 117 volts a.c.

GENERAL NOTES

1. If replacements are made or the wiring disturbed in the r-f section of the circuit, the receiver should be carefully realigned.
2. In operating the receiver on d.c., it may be necessary to reverse the line plug for correct polarity.
3. The receiver has a self-contained antenna, and does not require additional antenna connections. For permanent home installations, however, if it is desired to improve reception of weak stations, an additional outdoor antenna may be used. For this purpose a lead has been brought out in the rear. Use no ground connection.
4. The self-contained loop antenna operates at maximum efficiency when its position is at right angles to the broadcasting source. It is important, therefore, once the station is tuned in, to rotate the cabinet back and forth through a quarter of a circle (90 degrees), leaving it at the position where the station is received with maximum volume.

INSTRUCTIONS FOR VOLTAGE AND RESISTANCE READINGS

1. Voltage readings are in d.c. volts and resistance readings in ohms unless otherwise specified.
2. A.C. and D.C. measurements are taken with a V.T.V.M.
3. Measured values are from socket pin to common negative (B一).
4. Line voltage maintained at 115 V A.C. for voltage readings.
5. Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in voltage and resistance readings.
6. Volume control at maximum with no signal applied, for voltage measurements.

VOLTAGE READINGS FOR CHASSIS 120125-B

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V-1	6BJ6	-1.2 DC	1 DC	18 AC	12 AC	85 DC	35 DC	0
V-2	6BJ6	-9.2 DC	0	24 AC	18 AC	85 DC	85 DC	0
V-3	6BJ6	0	1.4 DC	30 AC	36 AC	68 DC	85 DC	0
V-4	6BJ6	-1.3 DC	. 65 DC	30 AC	24 AC	85 DC	85 DC	0
V. 5	12AT6	-.8 DC	0	0	12 AC	0	-.65 DC	42 DC
V-6	50C5	5.4 DC	0	36 AC	80 AC	0	85 DC	100 DC
V-7	35W4	85 DC	NC	80 AC	115 AC	110 AC	110 AC	110 DC

RESISTANCE READINGS FOR CHASSIS 120125-B

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V-1	6BJ6	4.2 meg.	1100	22	16	500,000	1 meg .	0
V-2	6BJ6	24,000	1	30	22	500,000	500,000	0
V-3	6BJ6	20	220	38	46	500,000	500,000	0
V. 4	6BJ6	4.3 meg	120	38	30	500,000	500,000	0
V-5	12AT6	10 meg		0	16	0	550,000	1 meg .
V. 6	50C5	150	400,000	46	100	400,000	500,000	500,000
V.7	35W4	500,000	NC	100	135	175	130	500,000

ALIGNMENT PROCEDURE

1. To set pointer, turn variable condenser fully closed and set pointer at mark near left end of dial backplate:
2. Use isolation transformer if available. If not, connect a $0.1 \mathbf{m f d}$. condenser in series with low side of signal generator and B minus bus.
3. Volume control should be at maximum position; output of signal generator should be not higher than necessary to obtain an output reading.
4. Use an insulated alignment screwdriver for adjusting.

STEPS	DUMMY ANTENNA	$\begin{aligned} & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { COUPLING } \end{aligned}$	SIGNAL GENERATOR FREQUENCY	$\begin{aligned} & \text { RADIO DIAL } \\ & \text { SETTING } \end{aligned}$	METER OUTPUT	ADJUST	REMARKS
1	0.1 mfd .		455 kc	Variable condenser fully open.	Across voice coil.	A1, A2 (2nd i-f trans. T2) A3, A4 (1st i-f trans. T1)	Adjust for maximum output. If isolation transformer is not used, reduce dummy antenna to 0.001 mfd . to reduce hum modulation.
2	200 mmfd .	High side to external antenna lead. Low side to minus Bus.	1620 kc	Variable condenser fully open.	Across voice coil.	A5 (Trimmer cond. C5).	Adjust for maximum output.
3	200 mmfd .	High side to external antenna lead. Low side to B minus Bus.	1400 kc	Tune for maximum output.	Across voice coil.	A6 (Trimmer cond. C2).	Adjust for maximum output.

EMERSON PAGE 23-39

© John F. Rider

PAGE 23-40 EMERSON
MODELS 641B, 756B,
Ch. 120125-B
CHASSIS PARTS LIST (Chassis 120125-B)

$\begin{array}{\|l\|} \hline \text { SYM- } \\ \text { BOL } \\ \hline \end{array}$	$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	DESCRIPTION			$\begin{array}{\|c\|} \hline \text { LIST } \\ \text { PRICE } \end{array}$	$\mathrm{SYM}_{\mathrm{BOL}}$	$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	DESCRIPTION			$\begin{aligned} & \text { LIST } \\ & \text { PRICE } \end{aligned}$
C-1	PT. of L-1	2.2 mmf				R-S	340632	3,900 ohm	Carbon	1/2w $\pm 10 \%$. 10
C-2	PT. of C-3	Trimmer - R.F. Section				R-6	350972	100,000 ohm	Carbon	1/2w $\pm 20 \%$. 17
C-3	900077	Variable Capacitor - R.F. Section			3.80	R-7	340272	120 ohm C	Carbon	发W $\pm 10 \%$. 14
C-4	923554	.05 mf Trimmer - Oscillator Sectioa $\mathbf{4 0 0 ~ V}$. 25	R-B	351332	3.3 megohm	Carbon	1/2W $\pm 20 \%$. 06
C-5	PT. of C-6					R-9	340892	47,000 ohm C	Carbon	1/2W $\pm 10 \%$. 17
C. 6	900077	Variable Caparitor - Oscillator Sec.			3.80	R-10	390152	500,000 ohm V	Volume	trol	1.15
C.7	923524	. 02 mf P	Paper	400 V	. 25	R-11	351452	10 megohm C	Carbon	1/2w $\pm 20 \%$. 14
C-8	923524	$\begin{aligned} & .02 \mathrm{mf} \\ & 212 \mathrm{mmf} \end{aligned}$	Paper	400 V	. 25	R-12	351132	470,000 ohm C	Carbon	1/2V $\pm 20 \%$. 14
C-9	928104		Ceramic	500 V	. 30	R-13	390157	400,000 ohm T	Tone Co		. 70
C-10	PT. of T-2	$\begin{aligned} & 212 \mathrm{mmf} \\ & 100 \mathrm{mmf} \end{aligned}$	100 mmf			R-14	340292	150 ohm C	Carbon	1/2v $\pm 10 \%$. 17
C-11,		220 mmf Coupliag Capacitor				R-15	370152	39 ohm Ca	Carbon	1V $\pm 10 \%$. 15
C-12	470310	$\left.\begin{array}{l} .002 \mathrm{mf} \\ 220 \mathrm{mmf} \end{array}\right\}$ Assembly			. 75	R-16	370492	1,000 ohm C	Carbon	1V $\pm 10 \%$. 16
C-14						SP-1	180107	Speaker P.M. - 6 i	inch		4.65
C-15	923723	. 002 mf m	Paper	600 V	. 20						
C-16	923524	.02 mf P	Paper	400 V	. 25	SW-1	PT. of R-10	On - Off Swich			
C-17	923554	. 05 mf P	Paper	400 V	. 25						
C-18	925187	80 mf E	Electrolytic	150 V	1.65	T-1	720033	1at I.F. Traneform	mer		1.80
C-19	PT. of C-18	40 mf E	Electrolytic	150 V		T-2	720125	2nd I.F. Tranaforn	rmer		1.70
C-20	923515	.1 mf P	Paper	600 V	. 30	T-3	734061	Output Tranaforme			1.15
L-1	700054	Loop Anteana			1.55	V.1	800023	Vacuum Tube - 6B	BJ6		
L-2	716063	Oscillator - Coil			. 95	V-2	800023	Vacuum Tube - 6B	BJ6		
						V-3	800054or	Vacuum Tube - 6B	BH6		
: -1	583033P	Plug and Line Cord			. 80	V-3	800023	Vacuum Tube - 6B	BJ6		
						V-4	800023	Vacuum Tube - 6B	Bj6		
R-1	340492	$\begin{array}{r} 1,000 \text { onm } \\ 22,000 \text { ohm } \end{array}$	- Carbon	1/20 $\pm 10 \%$. 17	V-5.	800523	Vacuum Tube - 12	2AT6		
R-2	PT. of L-2					V-6	800032	Vacuum Tube - 50	OC5		
R-3	341052	220,000 ohm	- Casboa	3/17 $\pm 10 \%$. 17	V-7	800526	Vacuum Tube - 35	5w4		
R-4	340332	220 ohm	- Carboa	K\% $\pm 10 \%$. 14	V-8	807000	Pilot Light (*47 B	Bulb)		1

Prices subject to change without aotice.

CABINET PARTS LIST - CHASSIS 120125-B

CABINET PARTS LIST - CHASSIS 120125-B			
PART NUMBERS		DESCRIPTION	$\begin{aligned} & \text { LIST } \\ & \text { PRICE } \\ & \hline \end{aligned}$
$\begin{gathered} \text { MODEL } \\ 641 \mathrm{~B} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { MODEL } \\ 756 \mathrm{~B} \end{array}$		
140359	140359	Cabinet - Walnut	6.50
	140359D	Cabinet - Ebony	6.50
	140359E	Cabinet - Red	8.10
$\begin{aligned} & 520133 \\ & 575649 \end{aligned}$	520133	Crystal	. 20
		Baffle \& Grille Cloth	. 50
	470739	Baffle \& Grille Cloth	. 50
275044	275044	Spring Grip Washer Baffle \& Crystal	. 006
635031	635031	Jewel - Amber	. 05
450068S	450068S	Knobs - Mottled Brown \& Gold	. 30
	450068 E	Knobs - Ebony \& Gold	. 30
	450068F	Knobs - Red \& Gold	. 40
587011	587011	Spring Insert - Knobs	. 01
575664	575664	Back	. 20

Prices subject to change without notice.

FRONT

FIG. 3 DIAL CORD STRINGING FOR CHASSIS 120125-B

DESCRIPTION

TYPE: Model 783B is a Single band superheterodyne receiver with a 3 -speed automatic record changer.

FREQUENCY RANGE: 540-1620 kc.
TYPE OF TUBES:
V-1--12BE6, converter
V-2--12BA6, i-f amplifier
V-3--12AT6, detector, a.v.c. a-f amplifier
V-4-50C5, power output
V-5--35W4, rectifier
POWER SUPPLY: A.C.
VOLTAGE RATING: $105-125$ volts.
RADIO POWER CONSUMPTION: 30 watts.
RADIO CURRENT DRAIN: 0.24 amp . at 117 volts a.c. PHONO AND RADIO POWER CONSUMPTION: 50 watts

general notes

1. This model is equipped with an automatic record changer that plays 78, 45 and $331 / 3$ R.P.M. records and shuts off automatically after the last record has been played. A flip over two needle cartridge is used for best record tracking. For more information concerning the record changer see below and parts list on back page.
2. If replacements are made or the wiring disturbed in the r-f section of Model 783B, the receiver should be carefully realigned.
3. Model 783B has a self-contained antenna and does not require an additional antenna. For permanent installations, however, if it is desired to improve reception of weak stations, an additional outdoor antenna may be connected to the colored lead at the rear of the cabinet.
4. The self-contained ferrite rod antenna has directional properties. It is important, therefore, once a station is tuned in, that the cabinet be rotated back and forth through a quarter-turn and left at that position where maximum volume is obtained.
5. TO REMOVE CHASSIS: Remove 4 screws on top of cabinet and take chassis cover off. Disconnect antenna, speaker and phone leads from chassis. Slide off knobs and remove chassis mounting screws (located under cabinet) and lift chassis from cabinet. In order to strip chassis, remove 3 screws holding chassis bottom shield and then unsolder rear panel and remove the 2 screws holding this panel.

3-SPEED RECORD CHANGER

General
Aside from the facts mentioned above, this changer can automatically play ten $12^{\prime \prime}$, twelve $10^{\prime \prime}$ or twelve $7^{\prime \prime}$ records. If desired $10^{\prime \prime}$ and $12^{\prime \prime}$ records of the same type (speed) can be intermixed.
Preliminary Adjustments: To be done before operating changer for the first time.

1. Loosen two copper screws on either side of the spindle until the changer floats freely on its mounting.
2. Place the turn table over the spindle, gently pushing the rubber rimmed wheel so that it is completely under the turn table.
3. Voltages indicated are positive d.c.; resistances in ohms, unless otherwise indicated.
4. Measurements made with voltohmyst or equivalent.
5. All measurements taken from pin to B neutral unless otherwise indicated.
6. Voltage measurements taken with:
a) Line voltage maintained at 117 volts a.c.
b) Radio-phono switch set for radio and volume control set for maximum.
c) Variable condenser fully closed and no signal applied.
7. Resistance measurements taken with:
a) Power line cord disconnected from outlet.
b) Radio-phono switch set for radio and volume control set for minimum.
8. Nominal tolerance on component values makes possible a variation of $1 \pm 15 \%$ in voltage and resistance readings.
9. N.C. denotes no connection, K is kilohms, Meg. is megohms. Resistances marked *are measured to Pin 7 of Rectifier 35W4 (B+).

ALIGNMENT INSTRUCTIONS

1. Use isolation transformer if available. If not, connect a .1 mfd . condenser in series with low.side of signal generator and B neutral.
2. Volume control should be at maximum position. Output of signal generator should be no higher than necessary to obtain an output reading. Use an insulated screw driver for adjusting.

STEP	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{gathered} \text { RADIO } \\ \text { DIAL } \\ \text { SETTING } \end{gathered}$	OUTPUT METER	ADJUST	REMARKS
1	.1 mfd.	High side to grid (pin 7) of V1 (12BE6). Low side to B neutral	455 KC	Variable condenser fully open.	Across voice coil.	$\begin{aligned} & \text { T2, T1 } \\ & \text { (A3, A4, } \\ & \text { A1, A2) } \end{aligned}$	Adjust for maximum output. If isolation transformer is not used, reduce dummy ant. to .001 mfd to reduce hum modulation.
2	.	Form loop of severalturns and radiate signal into receiver	1620 KC	n	Across voice coil.	$\begin{gathered} \text { Trimmer C-4 } \\ \text { (Osc.) } \end{gathered}$	Adjust for maximum output.
3		n	1400 KC	Tune for maximum output.	Across voice coil.	$\underset{\text { (Ant.) }}{\text { Trimmer }} \mathbf{C - 2}$	Adjust for maximum output.

RESISTANCE READINGS FOR CHASSIS 120200-B

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V-1	12BE6	22K	0	12	24	1500**	1500*	4.0 meg
V-2	12BA6	13^{\sim}	0	24	36	1500*	1500*	120~
V-3	12AT6	6.8 meg	0	0	$12 \sim$	680K	0	470K*
V-4	50C5	$150 \sim$	492K	36^{\sim}	$90 \sim$	492K	1500*	210*
V-5	35W4	NC	NC	$90 \sim$	120^{\sim}	$135 \sim$	$110 \sim$	0 *

* Resistances measured to Pin 7 of Rectifier 35W4 (B+).

VOLTAGE READINGS ON SCHEMATIC DIAGRAM

3-SPEED RECORD CHANGER

PLAYING 45 R.P.M. RECORDS (with large spindle hole) In order to play such records on this changer it will be necessary to either adapt each record with a snap in center hole adapter or use a 45 R.P.M. spindle attachment. This attachment fits over the existing spindle enlarging its diameter to accommodate the above type records without the use of separate center hole adapters.

NEUTRAL (N) POSITION

When the record changer is not in use it would be advisable to place the speed control in the neutral (N) position. This position actually disengages the turn table idler wheel from the drive shaft so as not to flatten portions of the rubber rim on the idler wheel. The true neutral position (N) is somewhere between the " N " and " 45 RPM " marking. When the changer is in the true neutral position the turn table will not revolve when the phono. radio is in the phono setting and the motor is turned "on". In some instances it is easier to find this neutral position while the turn table is revolving.

Fig. 2 Tube Location Diagram of Chassis 120200-B
© John F. Rider

CHASSIS PARTS LIST (Chassis 120200-B)

$\begin{aligned} & \text { SYM- } \\ & \text { BOL } \end{aligned}$	$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { LIST } \\ & \text { PRICE } \end{aligned}$	$\begin{aligned} & \text { SYM- } \\ & \text { BOL } \end{aligned}$	$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{gathered} \text { LIST } \\ \text { PRICE } \end{gathered}$
C-1	900107	Variable Capacitor - R.F. Section	3.40	R-4	390238	2 megohm Volume Control	1.00
C-2	PT. of C-1	Trimmer - R.F. Section		R-5	351172	680,000 ohm Carbon_ $1 / 2 \mathrm{~W} \pm 20 \%$. 05
C-3	PT. of C-1	Variable Capacitor - Oscillator Section		R-6	PT. of C-10	6.8 megohm R.C. Coupling Unit	
C-4	PT. of C-1	Trimmer - Oscillator Section		R-7	PT. of C-10	470,000 ohm R.C. Coupling Unit	
C-5	PT. of T-1			R-8	350812	22,000 ohm Carbon $\quad 1 / 2 \mathrm{w} \pm 20 \%$. 14
C-6	PT. of T-1			R-9	PT. of C-10	470,000 ohm R.C. Coupling Unit	
C-7	PT. of T-2			R-10	340292	150 ohm Carbon $1 / 2 \pm \pm 10 \%$. 10
C-8	PT. of T-3			R-11	380532	1,500 ohm Carbon 1w $\pm 20 \%$. 16
C-9	923554	.05 mf Paper 400 V		R-12	340072	18 ohm Carbon $1 / 2 \mathrm{w} \pm 10 \%$. 14
C-10	923024	220 mmf R.C. Coupling Unit	1.05				
C-11	PT. of C-10	. 002 mf R.C. Coupling Unit		SW-1	PT. of R-4	Switch - On - Off (Power)	
C-12	923723	. 002 mf Paper 600 V	. 20	SW-2	510097	Switch - Phono - Radio	2.10
C-13	PT. of $\mathrm{C}-10$. 005 mf R.C. Coupling Unit		SW-3	PT. of Chgr.	Switch - On - Off (Phono Motor)	
C-14	PT. of C-10	250 mmf R.C. Coupling Unit		SW-4	510098	Swtich - Tone Control	1.80
C-15	923524	.02 mf Paper 400 V	. 25				
C-16	925218	30 mf Electrolytic 150 V	1.35	T-1	720033	1st I.F. Transformer	1.80
C-17	PT. of C-16	50 mf Electrolytic 150 V		T-2	720033	2nd I.F. Transformer	1.80
C-18	923554	.05 mf Paper 400 V	. 25	T-3	734082	Output Transformer	1.35
C-19	923515	.1 mf Paper $\quad 400 \mathrm{~V}$. 30				
C-20	923554	. 05 mf Paper 400 V	. 25	V-1	800525	Vacuum Tube - 12BE6	
C-21	923554	.05 mf Paper 400 V	. 25	V-2	800524	Vacuum Tube - 12BA6	
				V-3	800523	Vacuum Tube - 12AT6	
L-1	700089	Bar Loop Antenna Ass'y - Ferrite	2.00	V-4	800032	Vacuum Tube - 50C5	
L-2	716071	Oscillator Coil	. 95	V-5	800526	Vacuum Tube - 35W4	
				V-6	807000	Pilot Light (\#47 Bulb)	
Pol	583047	Plug \& Line Cord	. 50				
P-2	585081	Plug \& Power Cable (Phono Motor)	. 40	X-2	PT. of Chgr.	Socket - Phono Motor	
P-3	PT.of Chgr.	Plug - Phono Pickup		X-3	508003	Socket - Phono Pickup	. 10
P-4	580289	Lead \& Pin Assembly - Speaker	. 15	X-4	555029	Speaker Terminal Strip	. 20
R-1	PT. of L-2	22,000 ohm Carbon		SP-1	180111	Speaker - PM	3.00
R-2	340272	120 ohm Carbon $\quad 1 / 2 \mathrm{w} \pm 10 \%$. 10				
R-3	351332	3.3 megohm Carbon $\quad 1 / 2 w \pm 20 \%$. 06		819072	Record Changer - 3 Speed	

Prices subject to change without notice.

RECORD CHANGER PARTS LIST FOR 819072

PART NO.	DESCRIPTION	LIST PRICE
960776	Cartridge (flip over two needle type)	
960777	Needle (78 rpm) for cartridge	
960778	Needle (33 1/3 znd 45 rpm) for cartridge	
960780	Tone Arm	1.45
960781	Record Support Assembly	1.25
960782	Speed Control Knob	.30
960783	Cartridge Control Knob	.30
960784	Strengthener and Bracket Ass'y.	.70
960785	Hinge'Arm	.70
960786	Finger and Shaft Ass'y.	.80

Prices subject to change without notice

MODEL 778B
Chassis 120 199-B

DESCRIPTION

TYPE: Single-band (AM) superheterodyne.

FREQUENCY RANGE: Broadcast 540-1620 kc
TYPE OF TUBES:
V-1--12BE6, converter
V-2--12BA6, i-f amplifier
V-3-12AT6, detector, a.v.c. a-f amplifier
V-4--50C5, power output
V-5-35W4, rectifier
POWER SUPPLY: A.C. or D.C.
VOLTAGE RATING: $105-125$ volts.
POWER CONSUMPTION: 30 watts.
CURRENT DRAIN: 0.24 amp . at 117 volts a.c.

GENERAL NOTES

1. If replacements are made or the wiring disturbed in the r-f section of the circuit, the receiver should be carefully realigned.
2. In operating the receiver on d.c., it may be necessary to reverse the line plug for correct polarity.
3. This model has a self-contained antenna and does not require additional antenna connections. For permanent home installations, however, if it is desired to improve reception of weak stations, an additional outdoor antenna may be used. For this purpose a lead has been brought out in the rear. Use no ground connection.
4. The self-contained loop antenna operates at maximum efficiency when its position is pointing to the broadcasting source. It is important, therefore, once the station is tuned in, to rotate the cabinet back and forth through a quarter of a circle (90 degrees), leaving it at the position where the station is received with maximum volume.

MODEL 778B,

Ch. 120199-B CONDITIONS FOR VOLTAGE AND RESISTANCE READINGS

1. Voltages indicated are positive d.c., resistances in ohms, unless otherwise indicated.
2. Measurements made with voltohmyst or equivalent.
3. All measurements taken from pin to B neutral unless otherwise indicafed.
4. Voltage measurements taken with:
a) Line voltage maintained at 117 volts a.c.
b) Volume control set for maximum volume.
c) Variable condenser fully closed and no signal applied.
5. Resistance measurements taken with:
a) Power line cord disconnected from outlet.
b) Volume control set for maximum volume.
6. Nominal tolerance on component values makes possible a variation of $1 \pm 15 \%$ in voltage and resistance readings.
7. N.C. denotes no connection, K is kilohms, Meg. is megohms. Resistances marked *are measured to P in 7 of Rectifier $35 W^{4}(B+)$.

ALIGNMENT INSTRUCTIONS

1. Use isolation transformer if available. If not, connect a .25 mfd . condenser in series with low side of signal generator and B neutral.
2. Volume control should be at maximum position. Output of signal generator should be no higher than necessary to obtain an output reading. Use an insulated screw driver for adjusting.

STEP	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{gathered} \text { RADIO } \\ \text { DIAL } \\ \text { SETTING } \end{gathered}$	OUTPUT METER	ADJUST	REMARKS
1	. 005 mfd .	High side to grid (pin 7) of V1 (12BE6). Low side to B-neutral (See Alignment Note).	455 KC	Variable condenser fully open.	Across voice coil.	$\begin{gathered} \text { T2, T1 } \\ \text { (A3, A4, } \\ \text { A1, A2) } \end{gathered}$	Adjust for maximum out put.
2		Form loop of severalturns and radiate signal into receiver	1620 KC	n	Across voice coil.	$\begin{gathered} \text { Trimmer C-4 } \\ \text { (Osc.) } \end{gathered}$	Adjust for maximum output.
3		π	1400 KC	Tune for maximum output.	Across voice coil.	$\underset{\text { (Ant.) }}{\substack{\text { Trimmer } \\ \text { (An }}}$	Adjust for maximum output.

RESISTANCE READINGS FOR CHASSIS 120199-B

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
$\mathrm{V}-1$	12BE6	22K	$0.4 \sim$	$12 \sim$	$24 \sim$	1500*	1500*	4 MEG
$\mathrm{V}-2$	12BA6	4 MEG	$0 \sim$	$24 \sim$	$36 \sim$	1500*	1500*	$120 \sim$
$\mathrm{V}-3$	12 AT 6	6.8 MEG	$0 \sim$	$0 \sim$	$12 \sim$	500 K	$0 \sim$	$470{ }^{*}$
$\mathrm{V}-4$	50C5	$150 \sim$	480K	$36 \sim$	$85 \sim$	480K	1500*	180*
V-5	35W4	NC	NC	$85 \sim$	$110 \sim$	$130 \sim$	$112 \sim$	0*

*Resistance measured to Pin 7 of Rectifier 35W4 (B+).

VOLTAGE READINGS ON SCHEMATIC DIAGRAM

Fig. 2 - Tube Location Diagram of Chassis 120199-B

Fig. 3 - Dial Cord String for Chassis 120199-B

CHASSIS PARTS LIST (Chassis 120199-B)

$\begin{gathered} \text { SYM- } \\ \mathrm{BOL} \end{gathered}$	PART NO.	DESCRIPTION	$\left.\begin{array}{\|c\|\|} \text { LIST } \\ \text { PRICE } \end{array} \right\rvert\,$	$\begin{aligned} & \text { SYM- } \\ & \text { BOL } \end{aligned}$	PART NO.	DESCRIPTION	$\begin{gathered} \text { LIST } \\ \text { PRICE } \end{gathered}$
C-1	900105	Variable Capacitor - R.F. Section Trimmer-R.F. Section Variable Capacitor - Oscillator Sec. Trimmer - Oscillator Section	3.40	R-1	PT. of L-2	22,000 ohm Carbon	
C-2	PT. of C-1			R-2	340272	120 ohm Carbon $1 / 2 \mathrm{~W} . \pm 10 \%$. 10
C-3	PT. of C-1			R-3	351332	3.3 megohm Carbon $1 / 2 \mathrm{~W} . \pm 20 \%$. 06
C-4	PT. of C-1			R-4	390062	500,000 ohm Volume Carbon	. 90
C-5	PT. of T-1	Trimmer - Oscillator Section		R-5	PART	6.8 megohm	
C-6	PT. of T-1			R-6	OF	470,000 ohm R.C. Coupling Unit	
C-7	PT. of T-2			R-7	923024	470,000 ohm	
C-8	PT. of T-2.			R-8	350732	10,000 ohm Carbon 1/2W. $\pm 20 \%$. 05
C-9	923554	. 05 mf Paper ${ }^{\text {m }}$ 400V.	. 25	R-9	340292	150 ohm Carbon 1/2W. $\pm 10 \%$. 10
C-10	PART	220 mmf		R-10	380532	1,500 ohm Carbon $1 \mathrm{~W} . \pm 20 \%$. 16
C-11		. 002 mf	1.05	R-11	340072	18 ohm Carbon 1/2W. $\pm 10 \%$. 14
C-12	OF	R.C. Coupling Unit					
	923024			SP-1	180111	Speaker - PM - 4'	3.00
C-14		250 mmf					
C-15	923524	.02 mf Paper 400V.	. 25	SW-1	PT.of R-4	On-Off Switch	
C-16	925218	$30-50 \mathrm{mf}$ Electrolytic 150 V .	1.35				
C-17	923554	.05 mf Paper 400V.	. 25	T-1	720033	1st I.F. Transformer	1.80
C-18	923515	.1 mf Paper 400V.	. 30	T-2	720033	2nd I.F. Transformer	1.80
C-19	PT.of L-1	mm		T-3	734089	Output Transformer	1.55
				V-1	800525	Vacuum Tube - 12BE6	
L-1	700088	Loop Antenna	1.40	V-2	800524	Vacuum Tube - 12BA6	
L-2	716076	Oscillator Coil	. 75	V -3	800523	Vacuum Tube - 12AT6	
				V-4	800032	Vacuum Tube - 50C5	
				V-5	800526	Vacuum Tube - 35W4	
P-1	583037P	Plug \& Line Cord	. 55	V-6	807000	Pilot Light - No. 47 Bulb	. 11

Prices subject to change without notice.

CABINET PARTS LIST - Chassis 120199-B

PART NOS.	DESCRIPTION	$\begin{gathered} \text { LIST } \\ \text { PRICE } \end{gathered}$	PART NOS.	DESCRIPTION	$\begin{aligned} & \text { LIST } \\ & \text { PRICE } \end{aligned}$
MODEL 778B			MODEL 778B		
140547	Cabinet - Ebony	4.05	411595	Insert - Gold	. 70
140547A	Cabinet - Ivory	6.25	411596	Dial Ring - Gold	. 95
140547B	Cabinet - Cherry Red	6.25	575934	Baffle	. 90
140547C	Cabinet - Forest Green	6.25	575936	Back	. 20
460162-S	Knobs -		541187	Trimount Fastener	. 01
	Tuning \& Volume - Gold	. 10	542280	Compression Spring	. 02
460382	Pointer - Gold	. 20	635031	Jewel - Amber	. 05

Prices subject to change without notice.

For best results replacements should be made with genuine Emerson parts and genuine Emerson tubes.

MODEL 788B
Chassis 120201B

DESCRIPTION

TYPE: Single-band (AM) superheterodyne, with clock timer.

FREQUENCY RANGE: Broadcast 540-1620 kc
TYPE OF TUBES:
V-1 - 12BE6, converter
V- 2 - 12BAG, i-f amplifier
V-3-12ATG, detector, a.v.c. a-f amplifier
V-4-50C5, power output
V-5-35W4, rectifier
POWER SUPPLY: A.C. 60 cycles only
VOLTAGE RATING: 105-125 volts.
POWER CONSUMPTION: 32 watts.
CURRENT DRAIN: 0.23 amp . at 117 volts a.c.

GENERAL NOTES

1. If replacements are made or the wiring disturbed in the r-f section of the circuit, the receiver should be carefully realigned.
2. Detailed information for the clock timer used in this model is described on page 3.
3. Model 788B has a self-contained antenna and does not require additional antenna connections.
4. The self-contained bar type antenna operates at maximum efficiency when it is positioned properly with respect to the broadcasting source. Because of this fact, reception can be improved in a relatively weak or shielded signal area, merely by slowly rotating the cabinet through a quarter of a circle (90 degrees). The cabinet should be left in the position where the station is received with maximum volume.

CD EMERGENCY CIVILIAN DEFENSE BROADCASTS

During a national emergency the low frequency stations will all shift their operating frequencies to 640 KC while the high frequency stations shift to 1240 KC . The stations in each group will then be keyed on the air so that each one will transmit for a certain number of seconds. This will prevent the enemy from homing in on any one station since the signals will be constantly coming from a different difection. This system is called CONELRAD, meaning Control of Electromagnetic Radiation.
The model 788B has two \qquad symbols imprinted on the dial face at these frequencies ($640 \mathrm{~K} . \mathrm{C}$., and $1240 \mathrm{~K} . \mathrm{C}$.).

CONDITIONS FOR VOLTAGE AND RESISTANCE READINGS

1. Voltages indicated are positive d.c., resistances in ohms, unless otherwise indicated.
2. Measurements made with voltohmyst or equivalent.
3. All measurements taken from pin to B neutral unless otherwise indicated.
4. Voltage measurements taken with:
a) Line voltage maintained at 117 volts a.c. only.
b) Radio switch knob (located on front of clock timer) turned to "on" and volume control set for maximum.
c) Variable condenser fully closed and no signal applied.
5. Resistance measurements taken with:
a) Power line cord disconnected from outlet.
b) Radio switch knob (located on front of clock timer) turned to "on" and volume control set for minimum.
6. Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in voltage and resistance readings.
7. N.C. denotes no connection, K is kilohms, Meg. is megohms. Resistances marked * are measured to Pin 7 of Rectifier 35W4(B+).

ALIGNMENT INSTRUCTIONS

1. Use isolation transformer if available. If not, connect a .25 mfd . condenser in series with low side of signal generator and B neutral.
2. Volume control should be at maximum position. Output of signal generator should be no higher than necessary to obtain an output reading. Use an insulated screw driver for adjusting.

STEP	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{gathered} \text { RADIO } \\ \text { DIAL } \\ \text { SETTING } \\ \hline \end{gathered}$	$\begin{aligned} & \text { OUTPUT } \\ & \text { METER } \end{aligned}$	ADJUST	REMARKS
1	High side through . 005 MFD to grid (pin 7) of V-1 (12BE6). Low side to B neutral. See alignment Nate No. 1.	455 KC	Variable condenser fully open.	Across voice coil.	$\begin{aligned} & \mathrm{T}-2, \mathrm{~T}-1 \\ & (\mathrm{~A}-3, \mathrm{~A}-4 \\ & \mathrm{A}-1, \mathrm{~A}-2) \end{aligned}$	Adjust for maximum output.
2	Form loop of several turns and radiate signal into receiver	1630 KC	Variable condenser fully open.	Across voice coil.	$\begin{aligned} & \text { Trimmer C-4 } \\ & \text { (OSC.) } \end{aligned}$	Adjust for maximum output.
3	Form loop of several turns and radiate signal into receiver	1400 KC	Tune for Maxoutput.	Across voice coil.	$\begin{aligned} & \text { Trimmer C-2 } \\ & \text { (ANT.) } \end{aligned}$	Adjust for maximum output.

The following step is normally not required unless the bar loop antenna has been serviced or replaced in the field. Before proceeding with this adjustment, the chassis must be turned "on" and placed in its cabinet for a period of at least 30 minutes so that the bar loop will have reached its normal operating temperature. Remove the chassis and proceed as follows:

4	Form loop of several turns and radiate si gnal into receiver	600 KC	Tune for Max. output.	Across voice coil.	Ant.bar loop adjusting turns
Using slack wire (see sche- matic) add from one to two turns to bar loop for maxi- mum meter reading. If read-					

direction (aiding or bucking). Repeat step No. 2
NOTE: Do not touch bar loop ant. when checking meter reading.
RESISTANCE READINGS FOR CHASSIS 120201.B

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V-1	12BE6	22 K	4	12Ω	24Ω	$* 1.5 \mathrm{~K}$	$* 1.5 \mathrm{~K}$	3.8 meg
V-2	$12 B A 6$	15Ω	0	24Ω	36Ω	$* 1.5 \mathrm{~K}$	$* 1.5 \mathrm{~K}$	$120 \Omega \Omega$
V-3	$12 A T 6$	6.8Ω	0	0	12Ω	.5 meg	0	$* 470 \mathrm{~K}$
V-4	50 C 5	150	480 K	36Ω	85Ω	480 K	1.5 K	190Ω
V-5	$35 W 4$	NC	NC	85Ω	120Ω	138	112Ω	0

* Resistance measured to Pin 7 of rectifier 35W4 (B+)

VOLTAGE READINGS ON SCHEMATIC DIAGRAM

CLOCK TIMER

The clock runs immediately and continuously when set is plugged into a 117V 60 cycle A.C. outlet.

TIME SET KNOB (Located at rear of clock timer)
a) To set time (hour and minute hands) pull knob out and turn in the direction indicated by arrow.
b) To set Radio Alarm (time radio goes on automatically) push knob in and turn in the direction indicated by arrow to the der sired time.

CAUTION: When using this time set knob, be sure to always turn in the direction indicated by the arrow.

RADIO SWITCH KNOB (Located on front of clock timer). This knob switches radio "on" or "off" or when switch to "auto" will automatically turn the radio on at the time indicated by the radio alarm set hand. (see step ' b ' above)

Fig. 2 Tube Location Diagram of Chassis 120201-B

EMERSON PAGE 23-51
MODEL 788B,
Ch. 120201-B

CHASSIS PARTS LIST - CHASSIS 120201-B

$\begin{aligned} & \text { SYM- } \\ & \text { BOL } \end{aligned}$	PART NO.	DESCRIPTION	LIST	$\left\lvert\, \begin{array}{\|l\|} \text { SYM- } \\ \text { BOL } \end{array}\right.$	PART NO.	DESCRIPTION	$\begin{array}{\|l\|} \text { LIST } \\ \text { PRICE } \end{array}$
C-1	900106	Variable Capacitor - R.F.Section Trimmer - R.F.Section Variable Capacitor - Oscillator Section Trimmer - Oscillator Section	\$3.35	R-1	PT. of L-2	22,000 Ohm Carbon	
C-2	PT. of C-1			R-2	340272	120 Ohm Carbon 1/2 W. $\pm 10 \%$	\$. 10
C-3	PT. of C-1			R-3	351332	3.3 Megohm Carbon 1/2W. $\pm 20 \%$. 06
C-4	PT. of C-1			R-4	390236	500,000 Ohm Volume Control	. 70
C-5	PT. of T-1			R-5)	Part	6.8 Megohm)	
C-6	PT. of $\mathrm{T}-1$			R-6)	of	470,000 Ohm) R.C.Coupling Unit	
C-7	PT. of T-2			R-7)	923024	470,000 Ohm)	
C-8	PT. of T-2			R-8	350732	10,000 Ohm Carbon 1/2w. $\pm 20 \%$. 05
C-9	923554	.05 MF Paper 400V		R-9	340292	150 Ohm Carbon 1/2w. $\pm 10 \%$. 10
C-10)	$\begin{aligned} & \text { Part } \\ & \text { of } \\ & 923024 \end{aligned}$	220 MMF)		R-10	380532	1,500 Ohm Carbon 1W. $\pm 20 \%$. 16
C-11)		. 002 MF)		R-11	340072	18 Ohm Carbon 1/2W. $\pm 10 \%$. 14
C-12)		.005 MF) R.C. Coupling Unit	1.05				
C-14)		250 MMF)		SP-1	180115	Speaker - PM-4"'(With output Trans-	
C-15	923524	.02 MF Paper 400V	. 25			former)	5.00
C-16	925218	30-50 MF) Electrolytic 150V	1.35				
C-17	923554	.05 MF Paper 400V	. 25				
C-18	923515	.1 MF Paper 400V	. 30	SW-1	PT. of M-1	On-off switch	
L-1	700081	Bar Loop Antenna	200	T-1	720033	1st. LF. Transformer	1.80
L-2	716071	Oscillator Coil	. 95	T-2	720033	2nd. I.F. Transformer	1.80
				T-3	PT. of SP-1	Output Transformer	
N-1	470743	Timer - Telechron Model C-88					
				$\mathrm{V}-1$	800525	Vacumm Tube - 12BE6	
				V-2	800524	Vacusum Tube - 12BA6	
P-1	583049P	Plug \& Line Cord	. 50	$\mathrm{V}-3$	800523	Vacuum Tube - 12AT6	
P-2	585112	Plug \& Lead Assembly	. 30	V-4 $\mathrm{V}-5$	800032	Vacuum Tube - 50C5	
				V-5	800526	Vacumm Tube - 35w 4	
				X-2	500530	Radio Socket	. 10

Prices subject to change without notice.
CABINET PARTS LIST - CHASSIS 120201-B

PART NUMBERS	DESCRIPTION	LIST
MODEL 788B		PRICE
140553	Cabinet - Ebony	\$4.05
140553B	Cabinet - Ivory	5.35
140553 A	Cabinet - Walnut	5.05
460326	Pointer Knob - Gold	. 20
460311	Volume Knob - Clear	. 10
460509	Switch Knob - Timer - Black	. 05
450175	Grille - Gold	. 55
542280.	Spring - Knobs	. 02
575939	Baffle	. 25
575898	Back	. 10
587329	Fastener - Baffle \& Back	. 02
470743	Timer - Telechron Model C-88	
277053	Fishpaper Washer - Timer	. 01
520195	Crystal	. 20
411635	Mounting Plate	. 50

Prices subject to change without notice.

Power supply with ballast 105-245 Volts DC 40-60 cycles AC

Power Consumption 30 Watts
Frequency Range
Standard Broadcast 530-1650 KC (566-182 meters)
Tropical Shortwave 2.3-7.6 MC (130-39.5 meters)
International Shortwave 7.4-24 MC (40.5-12.5 meters)

Tubes:
Osc. Converter 12SA7
I.F. Amplifier 12SK7

Det. Avc. A.F. $\quad 12 S Q 7 \quad 117.35 \quad 135-160$ volts
Power Output 50L6GT

ALIGNMENT PROCEDURE

The chassis may be removed from the cabinet by pulling off the knobs and, removing the four screws on the bottom.
No attempt should be made to realign the various circuits until all other causes have been checked, unless the condition is so obvious as to indicate that realignment is necessary. Then proceed as follows:
Volume Control full on.
Low range A.C. meter connected across voice coil to indicate output.
Keep signal generator attenuated so as to maintain $1 / 2$ scale reading on output meter. Make certain that dial pointer is exactly on index line (bottom left side of dial plate) when variable condenser is fully meshed. Use only mild soap and water to clean cabinet and knobs. Never use cleaning fluids.

Band Switch	Receiver Dial At:	Signal Generator	Dummy Antenna	Connect Signal Generator To:	Refer To Chassis Layout For Location Of Trimmers
$1 .$ Bcst	Full Open	$\begin{aligned} & \text { Exactly } \\ & 456 \mathrm{KC} . \end{aligned}$. 1 MF	Control Grid 12SA7 Tube (Top) Rear Section Variable Condenser.	Adjust for Maximum Output L1, L2, L3 \& L4.
2. Bcst	Full Open	$\begin{aligned} & \text { Exactly } \\ & 1650 \text { KC. } \end{aligned}$	200 MMF	Terminal at Rear for External Anterina and Chassis.	Adjust for Maximum Output Tl
3. Bcst	Approx. 1500 KC .	Approx. 1500 KC.	200 MMF	Same	Adjust for Maximum Output T2 on Loop.
4. Bcst	Approx. 600 KC .	Approx. 600 KC .	200 MMF	Same	Adjust for Maximum Output T3 While Rocking Tuning. Repeat Steps 2, 3 \& 4 if Adjustment is great.
5. Trop.	Full Open	$\begin{aligned} & \text { Exactly } \\ & 7.6 \mathrm{MC} . \end{aligned}$	400 ohm	Same	Adjust for Max. Output T4 (lst. peak in) (image should appear at 8.5 MC on Signal Generator).
6. Trop.	Approx. 7.0 MC.	Approx. 7.0 MC .	400 ohm	Same	Adjust for Max. Output T5 while rocking tuning (image should appear somewhat weaker at 7.9 MC on signal generator).
$7 .$ Trop.	Approx. 2.5 MC .	Approx. 2.5 MC.	400 ohm	Terminal at Rear for External Antenna and Chassis.	Adjust for Max. Output T6 while rocking tuning. Repeat steps 5, 6 and 7 if adjustment is great.
8. Short Wave	Full Open	Exactly $24 \mathrm{MC} .$	400 ohm	Same	Adjust for Max. Output T7 (second Peak in) (image should appear at 23.1 MC on signal generator).
9. Short Wave	Approx. 22 MC .	Approx. 22 MC .	400 ohm	Same	Adjust for Max. Output T8 while rocking tuning. (image should appear somewhat weaker at 21.1 MC on signal generator).
10. Short Wave	Approx. 8 MC .	Approx. 8 MC .	400 ohm	Same	Check tracking with iron and brass wand in Ant. coil \#37.108. If output more than doubles, tracking may be improved somewhat by gently dressing leads or moving osc. coil \#37.109. Repeat steps 8, 9, and 10 if adjustment is great.

PARTS LIST

Part No.

Description

12.23 Tubular Condenser . 03 Mfd . 400 V Molded
12.24 Tubular Condenser . 05 Mfd . 400 V Molded
12.25 Tubular Condenser . 1 Mfd. 400 V Molded
17.21 Ceramic Condenser $100 \mathrm{Mmf} \pm 20 \%$
17.22 Ceramic Condenser $220 \mathrm{Mmf} \pm 20 \%$
17.45 Ceramic Condenser $1500 \mathrm{Mmf} \pm 20 \%$
17.75 Ceramic Condenser $2200 \mathrm{Mmf} \pm 10 \%$
17.85 Mica Condenser $6800 \mathrm{Mmf} \pm 5 \%$
17.84 Ceramic Condenser $4700 \mathrm{Mmf} \pm 20 \%$
17.91 Mica Condenser $1300 \mathrm{Mmf} \pm 5 \%$
22.32 Electrolytic Condenser 30-40-20 Mfd. 150 Volts
$27.25 \quad$ Variable Condenser 2 gang type 2001
37.62 Input \& Output I.F. Coil
37.88 Broadcast Loop
37.108 S.W. and Tropical Ȧntenna Coil
37.109 S.W. Oscillator Coil
37.110 B.C. and Tropical Oscillator Coil
42.36 Output Transformer 2500 ohm 400 cycles

Part No.
 Description

47.12 3 Band Switch
52.6 Volume Control with Switch
72.1 Power Cord
77.4 Dial Cord Spring
77.5 Dial Cord
77.33 Pointer
77.112 Glass Dial Scale
92.17 Phono Plug
92.18 Phono Socket
92.19 Phono Shell
97.46 Cabinet Bakelite (Walnut or Ivory)
97.117 Masonite Back
97.157 Grille Cloth
107.8A Speaker $6^{\prime \prime} \times{ }^{\prime \prime} 4^{\prime \prime}$ Oval Alnico V Magnet
142.37 Knob "Off" Volume (Walnut or Ivory)
142.38 Knob Tuning (Walnut or Ivory)
142.39 Knob B.C.-Tr.-S.W.-Phono (Walnut or Ivory)

Note: When ordering, please give part number and description.

PAGE 23-4 FADA
MODEL 777

SPECIFICATIONS

Cabinet Dimensions (Inc. Knobs) 10-3/4" X 4-1/4" X 6-3/8"
- 4 Lbs.(Less Batteries)
- 110-120 Volt AC-DC \& Battery
Tuning Range
- 540 to 1600 KC
Intermediate Freq.
- 455 KC
Loud Speaker
-4" PM
Voice Coil Impedance
- 3.2 Ohms at 400
Cycles
Power Output
Undistorted
Maximum
- 180 MW -300 MW

Batteries -

One 4-1/2 Volt "A" Firestone 4-D-86
One 90 Volt "B" Firestone 4-D-88

Tube Complement
1R5 - Converter
1U4 - I.F; Amplifier
1U5 - Diode-Audio Amplifier
3V4 - Power Output
Rectifier - Selenium Type

ALIGNMENT PROCEDURE

For alignment procedure read tabulations from left to right and make the adjustments marked (1) first. (2) next. (3) third.

Before starting alignment:
(A) Remove the chassis and loop antenna from the cabinet at the same time by removing the battery connectors from the batteries, pulling off knobs and removing the two screws on the chassis tabs which fasten the chassis to the cabinet.
(B) Use an accurately calibrated test oscillator with some type of output measuring device.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline $$
\begin{gathered}
\text { STEP } \\
\text { nO. }
\end{gathered}
$$ \& POSITION of GANG \& SIGNAL GENERATOR FREQUENCY \& GENERATOR CONNECTION \& DUMMY ANTENNA \& ADJUSTMENT \& TYPE OF ADJUSTMENT

\hline 1 \& Any point where no interfering signal is received. \& Exactly 455 KC \& High Side to grid of I R5 tube. Low side to common negative. \& . 05 MFD. Condenser \& Slug at top of 2nd. I.F. (T2) and then each of the slugs of the lst. I.F. \& $$
\begin{aligned}
& \text { For } \\
& \text { Maximum } \\
& \text { Output. }
\end{aligned}
$$

\hline 2 \& Exactly 1620 KC . \& Exactly 1620 KC . \& \multirow{3}{*}{DUMMY

ANTENNA} \& \multirow{3}{*}{2 turns of hookup wire 6 ' in Dia. (Place approximately a foot from, [end of], and in same axis as, loop antenna.} \& Front Gang Trimmer. \& For Maximum Output.

\hline 3 \& $$
\begin{aligned}
& \text { Approximately } \\
& 1400 \mathrm{KC} \text {. }
\end{aligned}
$$ \& Approximately 1400 KC . \& \& \& Rear Gang Trimmer. \& \[

$$
\begin{gathered}
\text { For } \\
\begin{array}{c}
\text { Maxilmum } \\
\text { Output. }
\end{array}
\end{gathered}
$$
\]

\hline 4 \& Exactly 600 KC . \& Exactly 600 KC . \& \& \& Slug in Oscillator Coll (L2). \& $$
\begin{gathered}
\text { For } \\
\text { Maximum } \\
\text { Output. }
\end{gathered}
$$

\hline 5 \& \& \& \& \& REPEAT STEPS 2 and 3 \&

\hline
\end{tabular}

Be sure R.F. and I.F. stages are accurately aligned before measuring gain. R.F. gains can be measured with a "channel" type instrument containing a tuned and calibrated R.F. amplifier. A vacuum tube voltmeter may be used for audio gain measurements. Observe following precautions:

1. For all gain measurements connect signal generator as shown. Use 600 KC . signal with 400 cycle modulation (use nearby frequency if local station interferes.)
2. Be sure radio is carefully tuned to generator signal (use weak signal for sharp tuning.)
3. When using a "channel type instrument carefully tune it for maximum output at desired frequency before making measurements.

Differences in tube characteristics, tolerance of parts, adjustment of tuned circuits, and variations of line voltage will influence stage gain. Accuracy of measurements is dependent upon careful tuning of receiver to generator signal and experience in using your test equipment. These factors may create considerable variation in gain measurements.

TOP VIEW OF CHASSIS

BOTTOM VIEW OF CHASSIS

YOLTAGES
OPERATION.

LIST PRICE

$\$.25$
.25

ORDERING PARTS

Order parts from your nearest Firestone Tire and Auto Supply Warehouse. When ordering parts, it is important that the correct code number and stock number, be given with the correct part name and part number as shown in the parts list.

OPERATION

POWER SELECTOR SWITCH (See Fig. 2)

This control is located on the back of the radio chassis. Release snap fastener securing door on back of cabinet. Remove line cord from compartment and turn switch to "AC-DC" or "BATT." position. The line cord is stored in this compartment when the radio is operating on batteries.

VOLUME CONTROL KNOB (See Fig. 1)

This knob is located on the left side of the radio. Turning this knob slightly to the right until a slight click is heard will put the radio into operation. Turning this knob further to the right will increase the volume and turning. it to the left will decrease the volume. After a station has been selected, the volume control should be adjusted to the desired level. The volume should never be reduced by detuning the station selector knob.

STATION SELECTOR KNOB (See Fig. 1)

This knob is located on the right side of the radio. Turn the knob until a desired station has been selected. Adjust very carefully until the station comes in with the most natural tone.

Fig. 1

DESCRIPTION

This Portable Receiver is a 5 -tube plus rectifier superhetrodyne, designed to operate on 115 to 125 volts, AC-DC power, or on self-contained batteries. The receiver covers the frequency range 538 to 1620 KC . Three controls are provided for operating the receiver. See Fig. 1 and 2.

This receiver is equipped with a tuned R.F. Stage, a 3 -gang tuning condenser and the newly designed "MagnaLoop" antenna, thereby insuring the finest in sensitivity and selectivity. It is designed with the patented "Battery. Rejuvenator". Proper use of this rejuvenator will extend the normal life of the "B" batteries 2 to 4 times for extra hours of listening pleasure.

ELECTRICAL SPECIFICȦTIONS

Power supply	115 to 125 volts AC-DC	This receiver contains the following
	or 245 volt "B" batteries	1-1T4 or 144........ RF Amplifier
	and $241 / 2$ volt " A " batteries	l—lR5 ...).
Frequency Rang	. $538 \cdot 1620 \mathrm{KC}$.	
Speaker	5" PM	$1-105$
Power Output	. 25 watts maximum	1-3V4

\square

BATTERY INSTALLATION

BATTERY INSTALLATION

Batteries Required

```
4 41/2 volt "A" Batteries Firestone No. 4-D-86
2 4. volt "B" Batteries Firestone No. 4-D.89
```

1. Remove two wood screws located in upper corners of back.
2. Swing top of back away from cabinet and remove by lifiing in an upivard direction.
3. Install batteries and insert cable plugs as shown ial Fig. 2.

BATTERY CHARGING

The "B" batteries can be recharged in the following mamer:

1. Turn power selector switch to charge position.
2. Pluy line cord into an AC or DC 115-125 volt power line.
3. Turn volume control on.

The best possible performance on battery operation can be realized if the batteries are periodically charged by the Rejuvenator for as long a period as they have been in use. rather than wating until they run down. For example. if the receiver has been operated on hattery power for four hours. it should be on charge for at least four hours afterwards. In this mamer, the quality and sensitivity of the receiver will be at a maximum since the fully charged batteries will insure "new battery" performance.

CAITION: Do not attempt to remove tubes or replace batteries while receiver is turned on.

ALIGNING INSTRUCTIOXS

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that other components such as tubes, condensers, resistors. etc.. are normal before proceeding with realignment. If realignment is necessary. follow the instructions given under the heading "Alignment Procedure". After realignment has been completed. repeat the procedure as a final check.

To remove the radio chassis for servicing. remove the back cover and disconnect cables from batteries. Remove Latteries and pull out the top shelf. Slide out the chassis and bottom shelf and remove the screws securing chassis to shelf.

ALIGNMENT PROCEDURE

Volume control - Maximum, all adjustments.
No signal applied to antenna.
Power input - 115 to 125 Volts AC or DC.
Connect dummy antenna in series with output lead of signal generator.
Connect ground lead of signal generator to chassis. Repeat alignment procedure as a final check.

The following equipment is necessary for proper alignment:
Signal generator that will provide the test frequencies as listed, modulated 400 cycles, 30%.
Non-metallic screwdriver.
Output meter. (1.8 volt for 1 watt output).
Dummy antenna - . 1 MFD:
For alignment points refer to Schematic Diagram.

Dial Setting	Generator Frequency	$\begin{gathered} \text { Dimmy } \\ \text { Ant. } \end{gathered}$	Generator Connection	Trimner Reference	Trimmer Adjustment	Trimmer Function
1. Fully open	45.5 KC	. 1 MFD	1R5 Grid	T2 Top \& bottom	Maximum	Output I.F.
2. Fully open	4.5 KC	. 1 MFD	1R5 Grid	T1 Top \& bottom	Maximum	Input I.F.
3. Fully open	1620 KC	. 1 MFD	Grid 1T4 RF Stage	CV 2	Maximum	Oscillator
4. Tune in signal from generator	1400 KC	. 1 MFD	Grid 1T4 RF Stage	CV3	Maximum	RF Stage
5. Tune in signal from generator	690 KC	. 1 MFD	Grid 1T4 RF Stage	L2	Maximum	RF Stage
6. Tune in signal from generator	1400 KC		Loosely couple signal generator leads to "Magna Loop"	Cl1	Maximum	Antenna

FIRESTONE PAGE 23-7

Fig. 5

PARTS AND PRICE LIST

 CONDENSERS

MISCELLANEOUS

SW-602A	Power Selector Switch	\$1.00
PM-250	Speaker 5" PM (Includes output transformer).	5.75
Sl	Selenium Rectifier	1.50
H208	Clip Coil Mounting	. 05
H51	Knob .-.).	. 10
B51	"A" Battery Cable	. 75
B52	"B" Battery Cable	. 75
H53	Cabinet less back	5.95
H54	Cabinet back	1.50
4-D-89	"B" Battery, 45 volt	2.25
4-D-86	"A" Battery, $41 / 2$ volt	. 85

DIAL PARTS

H55	Plastic Dial	\$2.00
H56	Dial Pointer	. 25
H57	Dial Puilley	. 05
H58	Spring, Dial Drive String Tension	. 05
H59	String, Dial Drive	. 10

SPECIFICATIONS

CABINET DIMENSIONS

Length	$8-9 / 16^{\prime \prime}$
Depth	$5^{\prime \prime}$
Height	$5^{\prime \prime}$

SHIPPING WEIGHT 4-1/4 Lbs.
POWER SUPPLY 110 to 120 Volt AC-DC
TUNING RANGE 540 to 1600 KC
INTERMEDIATE FREQUENCY 455KC

LOUD SPEAKER 4 Inch PM
VOICE COIL IMPEDANCE 3.2 Ohm at 400 Cycles

POWER OUTPUT Undistorted - 0.9 Watt Maximum - 1.8 Watts
TUBE COMPLEMENT

12AU6	-	Converter
12AV6	-	Diode Audio
50 C 5	-	Output
35 Z 5 GT	-	Rectifier

ALIGNMENT PROCEDURE

For alignment procedure read tabulations from left to right, and make the adjustments marked (1) first, (2) next, (3) Third.

Before starting alignment
(A) Remove chassis and loop from cabinet. Leave loop in position on its mounting bracket. Turn tuning capacitor until plates are completely in mesh and replace tuning knob with indicator pointing to the lift and parallel to chassis base.
(B) Use an accurately calibrated test oscillator with some type of output measuring device.
(C) When aligning the 1400 KC Antenna Trimmer and the 1620 KC Oscillator Trimmer, couple test oscillator to receiver loop by; (1) make loop consisting of two turns of $\# 22$ size wire wound on a form of 6 " in dia. (2) connect this loop across output of test oscillator; (3) place test oscillator loop approximately a foot from and in the same plane as the receiver loop. BE SURE THAT NEITHER LOOP MOVES WHILE ALIGNING.

$$	Set Receiver dial to:	TEST OSCILLATOR		
		Adjust test oscillator frequency to:	Attach output of test oscillator to:	Refer to parts layout diagram for location of trimmers mentioned below:
I	ANY POINT WHERE NO INTERfering signal is received. With tuning condenser near center	455 k.C.	high side to rear stator plates of tuning condenser. LOW SIDE TO COMMON NEGATIVE through a . 05 mFD blocking condenser	adjust slugs at top and bottom of l.f. can for maximum output.
2	$\begin{gathered} \text { EXACTLY } \\ 1620 \mathrm{K.C.} \end{gathered}$	$\begin{aligned} & \text { EXACTLY } \\ & 1620 \mathrm{K.C.} \end{aligned}$	See paragraph " $\mathrm{C}^{\text {co }}$ above	adjust $1620 \mathrm{k} . \mathrm{c}$. oscillator trimmer for maximum output.
3	$\begin{aligned} & \text { APPROX. } \\ & 1400 \mathrm{k} . \mathrm{C} . \end{aligned}$	$\begin{aligned} & \text { APPROX. } \\ & 1400 \text { к.c. } \end{aligned}$	See paragraph "C." above	adjust $1400 \mathrm{k} . \mathrm{c}$. antenna trimmer for maximum output.

OJohn Fe Rider

MODELS 4-A-101,

4-A-102, Code 297-2-3419
Be sure R.F. and I.F. stages are accurately aligned before measuring gain. R.F. gains can be measured with a "channel" type instrument containing a tuned and calibrated R.F. amplifier. A vacuum tube voltmeter may be used for audio gain measurements. Observe following precautions:

1. For all gain measurements connect signal generator as shown. Use 600 KC . signal with 400 cycle modulation (use nearby frequency if local station interferes.)
2. Be sure radio is carefully tuned to generator signal (use weak signal for sharp tuning.)
3. When using a "channel type instrument carefully tune it for maximum output at desired frequency before making measurements.

Differences in tube characteristics, tolerance of parts, adjustment of tuned circuits, and variations of line voltage will influence stage gain. Accuracy of measurements is dependent upon careful tuning of receiver to generator signal and experience in using your test equipment. These factors may create considerable variation in gain measurements.

ORDERING PARTS

Order parts from your nearest Firestone Tire and Auto Supply Warehouse. When ordering parts, it is important that the correct code number and stock number, be given with the correct part name and part number as shown in the parts list.

PARTS LIST

FIRESTONE PAGE 23-11

SPECIFICATIONS

CABINET DIMENSIONS -
Length $10-5 / 16^{\prime \prime}$
Depth $5-3 / 4^{n}$
Height 6-3/16"
SHIPPING WEIGHT - $61 / 2 \mathrm{lbs}$.
POWER SUPPLY - 110 to 120 Volts AC-DC
TUNING RANGE - 540 to 1600 KC INTERMEDIATE FREQ. - 455 KC
LOUD SPEAKER - 4 Inch PM

VOICE COIL IMPEDANCE - 3.2 Ohms at 400 cycles
POWER OUTPUT Undistorted - 0.8 Watts
Maximum -1.3 Watts
TUBE COMPLEMENT -

12SA 7	- Converter
12SK7	I. F. Amplifier

12SQ7 - Diode-Audio
50L6GT - Output
35Z5GT - Rectifier

ALIGNMENT PROCEDURE

For alignment procedure read tabulations from left to right, make the adjustments marked (1) first, (2) next, (3) third.

BEFORE STARTING ALIGNMENT:

(A) Remove loop and chassis from cabinet. (CAUTION: DIAL ESCUTCHEON TAB ABOVE GANG CONDENSER ON INSIDE OF CABINET MUST BE STRAIGHTENED BEFORE REMOVING CHASSIS.) Loop must be mounted to its normal position on chassis for alignment.
(B) Use an accurately calibrated test oscillator with some type of output measuring device.

$\begin{aligned} & \text { STEP } \\ & \text { No. } \end{aligned}$	SIGNAL GENERATOR FREQUENCY	generator CONNECTION	POSITION OF GANG	DUMMY ANTENNA	ADJUSTMENT	TYPE OF ADJUSTMENT
1	$\begin{aligned} & \text { Exact1y } \\ & 455 \text { KC } \end{aligned}$	High Side to grid of 125A7 tube. Low side to common negative.	Any point where no interfering signal is received.	. 05 MFD . Condenser	Slug at top or 2nd. I.F. (T2) and then each of the slugs of the 1st.I.F.	$\begin{gathered} \text { For } \\ \text { Maximum } \\ \text { Output } \end{gathered}$
2	$\begin{aligned} & \text { Exactly } \\ & 1620 \text { KC } \end{aligned}$	DUMMY	Rotor Pully open.	hookup	Front Gang Trimmer	$\begin{gathered} \text { For } \\ \text { Maximum } \\ \text { Out put } \end{gathered}$
3	Approxi- mately 1400 KC .	ANTENA	Tune in signal from generator.	ly a foot from end of, and in same axis as, loop antenna)	$\begin{aligned} & \text { Rear Gang } \\ & \text { Trimmer } \end{aligned}$	$\begin{gathered} \text { For } \\ \text { Maximum } \\ \text { Output } \end{gathered}$

279

TOP VIEW OF CHASSIS

BOTTOM VIEW OF CHASSIS

Be sure R.F. and I.F. stages are accurately aligned before measuring gain. R.F. gains can be measured with a "channel" type instrument containing a tuned and calibrated R.F. amplifier. A vacuum tube voltmeter may be used for audio gain measurements. Observe following precautions:

1. For all gain measurements connect signal generator as shown. Use 600 KC . signal with 400 cycle modulation (use nearby frequency if local station interferes.)
2. Be sure radio is carefully tuned to generator signal (use weak signal for sharp tuning.)
3. When using a "channel type instrument carefully tune it for maximum output at desired frequency before making measurements.

Differences in tube characteristics, tolerance of parts, adjustment of tuned circuits, and variations of line voltage will influence stage gain. Accuracy of measurements is dependent upon careful tuning of receiver to generator signal and experience in using your test equipment. These factors may create considerable variation in gain measurements.

PARTS LIST

$\begin{aligned} & \text { ILlus. } \\ & \text { No. } \end{aligned}$	PART NO.	PART NAME	DESCRIP TION	$\begin{gathered} \text { LIST } \\ \text { PRICE } \\ \hline \end{gathered}$	$\begin{aligned} & \text { ILLUS. } \\ & \text { NO. } \end{aligned}$	PART no.	$\begin{aligned} & \text { PART } \\ & \text { NAME } \end{aligned}$	DESCRIPTION	LIST PRICE
C1,C3	$\mathrm{N}-8745$	Condenser	Gang Tuning with Pulley	\$3.00	R5	$\mathrm{N}-8732$	Volume Control	With Switch - 500,000 Ohms	\$1.15
C2, C	--	Trimmers	Gang		R6	N -4028	Resistor	Carbon 6.8 Megohm 1/2.W. 20\%	. 25
C5,c9	$\mathrm{N}-1345$	Condenser	Paper . 05 MFD. 200 Volts	. 25	R7	$\mathrm{N}-4068$	Resistor	Carbon 330 hm 1.0 Watt 20\%.	. 25
C6	N-6015	Condenser	Ceramic 100 MMFD. 500 V. 20%	. 25	*R8	N-4026	Resistor	Carbon 220,000 0hm 1/2 W. 20\%	. 25
C7	PART	OF 2nd I.F	Trans. N-8150		*R9	$\mathrm{N}-4027$	Resistor	Carbon 470,000 0hm 1/2 W. 20\%	. 25
		Condenser	100 MMFD. 500 Volt 10\%		R10	$\mathrm{N}-4024$	Resistor	Carbon $2200 \mathrm{hm} \mathrm{1/2} \mathrm{Watt} \mathrm{10} \mathrm{\%}$. 25
C8	N-4894	Condenser	Paper . 005 MFD. 600 Volts.	. 25					
- Cl 10	N-6488	Condenser	Ceramic 250 MMFD. 500 V. 20%	. 25	T1	$\mathrm{N}-7981$	Transformer	1st I. F.	1.50
${ }^{*} \mathrm{Cl} 1$	$\mathrm{N}-1344$	Condenser	Paper . 01 MFD. 400 Volts	. 25	T2	$\mathrm{N}-8150$	Transformer	2nd I. F.	1.10
C12	$\mathrm{N}-1344$	Condenser	Paper . 01 MFD. 400 Volts	. 25		N 7824	Speaker	4" PM With Transformer	6.65**
C13	$\mathrm{N}-1346$	Condenser	Paper . 05 MFD. 400 Volts	. 25	$\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{~L} 2 \end{aligned}$	$\mathrm{N}-8740$ $\mathrm{~N}-8709$	$\begin{aligned} & \text { Coil } \\ & \text { Coil } \end{aligned}$	Loop Antenna h\& Cabinet Back Oscillator	1.80 .90
$\begin{aligned} & \text { C14) } \\ & \text { C15) } \end{aligned}$	N-7889	Condenser	Electrolytic(50 MFD. 150 V.) (30 MFD. 150 V.)	1.95		*361	Cabinet	Plastic	6.40**
R1	$\mathrm{N}-4025$	Resistor	Carbon 22.000 Ohm 1/2W. 20%	. 25		$\stackrel{\mathrm{N}}{\mathrm{N}-8733} \mathrm{~N}-8735$	Knobs Escutcheon	Plastic Diad	. 25
R2	$\mathrm{N}-1262$	Resistor	Carbon 1.0 Megohm 1/2W. 20%	. 25		$\mathrm{N}-8737$	Pointer	Dial	. 43
R3, R11	N-4022	Resistor	Carbon 330 hm 1/2 Watt 20\%	. 25		$\mathrm{N}-8883$	Assembly	Baffle \& Cloth	1.75
R4	N-4026	Resistor	Carbon 220,000 Ohm 1/2 W. 20\%	. 25					
NOTES: *in some receivers, the components $\mathrm{Cl} 10, \mathrm{Cl1}, \mathrm{R8}$ and R 9 are replaced by the assembly listed below:									
N-8215 Assembly, Aulio Coupling Plate . 53									
\#Excise Tax Included.									

ALIGNMENT PROCEDURE
Be sure to follow procedure carefully and in the order given-otherwise the receiver. will be insensitive and the dial cali-
bration incorrect. For alignment procedure read tabulations from left to right. Make the adjustment marked (1) first, (2) next, (3) third.

Before starting alignment:
(a) Check tuning dial adjustment by tuning gang condenser until plates touch maximum capacity stop (completely in mesh) at which point the low frequency end of the dial scale. If dial indicator does not point exactly to the center of the large 5 , move to correct position.
(b) Use an accurately calibrated test oscillator with some type of output measuring device.
(c) WHEN ADJUSTING 1620 KC OSCILLATOR TRIMMER, remove chassis from cabinet and disconnect the loop connec-
the 1 megohm resistor.
(d) THE 1400 KC LOOP A

ENNA TRIMMER should be adjusted only after all other adjustments have been made and mer, couple test oscillator to receiver loop by: (1) make loop consisting of five to ten turns of No. 20 to No. 30 size wire,

Be sure all stages are accurately aligned before measuring gain. R.F. gains can be measured with a "channel" type instrument containing a tuned and calib
serve following precautions:

1. For all gain measurements 2. Be sure radio is 3. When using a "chan-

For all gain measurements
connect signal generator as shown. Use 600 KC signal with 400 cycle modulation (use nearby frequency
local station interferes.) $\begin{array}{lll}\text { connect signal generator as } & \text { carefully tuned } & \text { nel" type instrument } \\ \text { shown. Use } 600 \mathrm{KC} \text { signal } & \text { to generator } & \text { carefully tune it for }\end{array}$

$$
\begin{aligned}
& \text { signal for sharp } \\
& \text { tuning). }
\end{aligned}
$$ maximum output at desired frequency be-

1

$$
\begin{aligned}
& \text { (use nearby frequency if } \\
& \text { local station interferes.) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { fore making measure- } \\
& \text { ments. } \\
& \hline \hline
\end{aligned}
$$

PAGE 23-18 FIRESTONE
MODEL 4-C-1,
Code 291-7-564

Differences in tube characteristics, tolerance of parts, adjustment of tuned circuits, and variations of line voltage will influence using your test equipment. These factors may create considerable variation in gain measurements.

ORDERING PARTS

Order parts from your nearest Firestone Warehouse. When ordering parts, it is important that the correct code number
 ber and code number stamped on the chassis pan.

PARTS LIST

系晜
 mo
\qquad

List Price
$\$ 4.75$

3.70
3.70
3.

 Door with Loop....
1st I.F. Transformer.
1st I.F. Transformer
2nd I.F. Transformer. 2nd I.F. Transformer.
Oscillator

Loop Door on 4-C-1
Complaint - Poor or Intermittent Reception due to open Loop Antenna.

Cause - Loop Antenna breaks at soldered connection.

Suggested Action:

described below.
It is advisable to purchase the complete loop assembly Part No. 20E145-1 and replace old one as
The serviceman should not attempt to replace just a part of the loop assembly. The loop assembly consists of an inner and outer bakelite section and a loop coil. To make the loop assembly fit properly it is necessary to assemble the two bakelite sections at the same time. These sections are mates and must then be used together.
bakelite sections together.

ELECTRICALSPECIFICATIONS

6 Tube Superheterodyne, including Rectifier Tube.
Tuning Frequency Range. 540 to 1600 KC Power Consumption. . . . (Radio) 35 watts (At 117 volts AC) (Phono) 20 watts, 60 cycles only Power Output 2.0 watt maximum, 1.1 watt (10% distortion) Intermediate Frequency 455 KC Sensitivity . 10 Microvolts Average Selectivity 45 KC Wide at 1000 Times Signal Speaker (3.2 ohm Voice Coil) $8^{\prime \prime}$ PM Dynamic

ALIGNMENT PROCEDURE RADIO

The following is required for aligning:
An All Wave Signal G'enerator Which Will Provide an Accurately Calibrated Signal at the Test Frequencies as Listed.
Output Indicating Meter, Non-Metallic Screwdriver, Dummy Antennas -.1 mf , and 50 mmf .

Volume Control Maximum all Adjustments.
Connect Chassis to Ground Post of Signal Generator with a Short Heavy Lead.
Allow Chassis and Signal Generator to "Heat Up" for Several Minutes.

SIGNAL GENERATOR				\qquad	ADJUST	ADJUST FOR
FREQUENCY SETTING	CONNECT GENERATOR OUTPUT TO	THRO'JGH DUMMY ANTENNA	$\begin{gathered} \hline \text { CONNECT } \\ \text { GROUND } \\ \text { TO } \\ \hline \end{gathered}$			
455 KC	Control Grid I-F 6BA6 Pin No. 1	. 1 mf	Chassis Base	Rotor Fully Open	$\begin{aligned} & \text { 2nd I.F. Pri. (1) } \\ & \text { and Sec. (2) } \\ & \hline \end{aligned}$	Maximum Output
455 KC	Control Grid 6BE6 Pin No. 7 1st Det.	. 1 mf	Chassis Base	Rotor Fully Open	Ist I.F. Pri. (4) and Sec. (3)	Maximum Output
455 KC	Control Grid 6BE6 Pin No. 7	. 1 mf	Chassis Base	Rotor Fully Open	2nd I.F. Pri. (1) and Sec. (2)	Maximum Output
1620 KC	Control Grid R-F 6BA6 Pin No. 1	. 1 mf	Chassis Base	Rotor. Fully Open	Oscillator C-8	Maximum Output
1400 KC	Control Grid R-F 6BA6 Pin No. 1	. 1 mf	Chassis Base	Turn Rotor to Max. Output. Set Pointer to 1400 KC See Note A	$\begin{aligned} & \text { Interstage C-6 } \\ & \text { See Note B } \end{aligned}$	$\begin{aligned} & \text { Maximum } \\ & \text { Oułput } \end{aligned}$
1400 KC	External Antenna Terminal	50 mmf	Chassis Base	Turn Rotor to Max. Output. Set Pointer to 1400 KC See Note A	Antenna C-2 See Note B	Maximum Output

NOTE A-If the pointer is not at 1400 KC on the dial, reset pointer to the 1400 KC mark on the dial scale.
NOTE B-Turn the rotor back and forth and adjust the trimmer until the peak of greatest intensity is obtained.

DRIVE CORD REPLACEMENT

DIAL POINTER CORD

Use a new S-10X77 drive cord assembly or a new length of cord 48 inches long for the installation. Install the cord as shown in the illustration, winding three turns counterclockwise around the drive shaft with the turns progressing away from the chassis. After completing the installation rotate the drive shaft a few turns to take up the slack in the cord.

PAGE 23-22 FIRESTONE
MODELS 4-A-113,
4-A-114, Code
334-3-5A3C

PARTS LIST

Abstract

ORDERING PARTS Order parts from your nearest Firestone Tire and Auto Supply Warehouse. When ordering parts, it is important that the correct code number and stock number, be given with the correct part name and part number as shown in the parts list. You will find the stock number and code number stamped on the chassis pan.

\section*{RETURNING DEFECTIVE PARTS}

All parts on adjustments must be returned to your District Office Service Department with claim form completely filled out. This radio is so constructed that it can be repaired locally by an experienced repairman.

miscellaneous

			- PR	$\begin{aligned} & \text { LIST } \\ & \text { PICE } \end{aligned}$
12A477	8" P.M. Speaker			7.40
104765	Knobs			. 25
4×1162	Escutcheon			. 55
2A405	Radio-Phono Switch			. 85
13X546	Line Cord \& Plug Assembly			. 90
3 A 458	Tube Socket (6AV6)			. 20
3 A426	Tube Socket (Miniature)			2
30×560	Line Cord Clamp			10
3A305	Phono Socket			10
32X403	Tube Shield (6AV6)			0
76X1	Capacitor - Resistor Combinat			. 40
76X5	Capacitor - Resisfor Combination			. 65
	CAPACITORS			
$\left.\begin{array}{l} C-1 A \\ C-1 B \\ C-1 C \end{array}\right\}$	14A213 Gang Condenser	Assembly		3.60
C-2	17 A 235 L -24 mmf		Trimmer. .	. 35
$\left.\begin{array}{l} \text { C-3 } \\ \text { C-5 } \\ \text { C-9 } \\ \text { C-10 } \\ \text { C-14 } \end{array}\right\}$	RCP10W2503M . 05 mf .	200 V	Tubular.	. 20
$\left.\begin{array}{l} c-4 \\ c-13 \end{array}\right\}$	RCP10W2203M . 02 mf	200 V	Tubular....	. 20
$\left.\begin{array}{l} C-6 \\ C-8 \end{array}\right\}$	Part of Gang Condenser Asse	mbly		
C. 7	$47 \times 612 \quad 33 \mathrm{mmf}$		Ceramic.....	. 25
$\left.\begin{array}{l} C-11 A \\ C-11 B \end{array}\right\}$	Part of 76X1 Assembly (See M	iscellaneous		
C-12	47X471 68 mmf		Ceramic.	. 30
C-15	RCP10W4502M. 005 mf	400 V	Tubular..	. 20
$\left.\begin{array}{l} C-16 A \\ C-16 B \end{array}\right\}$	Part of 76X5 Assembly (See	Miscellane	eous)	
C-17	RCP10W6102M . 001 mf	600 V	Tubular...	. 20
$\left.\begin{array}{l} C-18 A \\ C-18 B \\ C-18 C \end{array}\right\}$	45×381 $\begin{aligned} & 20 \mathrm{mf} \\ & 40 \mathrm{mf} \\ & 40 \mathrm{mf}\end{aligned}$	$\begin{array}{r} 25 \mathrm{~V} \\ 150 \mathrm{~V} \\ 250 \mathrm{~V} \end{array}$	Dry Electrolytic	2.25
C-19	RCP10W2104M . 1 mf	200 V	Tubular......	
C. 20	RCP10W2103M . 01 mf	200 V	Tubular......	. 20
C-21	47X508 500 mmf		Ceramic.....	. . 25

TRANSFORMERS AND COILS		
9A2289	Interstage Coil	80
9 A2113	Oscillator Coil	. 50
9 A2152	Loop Antenna	2.30
9 A2112	1st I-F Transformer	1.60
9 A2063	2nd I-F Transformer	1.60
51×134	Output Transformer	2.60
53×291	Power Transformer	7.35

DIAL AND DRIVE ASSEMBLY

S-10x77	Drive Cord Assembly	. 20
15X251	Pointer	. 15
25X1616	Dial Bracket	1.50
58X766	Dial Glass	1.15
26X524	Drive Shaft	. 85
7A199	Pilot Light Socket Assembly	. 45
74103	No. 47 Dial Light	. 25
28X113	Drive Cord Tension Spring	. 30
41X88	Dial Light Reflector	. 15
19×192	"C" Washer (Mtg. Drive Shaf	. 10

TYPE V-28A189 RECORD CHANGER PARTS

See Note	Motor Assembly, 60 cycles 105-125 Volts AC	
V-2503B	Pickup Arm	2.00
P-77V	Crystal Cartridge \& Needles	14.00
85-16	Needle, Regular	3.10
85-18	Needle, Microgroove, Red	3.10
NOTE -	Specify part number stamped	

Use only genuine factory tested parts to insure service jobs you can depend on and to obtain original set performance.

Your new "Treasure Chest" receiver is a six tube (including rectifier) superheterodyne, designed to operate on
115 to 125 volts, AC or DC power. The receiver covers the frequency range 538 to 1620 KC . 115 to 125 volts, AC or DC power. The receiver covers the frequency range 538 to 1620 KC .
This receiver is equipped with a Radio Frequency Amplifier and the newly designed thereby insuring the utmost in sensitivity.

VOLUME CONTROL KNOB

This knob is located on the left side of the radio. Turning this knob will put the radio into operation. Turning this knob further to the right will increase the
volume. After a station has been selected, the volume control should be adjusted to the desired level. STATION SELECTOR KNOB

This knob is located on the right side of the radio.
The knob should be turned until desired station has been selected.
ALIGNMENT PROCEDURE
Volume Control - Maximum, all adjustments. Connect dummy antenna in series with output lead of
Power Input - 115 to 125 volts, AC or DC.
Connect ground lead of signal generator to common ground above chassis.

| Dial Setting | Generator
 Frequency | Dummy
 Antenna | Generator
 Connection | Trimmer
 Reference | Trimmer
 Adiustment | Trimmer
 Function |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Fully open | 455 KC | .1 MFD | 12BE6 Grid | L5 Top \& Bot. | Maximum | Output I.F. |
| 2. Fully open | 455 KC | .1 MFD | 12BE6 Grid | L4 Top \& Bot. | Maximum | Input I.F. |
| 3. Fully open | 1620 KC | .1 MFD | 12BE6 Grid | CV2 | Maximum | Oscillator |
| 4. Fully open | 455 KC | .1 MFD | 12BA6 Grid | CT1 | Minimum | I.F. Trap |
| 5. Tune in signel
 from generator | 1400 KC | | Loosely cou ple
 signal generator
 to "Magna Loop" | CV1 | Maximum | Antenna R.F.
 Trimmer |

[^8]

ORDERING PART'S
Order parts from your nearest Firestone Tire and Auto Supply Warehouse. When ordering parts, it is impor-
tant that the correct code number and stock number be given with the correct part name and part number as shown in the parts list.
PARTS LIST

SPECIFICATIONS

CABINET DIMENSIONS (INC. KNOBS) 85/8" x $33 / 8^{\prime \prime} \times 71 / 8^{\prime \prime}$
WEIGHT-4 LBS. (APPROX.)
TUNING RANGE-535-1675 K.C.
INTERMEDIATE FREQ.-455 K.C.
LOUD SPEAKER-3 $1 / 2^{\prime \prime}$ P.M.
VOICE COIL IMPEDANCE-3.2 OHMS AT 400 CYCLES
POWER OUTPUT -
UNDISTORTED—. 095 W . MAXIMUM-. 145 W .

POWER SUPPLY-BATTERIES
TWO- $11 / 2$ VOLT "A"-FIRESTONE -\#4-D-71
ONE— $671 / 2$ VOLT "B"-FIRESTONE -\#4-D-72
TUBE COMPLEMENT -
1R5-CONVERTER
1U4-I.F. AMPLIFIER
1U5-DET.-AUDIO AMPLIFIER
3V4—POWER OUTPUT

ALIGNMENT PROCEDURE

For alignment procedure read tabulations from left to right and make the adjustments marked (1) first. (2) next. (3) third.

Before starting alignment:
(A) LOOSEN THE CHASSIS FROM THE CABINET BY REMOVING THE BATTERY CONNECTORS FROM THE BATTERIES, PULLING OFF THE TUNING KNOB AND REMOVING THE TWO SCREWS ON THE CABINET FRONT WHICH FASTEN THE CHASSIS TO THE CABINET.
(B) USE AN ACCURATELY CALIBRATED TEST OSCILLATOR WITH SOME TYPE OF OUTPUT MEASURING DEVICE.

[^9]PAGE 23-28 FIRESTONE

MODEL 4-C-22,

Code 155-3-G-408

$\begin{aligned} & \text { STEP } \\ & \text { NO. } \end{aligned}$	$\underset{\text { OF GANG }}{\text { OF }}$	SIGNAL GENERATOR FREQUENCY	GENERATOR CONNECTION	DUMMY ANTENNA	ADJUSTMENT	TYPE OF ADJUSTMENT
1	Any point where no interfering signal is received.	Exactly 455 KC	High Side to grid of IR5 tube.. Low side to common negative.	.05 MFD. Condenser	Slug at top and bottom of 2nd I.F. (T2) Slug at top and bottom 1st I.F. (T1)	For $\underset{\text { Output. }}{\text { Maximum }}$
2 3 3	Fully open 1675 K.C. Approximately 1400 KC .	Exactly 1675 K.C. Approximately 1400 KC .	DUMMY	2 Turns of Hookup Wire 6" in Dia. (Place Approx. a foot from (end of) and in same axis as ferrite looptenna)	Front Gang Trimmer. Rear Gang Trimmer.	
4	Exactly 600 KC .	Exactly 600 KC .	ANTENNA		Wand coil and then adjust var. cond. plates if needed.	For Maximum Output.
5					REPEAT STEPS 2 and 3	

John F. Rider

Order parts from your nearest Firestone Tire and Auto Supply Warehouse. When ordering parts, it is important that the correct code number and stock number be given with the correct part name and part number as shown in the parts list.

DESCRIPTION	PART \#	LIST PRICE	DESCRIPTION	PART \#	LIST PRICE
1st I.F.	1091C-5	1.50	Volume Control	3012-2	1.15
2nd I.F.	1091C-5	1.50	Audio Couplate	2067-1	. 85
Osc. Coil	1145	. 70	Cabinet	4196B	4.50
Bar Loop Ant.	1144	1.50	Speaker	7032	6.00
Var. Cond.	2065-5	3.25	Vol. Cont. Knob.	4197	. 10 (net)
Electrolytic Cond	2044A-15	1.00	Tuning Knob	4195	.40
Handle	4023	. 25	Battery Cable	5028	. 35

ELECTRICAL SPECIFICATIONS

ALIGNMENT PROCEDURE

Volume Control - Maximum, all adjustments. No signal applied to antenna.
Power Input - 115 to 125 volts, AC

Connect dummy antenna in series with output lead of signal generator.
Connect ground lead of signal generatior to common ground above chassis.

Dial Setting	Generator Frequency	Dummy Antenna	Generator Connection	$\begin{aligned} & \hline \text { Trimmer } \\ & \text { Reference } \end{aligned}$	Trimmer Adjustment	Trimmer Function
1. Fully open	455 KC	. 1 MFD	12BE6 Grid	L5 Top \& Bot.	Maximum	Output I.F.
2. Fully open	455 KC	. 1 MFD	12BE6 Grid	L4 Top \& Bot.	Maximum	Input I.F.
3. Fully open	1620 KC	. 1 MFD	12BE6 Grid	CV2	Maximum	Oscillator
4. Fully open	455 KC	. 1 MFD	12BA6 Grid	CT1	Minimum	I.F. Trap
5. Tune in signal from generator	1400 KC		Loosely couple signal generator to "Magna Loop"	CV1	Maximum	Antenna R.F. Trimmer

Repeat alignment procedure as a final check.

SERVICE NOTES

To remove the chassis for servicing, remove the tone control knob, phono-radio knob, volume control knob and tuning knob. Disconnect phono input plug and phono motor plug. Remove the four woodscrews from the bottom of the cabinet, tilt the chassis diagonally and slide chassis out through botiom of cabinet.

- John F. Rider

PHONOGRAPH OPERATION

Fig. 1 Changer Control Detail

SHIPPING BOLTS: Before operating your "Tri-O-Matic" Record Changer, the machine must be floated freely on the mounting springs. During shipment the mechanism is secured by two shipping bolts located on either side of the turntable. Remove the bolts and the washers underneath the bolt heads. Your record changer is now ready to operate.
RECORDS: Your new "Tri-O-Matic" changer will automatically play ten-12" either standard or long-play records, twelve$10^{\prime \prime}$ standard or long-play records, any assortment of ten-12" and $10^{\prime \prime}$ records of the same speed, or twelve- $7^{\prime \prime}$ long-play or fine-groove records.

NOTE: Siandard (78 RPM), fine-groove (45 RPM)
and long-play ($33-1 / 3$ RPM) records cannot be intermixed
Turntable speed knob must be set for each type of recording.
To Play Fine-Groove (45 RPM) Reconds:
Your "Tri-O-Matic" record changer is equipped with a special automatic spindle designed for playing 45 RPM finegroove records. When playing other types of records, it will be necessary to remove this spindle. When replacing the spindle, place over the regular changer spindle with " 45 " to the front of the changer. Be certain that spindle is seated firmly.

1. Raise the cabinet lid to its full height. Lift the record support arm and swing it to the left until the shaft pin drops into the locating groove.
2. Place records on " 45 " spindle and lower to retaining ears. Hold records level and replace record support over spindle.
3. Select fine-groove needle by turning Needle Selector Lever to " $33-45$ " position (See Fig. 1).
4. Set Turntable Speed Knob to " 45 " position. (See Fig. 1.)
5. Turn the Radio-Phono switch to the right for phono operation.
6. Turn the phonograph on by turning the Volume Control Knob to the right.
7. Start the changer by turning the Changer Control Knob (Fig. 1) to "REJ" and releasing. Changer will then play all records on the spindle and automatically shut off after the last record has been played.
8. Adjust the volume control and tone control as desired.

To Play Standard Recordings: (78 RPM) :

1. Raise cabinet lid to its full height. Lift the record support arm and swing it to the left until shaft pin drops into locating groove. Remove " 45 " spindle by lifting it straight up and off the regular changer spindle.
2. Place records on changer spindle and lower to offset shelf. Hold records level and replace record support over spindle.
3. Turn Needle Selector Lever to "78" position. (See Fig. 1.)
4. Set Turntable Speed Knob to " 78 " position. (See Fig. 1.)
5. Turn Radio-Phono Switch to the right for phono operation. Turn phonograph on with Volume Control Knob.
6. Turn Changer Control Knob to "REJ" and release. Changer will operate automatically until the last record has been played.
7. Adjust volume and tone controls as desired.

To Play Long-Play (33 $1 / 3$ RPM) Records:

1. Raise cabinet lid to its full height. Lift the record support arm and swing it to the left until the shaft pin drops into the locating groove. Remove " 45 " Spindle by lifting it straight up and off of regular changer spindle.
2. Place records on changer spindle and lower to offset shelf.
3. Turn Needle Selector Lever to " $33-45$ " position. (See Fig. 1.)
4. Set Turntable Speed Knob to " 33 " position. (See Fig. 1.)
5. Turn Radio-Phono Switch to right for phono operation. Turn phonograph on with Volume Control Knob.
6. Turn Changer Control Knob to "REJ" and release. Changer will operate automatically until the last record has been played.
7. Adjust volume and tone control as desired.

REJECTING: To reject a record any time while changer is operating, turn Changer Control Knob to "REJ" and release.
STOPPING: To turn off changer before automatic shut-off, turn Changer Control Knob to "OFF". Remove unplayed records from spindle. Lift Tone Arm and place on rest.
UNLOADING: Raise cabinet top to its full height. Lift the record support arm and swing it to the left until the shaft pin drops into locating groove. Lift stack of records straight up and off spindle.
MANUAL OPERATION: To play single records or home recordings, allow the changer to go through its complete shut-off cycle. Lift the record support arm and swing it to the left until the shaft pin drops into locating groove. Place record on spindle and lower to offset shelf. Tilt the record down toward the rear of the Tone Arm. Rotate the record a half turn so that the record spins down over the spindle to the turntable. Set Turntable Speed Knob and Needle Selector Lever for the type of record to be played. Turn Radio-Phono Switch to the right for phono operation. Turn phonograph on with Volume Control Knob. Turn Changer Control Knob to "ON" position only. Raise Tone Arm and place in lead-in groove of record. Adjust tone and volume as desired.
REPEATING OF RECORDS: To repeat records, swing record support arm clear of spindle, place record on turntable and start changer. Record repeats until Changer Control Knob is turned "OFF". If a 12 -inch record is to be repeated, wait for the changer to finish cycling and re-position the Tone Arm manually to the lead-in groove of the record.
SUGGESTIONS: When loading and unloading the changer, use care to prevent bending of the spindle or enlargement of the center hole of the records. Records should not be left on the spindle except during operation of the changer, in order to avoid warping of the records. Never move or handle Tone Arm when machine is in cycle. When machine is not in use, it is suggested that the Tone Arm be secured in the clamping bracket provided, and the Turntable Speed Knob be left in the " N " position. The Cabinet Lid should be closed when the machine is not in use. For best reproduction keep needle and records clean. Store records flat, in folders or in albums. Do not lay record on record.

PAGE 23-32 FIRESTONE
MODEL 4-A-116,
Code 120-3-426, The Wellington

ORDERING PARTS
 important that the correct code number and stock number be given with the correct part name and part number as shown in the parts list.

Schematic Diagram Reference	Part No.	Description	Price

CONDENSERS
๙!
PC-151
高 Tension
String

PARTS LIST

Schematic Diagram Reference	Part No.	Description	List Price

	M I S	ELIANEOUS	
	H426	Cabinet, complete with lid $\&$ hinges \qquad	34.00
	H208	Clip, coil mounting ..->>	. 05
PC-151	PC-151	Couplate ...	1.90
	X226	Felt Foot	. 20
	J426	Jack, Phono Plug 30
	H65	Knob, each . \quad -	. 30
	CD-54	Line cord	. 80
	AR152	Socket, Photo Motor	. 40
SP-1	PM-327	Speaker, 6" PM includes output transformer \qquad \qquad	7.80
S-1	SW-601	Switch, phono-radio .-->>	. 70
		DIAL PARTS	
	H55M	Dial Ring, Plastic	2.00
	DS326	Drive Shaft Assy	. 45
	T-47	Pilot Light	. 15
	PS-755	Pointer	. 25
	H544	Pulley, Dial	. 05
	H547	Pulley Mounting Bracket	. 75
	H201	Rubber Grommet	. 05
	H105	Spring, Dial Drive String Tension	. 10
	H548	String	. 05

[^10]MODEL 15RA2－43－8230A

SERYICEDATA
POWER SUPPLY．．．．．．．．．．．．．．．． 115 volts，DC or 50－60 cycle AC， 24 watts． FREQUENCY RANGE．．．．．． 540 to 1600 Kc ．
INTERMEDIATE FREQ．．． 455 Kc ．
SELECTIVITY \qquad At 1000 Kc．， 60 Kc ．at 1000 x signai．
SENSITIVITY $.150 \mathrm{u} . \mathrm{v}$ ．per meter．
POWER OUTPUT \qquad .0 .8 watt undistorted， 1.0 watt max． LOUD SPEAKER $4^{\prime \prime}$ round PM．，v．c．impedance 3.2 TUBE COMPLEMENT．．．．． ohms．

AVC，Audio．

12BE6，Converter．
12BA6，I－F Amplifier．
12BA6，I－F Amplifier．
12AV6 or 12AT6，Detector，
50C5，Output Amplifier． 35Z5，Rectifier．

Dial Stringing Diagram

ALIGNMENT PROCEDURE

SIGNAL GENERATOR				$\begin{aligned} & \text { TUNER } \\ & \text { SETTING } \end{aligned}$	ADJUST FOR MAXIMUM OUTPUT	$\left\lvert\, \begin{gathered} \text { INPUT FOR } \\ \text { SOLLWATT } \\ \text { OUTPUT } \end{gathered}\right.$
Frequency	Coupling Capacitor	Connection to Radio	$\begin{gathered} \text { Ground } \\ \text { Connection } \end{gathered}$			
455 kc ．	.1 mf．	12BE6，Pin 7		Capacitor full open （plates out of mesh）	Top and bottom Cores in output and input I．F．cans	65 microvolts
1620 kc ．	． 1 mf ．	12BE6，Pin 7	会	Capacitor full open （plates out of mesh）	Oscillator trimmer C1－D on gang	70 microvolts
535 kc ．	． 1 mf ．	12BE6，Pin 7	皆	Capacitor fully closed	Check for adequate range	70 microvolts
1400 kc ．		Lay Generator lead near back of cabinet	$\begin{aligned} & \text { 员思 } \\ & \end{aligned}$	Tune in 1400 kc ．signal	Antenna trimmer C1－C on gang	200 to 400 microvolts
400 cycles	.1 mf．	12AT6，Pin 1	委	———	－	． 06 volts

MODEL 15RA2-43-8230A

SCHEMATIC DIAGRAM WITH VOLTAGES

PARTS LIST
Use Only Genuine Factory Replacement Papts

Please specify PART number and chassis model number when ordering replacements.

GENERAL DESCRIPTION

Your new radio-phonograph is a 5 tube (including rectifier tube) AC receiver and 3 -speed automatic record changer housed in a beautiful mahogany wood cabinet. Controls are provided on the front for selecting radio or phonograph operation, for tuning and volume. Controls are provided on the phonograph for selecting speed and operation of the record changer (for details see instruction card placed on record changer turntable).

Special features of the radio receiver include a built-in loop antenna, automatic volume control, beam power output tube, and a permanent magnet dynamic speaker. Provision has been made for connection of an external antenna. It is designed for reception of radio stations in the standard broadcast band between 540 and 1600 kilocycles.

The Automatic Record Changer is designed to play standard 78 RPM, fine groove 45 RPM, or long play $331 / 3$ RPM records of standard commercial dimensions. The playing capacity at a single loading is ten 12" records eifher standard or long play, twelve $10^{\prime \prime}$ records either standard or long play, or any mixture of ten $10^{\prime \prime}$ or 12" records of the same type. The changer can also accommodate a full stack of twelve 7" long play ($331 / 3$ RPM) or twelve $7^{\prime \prime}$ fine groove (45 RPM) records.

ELECTRICAL SPECIFICATIONS

POWER SUPPLY:
117 volts A.C. 60 cycles.
FREQUENCY RANGE
Broadcast 540-1600 Kc.
INTERMEDIATE FREQUENCY: 455 Kc .

ANTENNA:
High impedance loop.
TUNING:
2 section, solid mounted gang condenser.
SPEAKER:
5 inch PM Dyлamic.
POWER CONSUMPTION:
60 watts
POWER OUTPUT:
Undistorted-. 8 watts
Maximum - 1 watt
SENSITIVITY-(Measured with signal injection at external antenna terminal and for 50 milliwatt output):
50 microvolts average
SELECTIVITY:
51 Kc . broad at 1000 times signal, measured af 1000 Kc .
TUBE COMPLEMENT AND FUNCTION:
1 12BE6 Converter
1 12BA6 I.F. Amplifier
1 12AT6 Detector-A.V.C.--Audio Amplifier
1 50C5 Audio Output
1 35W4 Rectifier

ALIGNMENT PROCEDURE

1. During the alignment of this receiver, the Pointer will have to be set to a specific frequency. Since the dial scale is mounted on the front of the cabinet, and the fact that the mass of the record changer may have an effect in the calibration, adjustment of the ricillator and antenna trimmers should be performed with the chassis mounted in the cabinet.
2. To remove the chassis, for I. F. Alignment, proceed as follows: Take off cabinet back by removing screws around edges and disconnecting the two antenna leads from the chassis. Next, take off knobs and pointer by grasping firmly and pulling forward. Now, take out the two chassis mounting screws at bottom of cabinet. Chassis can be withdrawn from cabinet.
3. Connect an output meter across the speaker voice coil.
4. For I. F. alignment only, connect ground lead of signal generator to B- lug (see voltage chart for convenient B- connection).

CAUTION: If your signal generator is designed with an AC-DC power supply, connect the ground lead to B - through a .25 Mfd . condenser.
5. Since the oscillator and antenna alignment is performed with the chassis in the cabinet, it will be necessary to couple the signal generator to the receiver by connecting its output to several turns of wire formed in a circular shape so that it may be placed adjacent and parallel to the receiver loop antenna.
6. With the gang condenser fully meshed, (Tuning control turned to a fully counter-clockwise position) the dial pointer should be in a horizontal position at low end of dial, parallel to the bottom edge of dial scale. If it is set incorrectly, merely hold tuning control shaft steady and move pointer to correct position.
7. Set volume control at maximum volume position and use a weak signal from the signal generator.

RANGE	SIGNAL GENERATOR		DUMMY ANTENNA	GANG CONDENSER SETTING	ADJUSt slugs OR TRIMMERS
	FREQUENCY SETTING	CONNECTION AT RADIO			
$\begin{gathered} \text { I.F. } \\ 455 \mathrm{KC} \end{gathered}$	455 KC	High side to trimmer No. 5. Ground lead as in step 4 above.	.02 Mfd . Condenser	Any point where it does not affect the signal.	$\begin{gathered} \text { (2nd I.F.) } \\ \# 1 \& \# 2 \text { for } \\ \text { maximum output } \end{gathered}$
	455 KC	High side to trimmer No. 5. Ground lead as in step 4 above.	.02 Mfd . Condenser	Any point where it does not affect the signal.	(1st I.F.) \#3 \& \#4 for maximum output
Reinstall chassis in cabinet, replace pointer and mounting screws for chassis and loop.					
$\left\lvert\, \begin{aligned} & \text { BROADCAST } \\ & 540-1600 \mathrm{KC} \end{aligned}\right.$	1500 KC	Connect directly to coupling turn as described in step 5 above.	NONE	1500 KC	Oscillator) Trimmer \#5 for maximum output
	1500 KC	Connect directly to coupling turn as described in step 5 above.	NONE	Tune to 1500 KC generator signal	(Antenna) Trimmer \#6 for maximum output
f	A		DIAL CORD ARRANGEMENT		

To string dial cord, turn the main drive drum to maximum counter-clockwise position and use following parts:

114955 Clip on end of cord
117057 Cord (2 feet)
505161 Tension Spring
To reinstall pointer on gang condenser shaft, see paragraph 6 in introduction to Alignment Procedure.

SOCKET

VOLTAGES

1. All measurements made with a voltmeter having a sensitivity of $\mathbf{2 0 , 0 0 0}$ ohms per volt except where indicated by (*). The (*) symbol designates a vacuum tube voltmeter measurement.
2. Terminals on loop antenna are shorted together to minimize noise signal pickup.
3. Dial tuned to 540 Kc .
4. Volume control set to maximum with no signal.
NOTE A: The center stud of this tube must be connected to B - to reduce capacity coupling between pins. Oscillation may result if this connection is omit ted.

12BA6
I.F. AMP.

REAR OF CHASSIS

SPECIFICATIONS

```
Power Supply
Frequency Range
Intermediate Frequency
Antenna
Tuning
Speaker
Power Output
Sensitivity
Selectivity
```

117 volts 60 cycle AC, 117 volts DC, 29 watts 535 KC to 1630 KC 455KC
Built-in Loop
Variable Capacity
4', P.M. voice coil impedance 3.2 ohms
0.8 watt undistorted, 1.8 watts maximum $400 \mathrm{uv} / \mathrm{m}$ average for 50 milliwatts output
55 KC broad at 1000 times, signal at 1000 KC

Tubes used are as follows:

12BE6 Oscillator-Converter	50 C 5 Power Output
I2AV6 or I2AT6 AVC, Detector, and Audio	35 W4 Power Rectifier
I2BA6 I.F. Amplifier	

$$
\begin{aligned}
& \text { ALL dC VOLTAGES in reference to common ground } \\
& \text { *AC EXCEPT When used on dC power line } \\
& \text { VOLTAGE Chart chassis bottom view }
\end{aligned}
$$

$\stackrel{\square}{\square}$

ALIGNMENT PROCEDURE
The following procedure is for use only by competent servicemen having the proper equipment. The alignment should be made with volume control fully on, and the output from the signal generator as low as possible, to prevent AVC action from interfering with proper alignment. signal which is modulated 400 c.p.s. Adjust all trimmers for maximum output. Repeat the alignment procedure given below as a final CAUTION: This is an AC/DC receiver, and when aligning the set it is necessary to isolate the signal ge
line by use of a transformer, or to place a .2 MFD condenser in each test lead of the signal generator.
NOIIISOd

Variable
Fully Open Fully Open

Tune in Signal Generator

$$
\begin{aligned}
& \text { SIGNAL GENERATOR } \\
& \substack{\text { Dummy } \\
\text { Antenna }} \text { Connection to Radio }
\end{aligned}
$$

12BE6 Grid Stator VCA 12BE6 Grid Stator VCA

Loosely Coupled to Loop
Connect low side of signal generator to common negative.

CHASSIS LAYOUT TOP VIEW

PAGE 23-8 GAMBLE-SKOGMO

PARTS VALUES FOR T68 GAMBLE'S AC/DC CADET

SYMBOL	PART NO.	DESCRIPTION	VALUE	RATING
VCA-VCB	VCT68	Condenser, 2 gang		
Cl	CO52	Condenser, paper	. 05 MFD	200 volts
C2	Cl2	Condenser, paper	. 1 MFD	200 volts
C3	C026	Condenser, paper	. 02 MFD	600 volts
C4-C6-C7	C0056	Condenser, paper	. 005 MFD	600 volts
C5	C2505M	Condenser, mica	250 MMFD	500 volts
C8	C40-20-1.5	Condenser, electrolytic	20 MFD	150 volts
C9	C40-20-1.5	Condenser, electrolytic	40 MFD	150 volts
Clo	C054	Condenser, paper	. 05 MFD	400 volts
RI	R223.5	Resistor	22K ohm	$1 / 2$ watt
R2	R391.5	Resistor	390 ohm	$1 / 2$ watt
R3	R105.5	Resistor	1 megohm	$1 / 2$ watt
R4	R106.5	Resistor	10 megohm	$1 / 2$ watt
R5-R9	R474.5	Resistor	470 K ohm	$1 / 2$ watt
R6	RI2I. 5	Resistor	120 ohm	$1 / 2$ watt
R7	R1032	Resistor	IOK ohm	2 watt
R8	R102I	Resistor	1000 ohm	1 watt
EI	CRI	Diode filter unit	2X100 MMF	7 K ohm
VR	VRT67G	Volume control	1 megohm	
LA	LAT68A	Antenna rod \& back		
LO	LOT67	Oscillator coil		
TI-T2	TIII-3I-A	I.F. transformer		
T3	E-81645-T	Output transformer		
SW	VRT67G	Switch S.P.S.T. on volume control		
SPK	SPKT67	'4'' P.M. speaker		

MECHANICAL PARTS

PART NO.	DESCRIPTION
M-1801	Chassis
M-1802	Chassis cover
H-1601	Trimount $5 / 8 "$ "
H-1802	Trimount $1 / 4$ "
TIII-31-B	I.F. mounting clip

MECHANICAL PARTS			
PART NO.	DESCRIPTION	PART NO. DESCRIPTION	
H-I805	Ground lug	P-I704AR Pointer knob, red	
H-81644-6	Miniature tube socket	P-I704AI	Pointer knob, ivory
W-I802	Line cord and plug	P-I704R	Round knob, red
SR-3P	Strain relief	P-I7041	Round knob, ivory
P-I80IR	Cabinet, red	MI807	Dial pointer
P-I80IIG	Cabinet, ivory, green		
dial			

SPECIFICATIONS

Power Supply
Frequency Range
Intermediate Frequency
Antenna
Tuning
Speaker
Power Output
Sensitivity
Selectivity
Tubes used are as follows:
6BA6 R.F. Amplifier 6BE6 Oscillator-Converter 6BA6 I.F. Amplifier

117 volts A. C. 60 cycle only, 45 watts 540 KC to 1630 KC 455 KC FERRI-ROD LOOP Variable Capacity
$5^{\prime \prime} \times 7^{\prime \prime}$ P.M., voice coil impedance 3.2 ohms 4 watts undistorted, 4.5 watts maximum $200 \mathrm{uv} / \mathrm{m}$ for 500 milliwatts output 40 KC broad at 1000 times, signal at 1000 KC

6AV6 AVC, Detector, and Audio 6V6GT Power Output 6X4 Power Rectifier

FRONT

* indicates AC
all voltages in reference
TO COMMON GROUND
all voltage readings taken
WITH VTVM

\square
OPERATION
Caution: This set is for use on 117 volt A.C. 60 cycle only. To operate radio, be sure Radio-Phono switch on the back of the set is switched to side marked RADIO. Turn on radio with small outer left-hand knob and allow set to warm up for approxinate!y one minute. Tune in desired station with right-hand knob, adjust volume to desired level with small outer left-hand knob, and select most pleasing tone with large inner left-hand knob.
To operate phonograph: Plug phono lead from phono turn table into receptacle on the back of the radio marked PHONO. Set RadioPhono switch on the back of the radio to side marked PHONO. Switch radio set on with small outer left-hand knob, and allow set to warm up for approximately one minute. Start record player, and adjust volume to desired level with small outer left-hand knob and select most pleasing tone with large inner left-hand knob.

asno

ALIGNMENT PROCEDURE
The following procedure is for use only by competent servicemen having the proper equipment.
The alignment should be made with volume control fully on, and with the output from the signal generator as low as possible, to prevent
AVC action from interfering with proper alignment.
With the output meter connected across the voice coil of the speaker, and the signal generator modulated at 400 c.p.s., adjust all trim-
The alignment should be made with volume control fully on, and with the output from the signal generator as low as possible, to prevent
AVC action from interfering with proper alignment.
With the output meter connected across the voice coil of the speaker, and the signal generator modulated at 400 c.p.s., adjust all trimmers for maximum output using the alignment procedure given below:

Frequency	SIGNAL GENERATOR Dummy		POSITION OF TUNING CONDENSER	ADJUST FOR MAXIMUM OUTPUT
455 KC	. I MFD	VC2 stator section	Fully open	T1 \& T2
1630 KC	. 1 MFD	VC2 stator section	Fully open	OSC Trimmer
1400 KC	Radiation Loop	None	Tune in Sig. Gen.	R.F. \& ANT. Trimmers
Connect low side of signal generator to common negative.			-	

PARTS VALUES FOR WESTERNER I5RA33-43-8365

yכeq \% pod eưopu
R.F. Coil

Oscillator Coil
Output transformer
Power transformer
Switch S.P.S.T. on volume

CIRCUIT COMPONENTS DESCRIPTION

 Condenser, electrolytic
Condenser, paper,

๙~~』

MODEL 15RA33-43-
8635, Westerner

MECHANICAL PARTS

DIAL STRING DIAGRAM

GENERAL DESCRIPTION

ELECTRICAL SPECIFICATIONS

Power Supply:-117 Volts AC, 60 Cycles.
Frequency Range:-540-1650 Kilocycles.
Intermediate Frequency:-455 Kilocycles.
Antenna:-Air loop mounted on rear of chassis.
Tuning:-Two gang, direct drive variable condenser.
Speaker:-4-inch PM round, 3.2 ohm Voice Coil.
Power Consumption:-32 watts.
Power Output:-. 85 watts undistorted, 1.25 watts maximum.
Sensitivity:-50 Microvolts for 50 Milliwatt Output.
Selectivity:-59 KC broad at 1000 times signal at 1000 KC .

TUBE COMPLIMENT

12BE6 - Converter
12AT6 - 2nd Detector, 1st Audio Amp. and AGC

12BA6 - I.F. Amplifier
50C5 - Audio Output
35W4-- Power Rectifier
(NOTE: Appliance outlet is rated . for 1000 watts)

The "Sleep" Switch is a time operated device which closes the line to the receiver for the period for which the adjustment is made. The "Sleep" Switch is in parallel with the clock switch.

ALIGNMENT PROCEDURE

- OUTPUT METER ACROSS VOICE COIL
- VOlUME CONTROL MAXIMUM

Frequency	Dummy Antenna	Connection to Radio	Position of Variable	Adjust for Maximum Output
455 KC	05	Pin $7-$ 12BE6 Converter Grid	Rotor Open (Plates Out of Mesh)	T2 - Pri. and Sec.
455 KC	05	Pin 7 - 12BE6 Converter Grid	$\begin{gathered} \text { Rotor Open } \\ \text { (Plates Out of Mesh) } \end{gathered}$	T1 - Pri. and Sec.
1650 KC	05	Pin 7 - 12BE6 Converter Grid	$\begin{gathered} \text { Rotor Open } \\ \text { (Plates Out of Mesh) } \end{gathered}$	- C7B - Osc. Trimmer
1500 KC		eral Turns Loop Ant.	1500 KC	C7A - Ant. Trimmer

REPEAT STEPS 3 and 4
John F. Rider

VOLTAGE READINGS TAKEN WITH VTVM FROM PINS DESIGNATED TO B-

Line Voltage - 117 volts A.C. Full Volume - No signal

Schematic Symbol No.		PART Part No.	LIST		Part No.
	Description		Schematic Symbol No.	Description	
R 1	22 k Ohms $1 / 2 \mathrm{~W} .10 \%$-Carbon Resistor	RC-223-2	CV 8	2-Gang Variable Condenser	CV-8
R 2	220 Ohms $1 / 2$ W. 10%-Carbon Resistor	RC-221-2	P 29	Potentiometer-Volume Control 1/2 Meg.	P-29
R 3	$1 \mathrm{Meg} \mathrm{Ohm} 1 / 2 \mathrm{~W} .10 \%$-Carbon Resistor	RC-105-2	LO-9	Broadcast Oscillator Coil	LO-9
R 5	150 Ohms $1 / 2$ W. 10%-Carbon Resistor	RC-151-2	T 135	Audio Output Transformer	T-135
R 6	1800 Ohms 1 W. 20\%-Carbon Resistor	RC-182-4	T1 \& T 2	I.F. Transformer	LIF-13
R 7	18 Ohms $1 / 2$ W. 10%-Carbon Resistor	RC-180-2	L 1	Antenna Loop	LA-9
C1	.05 Mfd. 400 V . - Paper Capacitor	CP-4-15	V 1	Tube-12BE6-Oscillator and Mixer	12BE6
C 2	. 05 Mfd. 200 V. - Paper Capacitor	CP-2-15	V2	Tube-12BA6-I.F. Amplifier	12BA6
	. 02 Mfd. 400 V. - Paper Capacitor	CP-4-12	V 3	Tube-12AT6-Detector and 1st Audio Amplifier	12AT6
C5A \& C5B	30-50 Mfd. 150 V. - Electrolytic Condenser with Mtg. Strap	CET-19	V 4	Tube-50C5-Power Amplifier	50C5
C6	. 02 Mfd. 600 V. - Paper Capacitor	CP-6-12	V s	Tube-35W4-Rectifier	35 W 4

FOR PRICES SEE CORRESPONDING KEY NO. IN PRICE LIST

SERVICING OF SESSIONS MOVEMENT

The Sessions Electric Clock Movement used in this unit will be repaired at no charge within the warranty period in the event of failure due to defects in workmanship and material, provided the unit has been subject to normal use.

Service stations have been established that are qualified to repair these movements upon delivery to them. The entire clock assembly first must be removed, as these stations positively will not service any clocks that are still mounted on the radio unit.

SEE INSTRUCTIONS ON NEXT PAGE

TO TAKE CLOCK MOVEMENT OUT OF CABINET PROCEED AS FOLLOWS:
Remove the following:

1. Line cord from AC receptacle.
2. Tuning and volume control knobs. Also the four small knobs on the clock setting controls.
3. Chassis from cabinet.
4. Clock power plug which fits into receptacle on top of chassis (Fig. 1).
5. Two nuts fastening clock to bracket (Fig. 2).

MISCELLANEOUS

Part No.
PMS 10 or PMS 11 \qquad $4^{\prime \prime}$ PM Speaker
KM 52 ... Tuning Knob
KM 53
Volume Control Knob
CV8
Two-Gang Variable Condenser

SPECIFICATIONS

CABINET
Materia
C.olor .

Height
Width
Depth.
ELECTRICAL
Voltage
$105-125 \mathrm{AC}$ or DC
Frequency on AC.
Wattage
tuning range
AM . 540-1600 kc
INTERMEDIATE FREQUENCIES
AM
455 kc
FM
10.7 mc

POWER OUTPUT
Undistorted
LOUDSPEAKER
Type . permanent magnet
Size... inch .
Voice Coil Impedance at 400 cps 3.2 ohms ANTENNA

AM. built-in loop GENERAL

Model 409 is a table model receiver providing reception on the AM band (540 to 1600 kc) and the FM band ($88-108 \mathrm{mc}$). The receiver is housed in a mahogany colored plastic cabinet.

The receiver has a built-in FM power-line antenna. To operate the receiver from the built-in FM power line antenna it is necessary to connect the power-line antenna wire to FM antenna terminal.
Note: To remove the dial scale it is necessary to remove the escutcheon to gain access to the dial scale mounting screws. Remove the escutcheon by pushing forward on the escutcheon mounting studs from inside of the cabinet.

TUBES

V1-R.F. Amplifier	6BJ6
V2-F.M. Converter-A.M.-F.M. Oscillator	2AT7
V3-1st F.M., I.F. Ampl.-A.M. Conv.	12AU6
V4--2nd F.M., 1st A.M.-I.F. Ampl.	12BA6
V5-F.M. Limiter	
V6-F.M. Discriminator, A.M. Detector an	T8
	C5

1. A.M.-I.F. Sensitivity

100 microvolts at $455 \mathrm{kc} .30 \%$ mod. with 400 cycles at the grid (pin 1) of V3 for $1 / 2$ watt audio output.
A.M.-R.F. Sensitivity

100 microvolts per meter at $580 \mathrm{kc} .30 \%$ mod. with 400 cycles for $1 / 2$ watt audio output.

75 microvolts per meter, at $975 \mathrm{kc} .30 \%$ mod. with 400 cycles for $1 / 2$ watt audio output.
75 microvolts per meter at $1500 \mathrm{kc} .30 \%$ mod. with 400 cycles for $1 / 2$ watt audio output.
2. The following voltages are required at the point of input designated to produce one volt d-c at the test point on the rear of the chassis. This test point is connected to the limiter grid (V5 pin 1) through a 470,000 ohm resistor. The one volt d-c can only be measured with a vacuum tube voltmeter.
F.M.-I.F. Sensitivities at 10.7 Mc Unmod.
(a) 50,000 microvolts at V4 grid (pin 1) for 1 volt d-c at the test point.
(b) 1,000 microvolts at V 3 grid (pin 1) for 1 volt d-c at the test point.
(c) 100 microvolts at V2 grid (pin 7) for 1 volt d-c at test point.

Note pin 7 of V2 must be disconnected from the r-f tuner gang before attempting to measure the sensitivity at the converter grid (V2 pin 7).
F.M.-R.F. Sensitivity

For F.M.-R.F. alignment the input impedance of the signal generator should match the 300 ohm input impedance of the receiver.

25 microvolts at 88 megacycles for 1 volt d-c at the test point. 20 microvolts at 98 megacycles for 1 volt d-c at the test point. 30 microvolts at 108 megacycles for 1 volt d-c at the test point. 3. Audio Gain
0.1 volt at 400 cycles applied across the volume control with the volume control set at maximum should give approximately $1 / 2$ watt output.
4. Oscillator Grid Bias

The d-c voltage developed across R2002 should be approximately 8 volts at 1000 kc and 3 volts at 98 megacycles as measured with a vacuum tube voltmeter.
5. Hum Measurement

On A.M. with the volume control set at a minimum, the hum measured across the speaker leads should not exceed 7 millivolts.

On F.M. with the limiter grid pin 1 of V5 connected to chassis through a 0.1 mf capacitor and the volume control set at a maximum, the hum should not exceed 15 millivolts measured across the speaker leads.

TO INDEX THE DIAL POINTER
The vertical mark on the front of the cabinet under the dial scale represents 98 mc on the F.M. scale. When the pointer is set to this point the receiver should be tuned to 98 mc on the F.M. band. At 98 mc the pointer should be vertical and equidistant from either end of its travel. The pointer will be horizontal at either end of its rotation.
Insert the chassis into the cabinet with the dial scale removed. Connect a 98 mc signal to the F.M. antenna terminals. With the band switch switched to F.M. tune the receiver to give maximum d-c output at the limiter grid test point on the rear of the chassis. Reduce the signal input so that the output at the limiter grid measures about 1 volt as measured by a vacuum tube voltmeter Set the pointer onto the shaft opposite the 98 mc mark on the cabinet.

If a 98 mc sweep signal is used tune the gang condenser for maximum amplitude of the response curve, of Fig. A on the scope, at the limiter grid test point. Keep input low to prevent limiting which will cause the response curve to flatten off.

CAUTION
ALWAYS USE AN ISOLATION TRANSFORMER IN THE RECEIVER POWER LINE WHEN SERVICING OR ALIGNING THIS RECEIVER TO PROTECT TEST EQUIPMENT.

MODEL 409

FIG. 1. TOP VIEW

FIG. 2. DIAL STRINGING

DIAL STRINGING

The cord should be strung with both the AM and the FM drums in their full clockwise position. When the dial stringing is completed it may be necessary to slip the cord slightly around the AM drum to make sure that both the AM capacitor and the FM capacitor are fully open or fully closed at the same time.

Steps 1, 2, 3, 4, and 5 are on the large $\mathbf{F M}$ drum as shown. Step 6 takes the dial cord around the axle between the drums as shown. Step 7 the cord comes through the notch on the small FM drum and around the axle in front of the small FM drum. Steps 8, 9, and 10 go around the small FM drum. Steps 11, 12, and 13 go around the AM drum as shown. Step 15 the cord goes through the notch in the small FM drum around the axle in front of the small $\mathbf{F M}$ drum and connects to the tension spring as shown

A.M. METER ALIGNMENT NOTES

1. Connect an output meter across the speaker leads to indicate maximum output during A.M. alignment.
2. Turn the volume control to maximum clockwise position and reduce signal input so that output meter does not indicate more than $1 / 2$ watt output during A.M. alignment.
3. For alignment of the antenna trimmer C2 it is necessary to inductively couple the signal generator output to the loop antenna by connecting a four turn, six inch diameter loop of wire across the generator output terminals and locating the loop about one foot from the radio loop. The position of loop should not be changed during alignment to prevent possible errors in peak readings.
4. Set the band switch in A.M. position.

F.M. METER ALIGNMENT NOTES

5. Connect a vacuum tube voltmeter between the test point on the rear of the chassis and chassis to read the d-c voltage developed at the limiter grid during F.M.-I.F. and R.F. alignment. Dress the V.T.V.M. leads away from the r-f end of the
chassis to prevent regeneration. Reduce the signal input so that the V.T.V.M. reads approximately 1 volt d-c.
6. Connect a vacuum tube voltmeter across the volum control to read the discriminator output.

Fig. 3. TOP VIEW
7. To align the primary of T6 (discriminator) detune the signal generator slightly either side of 10.7 mc until maximum d-c volts is read across the volume control then adjust the primary of T6 for max.
8. For F.M.-R.F. alignment the output impedance of the signal generator should be 300 ohms to properly match the input impedance of this receiver.
9. The cover on the F.M. tuner must be in place during F.M.R.F. alignment.
10. Set the band switch to the F.M. position.

Fig. 4. ALIGNMENT CURVES

METER ALIGNMENT CHART

$\begin{aligned} & \text { STEP } \\ & \text { NO. } \end{aligned}$	SIGNAL GENERATOR FREQUENCY	SIGNAL INPUT POINT BETWEEN	TUNING CAPACITOR SETTING	ADJUST	$\begin{aligned} & \text { SEE } \\ & \text { NOTE } \\ & \text { NO. } \end{aligned}$
A.M.-I.F. ALIGNMENT					
1	$455 \mathrm{kc}, 30 \%$ mod. with 400 cycles	Pin 1 of V4 (12BA6) thru .02 mf . and chassis	Fully closed	Primary and secondary cores of T5 for maximum output meter reading	1, 2, 4
2		Pin 1 of V3 (12AU6) thru .02 mf . and chassis		Primary and secondary cores of T4 for maximum output meter reading	
A.M.-R.F. ALIGNMENT					
3	$1620 \mathrm{kc}, 30 \%$ mod. with 400 cycles	Pin 1 of V1 (6BJ6)	$\begin{aligned} & \text { Fully open (min. } \\ & \text { cap.) } \end{aligned}$	(C4) oscillator trimmer for maximum output meter reading	1, 2, 4
4	$1500 \mathrm{kc}, 30 \%$ mod. with 400 cycles		For maximum output meter reading	R-f trimmer (C-3) for maximum output meter reading while rocking gang condenser	
5		Inductively coupled to the loop. See note 3		Adjust antenna trimmer (C2) ön loop for maximum	1,2, 3, 4
F.M.-I.F. ALIGNMENT					
6	10.7 mc unmodulated	Pin 1 of V4 (12BA6) thru 100 mmf . and chassis	Fully closed	Core of L3 for maximum d-c reading at test point on rear of chassis	5,10
7		Pin 1 of V3 (12AU6) thru 100 mmf . and chassis		Cores of T3 for maximum d-c volts at test point on rear of chassis	
8		Stator of C2001 thru . 02 mf . thru hole in bottom of F.M. tuner cover		Cores of T2 for maximum d-c volts at test point on rear of chassis	
F.M. DISCRIMINATOR (T6) ALIGNMENT					
9	10.7 mc unmodulated	Pin 1 of V4 (12BA6) thru 100 mmf . and chassis	Fully closed	T6 secondary core for zero output across volume control (R16)	6,10
10	Detune for maximum d-c at R16. See note 7			T6 primary core for maximum d-c volts across the volume control (R16)	6, 7, 10
F.M.-R.F. ALIGNMENT					
11	108.5 mc	At F.M. antenna terminals with built-in F.M. antenna disconnected	Fully open (min. cap.)	F.M. oscillator trimmer C2004 for maximum d-c volts at test point on rear of chassis	5, 8, 9, 10
12				F.M.-R.F. trimmer C2002 for maximum d-c volts at test point on rear of chassis while rocking signal generator frequency	

A.M. VISUAL ALIGNMENT NOTES

1. Connect the vertical plates of the scope from the junction of R9 and R11 to chassis for steps 1 through 4 of the AM Visual alignment.
2. Set band switch to AM position.
3. Rock the gang condenser when making the r-f adjustments as in step 4.
4. When adjusting the loop trimmer C2 the loop and back should be in their correct position with respect to the chassis.
5. For alignment of the r-f trimmers as in step 4 the signal should be inductively coupled to the loop by connecting a four turn six inch loop of bell wire across the signal generator terminals. The position of this loop with respect to the radio loop should not be changed during alignment to prevent possible error in comparative readings.

f.M. VISUAL ALIGNMENT NOTES

6. Set band switch to F.M. position.
7. When connecting the input to the receiver always make the chassis connection as close as possible to the point of input. Dress cables away from the r-f end of the chassis to prevent regeneration.
8. Connect the Vertical plates of the scope through meg to pin 3 of V6 (19T8) and to chassis to view the discriminator response curve.
9. Connect the Vertical plates of the scope to the limiter test point on the rear of the chassis and to chassis to view the response curve during F.M.-I.F. and R.F. alignment.

10. During F.M. alignment keep the signal input low to

 prevent limiting.11. The termination impedance of the signal generator should be 300 ohms to properly match the input impedance of this receiver.

MODEL 409

12. In some cases tuning of the converter grid will cause
frequency. If peaking of C3 or C2002 for max causes the curve
"pulling in" of the oscillator and will change the oscillator to move off the screen it may be necessary to recalibrate the "pulling in" of the oscillator and will change the oscillator as in steps 3 or 11 .

VISUAL ALIGNMENT CHART

$\begin{aligned} & \text { STEP } \\ & \text { NO. } \end{aligned}$	SIGNAL GENERATOR FREQUENCY	SIGNAL INPUT POINT BETWEEN	$\begin{aligned} & \text { TUNING } \\ & \text { CAPACITOR } \\ & \text { SETTING } \end{aligned}$	ADJUST	$\begin{aligned} & \text { SEE } \\ & \text { NOTE } \\ & \text { NO. } \end{aligned}$
A.M.-I.F. ALIGNMENT					
1	455 kc F.M. modulated $\pm 20 \mathrm{kc}$ at 60 CPS	Pin 1 of V4 (12BA6) thru .02 mf . cap and chassis	Fully closed	Cores of T5 for curve of Fig. 4A with max. amplitude and symmetry	1, 2
2		Pin 1 of V3 (12AU6) thru .02 mf . cap and chassis		Cores of T4 for curve of Fig. 4A with max. amplitude and symmetry	
A.M.-R.F. ALIGNMENT					
3	1620 kc A.M. modulated with 60 CPS	Pin 1 of V1 (6BJ6) thru .02 mf . and chassis	Fully open minimum capacity	Oscillator trimmer (C4) for steepest slope of straight line trace on scope. See Fig. 4C	1,2,12
4	1500 kc F.M. modulated $\pm 20 \mathrm{kc}$ at 60 CPS	Inductively coupled to loop. See note	Adjust for max. amplitude of response curve	Adjust r-f trimmers C3 and C2 on loop for maximum amplitude and symmetry. See Fig. 4A	$\frac{1,2,3,4,5,}{12}$
F.M.-I.F. ALIGNMENT					
5	10.7 mc F.M. modulated $\pm 300 \mathrm{kc}$ at 60 CPS	Pin 1 of V4 (12BA6) thru 100 mmf . and chassis	Closed	Secondary core of T6 for curve of Fig. 4B	6, 7, 8
6				Primary core of T6 for max. amplitude and symmetry of curve of Fig. 4B	6, 7, 8, 10 .
7				Core of L3 for max. amplitude and symmetry of curve of Fig. 4A	6, 7, 9, 10
8		Pin 1 of V3 (12AU6) thru 100 mmf . and chassis		Cores of T3 for maximum amplitude and symmetry of curve of Fig. 4A	
9		Stator of C2001 thru 100 mmf . and chassis hole in tuner cover		Primary and secondary cores of T2 for maximum amplitude and symmetry of curve of Fig. 4A	
10				Retouch primary and secondary cores of T6 for maximum amplitude and symmetry of curve of Fig. 4B	6, 7, 8, 10
F.M.-R.F. ALIGNMENT					
11	108.5 mc A.M. modulated at 60 CPS	At F.M. antenna terminals (built in F.M. antenna disconnected)	Fully open minimum capacity	Oscillator trimmer C2004 for steepest slope of straight line trace of Fig. 4C	$\begin{gathered} 6,7,9 \\ 10,11,12 \end{gathered}$
12	108 mc		For maximum amplitude of curve	C2002 for maximum amplitude and symmetry of curve of Fig. 4A	

Fig. 6. BOTTOM VIEW

GENERAL ELECTRIC PAGE 23-5

PAGE 23-6 GENERAL ELECTRIC

MODEL 409

Fig. 7. VISUAL ALIGNMENT CONNECTIONS
PARTS LIST

*PARTS USED ON PREVIOUS RECEIVERS

John F. Rider

MODELS 754, 756

STAGE GAINS

Stage gain measurements using a vacuum tube voltmeter or oscilloscope with a calibrated signal generator may be used to check circuit performance and isolate trouble. Use small signals to eliminate AVC action. Tolerance 20%. Signal applied through 470 ohm resistor and 1000 mmfd . capacitor in series.

STAGE	GAIN AM	GAIN FM
Ant. to V1 Grid	1 (98 MC)
V1-V2 Grid	6 (98 MC)
V1-V3 Grid	14 (1000 KC)
V2-V3 Grid	-	10 (10.7 MC)
V3-V4 Grid	70 (455 KC)	45 (10.7 MC)
V4-V5 Grid	(455 KC)	20 (10.7 MC)
V6-V4 Grid	80 (455 KC)	...

uilt-in FM antenna or from an external AM and an external 300 ohm FM antenna.

If no external AM antenna is used, the AM antenna terminal should be connected to the chassis ground by the shorting link.
If an external FM antenna is used the built-in FM antenna (third wire of the power cord) should be disconnected from the FM antenna terminal.

If the built-in FM antenna is to be used, it should be connected to the high side of the FM input terminals (second terminal from the right side of the terminal board).

METER ALIGNMENT NOTES

1. Connect an output meter across the speaker leads to indicate maximum output.
2. Turn volume control to maximum clockwise position and reduce signal input so that output meter does not indicate more than $1 / 2$ watt output.
3. Band switch set in AM position.
4. Connect an 18 microhenry choke across the loop terminals to assimilate the loop during alignment.
5. Connect a vacuum tube voltmeter from the limiter grid test point to chassis to read the d-c voltage developed at the limiter grid during FM-IF and RF alignment. Dress the leads to the vacuum tube voltmeter leads away from the r-f end of the chassis to prevent regeneration. Reduce signal input so that V.T.V.M. reads approximately 1 volt d-c at limiter grid test point.
6. Connect a vacuum tube voltmeter across the volume control and align the secondary of T8 for zero output at 10.7 mc .
7. Detune the signal generator either side of 10.7 mc until maximum d-c volts across the volume control is read-then peak the primary core of T8.
8. For FM-RF alignment the output impedance of the signal generator cable should be 300 ohms to properly match the input impedance of this receiver.
9. The cover over the FM-RF tuner must be in place during FM-RF alignment.
10. Band switch in FM position.
11. Make the chassis connection as close to the signal input
a point as possible.
METER ALIGNMENT CHART

Step No.	Signal Generator Frequency	$\begin{gathered} \hline \text { Signal } \\ \text { Input Point } \\ \text { Between } \\ \hline \end{gathered}$	Tuning Gang Capacitor	Adjust	$\begin{aligned} & \text { See } \\ & \text { Note } \\ & \text { No. } \end{aligned}$
AM-IF ALIGNMENT					
1	$455 \mathrm{KC} 30 \% \mathrm{mod}$. with 400 cycles	Pin 1 of V4 (6AU6) thru . 02 mf. and chassis	Closed	Primary and secondary cores of T7 for max. output meter reading	1,2,3
2		Pin 1 of V3 (6BA6) thru . 02 mf. and chassis		Primary and secondary cores of T6 for max. output meter reading. Recheck adjustment of T7 cores	
AM-RF ALIGNMENT					
3	1620 KC 30\% mod. with 400 cycles	Pin 1 of V1 (6BJ6) thru . 02 mf. and chassis	AM gang cap. fully open. (Min. cap.)	Adjust oscillator trimmer (C36) for maximum output meter reading.	1,2,3
4	$1500 \mathrm{KC} 30 \% \mathrm{mod}$. with 400 cycles		Tuning gang for max. output meter reading.	Adjust r-f trimmer (C7) for maximum output meter reading while rocking gang condenser.	
5	$580 \mathrm{KC} \mathbf{3 0} \%$ mod. with 400 cycles	AM antenna terminals thru I. R. E. dummy antenna		Core of T1 for maximum	1, 2, 3, 4
6	1500 KC 30% mod. with 400 cycles			Adjust antenna trimmer C5 for maximum	
FM-IF ALIGNMENT CHART					
7	10.7 mc unmodulated	Pin 1 of V4 (6AU6) thru 100 mmf . and chassis	Closed	Core of L3 for max. d-c voltage at test point on rear of chassis	5,10,11
8		Pin 1 of V3 (6BA6) thru 100 mmf . and chassis		Cores of T5 for max. d-c volts at limiter test point	
9		Stator of C2001 thru 100 mmf. thru hole in bottom of tuner cover		Cores of T4 for max. d-c volts at limiter test point	
FM DISCRIMINATOR ALIGNMENT					
10	$\begin{aligned} & 10.7 \mathrm{mc} \text { unmodu- } \\ & \text { lated } \end{aligned}$	Pin 1 of V4 thru 100 mmf. and chassis	Closed	T8 secondary core for zero output across the volume control R28 at 10.7 mc	6, 10, 11
11	Detune for max. d.c. at R28. See Note 7.			T8 primary core for max. d-c volts across the volume control R28	6, 7, 10, 11
FM-RF ALIGNMENT					
12	108.5 mc	At FM antenna terminals	Tuning capacitor fully open	Oscillator trimmer C2004 for maximum d-c voltage at limiter grid test point.	5, 8, 9, 10, 11
13	108 mc		Tune for maximum	FM-RF trimmer C2002 for max. output at limiter grid test point while rocking signal generator	
14 Recheck oscillator alignment as in Step 12.					

\square

MODELS 754, 756

EQUIPMENT REQUIRED FOR METER ALIGNMENT

1. Signal generator (G.E.-YGS-3 or equivalent)
2. Vacuum tube voltmeter
3. Output meter
4. One 18 microhenry choke to assimilate the loop
5. . 02 mf capacitor
6. 100 mmf capacitor

VISUAL ALIGNMENT NOTES

1. Set the band switch to AM position.
2. Connect the vertical plates of the scope across the volume control for AM alignment.
3. Use a frequency modulated sweep with its center frequency, at the frequency specified. Connect the same frequency that modulates the signal to the horizontal plates of the scope.
4. Keep signal generator input low so that A.V.C. does not take place.
5. Visual oscillator alignment is done by using a signal amplitude modulated with $60 \mathrm{c} . \mathrm{p} . \mathrm{s}$. and sweeping the horizontal plates of the scope with the same frequency. As the receiver is tuned to the signal frequency the slope of the straight line trace will become steeper.
6. During AM-RF alignment connect an 18 microhenry

FIG. 1. TOP VIEW
choke across the loop terminals to assimilate the loop during alignment.
7. Shield of input cable should be connected to chassis as close to the point of input as possible.
8. Connect the vertical plates from the limiter grid test point on the rear of the chassis, to chassis for FM-IF and RF alignment. The cable should be dressed away from the r-f end of he chassis to prevent possible regeneration.
9. Connect the vertical plates of the scope from pin 3 of V6 (6 T 8) through 200,000 ohm resistor and to chassis to view the discriminator response.
10. The output impedance of the sweep generator should match the 300 ohm input impedance of this receiver during FMRF alignment.
11. Set the band switch to FM position.

VISUAL ALIGNMENT CHART

$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Signal } \\ & \text { Generator } \end{aligned}$ Frequency	Signal Input Point Between	Tuning Gang Capacitor	Adjust	$\begin{aligned} & \hline \text { See } \\ & \text { Note } \end{aligned}$ No.
AM-IF ALIGNMENT					
1	455 KC with FM sweep $\pm 20 \mathrm{KC}$ at 60 cps	Pin 1 of V4 (6AU6) thru . 02 mf. and chassis		Primary and secondary cores of T7 for max. amplitude and symmetry of curve of Fig. 3A.	
2		Pin 1 of V3 (6BA6) thru . 02 mf. and chassis		Primary and secondary cores of T6 for max. amplitude and symmetry of curve of Fig. 3A.	
AM-RF ALIGNMENT					
3	1620 KC AM modulated at 60 cps	Pin 1 of V1 (6BJ6) thru . 02 mf. and chassis	AM gang cap. fully open (min. cap.)	Adjust oscillator trimmer (C36) for steepest slope of trace on screen See Fig. 3C	1,2, 4, 5, 7
4	1500 KC freq. mod. $\pm 20 \mathrm{KC}$ at 60 cps		Tuning gang for max. ampl. of response curve	C7 r-f trimmer for max. amplitude and symmetry of curve of Fig. 3A	1, 2, 3, 4, 7
5	580 KC freq. mod. $\pm 20 \mathrm{KC}$ at 60 cps	AM antenna terminal through I. R. E. dummy antenna and chassis		Core of T1 for maximum amplitude and symmetry of curve of Fig. 3A	
6	1500 KC freq. mod. $\pm 20 \mathrm{KC}$ at 60 cps			C5 antenna trimmer for max. amplitude and symmetry of curve of Fig. 3A.	'6,7
FM-IF ALIGNMENT					
7	10.7 mc freq. mod. $\pm .3 \mathrm{mc}$ at 60 cps	Pin 1 of V4 (6AU6) thru 100 mmf . and chassis	Closed	Core of L3 for max. amplitude and symmetry of curve of Fig. 3A.	4, 7, 8, 11
8		Pin 1 of V3 (6BA6) thru 100 mmf . and chassis		Cores of T5 for max, amplitude and symmetry of curve of Fig. 3A.	
9		Stator of C2001 thru 100 mmf. and chassis		Cores of T4 for max. amplitude and symmetry of curve of Fig. 3A.	
FM DISCRIMINATOR ALIGNMENT					
10	10.7 mc freq. mod. $\pm .3 \mathrm{mc}$ at 60 cps	Pin 1 of V4 thru 100 mmf . and chassis	Closed	T8 secondary core for curve of Fig. 3B.	4, 7, 9, 11
11				T8 primary core for max. ampl. and symmetry 3B.	
12				Retouch secondary core of T8 for symmetry	
FM-RF ALIGNMENT					
13	108.5 mc ampl. mod. with 60 cps	At FM antenna terminals	Fully open (min. cap.)	Osc. trimmer C2004 for steepest slope of trace Fig. 3C.	$4,5,7,8$, 10,11
14	108 mc freq. mod. $\pm .3 \mathrm{mc}$ at 60 cps		Tune for maximum	FM-RF trimmer C2002 for max. ampl. and symmetry of curve of Fig. 3A.	4, 71 8, 10.

FIG. 2. BOTTOM VIEW

FIG, 4. BOTTOM VIEW OF CHASSIS

DIAL STRINGING

When stringing the dial cord both the A.M. and the F.M. tuning capacitor drums should be turned fully clockwise (minimum capacity). When the dial stringing is completed both tuning capacitors should be fully open or fully closed at the same time.

Steps 1, 2, 3, 4 and 5 are as shown in Fig. 5. At step 6 the cord is brought from the large drum onto the smali drum as shown. Step 7 takes the cord around the axle and on to step 8 around the small drum of the A.M. tuning capacitor. Steps 9, 10, 11 and 12 are as shown in Fig. 5.

The pointer should be set opposite the last mark on the F.M. scale with the tuning capacitor in its fully clockwise position.

FIG. 5. DIAL STRINGING

GENERAL ELECTRIC PAGE 23-13

PARTS LIST

Prices are suggested list prices and are subject to change without
*PARTS USED ON PREVIOUS RECEIVERS

PAGE 23-16 GENERAL ELECTRIC
MODEL 412

Chassis, Top View

Chassis, Bottom View
John F. Rider

TO ARM OF R 4	
TO SOCKET OF R2AV6, PIN 1	
TO HOT LUG OF R4	$\begin{gathered} \underset{y}{x} \\ \hline \end{gathered}$
TO B-LUG OF R4	$\mathrm{ClO} \text { 下: } 400 \mathrm{O}$
TO SOCKET OF L2AV6, PIN 7	$\mathrm{Cl} 2 \frac{\mathrm{~T}}{\mathrm{~T}} \mathrm{MMF}$
TO. SOCKET OF $50 C 5$, PIN 2	$\mathrm{Cl} 3 \frac{\mathrm{l}}{\frac{1}{1}} \mathrm{MF}_{\mathrm{MF}}^{005}$

PAGE 23-18 GENERAL ELECTRIC

MODEL 412

REMOVE DIAL SCALE TO STRING DIAL

Always have volume control set for maximum and reduce signal input so AVC will not affect output.

PARTS LIST FOR MODEL 412

Cat. No.	Symbol	Description	Unit Price	Cat. No.	Symbol	Description	${ }_{\text {Unit }}^{\text {Price }}$			
CAPACITORS				miscellaneous electrical						
*RCE-127	C15A, B	50 mf ., $150 \mathrm{v} . ; 50 \mathrm{mf}$., 150 v. , electrolytic	\$1.85	*RJC-004		CONNECTOR-Speaker connector clip	\$0.02			
*RCT-037	C1A, B;	Two gang, osc., 10.6-126 mmf., r-f 14.3-420 mmf., with drive drum and trimmers	3.60	*RJS-092		on audio output leadsSOCKET-Miniature wafer, seven pin wax impregnated, $15 / 16 \mathrm{in}$. mounting centers; for tubes 12BE6, 12AV6, 50C5, 35W4	. 20			
*UCC-041.	$\begin{array}{r} \text { C10, } 11, \\ 12,13 \end{array}$	400 mmf ., .002 mf ., 220 mmf ., 005 mf ., 450 v., ceramic	. 90							
	C14,	. $02 \mathrm{mf}$. . 600 v v. paper	. 25	*RJS-141		SOCKET-Miniature wafer, seven pin, $15 / 16$ in. mounting centers; for tube	. 20			
*UCC-045	C16, 17,	. $05 \mathrm{mf}$. , $600 \mathrm{v}$. ., paper	. 30							
*UCU-020		47 mmf ., 500 v., mica	. 25	$\begin{aligned} & * \text { RJX-031 } \\ & * \text { RWL-009 } \\ & * \text { S403D } \end{aligned}$		SOCKET-Bayonet type for Mazda \#47 dial lamp; with clip-on bracket. POWER CORD-AC cord and plug, brown LOUDSPEAKER-4 in. PM, 4 watt	$\begin{array}{r} .40 \\ .70 \\ 4.30 \end{array}$			
RESISTORS (CARBON)										
*URD-007 *URD-021	R10	18 ohms $1 / 2 \mathrm{w}$. ${ }^{\text {c }}$			miscellanneous mechanical					
	R12	68 ohms $1 / 2 \mathrm{w}$.	\$0.13							
*URD-029	R8	150 ohms $1 / 2 \mathrm{w}$.	. 13	*RDC-032*RDK-174		CORD-Dial cord, bulk quantity 25 yds	\$2.50			
	R1	22,000 ohms $1 / 2 \mathrm{w}$.	. 13							
*URD-113	R6, 11	470,000 ohms $1 / 2 \mathrm{w}$.	. 13			KNOB-Off-volume or tuning control	. 15			
*URD-121	R72	$1 \mathrm{megohm} 1 / 2 \mathrm{w}$.	. 13			knob, color buff				
*URD-129	R3	2.2 megohms $1 / 2 \mathrm{w}$.	. 13	RDP-073		DIAL POINTER-Dial pointer, metal, brass finish	. 40			
*URD-053	R5 R9	4.7 megohms, $1 / 2 \mathrm{w}$.	. 13	RDS-118		DIAL SCALE-Dial scale and back-plate, plastic, ivory, translucent numerals	1.05			
	R9	1500 ohms, 2 w .	. 25							
POTENTIOMETER				*RHC-024 *RHC-034 RHG-006 *RHG-018		CLIP- $7 / 8 \mathrm{in}$. clip mounts C15A, B CLIP-For mounting I-F transformers GROMMET-For 110 v line cord	.10.05.05			
							tuning capacitor	. 05		
*RRC-106	R4, S1	500K ohms, composition, volume control and on-off switch.	\$1.65		*RHJ-007 *RMC-002 *RMS-118 *RMX-170		SPACER-In grommet, RHG-018, mounting tuning capacitor	. 05		
				CLIP-Osc., coil mtg. clip			.05 .10			
COILS AND TRANSFORMERS						$\underset{\text { sembly }}{\text { SHAFTing shaft and bushing as- }}$.35			
	$\begin{aligned} & \mathrm{L} 2 \\ & \mathrm{~T} 2, \mathrm{C} 5, \\ & \mathbf{C 6}, \mathrm{~T} 3, \\ & \mathrm{C} 8, \mathbf{C} 9 \\ & \mathrm{~T} 1 \end{aligned}$			Cabinets and cabinet parts						
*RLC-117		COIL-For oscillator V1 TRANSFORMER-1st or 2 nd I-F, 455KC	$\begin{array}{\|r} \$ 0.90 \\ 1.90 \end{array}$	*RAB-095RAU-363*RDW-021		BACK-Includes antenna loop, L1 CABINET-Plastic, biack DIAL WINDOW-Plastic, $617 / 32 \times 313 / 32$ inches	$\begin{array}{\|} \$ 1.55 \\ \mathbf{6 . 2 5} \\ .60 \end{array}$			
RTL-135										
*RTO-069		TRANSFORMER-Audio output	1.75							

*Parts used on previous receivers.
PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE:

SPECIFICATIONS

CABINET:

Model 614. Maroon, plastic
Model 615
Height
Green, plastic
Length .
Width . $53 / 4$ inches

POWER SUPPLY
Power line. 105-120 volts, D-c or 60 cps A-c
Battery. . AB combination 9 and 90 volts

Eveready 753
Bright Star 66-50
Burgess F6A60
Rayovac AB994
Power Consumption (connected to power line).
. 25 watts

OPERATING FREQUENCIES:

\qquad
I-F Amplifier
$540-1600 \mathrm{kc}$
.455 kc

TUBE COMPLEMENT:

V1 R-F amplifier 1T4
V2 Oscillator-Converter 1R5
V3 I-F amplifier 1T4
V4 Detector and 1st audio 1U5
V5 Power amplifier 3V4

SOTTOM SHIELD REMOVAL:

For most services to the chassis such as i-f alignment, voltage measurement and component replacement it is not necessary to completely remove the radio from the cabinet. To gain access to the inside of the chassis to perform these services it is only necessary to remove the chassis bottom shield as follows:

1. Remove the hex head screw in cabinet bosses at each side of chassis.
2. Remove the three snap fasteners holding shield to back edge of chassis.
3. Remove the hex head screw holding bottom shield to each end of chassis.
4. Withdraw shield to position exposing chassis components.-

CHASSIS REMOVAL

1. Remove the two control knobs.
2. Remove the hex head screw in cabinet bosses at each side of chassis.
3. Remove two hex head screws holding chassis support

LOUDSPEAKER:

 brackets to bosses in bottom of cabinet.Type.
Size e. Oval, 4 inches Alnico PM
Voice coil impedance @ 400 cycles...... 6 inches
Voice coil impedance @ 400 cycles

180 milliwatts
250 milliwatts
Undistorted

\qquad
Maximum

6 inches 3.2 ohms
4. Disconnect audio output leads from loudspeaker and remove complete chassis with brackets.

PAGE 23-20 GENERAL ELECTRIC

MODELS 614, 615

GENERAL ELECTRIC PAGE 23-21

PAGE 23-22 GENERAL ELECTRIC

MODELS 614. 615

PAGE 23-24 GENERAL ELECTRIC

MODELS 514, 542, 543

GENERAL ELECTRIC PAGE 23-25

Fig. 1. Identification of Components, Model 514, Rear view

Fig. 2. Identification of Components, Models 542 and 543, Rear view
\square

PAGE 23-26 GENERAL ELECTRIC
MODELS 514,
542, 543

Fig. 3. Identification of Components, Top view

SPECIFICATIONS

OVER-ALL CABINET DIMENSIONS	MODEL	514	542	543
	Color	Mahogany Mottle	Brown Mottle	Ivory
	Height	61/4 in.	$63 / 8$ in.	$63 / 8 \mathrm{in}$.
	Width	105/8 in.	$113 / 8 \mathrm{in}$.	$113 / 8$ in.
	* Depth	$61 / 4 \mathrm{in}$.	61/4 in.	$61 / 4 \mathrm{in}$.

* Including knobs

ELECTRICAL RATING	Voltage . 105-120FrequencyWatts . 30	
OPERATING FREQUENCIES	Standard Broadcast $40-1600 \mathrm{kc}$I-F Amplifier	
POWER OUTPUT	Undistorted. . . . : . watt	
LOUDSPEAKER	Type $\ldots \ldots \ldots \ldots \ldots \ldots$ Alnico PMOutside Cone Diameter. $\ldots \ldots . .4$ inchesVoice Coil Impedance $(a, 400$ cycles 3.5 ohms	
TUBE COMPLEMENT	Purpose	Type
	V1 Oscillator-Converter.	12BE6
	V2 I-F Amplifier	12BA6
	V3 Detector-1st Audio	12AV6
	V4 Audio Output	50C5
	V5 Rectifier. . . .	35W

GENERAL INFORMATION

The Model 514, 542 and 543 clock-radio receivers employ four tubes, plus rectifier tube, in a superheterodyne circuit. A loop antenna, part of the cabinet back, provides excellent signal pickup, without the need of an external antenna. Each model has an electric alarm clock which is also connected to automatically turn on the radio as a Musical Alarm. The clocks of receiver Models 542 and 543 have the additional Sleep Control feature to permit one hour of radio operation, or a portion thereof, where upon the control mechanism will automatically shut off the radio.

PRODUCTION CHANGES-Two versions of the Models 514, 542 and 543 are noted in the tube socket construction, involving production methods.
MECHANIZED CHASSIS-Mechanized production uses sockets of the dip solder construction. In this operation components and wires are placed into tube pin connections of each socket. The chassis is inverted and dipped into molten metal, to solder the pins from the top. A plastic cover over the top of the sockets insulates these connections against shock hazard.

NONMECHANIZED CHASSIS-A part of production employed the standard method of the past, in socket wiring. In these chassis, components are wired, crimped and individually soldered to standard socket pin connections. Nonmechanized chassis have the letter "C" rubber stamped on the rear chassis apron for identification.
COMPONENT REPLACEMENT-When servicing mechanized chassis, the time and effort otherwise spent to remove the shield, heat tube pin connections and free the components may be spared. A neater job can be done without the risk of damage to the tube sockets by using the following method in wiring a replacement part.

Clip the defective unit out, leaving enough of its leads attached to the tube socket so an eye loop may be formed in the leads. Each lead of the new component may then be passed through the proper loop, pruned to length, crimped and soldered.

CAUTION: One side of the power line is connected to $\mathbf{B}-$. Avoid any ground connections direct to $\mathbf{B}-$. Use an isolating transformer when making service adjustments with the chassis removed from the cabinet.

CIRCUIT ALIGNMENT
Always have volume control at maximum and use the minimum amount of signal input necessary to produce a suitable output response.
\qquad

$$
=
$$

ALIGNMENT CHART

ALIGNMENT CHART				
Step	Connect Test Oscillator to	Test Osc. Setting	Dial Drum Setting	Adjust for Maximum Output
1	12BA6 grid (1) in series with 0.05 mf . cap.	455 kc	Minimum capacity	Cores of 2nd I-f transformer T3
2	12BE6 grid (7) in series with 0.05 mf . cap			Cores of 1st I-F transformer, T2
3	Inductively coupled to Radio loop	1620 kc		C1D (oscillator)
4		1500 kc	Tune for max.	C1A (antenna)

Fig. 7. Wiring Diagram

CLOCK SERVICE

Figures 8, 9 and 10 show clock parts referred to in the following paragraphs and the parts list.

CLOCK MOVEMENT DISASSEMBLY

1. Remove clock movement from case, and pull off knobs.
2. Remove Crystal, Hands and Dial Face.
3. Remove the motor assembly by removing two screws (13) and break two soldered joints on Field. The Field and Rotor Assembly (22 and 23) can now be removed. The Rotor is held by friction only, to the Field.
4. Remove Switch Assembly (4) by removing two screws from base plate.
5. Remove Switch Shaft Assembly (8) and spacer.
6. Remove Alarm-Set Shaft Assembly (31) and spacer.
7. Remove the three front plate assembly screws that are located under the Dial Face and then remove Front Plate.
8. Remove Alarm Gear Sleeve Assembly (17), Hour Gear Sleeve Assembly (18), Minute Gear Sleeve Assembly (19), and Sweep Second Gear Shaft Assembly (20).
9. Remove Alarm Cam Gear Assembly (26) and Spring Washer (25).
10. Remove Intermediate Gear (27).
11. Remove Time-Set Gear and Shaft Assembly (11).
12. Remove Switch Cam Lever (12).

CLOCK MOVEMENT REASSEMBLY

Reassemble in the reverse order of disassembly, observing the following precautions:

1. The spring washer (25) should curve away from the gear when placed on the Alarm Cam Gear Assembly (26).
2. The Switch Cam Lever (12) fork must straddle the base plate post as shown in the illustration.
3. After reassembly of front plate, check, the Sweep Second Gear (20) through the hole in the base plate to make sure it is free to turn.

Fig. 8. Back View of C51 Clocks
4. Proceed with Alarm and Switch Adjustments as described below before installing hands.

ALARM AND SWITCH ADJUSTMENTS

1. Turn Switch Knob to Wake-up position.
2. Slowly rotate Time-Set Shaft clockwise until the contacts of the Switch Assembly (4) close.
3. Replace Dial Face, Alarm Dial, the Minute, Hour and Second Hands. Set all Hands and Dial so that they indicate 12 o'clock. Make sure all Hands and Alarm Dial are tight on their respective shafts.
4. With Alarm-Set knob pulled out, continue to rotate TimeSet Shaft clockwise and note that the vibrator arm drops against field core approximately $7-10$ minutes later.
5. Set alarm at some other selected position and make sure mechanism actuates within limits (± 1 minute).
6. Check alarm tone of vibrator. This can be adjusted by either bending vibrator arm nearer or farther away from field core. Bend arm near anchor point.

CLEANING AND LUBRICATION

To clean, completely disassemble and clean all moving parts in carbon tetrachloride or some similar cleaner.

The inside of the sleeves and shaft surfaces may be cleaned of oxidized oil by rubbing with a fine grade of steel wool dampened in carbon tetrachloride.
Do not use too much oil and apply by means of a small wire (drop oiler). Too much oil collects dust and later oxidizes. Use only recommended clock oil, such as Nye's Celebrated Oil, which may be purchased from Wm. F. Nye Co., Inc., New Bedford, or an equivalent.

Clock troubles

1. Clock will not operate-Defective field coil, defective rotor, binding of parts.
2. Clock loses time-Binding parts, too little friction on minute hand sleeve assembly, defective rotor. Clock time-set shaft bent and rubs against hole in clock bracket.
3. Noisy Clock-Rotor defective, alarm armature improperly adjusted, loose parts, or binding of moving parts.

PAGE 23-30 GENERAL ELECTRIC
MODELS 514,
542, 543

Fig. 13. Exploded View of C57 Series Clock Movement

MODELS 514,

CLOCK SERVICE

Figures 11, 12 and 13 show clock parts referred to in the following paragraphs and the parts list.

CLOCK MOVEMENT DISASSEMBLY

1. Remove clock movement from case, and pull off knobs.
2. Remove Bezel, Hands and Dial Face.
3. Remove the motor assembly by removing two screws (12) and break two soldered joints on Field. The Field and Rotor Assembly (25 and 24) can now be removed. The Rotor is held by friction only, to the Field.
4. Remove Switch Assembly by removing two screws (5) from base plate.
5. Remove Switch Shaft Assembly (3) and spacer.
6. Remove Alarm-Set Shaft Assembly (33) and spacer.
7. Remove the three front plate assembly screws that are located under the Dial Face and then remove Front Plate.
8. Remove the following gear assemblies and control levers in the order listed below:
(a) Sleep Control Shaft and Segment Gear (35)
(b) Alarm Dial Gear (17)
(c) Hour Hand Gear (18)
(d) Alarm Signal Cam and Gear, and Friction Washer $(28,27)$
(e) Sleep Control Switch Lever (30)
(f) Pinion Drive Gear Assembly (34) (drives Sleep Control Segment Gear)
(g) Alarm Control Switch Cam Lever (4)
(h) Time Set Shaft and Gear, and Spacer (8,9)
(i) Drive Gear and Pinion Assembly (29)
(j) Minute Hand Gear (20)
(k) Sweep Second Hand Gear (22)

CLOCK MOVEMENT REASSEMBLY

Reassemble in the reverse order of disassembly, observing the following precautions:

1. The spring washer (27) should curve away from the gear when placed on the Alarm Cam Gear Assembly (28).
2. The Switch Cam Lever fork (4) must straddle the base plate post as shown in the illustration.
3. After reassembly of front plate, check the Sweep Second Gear (22) through the hole in the base plate to make sure it is free to turn.
4. Proceed with Alarm and Switch Adjustments as described below before installing hands.

ALARM AND SWITCH ADJUSTMENTS

1. Turn Wake-Up Manual shaft to WAKE UP position.
2. Slowly rotate Time Set Shaft clockwise until the contacts of the Switch Assembly (7) close.
3. Replace Dial Face, Alarm Dial, the Minute, Hour and Second Hands. Set all Hands so that they indicate 12 o'clock. Set figure 12 of the alarm dial to index with the smaller pointer of the hour hand. Make sure all Hands and Alarm Dial are tight on their respective shafts.
4. With Alarm Set knob pulled out, continue to rotate Time Set Shaft clockwise and note that the Alarm vibrator arm drops against field core approximately $7-10$ minutes later.
5. Set alarm at some other selected position and make sure mechanism actuates within limits (± 1 minute).
6. Check alarm tone of vibrator. This can be adjusted by either bending vibrator arm nearer or farther away from field core. Bend arm near anchor point.

CLEANING AND LUBRICATION

To clean, completely disassemble and clean all moving parts: in carbon tetrachloride or some similar cleaner.

The inside of the sleeves and shaft surfaces may be cleaned of oxidized oil by rubbing with a fine grade of steel wool dampened in carbon tetrachloride.

Do not use too much oil and apply by means of a small wire (drop oiler). Too much oil collects dust and later oxidizes. Use only recommended clock oil, such as Nye's Celebrated Oil which may be purchased from Wm. F. Nye Co., Inc., New Bedford, or equivalent.

CLOCK TROUBLES

1. Clock will not operate-Defective field coil, defective rotor, binding of parts.
2. Clock loses time-Binding parts, too little friction on minute hand sleeve assembly, defective rotor. Clock time-set shaft bends and rubs against hole in clock bracket.
3. Noisy Clock-Rotor defective, alarm armature improperly adjusted, loose parts, or binding of moving parts.

Fig. 11. Back View, C57 Clocks

Fig. 12. Front View, C57 Clocks-Front Plate Removed

GENERAL ELECTRIC PAGE 23-33 MODELS 514, 542, 543

PARTS LIST FOR MODELS 514, 542 AND 543

[^11]PAGE 23-34 GENERAL ELECTRIC
MODELS 514,
542, 543

CLOCK PARTS LIST-FOR RADIO MODELS 514, 542 AND 543
Any item bearing a Telechron catalogue number may be procured through a Telechron Service Station. Inasmuch as radio parts and clock parts procurement procedures may differ, it is suggested you contact your General Electric Radio Distributor for assistance. All or at least those items bearing General Electric catalogue numbers may also be procured directly through the General Electric Radio Distributor.

MODEL 514 CLOCK ASSEMBLY
G.E. CAT. NO. RZC-022, TELECHRON NO. C51G22

APPEARANCĖ ITEMS			MOVEMENT ITEMS (Cont'd)			
Description	$\begin{aligned} & \text { G.E. } \\ & \text { Cat. No. } \end{aligned}$	Telechron Cat. No.	Description	Symbol	Telechron Cat. No.	
$\xrightarrow[\text { Alarm Disc (Black, white figures) }]{ }$	RZA-013	$\begin{aligned} & 55 \times 48 \\ & 58 \times 129 \end{aligned}$	*Base Plate Assembly	21 26	${ }_{17 \times 10}^{35 \times 10}$	
Dial Face (Gold and black, gold figures)		61X1056	*Cam Shaft Washer .	25	40X 252	
	RZJ-002	59×772	*Field and Coil	23	45X209	
${ }_{\text {HHands, Hour and Minute (Black) }}$		32×308 31×81	Field Screw (2).......	13 16	${ }_{341}{ }^{1} 181$	
	RZK-003	59X716	${ }^{*} \mathrm{Hour}$ Hand Sleeve.	18	34X 13×11	
*Knob, Time Set (Bronze)		${ }_{3 \times 36}$.	*Intermediate Gear Assembly	27	40X87	
			${ }^{*}$ *Rinute Hand Sleeve Unit-60 cycle	19 22	14×32 44×38	
MOVEMENT ITEMS			*Spreader Post (2).....*Sweep Second Hand Shaft*Switch Contact Assembly.	14	40X201	
			20	16X14		
				*Switch Index Spring *Switch Lever Assembly *Switch Shaft Assembly *Switch Shaft Spacer Time Set Shaft	28	40×322 40×185
Description	Symbol	Telechron	12		40×88	
			8		59×782	
*Alarm Set Sleeve *Alarm Set Shaft (Slotted)			11		10X151	
	31	11 X 43		9	40X276	

MODEL 542 AND 543 CLOCK ASSEMBLY
G.E. CAT. NO. RZC-021, TELECHRON NO. C57G76

APPEARANCE ITEMS			MOVEMENT ITEMS (Con't)		
Description	$\begin{aligned} & \text { G.E. } \\ & \text { Cat. } \end{aligned}$	Telechron Cat. No.	Description	Symbol	Telechron Cat. No.
Alarm Disc (Red, white figures)		55X48	*Base Plate Assembly *Cam Shaft Assembly	${ }_{28}^{23}$	35×93 17×10
Bezel, Outer Ring (Metal, gold color finish).....			*Cam Shaft Assembly	28 27	17×10 40×252
Bezel, Numeral numerals). .	RZA-011	53×163	*Field and Coil (60 cycles)	25	40X209
Bezel, Numeral Color Ring (paper, ivory)	RAZ-012	59×816	Front Plate Assembly .	16	34X285
Crystal (glass, round)	RZW-005	58×146	${ }^{*}$ Hour Hand Sleeve.	18	13×11
Dial Face (Gold color, red figures).		61×1058	*Intermediate Gear Assembly	29	40×87
Hands, Hour and Minute (Black, radium treated			${ }^{*}$ *Rinute Hand Sleeve.	20	14×32 44×38
tips) Hand, Sweep Second (white)		32×306 31×103	*Rotor Unit-60 cycle	24 35	44X38 40×308
*Knob; Alarm, Sleep or Switch Set (IVory)	RZK-003	59X716	*Sleep Switch Lever Assembly	35 30	+40X308
*Knob, Time Set (Bronze).		3X36	*Sleep Switch Friction Assy.	34	40X196
			*Spreader Post (2).	13	40X201
MOVEMENT ITEMS			*Switch Contact Assembly	7	${ }_{40 \times 142}$
			*Switch Index Spring.	11	40×185
Description	Symbol	Telechron Cat. No.	*Switch Yoke Lever..	4 3	40×197 59×780
			*Switch Shaft, Spacer.	1	40x 275
*Alarm Set Sleeve	17	15X3	*Time Set Shaft.	8	10X141
*Alarm Set Shaft (Slotted)	33	11X41	*Time Set Shaft Spacer	9	40X276

*Used on previous General Electric radio clocks

SPECIFICATIONS

CABINET	Mahogany mottle, plastic, $121 / 4 \times 7 \times 83 / 4 \mathrm{in}$.
INPUT	$105-125$ volts (using 50 L 6 GT) or $90-110$ volts (using 35L6GT) AC or DC, $50-60$ cycles, 30 watts
OUTPUT	Undistorted: 1 watt; Maximum: 2 watts
LOUDSPEAKER	4-inch Alnico PM; 3.2 ohms @ 400 cps
TUBE COMPLEMENT	V1 Oscillator-Converter 12SA7 V2 I-F Amplifier V3 Detector-Audio Amplifier 12SQ7 V4 Audio Output For input voltages $105-125$ volts. 50L6GT For input voltages $90-110$ volts.35L6GT V5 Rectifier. 35Z5GT

GENERAL INFORMATION

The normal input rating of this receiver is in the range of 105 to 125 volts. In the event of low power line voltage conditions, the receiver may be operated efficiently at 90 to 110 volts by substituting a 35L6GT audio output tube in place of the 50L6GT tube.
Nofe: When servicing or aligning this receiver always use an isolation transformer to protect test equipment.

ALIGNMENT

For r-f alignment, the low frequency limit of dial pointer travel should be checked with tuning gang fully closed and reset, if necessary, to a measured distance of $2 \frac{3}{16}$ inches from center of front plate to pointer. To facilitate alignment, this reference point, as well as 4 inches (18 mc) and $3 \frac{21}{32}$ inches (1500 kc) measured along the front plate from low frequency end of dial scale, may be marked with pencil on the back of front plate at the edge of pointer slider.

The volume control should be kept at maximum and the signal generator output attenuated so that the output meter reading does not exceed $11 / 4$ volts.
After the chassis has been aligned and replaced into the cabinet, the pointer, at the low frequency end of its traved, should rest on the zero point of the logging scale. A slight inaccuracy in calibration may be corrected by moving the chassis slightly sideways.

ALIGNMENT CHART

Step	Signal Generator Output	Signal Gen. Setting	Band Switch Setting	Dial Pointer Setting	Adjust for Maximum Output
I-F ALIGNMENT					
1	Pin 8, 12SA7 grid, in series with .05 mfd	455 kc	BC	Tuning capacitor closed	Cores of 2nd i-f transformer, T3
2					Cores of 1 st i-f transformer, T2
3					Recheck adjustment of T3 and T2
R-F ALIGNMENT					
4	In series with 200 mmf to antenna input (green wire lead)	18 mc	SW	18 mc	Oscillator SW trimmer, C2C
5					Antenna SW trimmer, C2A*
6		1500 kc	BC	1500 kc	Oscillator BC trimmer, C6
7					Antenna BC trimmer, C1
8		580 kc		For max.	Oscillator BC padder, C3*
9		1500 kc		1500 kc	Recheck adjustment of trimmers C6 and C1, steps 6 and 7

* ALIGNMENT NOTE:

This adjustment is 'rocked in" for maximum output.

PAGE 23-36 GENERAL ELECTRIC

GENERAL ELECTRIC PAGE 23-37

© John F. Rider

© John F. Rider

GENERAL INFORMATION

TYPE - AC-DC table model superheterodyne with loop antenna.

TUNING RANGE - 535 to 1620 Kc
IF FREQUENCY - 455 Kc
TUBE COMPLEMENT - 12BE6 - Converter
12BA6 - IF Amplifier
12AT6 - Detector, AVC \& 1st AF Amp
50C5 - Power Amplifier
35W4 - Rectifier
POWER SUPPLY - 117V AC (50 to 60 cycles) or DC, 30 watts

INSTALLATION \& OPERATING INSTRUCTIONS

POWER SWITCH AND VOLUME CONTROL. The power switch and volume control are combined and operated with the left-hand knob. Turn radio $O N$ by rotating volume knob to the right until a click is heard. Continued rotation of this control to the right will increase volume. Turn receiver OFF by rotating volume knob to the left until a click is heard.

NOTE: When operating from AC line, reverse power line plug for minimum hum. If the receiver does not operate from a DC power line after being turned $O N$ for a few minutes, reverse the power line plug.

TUNING. Stations are tuned in with the right-hand knob. Tune carefully until you are exactly on the station; tuning to either side of it will result in noisy reception and poor tone quality. Do not regu-
late volume by detuning the station; always tune exactly on the station, then adjust volume control to desired loudness.

ANTENNA. A loop antenna is built into this receiver, eliminating the need for an external antenna. Reception from some stations may be improved by rotating the whole receiver; this is due to the slight directional characteristic of the loop antenna. In extremely noisy locations, rotate the entire receiver till minimum noise and maximum signal pick-up are obtained. For additional pick-up, an external antenna may be connected as shown on back of receiver.

CAUTION: Never connect antenna or chassis to water pipe, radiator or other ground.

FIGURE I. STRING DRIVE DETAIL

TO REMOVE CHASSIS FROM CABINET

1. Remove dial scale; it pulls off.
2. Remove the knobs; they pull off.
3. Remove the two split plugs that hold top of loop panel to cabinet.
4. Remove the two screws that hold the chassis to the cabinet. These screws are accessible through slots in the loop panel.
5. Slide chassis out of cabinet.

ALIGNMENT

If AC power is used, use an isolation transformer between power line and receiver. If isolation transformer is not available, connect low side of signal generator to $B-$ through .1 mf capacitor.

Connect a low range output meter across the speaker voice coil and set the volume control at
maximum. For greatest accuracy, keep output of receiver at approximately .05 watt (. 05 watt $=.40$ volt on output meter) throughout alignment by reducing signal generator output as stages are brought into alignment. Use a small fibre screwdriver for aligning IF \& diode transformers.

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	GÄNG SET TO	ADJUST	REMARKS
$\begin{aligned} & \text { IF AL } \\ & 1 . \end{aligned}$	GNMENT .1 mf	Rear stator of tuning cap	4.55 Kc	Gang opened	$1,2,3 \& 4$	Adjust for maximum.
$\begin{aligned} & \mathrm{RF} A \mathrm{~A} \\ & 2 . \end{aligned}$	GNMENT .1 mf	Rear stator of tuning cap	1620 Kc	Gang opened	5	Adjust for maximum.
3.	None	Radiation loop*	1400 Kc	Tune for maximum	6	Adjust for maximum.

*Connect generator output to $5^{\prime \prime}$ diameter, 3 turn loop \& couple to receiver loop. Keep loops at least 12" apart.

DIODE 455KC
(1) SECONDARY (BOTTOM)

FIGURE 2. TUBE \& TRIMMER LOCATION

PAGE 23-4 GOODRICH

SPECIFICATIONS

Tubes and Rectifiers 4 tubes and 1 selenium rectifier
Power Supply 105-125 volts DC/50-60 cycle AC or 90 and $7 \frac{1}{2}$ volt batteries Frequency Coverage 540 KC to 1650 KC Intermediate Frequency 455 KC Speaker . 4 inch PM Voice Coil Impedance. 3.2 ohms Antenna . Built-in loop

REPLACEMENT BATTERIES
$7 \frac{1}{2} \mathrm{~V}$ " A " -• Eveready 717, Burgess C5, RCA VS 065 90 V 'B" - Eveready 490, Burgess N60, RCA VS 090

Fig. 1. Radio Receiver Model 5R24

ALIGNMENT PROCEDURE

- Connect output meter across voice coil.
- Turn volume control at maximum.
- Use a non-metallic alignment tool.
- Loop antenna must be connected.
- Refer to Fig. 2 for location of alignment adjustments.
- Generator must have a modulated output.
- Align for maximum output. To prevent AVC action from interfering with alignment, use lowest output setting of generator that gives satisfactory reading on output meter (approximately 50 milliwatts).

STEP	SIGNAL GENERATOR CONNECTION	SIGNAL GENE RA TOR FREQUENCY	RECEIVER DIAL SETTING	ADJUST FOR MAXIMUM OUTPUT
1	High side to pin 6 of the 1R5 through a .1 mfd. capacitor. Ground side to B-.	455 KC	Tuning gang fully open.	A,B,C,D
2	Same as STEP 1.	1650 KC	Tuning gang fully open.	E
3	Place generator lead close to loop antenna. No actual connection.	1500 KC	1500 KC	F

9281515

Fig. 2. Top View of Chassis Showing Location of Alignment Adjustments and Tubes

PAGE 23-2 HALLICRAFTERS MODEL 5R24

Fig. 5. Top View of Chassis Showing Component Location

DESCRIPTION

Abstract

Your Hallicrafters Model S-80, the "Defender", is a super-sensitive, four tube battery operated radio specially designed for use in rural and remote areas where commercial power is not available. It covers both the standard broadcast band and the 6 to 18 megacycle shortwave range thus assuring 24 hour reception even in weak signal areas where the broadcast band "blacks-out" in daytime.

The receiver is designed to operate from any standard $1 \frac{1}{2}$ volt " A " -90 volt " B " heavy duty battery pack such as listed below under BATTERY INSTALLATION. These batteries will provide over 1,000 hours or approximately one year of service and will fit inside the rear of the cabinet. A special feature is the battery saver switch, a slide switch located on the chassis which will provide approximately 50 hours of additional battery operation at the normal end life of the battery.

Operation of the receiver in metropolitan areas from commercial power is easily possible by the use of a moderate cost power converter such as Perma Power Model A or Sears "Power Shifter". Such a unit equips the receiver for 110-120 volt, 50 or 60 cycle AC operation.

92×1542
Model S-80 Defender

The tuning dial is of the slide rule type with separate dial scales for both the standard broadcast and shortwave bands. Major foreign cities are clearly indicated on the shortwave portion of the dial to facilitate tuning. Shortwave services covered by this receiver include the following international shortwave bands: 5.9 to $6.2 \mathrm{MC}, 9.5$ to 9.7 MC , 11.7 to $11.9 \mathrm{MC}, 15.1$ to 15.45 MC and 17.7 to 17.9^{MC}.

To get the utmost enjoyment from your Hallicrafters receiver, carefully follow the instructions contained in this book.

OPERATING INSTRUCTIONS

BATTERY INSTALLATION

1. The receiver is designed to operate from any one of the following combination 90 and $1 \frac{1}{2}$ volt farm battery packs: Sears 06308, Wards 51, Burgess 17GD60, RCA VSO 99, General 60DL-11L, Eveready 748, Ray-O-Vac AB-82, Bond 0528 or Ensign AB48.
2. Place the battery pack into the compartment provided in the rear of the cabinet and insert the BATTERY CABLE PLUG (see Fig. 3) into the receptacle located on the battery.
3. Set the BATTERY SAVER SWITCH on the top right of the chassis to the NEW POSITION. (See Fig. 3.) This switch should be set at NEW whenever a new battery pack is installed.
NOTE: Maximum battery life will be obtained if the receiver is operated intermittently, i.e., for short periods of time, instead of continuously for prolonged periods.
4. When the volume of stations decreases noticeably due to the battery approaching the end of its normal operating life, set the BATTERY SAVER SWITCH at USED.
5. When reception becomes weak even with the BATTERY SAVER SWITCH at USED, replace the battery pack.

ANTENNA INSTALLATION

Two leads have been provided at the top left of the chassis for antenna and ground connections. A satisfactory antenna in most cases is 30 to 60 feet of wire connected to the green lead and run about the room in any convenient manner. A good ground connection is required when this type of antenna is employed. For best results, an outside antenna should be used.

SINGLE WIRE ANTENNA

1. Construct the antenna as shown in Fig. 1 and connect it to the green lead located on the top left of the chassis. (See Fig. 3.)
2. Erect the antenna as high as possible and free from surrounding objects.
3. Use an Underwriters approved lightning arrester designed for single lead-in at the point where the lead-in enters the house.
4. Connect the black lead located at the top left of the chassis to a cold water pipe or other good ground such as a six foot ground rod driven into moist soil.

For shortwave reception, a doublet antenna with a 300 ohm ribbon type transmission line is recommended. The doublet antenna, when properly constructed and installed, will provide excellent world-wide shortwave reception as well as standard broadcast reception.

dOUbLET ANTENNA

1. Construct the antenna as shown in Fig. 2. Note that the antenna is $19 \frac{1}{2}$ feet long each side of center, the two sections being insulated from one another.
2. Use a length of $\mathbf{3 0 0}$ ohm ribbon type transmission line, commonly called twin-lead, as the lead-in from the antenna to the receiver. Connect one end of the transmission line to the two $19 \frac{1}{2}$ foot antenna sections and the other end to the black and green leads located at the top left of the chassis.
3. Use an Underwriters approved lightning arrester designed for twin-lead at the point where the lead-in enters the house.
4. No ground connection is required with the doublet antenna.

TUNING DIAL

1. The standard broadcast band is calibrated in kilocycles with a zero deleted for convenience. To convert the dial reading to the station frequency in kilocycles, add one zero.
2. The shortwave band is calibrated directly in megacycles.

STANDARD BROADCAST AND SHORT WAVE RECEPTION

1. Set the SHORTWAVE-BROADCAST control knob to BROADCAST for standard broadcast reception or to SHORTWAVE for shortwave reception.
2. Turn the receiver ON by rotating the VOLUME control knob clockwise. Turn this control to a well advanced position and reset it for the desired volume after a station has been tuned in.
3. Tune in the desired station by turning the TUNING CONTROL knob slowly until the dial pointer indicates the station frequency.
4. Readjust the VOLUME control fọr the desired volume.
5. To turn the receiver OFF, turn the VOLUME control knob counterclockwise until a click is heard.
best Shortwave reception table

BAND	MOST FAVORABLE TIME	MOST FAVORABLE DISTANCE	
$6-7 \mathrm{MC}$	Night - Winter	Day - 400 Miles	Night - Over 1500 Miles
$9-10 \mathrm{MC}$	Day - Late Afternoon and Night - Winter	Over 500 Miles	
11-12 MC	Evenings or Late Summer Afternoons	Day - Under 1500 Miles	Night - Over 1500 Miles
$15-18 ~ M C ~$	Early Mornings and Summer Evenings	Over 1500 Miles	

Fig. 1. Single Wire Antenna Installation

92C1548

SERVICE INSTRUCTIONS

SPECIFICATIONS

Tubes
Four
Speaker . 5 inch PM Speaker Voice Coil Impedance 3.2 ohms Intermediate F'requency 455 KC Antenna Provision for external single wire or doublet antenna.
Power Supply. . . . 90 volt " B " - $1 \frac{1}{2}$ volt "A" battery pack
Frequency Coverage. . . . 540-1620 KC and 6-18 MC

TUBE REPLACEMENT - The tube types and their relative location in the receiver are shown in Fig. 3. To gain access to all tubes, slide the battery pack out of the cabinet. When installing a replacement tube, line up the seven pins on the tube with the socket holes and push down on the tube until the base of the tube rests firmly on the socket. Handle all tubes with care as they are fragile and will not withstand mechanical abuse.

REPLACEMENT BATTERY PACKS - Sears 06308, Wards 51, Burgess 17GD60, RCA VSO 99, General 60DL-11L, Eveready 748, Ray-O-Vac AB-82, Bond 0528 and Ensign AB48.

Fig. 3. Top View of Chassis Showing Location of Alignment Adjustments and Tubes

ALIGNMENT PROCEDURE

- Connect output meter across speaker voice coil.
- Set volume control at maximum.
- Use a non-metallic alignment tool.
- Signal generator must have a modulated output and cover 455 KC , $600 \mathrm{KC}, 1300 \mathrm{KC}$ and 14 MC .
- Keep the generator outpui as low as possible to avoid AVC action.
- Refer to Fig. 3 for location of alignment adjustments.

Fig. 4. RTMA Dummy Antenna

STEP	SIGNAL GENERATOR CONNECTIONS	SIGNAL GENERATOR FREQUENCY	BAND SWITCH SETTING	RECEIVER DIAL SETTING	ADJUST FOR MAXIMUM OUTPUT
1	High side to stator plates of rear sec- tion of tuning capacitor through a .01 mfd. capacitor. Low side to chassis.	455 KC	BROADCAST	1000 KC	A, B, C, D
2	High side to green antenna lead (Fig. 3) through a standard RTMA dummy antenna (Fig. 4). Low side to chassis.	14 MC	SHORTWAVE	14 MC	E, F
3	Same as STEP 2.	1300 KC	BROADCAST	1300 KC	G, H.
4	Same as STEP 2.	600 KC	BROADCAST	600 KC	J

DIAL CORD RESTRINGING

1. Set the tuning capacitor in a fully meshed position.
2. Tie one end of a 60 inch length of 30 lb . test dial cord to the tension spring at position 1. See Fig. 5.
3. Follow the stringing procedure 1 through 10. At position 10; stretch the spring and tie the cord securely to the spring.
4. With the tuning capacitor fully meshed, attach the dial pointer to the cord and align it with the left hand index marks on the dial. Cement the pointer to the cord with a drop of quick drying cement.

$92 C 1543$
Fig. 5. Dial Cord Stringing Procedure

Fig. 6. Bottom View of Chassis Showing Component Location

SERVICE PARTS LIST

Schematic Symbol	Description	Hallicrafters Part Number	Schematic Symbol
CAPACITORS			
C-1A,B	Tuning capacitor, 2 section	48C274	T-2
C-2A,B, C	Trimmer assembly; includes mtg. bracket and 3 trimmers	$44 \mathrm{C406}$	T-3
C-3	10 mmf .500 V ., ceramic	47B20A100K5	
C-4	. 05 mfd .200 V ., tubular	46A091	PL-1
C-5,17	100 mmf .500 V. , ceramic	47B20A101K5	
C-6	2.2 mmf .500 V ., ceramic	47A160-4	PL-2
C-7,12	. $02 \mathrm{mfd} .600 \mathrm{~V} .$, tubular	46AY203J	
C-8	1000 mmf .500 V. , ceramic	47B20A102K5	SO-1
C-9,11	220 mmf .500 V ., mica	47X20B221M	
C-10,13	. $005 \mathrm{mfd} .600 \mathrm{~V} .$, tubular	46AZ502J	
C-14	12 mfd .150 V. , electrolytic	45B194	
C-15	. $002 \mathrm{mfd} .600 \mathrm{~V} .$, tubular	46AZ202J	
C-16	$4700 \mathrm{mmf} .500 \mathrm{~V} .$, mica	47X35B472K	S-1A, B, C, D
C-18	. 01 mfd .600 V ., tubular	46AY103J	
			S-
RESISTORS			S-3
R-1	47,000 ohms 10%, $\frac{1}{2}$ watt; carbon	23X20X473K	
R-2	2200 ohms 10%, $\frac{1}{2}$ watt; carbon carbon		
R-3,6	4.7 megohms 10%, $\frac{1}{2}$ watt; carbon	23X20X475K	
R-4,9	2.2 megohms 10%, $\frac{1}{2}$ watt, carbon	23X20X225K	
R-5	VOLUME control, 1 megohm, includes ON-OFF switch S-3	25B959	
R-7	1 megohm 10\%, $\frac{1}{2}$ watt, carbon	23X20X105K	
R-8	5.6 megohms 20%, $\frac{1}{2}$ watt, carbon	23X20X565M	
R-10	.75 ohms $10 \%, \frac{1}{2}$ watt; carbon 22,000 ohms $10 \%, \frac{1}{2}$ watt;	23A062	
R-11	22,000 ohms 10%, $\frac{1}{2}$ watt; carbon	23X20X223K	
R-12	330 ohms 10%, $\frac{1}{2}$ watt; carbon	23X20X331K	
	COILS AND TRANSFORMERS		LS-1
L-1	Coil, antenna; BC and SW	51B1459	
L-2	Coil, oscillator; BC	$51 \mathrm{B1460}$	
L-3	Coil, oscillator; SW	51 B 1461	
T-1	Transformer, IF; input	50 C 233	

COILS AND TRANSFORMERS (Cont.)

Transformer, IF; output 50 C516
Transformer, audio output; part of speaker LS-1

PLUGS AND SOCKETS
Plug, speaker; part of speaker LS-1
Plug, battery cable; includes leads 87B1555-1
Socket, speaker 6A275
Socket, tube; miniature 7 pin

6A314
SWITCHES
Switch, rotary wafer; SHORT
WAVE-BROADCAST 60B461
Switch, slide (spst); NEW-USED BATTERY 60A244
Switch, ON-OFF; part of VOLUME control R-5

MISCELLANEOUS PARTS

Cabinet	66A754
Clip, mtg.; for dial glass	76A412
Clip, mtg.; for coil L-3	76A326
Clip, mtgo; for transformers	
T-1 and T-2	76A385
Clip, speed; for mounting	
front panel	76A413
Dial cord, 57 inches	38A001
Dial scale, glass	22C342
Grille assembly	7C318
Grommet, rubber	16A125
Knob, VOLUME and SHORT	
WAVE - BROADCAST	15B322
Knob, TUNING CONTROL	15B323
Pointer, dial	82A205
Retaining ring; for	
tuning shaft	76A649
Shaft, tuning	74A500
Speaker, 5" PM; includes	
output transformer T-3	
and plug PL-1	85C085
Spring, dial cord	75A012

©John F. Rider

GENERAL DESCRIPTION

Your Hallicrafters Continental provides reception of both the standard broadcast band and the 6 to 18 megacycle shortwave range. It is a 5 tube superheterodyne radio and is designed to operate from 105 to 125 volt direct current (DC) or $50 / 60$ cycle alternating current (AC).

Fine performance of both standard and shortwave broadcasts can be obtained with the 15 foot antenna wire included with your receiver. It is merely necessary to uncoil this wire, connect one end of it to terminal A1 on the back of the set and then run it about the room in any convenient manner. To complete the antenna nected between terminals A2 and G on the back of the set.

For your convenience, the principal shortwave stations of the world have been clearly marked on the dail. Since shortwave reception conditions vary with the season of the year and even with the time of day, shortwave programs may not be heard with the same regularity as standard broadcasts. It is important, therefore, that you refer to the table below as it provides an easy means of selecting the shortwave band most suitable to the time of day.

To get the maximum enjoyment from your Hallicrafters radio, carefully follow the instructions contained in this book.

BEST SHORTWAVE RECEPTION TABLE

BAND	MOST FAVORABLE TIME	MOST FAVORABLE DISTANCE
$6-7 \mathrm{MC}$	Night - Winter	Day-400 Miles Night - Over 1500 Miles
$9-10 \mathrm{MC}$	Day - Late Afternoon and Night - Winter	Over 500 Miles
$11-12 \mathrm{MC}$	Evenings or Late Summer Afternoons	Day - Under 1500 Miles Night - Over 1500
$15-18$ MC	Early Mornings and Summer Evenings	Over 1500 Miles

INSTALLATION INSTRUCTIONS

UNPACKING - Check all shipping labels and tags for instructions before removing or destroying them.
LOCATION - Do not locate the receiver close to sources of heat such as radiators and heating vents. Allow for proper ventilation of the receiver by placing it at least two or three inches away from the wall.

ANTENNA - The terminals marked A1, A2 and G on the back of the receiver are for antenna and ground connections. Satisfactory results can be obtained in most localities with the 15 foot antenna wire included with your receiver. This wire should be uncoiled for maximum signal pickup. An outside antenna 30 to 60 feet long may be necessary if the receiver is to be operated in a steel constructed building or in an area surrounded by numerous steel structures. The antenna used should be connected to terminal A1 on the antenna terminal strip. The jumper provided on this strip should be connected between terminals A2 and G. In some locations, reception may be improved by connecting a lead from terminal G to a cold water pipe or other good ground.

Fig. 1. Rear View of Receiver Showing Antenna and Ground Connections

OPERATING INSTRUCTIONS

TUNING DIAL

1. The standard broadcast band is calibrated in kilocycles with a zero deleted for, convenience. To convert the dial reading to the station frequency in kilocycles, add one zero.
2. The shortwave band is calibrated directly in megacycles.

STANDARD BROADCAST AND SHORTWAVE RECEPTION

1. Plug the power cord into a convenient electrical outlet which provides 105 to 125 volts DC or 50/60 cycles AC. If in doubt about your power supply, call your power company before plugging in the receiver. The wrong power source may cause damage to the receiver.
2. Set the SW/BC control to BC for standard broadcast reception or to SW for shortwave reception.
3. Turn the receiver on by turning the VOLUME control clockwise to the ON position. Allow about a minute for the receiver to warm up.

NOTE: If the receiver does not operate after the one minute warm up when connected to a DC source, the power plug should be reversed in the wall outlet to obtain proper polarity.
4. Rotate the VOLUME control clockwise about $1 / 2$ turn as a preliminary setting. Turning this control clockwise increases volume.
5. Tune in the desired station by rotating the TUNING control slowly until the dial pointer indicates the station frequency.
6. After the station has been accurately tuned in, adjust the VOLUME control for the desired volume.
7. To turn the receiver off, turn the VOLUME control counterclockwise to the OFF position.

$92 C 1590$
Fig. 2. Top View of Chassis Showing Location of Tubes and Dial Lamp

SERVICE INSTRUCTIONS

SPECIFICATIONS

TUBE AND DIAL LAMP REPLACEMENT - Refer to Fig. 2. for the location of the tubes and dial lamp used in the receiver. It will be necessary to remove the back cover from the cabinet to gain access to the tubes and dial lamp. To prevent damage to the tuning capacitor, set the TUNING control fully counter clockwise before making any replacement. When replacing tubes, check the tube type carefully and replace it with the correct type. The dial lamp and socket can be removed by compressing the side springs on the socket. Replacement of the dial lamp should be made with a 6-8 volt, Mazda \#47 (brown bead) pilot lamp or equivalent.

\bullet Refer to Figs. 6 and 7 for location of alignment adjustments.
Fig. 5. RTMA Dummy Antenna

STEP	SIGNAL GENERATOR CONNECTIONS	SIGNAL GENERATOR FREQUENCY	BAND SWITCH SETTING	RECEIVER DETAL SETTING	ADJUST FOR MAXIMUM OUTPUT
1	High side to stator plates of rear sec- tion of tuning capacitor through a . 01 mfd. capacitor. Low side to chassis.	455 KC	BROADCAST	1000 KC	A,B, C,D
2	High side to A1 on antenna terminal strip on rear of chassis through a standard RTMA dummy antenna (Fig.5). Low side to chassis. Connect the jumper between A2 and G.	14 MC	SHORTWAVE	14 MC	E,F
3	Same as STEP 2.	1300 KC	BROADCAST	1300 KC	G,H
4	Same as STEP 2.	600 KC	BROADCAST	600 KC	J

PAGE 23-14 HALLICRAFTERS MODELS 5R30, 5R31, 5R32, 5R33, 5R34, Continental

$92 C 1570$
Fig. 6. Top View of Chassis Showing Location of Alignment Adjustments

$92 \mathrm{B1588}$
Fig. 7. Front Right View of Chassis Showing Location of Alignment Adjustments

Fig. 8. Bottom View of Chassis Showing Component Location

HALLICRAFTERS PAGE 23-15

Schematic Symbol	SERVICE PARTS LIST				
		Hallicrafters	Schematic		Hallicrafters
	Description	Part Number	Symbol	Description	Part Number
CAPACITORS			TUBES AND RECTIFIERS		
$C-1 A, B$	Trimmer assembly, 3 section	44C408	V-1	12SA7: converter	90X12SA7
\& C			V-2	12SK7: IF amplifier	90X12SK7
C-2	Tuning capacitor, 2 section	48 C 282	V-3	12SQ7: detector and audio	
C-3,8,9,11	100 mmf .500 V. , ceramic	47X20UJ101K		amplifier	90X12SQ7
C-4	$50 \mathrm{mmf} .500 \mathrm{~V} .$, ceramic	47X20UJ500K	V-4	50L6: audio output	90X50L6
$\begin{gathered} C-5,10,12 \\ 14 \end{gathered}$	$.01 \mathrm{mfd} .600 \mathrm{~V} .$, tubular paper	46AY103J	V-5	35Z5: rectifier	90X35Z5
C-6,7	.05 mfd .200 V. , tubular paper	46AU503J			
$\mathrm{C}-13 \mathrm{~A}, \mathrm{~B}$	$20 \mathrm{mfd} .25 \mathrm{~V} ., 60-40 \mathrm{mfd}$.			MISCELLANEOUS	
$\& C$	150 V.; electrolytic	45B197			
C-15	5600 mmf .500 V. , nilica	47X30A562		Cabinet: Model 5R30	116 E 003
C-16	$.01 \mathrm{mfd} .600 \mathrm{~V} .$, molded			Model 5R31	116 E 004
	tubular paper	46BR103L6 or		Model 5R32	116 E 005
		46BR103J6		Model 5R33	116 E 006
C-17	Resonant capacitor	46A150		Model 5R34	$116 E 007$
C-18	2.2 mmf. 500 V ., bakelite	47A160-4		Cabinet back	8C1657
	RESISTORS			Clip, mtg.; for antenna coil	
				Clip, mtg. for IF transformers	76A879
R-1	1 megohm $\frac{1}{2}$ watt, carbon	23X20X105M		T-1 and T-2	76A385
R-2	22,000 ohms $\frac{1}{2}$ watt, carbon	23X20X223M		Clip, mtg.; for oscillator	
R-3	1200 ohms $\frac{1}{2}$ watt, carbon	23X20X122M		coil L-2	76A868
$\mathrm{R}-4,12$	56 ohms $\frac{1}{2}$ watt, carbon	23X20X560K		Dial cord, 30 inches	38A001
R-5	2.2 megohms $\frac{1}{2}$ watt, carbon	23X20X225M		Dial glass	22C349
R-6	47,000 ohms $\frac{1}{2}$ watt, carbon	23X20X473M		Dial light assembly; does not	
R-7	VOLUME control, 1 megohm;			include dial lamp Escutcheon: Model 5R30	86A011 7 D 349
	includes OFF-ON switch S-2	25B965		$\begin{aligned} & \text { Escutcheon: Model 5R30 } \\ & \text { Models 5R31, 5R32, } \end{aligned}$	7D349
R-8	10 megohms $\frac{1}{2}$ watt, carbon	23X20X106M		5R33 and 5R34	7A352
$\mathrm{R}-9,13$	270,000 ohms $\frac{1}{2}$ watt, carbon	23X20X274M		Grommet, rubber; for mounting	
R-10	470,000 ohms $\frac{1}{2}$ watt, carbon	23X20X474M		speaker	16A125
R-11	150 ohms $\frac{1}{2}$ watt, carbon	23X20X151K		Grommet, rubber; for mounting	
R-14	15 ohms $\frac{1}{2}$ watt, carbon	23X20X150M		tuning capacitor	16A269
R-15	22 ohms $\frac{1}{2}$ watt, carbon	23 X 20 X 220 M		Knob, VOLUME: Model 5R30	15B477
R-16	820 ohms 1 watt, carbon	23X30X821M		Models 5R31, 5R32, 5R33, and 5R34	15A480
	COILS AND TRANSFORMERS			Knob, TUNING and SW-BC: Model 5R30	15B478
L-1	Coil, antenna; BC and SW	51B1494		Model 5R31	15B481
L-2	Coil, oscillator; SW	51B1493		Model 5R32	15B482
L-3	Coil, oscillator; BC	51B1495		Model 5R33	15B483
T-1	Transformer, IF; input	50B524		Model 5R34	15B484
T-2	Transformer, IF; output	50B525	PL-1	Line cord and plug	87A078
T-3	Transformer, audio outputSWITCHES	55C181	LM-1	Lamp, dial; Mazda \#47	39A004
				Lock, line cord; male	76A397-1
				Lock, line cord; female	76A 397-2
				Pointer, dial	82A 211
				Shaft, tuning	74B511
$\begin{gathered} S-1 A, B, C \\ \& D \end{gathered}$	Switch, rotary; SW-BC	60B472		Socket, tube; octal	6A250
				Spring, dial cord	75A012
S-2	Switch, OFF-ON; part of		LS-1	Speaker, 5 inch PM	85 C 110
	VOLUME control R-7		TS-1	Terminal strip, antenna	88A032

HALLICRAFTERS PAGE 23-17 MODELS 5R50, 5R51, 5R52, Runs 1, 2

INSTALLATION INSTRUCTIONS

UNPACKING - Observe all shipping labels and tags for instructions before removing or destroying them.
LOCATION - Your Hallicrafters Clock Radio should be placed in a convenient location away from radiators or other hot air sources. It should be positioned at least 2 inches from the wall to permit proper air circulation.

POWER SOURCE - The power plug should be inserted into a power outlet that will supply 105 to 125 volts 60 cycle AC ONLY. If in doubt about your power supply, call your power company before connecting the receiver. The wrong source of power may cause serious damage to both the radio receiver and the clock motor.

Fig. 2. Rear View Showing Antenna Connections and "Time Set" Knob
ANTENNA - The terminals marked A1, A2 and G on the back of the receiver are for antenna and ground connections. Satisfactory results can be obtained in most localities with the 15 foot antenna wire included with your receiver. This wire should be uncoiled for maximum signal pickup. An outside antenna 30 to 60 feet long may be necessary if the receiver is to be operated in a steel constructed building or in an area surrounded by numerous steel structures. The antenna used should be connected to terminal A1 on the antenna terminal strip. The jumper provided on this strip should be connected between terminals A2 and G. In some locations, reception may be improved by connecting a lead from terminal G to a cold water pipe or other good ground.

CLEANING - The cabinet, dial glass, and clock face should be cleaned with mild soap and water taking care to prevent excess moisture from entering the cabinet. Chemical cleaning solutions should not be used on your Hallicrafters Clock Radio.

OPERATING INSTRUCTIONS

CLOCK - Your clock will start automatically as soon as the power cord is plugged into the proper outlet. The correct time may be set by rotating the TIME SET knob that protrudes from the rear of the cabinet. The self starting feature will re-start the clock if there is a temporary interruption of the electric power.

ELECTRIC ALARM - - The control regulating the electric alarm is located at the "three o'clock" position on the clock face. To set the alarm pull the knob to the "OUT" position and rotate the knob in the counterclockwise direction until the desired alarm time appears under the pointer near the center of the clock face. Leave the knob in the "OUT" position. When the alarm rings it may be turned off simply by pushing the control knob. If the alarm is not turned off after sounding for about forty five minutes it will turn off automatically.

Fig. 3. Clock Face Showing Controls and "Coffee Time" Outlet

IMPORTANT

The alarm will begin to sound approximately ten minutes later than the time indicated on the alarm set dial. This period is to allow for a time difference between the turning on of the radio and "coffee time" appliance outlet and the sounding of the alarm. Refer to the instructions below.

RADIO AND "COFFEE TIME" APPLIANCE OUTLET - The RADIO switch, located at the "nine o'clock" position on the clock face, controls the mode of operation of the radio and the "coffee time" appliance outlet. When this switch is set to the "OFF" position neither radio nor outlet will operate. When set to the "ON" position the outlet will supply power and the radio may be operated by advancing the OFF-VOLUME control. When set to the "AUTOMATIC" position both radio and outlet will turn on automatically at the time to which the alarm has been set. If the alarm control has been left in the "OUT" position the alarm will begin to sound ten minutes later.

SLUMBER SWITCH - The SLUMBER switch, located at the "six o'clock" position on the clock face, may be used to turn the radio and/or the "coffee time" appliance outlet off automatically after operation for any desired period of time up to one hour. The SLUMBER switch will operate only when the RADIO switch is set to either the "OFF" or to the "AUTOMATIC" position. Operation of the SLUMBER switch is accomplished simply by advancing the knob until the pointer is at a position corresponding to the number of minutes that operation of the radio or outlet is desired. For example if you desire the radio to operate for one hour and then shut off advance the SLUMBER switch all of the way to the " 60 " position. If only 30 minutes operation is desired advance the SLUMBER switch only to the half way position, etc.

For your convenience in becoming acquainted with the use of the various controls the following table has been provided showing the proper control position for various types of operation.

TABLE 1, SHOWING OPERATING POSITIONS

MODE OF OPERATION	SET EACH CONTROL TO THE POSITION INDICATED AND FOLLOW THE SIMPLE INSTRUCTIONS				
	$\begin{aligned} & \text { RADIO } \\ & \text { CONTROL } \end{aligned}$	ALARM CONTROL	SLUMBER SWITCH	```RADIO OFF-VOLUME CONTROL```	"COFFEE TIME" OUTLET WILL BE:
To operate the radio manually	On	In	Off	On	On
To turn the radio on automatically at a desired time	Automatic	Set for desired time and push in	Off	On	Off, but will turn on with the radio
To sound the alarm only at a desired time	Off	Set for ten minutes earlier than the desired time and leave out.	- Off	Off	Off
To automatically turn on the radio at a desired time and sound the alarm ten minutes later	Automatic	Set for desired time and leave out	Off	On	Off, but will turn on with the radio
To automatically turn on the "Coffee Time" outlet only at a desired time and sound the alarm ten minutes later	Automatic	Set for desired time and leave out	Off	Off	Off, but will turn on at the desired time
To automatically turn off the radio and "Coffee Time" outlet after operating for any desired length of time up to one hour	Off	In	Set for desired length of operating time	On	On, but will turn off with the radio
To automatically turn off the radio and "Coffee Time" outlet after operation for any desired period of time (up to one hour) and to turn them on again automatically at a later time (up to twelve hours) and to sound the alarm ten minutes later	Automatic	Set for the desired "TURN ON" time and leave out	Set for desired length of operating time before turning off	On	On, then off, then on, automatically

RADIO OPERATION
 IMPORTANT

Before operating the radio be sure that the clock controls are set to an appropriate position. Refer to the above table. The radio will not operate if the RADIO switch on the clock face is set to the "OFF" position and may not operate if this switch is set to the "AUTOMATIC" position.
TUNING DIAL - The standard broadcast band is calibrated in kilocycles with the last zero deleted for convenience in reading the dial. To convert the dial reading to the station frequency in kilocycles simply add one zero.

The short wave band is callibrated directly in megacycles.
STANDARD BROADCAST AND SHORTWAVE RECEPTION - Turn the BAND SWITCH (right hand knob) clockwise for standard broadcast reception and counterclockwise for short wave reception.
The OFF-VOLUME control (large center knob) turns the receiver on and off and also controls the volume. Turn this knob in the clockwise direction to turn the receiver on and to increase volume. Allow about sixty seconds for the set to warm up.
Tune in the desired station with the TUNING control (left hand knob).
After the desired station has been tuned readjust the VOLUME control as desired.
The receiver may be turned off either by turning the OFF-VOLUME control to the extreme counterclockwise position (until a click is heard) or by setting the RADIO switch, located at the "nine o'clock" position on the clock face, to the "OFF" position.

SERVICE INSTRUCTIONS

SPECIFICATIONS

Tubes 5 including 1 rectifier Speaker 5 inch PM Voice Coil Impedance 3.2 ohms Inter mediate Frequency 455 KC AntennaSingle wire or doublet Power Supply 105-125 volts 60 cycles AC only
Frequency Coverage. . . . 540-1620 KC and 6-18 MC

Fig. 4. Dial Cord Stringing Diagram

Fig. 5. Top View of Chassis Showing Location of Tubes ${ }^{9}$ and Alignment Adjustments

Fig. 6. Front View of Chassis Showing Location of Alignment Adjustments

TUBE AND DIAL LAMP REPLACEMENT - Refer to Fig. 5. for the location of the tubes and dial lamp used in the receiver. It will be necessary to remove the back cover from the cabinet to gain access to the tubes and dial lamp. To prevent damage to the tuning capacitor, set the TUNING control fully counterclockwise before making any replacement. When replacing tubes, check the tube type carefully and replace it with the correct type. The dial lamp and socket can be removed by compressing the side springs on the socket. Replacement of the dial lamp should be made with a $6-8$ volt, Mażda \#47 (brown bead) pilot lamp or equivalent.

STEP	SIGNAL GENERATOR CONNECTIONS	SIGNAL GENERATOR FREQUENCY	BAND SWITCH SETTING	RECEIVER DIAL SETTING	ADJUST FOR MAXIMUM OUTPUT
1	High side to stator plates of rear sec- tion of tuning capacitor through a .01 mfd. capacitor. Low side to chassis.	455 KC	BROADCAST	1000 KC	A,B, C,D
2	High side to A1 on antenna terminal strip on rear of chassis through a standard RTMA dummy antenna (Fig.7). Low side to chassis. Connect the jumper between A2 and G.	14 MC	SHORTWAVE	14 MC	E,F
3	Same as STEP 2.	1300 KC	BROADCAST	1300 KC	G, H
4	Same as STEP 2.	600 KC	BROADCAST	600 KC	J

BAND \quad ALIGNMENT PROCEDURE

- Connect output meter across speaker voice coil.
- Set volume control at maximum.
Use a non-metatlic alignment tool.
- Signal generator must have a modulated output and cover 455 KC ,
$600 \mathrm{KC}, 1300 \mathrm{KC}$ and 14 MC . \quad ALIGNMENT PROCEDURE
- Connect output meter across speaker voice coil.
- Set volume control at maximum.
- Use a non-metatlic alignment tool.
Signal generator must have a modulated output and cover 455 KC ,
$600 \mathrm{KC}, 1300 \mathrm{KC}$ and 14 MC . ALIGNMENT PROCEDURE
- Connect output meter across speaker voice coil.
- Set volume control at maximum.
- Use a non-metatlic alignment tool.
Signal generator must have a modulated output and cover 455 KC ,
$600 \mathrm{KC}, 1300 \mathrm{KC}$ and 14 MC . ALIGNMENT PROCEDURE
- Connect output meter across speaker voice coil.
Set volume control at maximum.
- Use a non-metatlic alignment tool.
Signal generator must have a modulated output and cover 455 KC ,
$600 \mathrm{KC}, 1300 \mathrm{KC}$ and 14 MC . $600 \mathrm{KC}, 1300 \mathrm{KC}$ and 14 MC .
- Keep the generator output as low as possible to avoid AVC action.
- Refer to Figs. 5 and 6 for location of alignment adjustments.

$\underbrace{\bigcup^{2}}_{\substack{\text { sw osc } \\ \text { colLL2 }}}$

\square

Fig. 9. Tube Socket Voliage Chart for Chassis Using Miniature Tubes

Fig. 10. Tube Socket Voltage Chart for Chassis Using Octal Tubes

(Chassis Using Miniature Tubes)
C 12

Fig. 12. Bottom View of Chassis Showing Component Location
(Chassis Using Octal Tubes)

GENERAL DESCRIPTION

World-wide radio reception is yours with the Hallicrafters Model S-38C. This 5 tube communications receiver tunes from 540 kilocycles to 32 megacycles to bring you standard broadcast programs, foreign and domestic shortwave broadcasts, amateurs, police, ships, aircraft and countless other exciting distant stations. It receives both voice and code broadcasts and is designed to operate from 105 to 125 volt direct current (DC) or 60 cycles alternating current (AC). A 5 -inch Alnico V permanent magnet speaker is built into the top of the cabinet and tip jacks have been provided on the back of the set for plugging in a pair of headphones. The RECEIVE-STANDBY switch on the front panel is a special feature which permits you to silence the receiver without turning the set off.

Good reception of both standard and shortwave broadcasts can be obtained in most localities with the 15 foot antenna wire included with your receiver. It is merely necessary to uncoil this wire, connect one end of it to terminal A 1 on the back of the set and then run it about the room in any convenient manner. To complete the antenna installation, connect the jumper between terminals A2 and G.

Your set is provided with two tuning knobs for greater ease of tuning. Wide tuning is done with the knob marked TUNING and fine tuning with the knob marked BAND SPREAD. The BAND SPREAD knob permits you to accurately tune in stations on crowded bands by spreading them out so that they may be more easily separated. In this way you are able to hear many more stations than you would on an ordinary radio with just one tuning knob.

The amateur bands and principal shortwave channels of the world are clearly marked on the dial for your convenience. Since shortwave conditions vary with the season of the year and even with the time of day, shortwave programs may not be heard with the same regularity as standard broadcasts. A special table has been provided on page 3 to aid you in determining the most favorable times for shortwave listening.

INSTALLATION INSTRUCTIONS

ANTENNA - The terminals marked A1, A2 and G on the back of the set are for antenna and ground connections. Good results can be obtained in most localities with the 15 foot antenna wire included with your receiver. This wire should be uncoiled to provide maximum signal pickup. An outside antenna 50 to 100 feet long (ordinary copper wire) may be necessary if the receiver is operated in a difficult reception area or steel constructed building. Connect the antenna wire to terminal A1 on the back of the set and then connect the jumper between terminals $A 2$ and G. In some locations, reception may be improved by connecting a lead from terminal G to a cold water pipe or outside ground rod.

For really top performance, there is no substitute for an outside antenna such as used by the commercial radio stations. Provision has been made on your receiver for the connection of this type of antenna, commonly called a doublet. When a doublet antenna is used, the jumper is removed and the antenna is connected to terminals A1 and A2. Consult your radio dealer for further information.

Fig. 1. Rear View of Receiver Showing Antenna and Ground Terminals

OPERATING INSTRUCTIONS

TUNING DIAL - All dial readings are in megacycles. To convert the readings on the standard broadcast band (band 1) to kilocycles, simply remove the dot and add two zeros; thus, 7 on the dial corresponds to 700 kilocycles.

AM-CW SWITCH - Set this switch at AM to listen to voice and musical broadcasts. Set it at CW only if you wish to hear code signals.

SPEAKER-PHONES SWITCH - For operation of the built-in speaker, set the switch at SPEAKER. Tip jacks are provided on the back of the set for plugging in a pair of headphones. Use any 500 to 5000 ohm headphones. For headphone operation set the switch at PHONES.

BAND SELECTOR CONTROL- Set this control for the band you wish to tune.

VOLUME CONTROL - Turn this control clockwise to turn the set on. Allow about 30 seconds for the tubes to reach operating temperature and then advance the control to increase volume. To turn the set off, turn this control counterclockwise until a click is heard.

> NOTE - If the receiver does not operate after the 30 second warm up when connected to a DC source, the power plug should be reversed in the wall outlet to obtain proper polarity.

RECEIVE-STANDBY SWITCH - Set this switch at RECEIVE for radio reception. If you wish to silence the receiver without turning the set off, set the switch at STANDBY. To resume radio reception, simply return the switch to the RECEIVE position.

TUNING KNOB - Your receiver has been provided with two tuning knobs - The TUNING knob which operates the pointer on the left hand dial and a separate BAND SPREAD knob which operates the pointer on the right hand dial The TUNING knob is for wide tuning and the BAND SPREAD knob for fine tuning. Use the TUNING knob to tune in the desired station. Tune for the clearest and strongest signal. If the signal is too strong, reduce it by means of the VOLUME control, not by using the TUNING knob. For code reception, adjust the TUNING knob for the desired pitch of the CW code signal when tuning in the station.

> IMPORTANT - The dial readings will correspond to the exact station frequencies only if the BAND SPREAD dial pointer is set at 0 .

BAND SPREAD KNOB - The BAND SPREAD knob permits you to accurately tune in stations on crowded bands by spreading them out so that they can be more easily separated. The BAND SPREAD knob can be used in two different ways. First, it may be left with the pointer at 5 while you partially tune in the desired station with the TUNING knob. Then, by "rocking" the BAND SPREAD knob back and forth (turn it a few degrees to the left and right through the desired station), you will be able to tune in the desired station with precision accuracy.

The second way to operate the BAND SPREAD knob is to use it to cover a group of stations. Set the BAND SPREAD knob so that the pointer reads 0 and then turn the TUNING knob to tune in the highest frequency station in the group. The other stations can be heard by slowly turning the BAND SPREAD knob from 0 to 100.
best shortwave reception table

Band	Most Favorable Time	Most Favorable Distance
$6-7 \mathrm{MC}$	Night - Winter	Day - 400 Miles - Night - Over 1500 Miles
$9-10 \mathrm{MC}$	Day - Late Afternoon and Night - Winter	Over 500 Miles
$11-12 \mathrm{MC}$	Evenings or Late Summer Afternoons	Day - Under 1500 Miles Night - Over 1500
$15-18 \mathrm{MC}$	Early Mornings and Summer Evenings	Over 1500 Miles

SERVICE INSTRUCTIONS

GENERAL SPECIFICATIONS

Tubes \qquad 5 including 1 rectifier Speaker 5 inch PM Voice Coil Impedance 3.2 ohms Headphone Output Impedance . . . 15 ohms Antenna . . . Terminals for single wire or doublet antenna. (See Page 2.) Intermediate Frequency 455 KC Frequency Coverage ... $540 \mathrm{KC}-32 \mathrm{MC}$ Power Supply 105-125 volts DC or 60 cycles AC
Power Consumption 30 watts

TUNING
BANDSPREAD
TUNING CAPACITOR FULLY CLOSED (BOTH SECTIONS)
FRONT VIEW
9281693

Fig. 2. Dial Cord Stringing Diagram

DIAL CORD STRINGING - Refer to Fig. 2 for the stringing diagram. Both sections of the tuning gang should be fully meshed. To restring the TUNING dial cord, tie one end of an 18 inch length of 30 lb . dial cord to the dial spring at 1 on the drive pulley. Follow the stringing sequence 1 through 4. At 4, stretch the spring and tie the cord securely to the spring. Cut off the excess cord and apply a drop of quick drying cement to the knot.

To restring the BAND SPREAD dial cord, cut a 15 inch length of dial cord and follow the procedure as explained above, starting at A and proceeding through D.

Fig. 3. Top View of Chassis Showing Location of Alignment Adjustments, Tubes and Dial Lamp

TUBE AND DIAL LAMP REPLACEMENT Refer to Fig. 3 for the location of the tubes and dial lamp used in the receiver. To gain access to the tubes and lamp, remove the back cover from the cabinet. Before attempting to make any replacement, set the BAND SPREAD control fully clockwise and the TUNING control fully counterclockwise to prevent damage to the tuning gang. To replace a tube, insert the center guide pin into the center hole of the tube socket, rotate the tube until the key drops into position and then push down until the tube is held firmly in the socket. To make a dial lamp replacement, remove the dial lamp socket by compressing the side springs. Make replacement only with a type 47 pilot lamp.

Fig. 4. Bottom View of Chassis Showing Location of Alignment Adjustments

ALIGNMENT INSTRUCTIONS

- Use an amplitude modulated generator covering 455 KC to 30 MC . Use a modulated output for every step except Step 2.
- Connect output meter across speaker voice coil.
- Use a non-metallic alignment tool.
- Set the AM/CW switch at AM, (except for BFO adjustment), SPEAKER/PHONES switch at SPEAKER, VOLUME control at maximum, RECEIVE/STANDBY switch at RECEIVE and the BAND SPREAD control at 0 .

Fig. 5. RMA Dummy Antenna

- See Figs. 3 and 4 for location of alignment adjustments.

Step	Signal Generator Connections	Generator Frequency	Band Selector Setting	Receiver Dial Setting	Adjust

IF ALIGNMENT

1	High side thru a . 01 mfd capacitor to stator plates of front section of TUNING gang. Low side to chassis.	455 KC	1	1.0 MC

BFO ADJUSTMENT					
*2	Same as Step 1.	$\begin{gathered} 455 \mathrm{KC} \\ \text { (No Mod.) } \end{gathered}$	1	1.0 MC	Set the AM/CW switch at CW. (Reset the switch at AM when Step 2 is completed.) For correct BFO operation, vary the coupling between lead E and pins 4 and 8 of the 12SG7 tube for a maximum beat note. Pushing lead E toward pin 4 increases the strength of the beat

| RF ALIGNMENT | | | | | |
| :--- | :--- | :---: | :---: | :---: | :--- | :--- |
| 3 | High side thru RMA dummy
 antenna (Fig. 5) to terminal
 A1 on back of chassis. Low
 side to chassis.
 jumper between A2 and G. | 30 MC | 4 | 30 MC | F and G for maximum output as in
 Step 1. |
| 4 | Same as Step 3. | 14 MC | 3 | 14 MC | H and J for maximum output as in
 Step 1. |
| 5 | Same as Step 3. | 5 MC | 2 | 5 MC | K and L for maximum output as in
 Step 1. |
| 6 | Same as Step 3. | 1500 KC | 1 | 1.5 MC | M and N for maximum output as in
 Step 1. |

[^12]

Fig. 6. Bottom View of Chassis Showing Component Location

MODEL S-38C, Run 2

SERVICE PARTS LIST

Schematic Symbol	Description	Hallicrafters Part Number	Schematic Symbol	Description	Hallicrafters Part Number
	CAPACITORS		SWITCHES		
C-1,2,3	Trimmer; part of antenna coil L-1		S-1A,B,C\&D	Bandswitch assembly (BAND SELECTOR)	
C-4	Trimmer, $3-77 \mathrm{mmf}$.	44A039	S-2,5	Switch, slide; spdt (SPEAKER/ PHONES and AM/CW)	60C393
C-5	$2700 \mathrm{mmf} .5 \%, 500 \mathrm{~V} . ;$ mica	$47 \times 30 \mathrm{~B} 272 \mathrm{~J}$			60 A 477
C-6A, B, C\&D	Tuning capacitor, 2 section	48C162-1	S-3	Switch, ON-OFF; part of VOLUME control R-9	
C-7,12,16	$220 \mathrm{mmf} .10 \%$, $500 \mathrm{~V} . ;$ mica	47X20B221K			
$\mathrm{C}-8,15$. $02 \mathrm{mfd} .600 \mathrm{~V} .$, tubular	46AY203J	S-4	Switch, slide; spst (RECEIVE/ STANDBY)	
C-9	. 05 mfd . 200V., tubular	46AU503J			60A476
C-10	. 002 mfd .600 V ., tubular	46AZ202F			
$\underset{\& D}{\mathrm{C}-11 \mathrm{~A}, \mathrm{~B}, \mathrm{C}}$	Capacitor, composite: 5000, 220,220 and 2000 mmf ., 500V.;			SOCKETS AND CONNECTORS	
	ceramic	46A151		Socket, dial lamp; includes leads	86A011
C-13	. 01 mfd .600 V ., tubular	46AZ103J		Socket, tube; octal	6A250
C-14A, B, C	$60-40-40 \mathrm{mfd} .150 \mathrm{~V} ., 20 \mathrm{mfd}$.		TS-1	Terminal strip, antenna	88A671
\&D	25 V .; electrolytic	45B091	TS-2	Tip jacks, PHONE	88A071
C-17	Padder, 525 mmf .	44A349			
C-18	2200 mmf. 5\%, 500V.; mica	47X30B222J			
C-19	$3000 \mathrm{mmf} .5 \%, 500 \mathrm{~V} . ;$ mica	47X30B302J		TUBES AND DIAL LAMP	
$\mathrm{C}-20,21,22,$	Trimmer; part of oscillator coil L-3	----------	V-1	12SA7: convertor	90X12SA7
C-24	. $05 \mathrm{mfd} .600 \mathrm{~V} .$, tubular	46AY503J	$\mathrm{V}-3$	12SG7: or 12SQ7GT/G: detector	${ }^{90 \times X 12 S G 7}$ or
C-25, 26	5000 mmf .450 V ., ceramic disc	47A168		and audio amplifier	90X12SQ7GT/G
C-27	. $02 \mathrm{mfd} .600 \mathrm{~V} .$, molded tubular	46BR203L6	v-4	50L6GT: audio output	90X50L6GT
C-28	$10,000 \mathrm{mmf} .450 \mathrm{~V}$., ceramic		V-5	35Z5GT: rectifier	$90 \times 35 \mathrm{Z} 5 \mathrm{GT}$
	dis	47A217	LM-1	Lamp, dial; type 47	39A004
RESISTORS					
R-1	10,000 ohms $1 / 2$ watt, carbon	23X20X103M		MISCELLANEOUS PARTS	
R-2,5	2.2 megohms $1 / 2$ watt, carbon	23X20X225M		Cabinet	66C772
R-3	22,000 ohms $1 / 2$ watt, carbon	23X20X223M		Cabinet back	32 C 513
R-4	270 ohms $1 / 2$ watt, carbon	23X20X271K		Cabinet bottom cover	32 C 01
R-6	330 ohms $1 / 2$ watt, carbon	23X20x331M		Clip, mtg; for antenna coil	
R-7	47,000 ohms $1 / 2$ watt, carbon	23X20X473M		L-2	76A326
R-8,12,21,22	470,000 ohms $1 / 2$ watt, carbon	23X20X474M		Dial cord (specify length)	38A026
R-9	2 megohms; VOLUME control	258896		Dial scale	83 C 406
R-10	10 megohms $1 / 2$ watt, carbon	23X20X106M		Dial window	22B311
R-11	220,000 ohms $1 / 2$ watt, carbon	23X20X224M		Knob, BAND SELECTOR and	
R-13	150 ohms $1 / 2$ watt, carbon	23X20X151K		VOLUME	15A049
R-14,15,17	15 ohms $1 / 2$ watt, carbon	23X20X150M		Knob, BAND SPREAD and	
R-16,18,24	22 ohms $1 / 2$ watt, carbon	23X20x220M		TUNING	15A048
R-19	220 ohms 1 watt, carbon	$23 \times 30 \times 221 \mathrm{M}$	PL-1	Line cord and plug	87A078
R-20	1000 ohms $1 / 2$ watt, carbon	23X20X102M		Line cord lock; male section	76A397-1
R-23	470 ohms $1 / 2$ watt, carbon	23X20X471K		Line cord lock; female section	76A397-2
	COILS AND TRANSFORMERS			Mounting foot, cabinet	16A244
				Pointer, dial; BAND SPREAD	82A216
L-1	Coil, antenna; bands 1, 2 and 3	51 C 821		Pointer, dial; TUNING	82 A 217
L-2	Coil, antenna; band 4	51B1015	LS-1	Speaker, 5-inch PM	85 C 030
L-3	Coil, oscillator; all bands	51 C 822		Spring, dial cord	75A012
L-4	Choke, RF; 540 microhenries	53 A 107			
T-1	Transformer, 1st IF	50C531			
T-2	Transformer, 2nd IF	50 C 532			
T-3	Transformer, audio output	55A127			

HOW TO OPERATE RECORD PLAYER
If your record player has an automatic record changer, be sure to read the instructions packed with the changer before attempting to operate the unit.
If your record player is manually operated be sure that you select the proper speed for the record you are playing i.e., 33, 45, or 78 RPM. Also be certain that the cartridge in the phono pickup arm is in the proper position for the record you are playing. This is accomplished by rotating the small lever on the end of the arm in the direction of the arrow so that the proper speed appears on the lever.
When using 45 RPM records, it will be necessary to use a center hole adapter to make certain that the record is centered on the spindle. When using 45 RPM records on the record changer the center hole adapters should be of the type which locks into the center hole of the record.

INSTALLATION \& OPERATION

To place the unit in operation it should be resting firmly on a level surface. Do not place it near a heater or radiator since this may damage the cabinet.
This phonograph is designed for operation on 105 - 125 volts 60 cycle alternating current (AC) only. Never connect to a supply having a frequency or voltage different than that specified. If in doubt check with your local electric power company.
OPERATION:
Connect supply cord to outlet and rotate "on-off tone" knob clockwise. Allow approximately one minute for unit to warm up. Place records on changer or turntable according to instructions above. Rotate "motor-volume" knob clockwise to turn on turntable motor. Adjust tone and volume as desired.
NORMAL CARE \& MAINTENANCE
This unit is equipped with a semi-permanent needle which should last several years with normal care and use. If records seem excessively noisy and the needle is suspected of being defective it should be checked and replaced if necessary by a service man. Never allow needle to come in contact with turntable as this will ruin the needle.
Tubes should be checked about once a year and defective or weak tubes should be replaced. If unit fails to operate check power cord to see that it is making good contact in receptacle.
read the instructions to be sure that you are.operating the unit correctly. Have the tubes checked.
\square

PAGE 23-2 JACKSON INDUSTRIES
MODELS JP-100, JP-300, Ch. AP3U

$K=1000$ OHMS
$M=1,000,000$ OHMS
ALL CAPACIATORS
OTHERWISE NOTED.

John F. Rider

JACKSON INDUSTRIES PAGE 23-3

PIN	1	2	3	4	5	6	7
$12 A T 6$	-0.8	0	0	$12 A C$	0	0	42
$50 C 5$	7.0	0	$62 A C$	$12 A C$	0	110	116
$35 W 4$	0	0	$155 A C$	$78 A C$	$114 A C$	0	116

NOTES: 1.MEASURED WITH VTVM FROM INDICATED PIN TO B- LINE.
2. LINE VOLTAGE SET AT II5V 60~AC.
3. VOLTAGE MAY VARY CONSIDERABLY DUE TO VARIATIONS IN LINE VOLTAGES AND COMPONENTS.

CAPACITORS

REF. NO.	PART NO.	DESCRIPTION
C_{1}	CWZ06502M	. 005 mfd - 600V paper
C_{2}	CWZ04104M	. 1 mfd - 400 V paper
C_{3}	CWZ06202M	. $002 \mathrm{mfd}-600 \mathrm{~V}$ paper
$\mathrm{C}_{\text {t }}$	CWZ06103M	. 01 mfd - 600 V paper
$C_{5} A_{1}$, ${ }^{\text {d }}$	CED44I5	$40-40 \mathrm{mfd}$ - 150 V electrolytic

RESISTORS

REF. NO.	PART NO.	DESCRIPTION
R_{1}	RVC30IS	500 K audio volume control with switch
R_{2}	RCC475M	$4.7 \mathrm{M} \pm 20 \%-1 / 2$ Watt
R_{3}	RVC3IS	500 K tone control
R_{4}	RCCI5IM	150 ohms $\pm 20 \%-1 / 2$ Watt
R_{5}	RCF222M	2200 ohms $\pm 20 \%-1$ Watt
R_{6}	RLI2IK	120 ohms $\pm 10 \%-5 \mathrm{Watts}$ wire wound
R_{7}	RCCI50M	15 ohms $\pm 20 \%-1 / 2 \mathrm{Watt}$
R_{8}	RCC 684 M	$680 \mathrm{~K} \pm 20 \%-1 / 2 \mathrm{Watt}$
R_{9}	RCC105M	$1.0 \mathrm{M} \pm 20 \%-1 / 2 \mathrm{Watt}$

MİSCELLANEOUS

PC-80	A-1376-6F	Couplate TI Audio output transformer A-1658-13
	C-2502-14	2500 ohms to 3.2 ohms
Crystal Pickup		

HOW TO ORDER REPÄIR PARTS

Always give the part No. (No. printed on the part if different from that shown on this list), and the name of the part. When No. is not available, give complete description of part. Be sure to always give the Model No. ξ Chassis No. The Model No. will be found on a printed label which will be found at the back of the cabinet.
Chassis number is stamped on the amplifier chassis inside the unit.
ALIGNMENT PROCEDURE
This radio is equipped with three controls, the right hand control is the combined off-on switch and volume control. The left hand control is the phono-radio switch, the center control is used for tuning the desired station. To place the set in operation, rotate on-off volume control knob to right and allow 30 seconds for set to warm up. Rotate tuning control to desired station. Adjust volume control to desired volume. To use phonograph follow above steps, except turn phono-radio switch, to phono position. Place records on changer in sequence desired, push reject button, and allow changer to cycle.
maximum indication on meter.
Set signal generator and dial to 1400 K.C. and tune R.F. trimmer, for maximum indication on meter. Check tracking at 600 K.C., knife gang if necessary. Repeat these adjustments until the receiver tracks correctly.
HOW TO ORDER REPAIR PARTS
Always give the part No. (No. printed on the part if different from that shown on this list), and the name of the part. When No. is not available, give complete description of part. Be sure to always give the Model No. and Catalog No. The Model No. will be found on a printed label which will be found at the back of the cabinet.

John F. Rider

PAGE 23-6 JACKSON INDUSTRIES
MODELS JP-200, JP-400, Ch. AP3U

VOLTAGE CHART

PIN	$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$	$\# 6$	$\# 7$
12BE6	-7.5	0	$12 A C$	$23 A C$	90	90	0
12BA6	-0.8	0	$23 A C$	$35 A C$	90	90	0
12AT6	-0.8	0	0	$12 A C$	-0.8	-0.5	45
50C5	6	0	$35 A C$	$83 A C$	0	90	120
35W4	0	0	$83 A C$	$117 A C$	$115 A C$	0	130

NOTES:

1. Measured with VTVM from indicated pin to B - line.
2. Phono-radio switch in radio position.
3. Line voltage setat $117 \mathrm{~V} 60 \sim \mathrm{AC}$.
4. Voltages may vary considerably due to variations in line voltage and components.

CAPACITORS

REF. NO.	PART NO.	DESCRIPTION
C_{1}	A-1200-6	TUNING CAPACITOR
C_{2}	CWZ 04203M	. 02 Mfd 400 volts
C_{3}	CWZ 04503M	. 05 Mfd 400 volts
C_{4}	CWZ 06502M	. 005 Mfd 600 volts
C_{5}^{4}	CWZ 04203M	. 02 Mfd 400 volts
${ }^{\text {c }}$	CED-4415	DUAL 40 Mfd 150 volt electrolytic capacitor
${ }^{\text {C }}$	CWR -04503 M	. 05 Mfd resonant
C_{8}	CCC, 05050 M	5 Mmf ceramic or mica

RESISTORS

REF. NO.	PART NO.	DESCRIPTION		
R_{1}	RCC 224 M	220,000 ohms	$\pm 20 \% 1 / 2$ watt	Resistor
R_{2}	RCC 105 M	1.0 megohms	$\pm 20 \% 1 / 2$ watt	Resistor
R_{3}	RCC 223 M	22,000 ohms	$\pm 20 \% 1 / 2$ watt	Resistor
R_{4}	RCC 106 M	10 megohms	$\pm 20 \% 1 / 2$ watt	Resistor
R_{5}	RVC-301S	500,000 ohms volume control audio taper with switch		
R_{6}	RCC 151 M	150 ohms	$\pm 20 \% 1 / 2$ watt	
R_{7}	RCC 154 M	150,000 ohms	$\pm 20 \% 1 / 2$ watt	
R_{8}	RCC 154 M	150,000 ohms	$\pm 20 \% 1 / 2$ watt	
R9	RCF 222 M	2,200 ohms	$\pm 20 \% 1$ watt	
R_{10}	RCC 150 M	15 ohms	$\pm 20 \%$ 1/2 watt	

COILS AND TRANSFORMERS

REF. NO.	PART NO.	DESCRIPTION
L_{1}	A-1493-10	Loop Antenna
L_{2}	A-1492-10	Oscillator Coil
T_{1}	A-1490-10	Input IF Transformer
T_{2}	A-1491-10	Output IF Transformer
T_{3}^{2}	A-1656-13	Audio Output Transformer 2500 Ω to 3.2

MISCELLANEOUS

C-2500-14	Record changer - VM
A-1059-4	Control knob
A $1060-4$	Pointer knob
$100-84$	Record Changer - Webster

- CHASSIS SPECIFICATIONS -
- Tuning Range: 540 Kc to 1650 KC
- 105 to 125 volts, 60 cycles A.C. only

50 cycles available on special order.

- Cabinet Size: Width, 11-1/16"

Height, 51/4"
Depth, 53/4"

- Tube complement:

1-12BE6 Converter
1-12BA6 I.F. Amplifier
1-12AT6 Detector, first audio and A.V.C.
1-50C5 Beam Power Output
1—35W4 Rectifier

- Power Consumption: 30 watts

Alignment Procedure

Output meter across voice coil (3.2 ohm)
Volume control at maximum for all adjustments.
Align for maximum output. Reduce input as needed to keep output near 1.28 volts (0.5 watt).

SIGNAL GENERATOR					
Fre- quency	Coupling Capacitor	Connection to Receiver	Ground Connection	Tuner Setting	Adjust trimmers to maximum out- put (in order shown)
455 kc	0.1 mf	12BE6 grid	B-	Rotor fully open (plates out of mesh)	Primary \& second- ary slugs of I. F. transformer
1650 kc	0.1 mf	12BE6 grid	B-	Rotor fully open (plates out of mesh)	Osc. trimmer
1500 kc		Radiating loop		1500 kc	Antenna trimmer

PAGE 23-2 JEWEL
MODELS 5125, 5125U

John F. Rider

Part No. Description
Resistors
$\begin{array}{ll}20-223-31 & 22 \mathrm{~K} \Omega 1 / 2 \mathrm{w} \mathrm{20} \mathrm{\%} \\ 20-335-31 & 3.3 \mathrm{M} \Omega 1 / 2 \mathrm{w} 20 \%\end{array}$
20-151-31 150 $1 / 2 \mathrm{w} 20 \%$
20-152-41 1500 $1 \mathrm{w} 20 \%$
20-220-31 $22 \Omega 1 / 2 \mathrm{w} 20 \%$
50-42 Volume cont. $5 \mathrm{M} \Omega$ SPST
Capacitors
30-48
31-41
32-5
32-30
32-29
36-5
Variable
$70 / 30 \mathrm{mf} 150 \mathrm{~V}$ elect. .05 mf 400 V paper tub. .1 mf 200 V paper tub. . 01mf 200V paper tub. Couplate

Coils and Transformers

$60-31$	Oscillator coil
$61-11$	I. F. transformer

Miscellaneous
80-36 Speaker 4"
120-94 Cabinet
122-65 Selector knob
122-69
125-58
Volume control knob
Back with loop
Tubes
12BE6
12BA6
12AV6 or 12AT6
50C5
35 W 4

PAGE 23-4 JEWEL
MODELS 5205, 5205B, 5205E, 5205G, 5205I, 5205R, 5205W

- CHASSIS SPECIFICATIONS -
\star Superheterodyne circuit
\star A.C.-D.C. Operation
105-125 Volts A.C. and same D.C.
Power Consumption: 30 Watts
'Alnico' V P.M. Wonder Speaker . . . full tonal range

Tuning range: $540 \mathrm{~K} . \mathrm{C} .-1650 \mathrm{~K} . \mathrm{C}$.
\star TUBE COMPLEMENT:
1-12BE6, 1-12BR6, 1-12AT6,
$1-50 \mathrm{C} 5,1-35 \mathrm{~W} 4$
Built-in "DURALOOP" antenna
Weight of set: 4 lbs.
Weight of carton: add $11 / 2 \mathrm{lbs}$.
Size of cabinet: Width, 101/4"; Depth, 61/6" Height, 55/8"

Model 5205E (Ebony)
Model 5205W (Walnut)
Model 5205I (Ivory)
Model 5205B (Boudoir Blue)
Model 5205R (Dusty Rose)
Model 5205G (Grey)

Alignment Procedure

Output meter across voice coil (3.2 ohm)
Volume control at maximum for all adjustments.
Align for maximum output. Reduce input as needed to keep output near 1.28
volts (0.5 watt).

SIGNAL GENERATOR					
Fre- quency	Coupling Capacitor	Connection to Receiver	Ground Connection	Tuner Setting	Adjust trimmers to maximum out- put (in order shown)
455 kc	0.1 mf	12BE6 grid	B-	Rotor fully open (plates out of mesh	Primary \& second- ary slugs of I. F. transformer
1650 kc	0.1 mf	12BE6 grid	B-	Rotor fully open (plates out of mesh)	Osc. trimmer
1500 kc		Radiating loop		1500 kc	Antenna trimmer

JEWEL PAGE 23-5 MODELS 5205, 5205B,

PAGE 23-6 JEWEL
MODELS 5205, B,
E, G, I, R, W
Part No. Description

Resistors

$|$| $20-220-31$ | $22 \Omega 1 / 2 \mathrm{w} 20 \%$ |
| :--- | :--- |
| $20-152-41$ | $1500 \Omega 1 \mathrm{w} 20 \%$ |
| $20-151-31$ | $150 \Omega 1 / 2 \mathrm{w} \mathrm{20} \mathrm{\%}$ |
| $20-181-31$ | $180 \Omega 1 / 2 \mathrm{w} 20 \%$ |
| $20-223-31$ | $22 \mathrm{~K} \Omega 1 / 2 \mathrm{w} 20 \%$ |
| $20-335-31$ | $3.3 \mathrm{M} \Omega 1 / 2 \mathrm{w} 20 \%$ |
| $50-37$ | Volume cont. -SPST Switch |
| | |

30-41
31-42
32-55
32-29
32-57
32-4
36-5
$420 \mathrm{mmf}-108 \mathrm{mmf}$ Variable 30 mf 20 V , $40 \mathrm{mf}-40 \mathrm{mf} 150 \mathrm{~V}$ electrolytic . 05 mf 400 V
001mf 200V, paper tubular . 1mf 400V
. $05 \mathrm{mf} \mathrm{200V}$
Couplate

Coils and Transformers
60-34
61-11
Oscillator coil
I. F. Transformer

Miscellaneous
80-37 Speaker 4"
120-64H Cabinet
122-51
122-52

Tubes
12BE6
12BA6
12AU6
50C5
35W4

tube layout

JEWEL PAGE 23-7

SPECIFICATIONS

"WAKEMASTER" - MODEL 5250

I. Superheterodyne circuit
2. Built-in loop antenna
3. 5 tubes
4. 60 cycle operation- 50 cycle movements available on special order
5. Self-starting clock - sweep second movement - upon pre-setting, automatically turns on radio
6. Molded all plastic cabinet in pure plastic colors: lvory, Walnut, Ebony (also decorator colors)

Electrical Specifications

105-125 Volts AC 60 Cycles
Maximum power output 1.4 watts
Full A.V.C. for optimum quieting
$\mathrm{Hi}-\mathrm{'} Q$ " low loss antenna circuit for optimum sensitivity
Full broadcast frequency coverage, 540 Kc to 1650 Kc
Alnico V P.M. speaker-full tonal range

Tube Line-up and Functions

12BE6 Converter

12AU6 I.F. Amplifier
12AT6 (I2AU6) Detector and first audio, A.V.C.

50C5 Output
35W4 Rectifier

Alignment Procedure

Output meter across voice coil (3.2 ohm)
Volume control at maximum for all adjustments.
Align for maximum output. Reduce input as needed to keep output near 1.28 volts (0.5 watt).

SIGNAL GENERATOR						
Fre- quency	Coupling Capacitor	Connection to Receiver	Ground Connection	Tuner Setting	Adjust trimmers to maximum out- put (in order shown)	
455 kc	0.1 mf	12BE6 grid	B-	Rotor fully open (plates out of mesh)	Primary \& second- ary slugs of I. F. transformer	
1650 kc	0.1 mf	12BE6 grid	B-	Rotor fully open (plates out of mesh)	Osc. trimmer	
1500 kc		Radiating loop		1500 kc	Antenna trimmer	

JEWEL PAGE 23-9 MODELS 5250, 5250AP, 5250 U , Wakemaster

Part No.	Description	$\begin{aligned} & 35-32 \\ & 35-34 \\ & 35-29 \end{aligned}$	3 mmf 500 V ceramic 10% . 002-500V disc ceramic .01 mf disc ceramic
20-103-32	$10 \mathrm{~K} \Omega 1 / 2 \mathrm{w} 10 \%$		
20-104-31	$100 \mathrm{~K} \Omega 1 / 2 \mathrm{w} 20 \%$	Coils and Transformers	
20-106-31	$10 \mathrm{M} \Omega 1 / 2 \mathrm{w} 20 \%$	60-27	Oscillator coil
20-220-31	22ת 1/2w 20%	6126	I. F. Transformer
20-223-31	$22 \mathrm{~K} \Omega 1 / 2 \mathrm{w} 20 \%$		
20-224-31	220K Ω 1/2w 20%	Miscellaneous	
20-335-31	3. $3 \mathrm{M} \Omega 1 / 2 \mathrm{w} 20 \%$	65-11 Switch SPST	
20-474-31	$470 \mathrm{~K} \Omega 1 / 2 \mathrm{w} 20 \%$		
20-152-41	1.5K Ω 1w 20%	80-30B	Speaker 4"
50-34D	Volume cont. $2 \mathrm{M} \Omega$	120-62G	Cabinet
		122-49	Selector knob
Capacitors		122-50	Volume knob
		125-64	Back with loop
30-38A	Variable	125-66	Back with loop
31-39	$50-30 \mathrm{mf} 150 \mathrm{~V}$ elect.		
32-4	005 mf 200 V paper tub.	Tubes	
32-5	. 05 mf 400 V paper tub.	12BE6	
32-30	. 1 mf 200 V , paper tub.	12BF6 6	
35-1	250 mmf 500 V mica	12AU6	
35-30	100 mmf 500 V ceramicon	50C5	
35-30	100 mmf 500 V ceramicon	35W 4	
35-29	. 01 mf disc ceramic	12SQ7	

[^13]
SPECIFICATIONS

JEWEL—MODEL 5200

1. Superheterodyne circuit
2. Full sweep dial
3. Built-in loop antenna
4. 5 tubes
5. A.C. - D.C. operation
6. Molded all plastic cabinet in pure plastic colors: Ivory, Walnut, Ebony and Chinese Red

Electrical Specifications

110-125 Volts AC $50-60$ cycles 110-125 Volts DC
Maximum power output 1.4 watts
Full A.V.C. for optimum quieting
Bandwidth-9.5 Kc at 2 times down for optimum selectivity
Hi-"Q" low loss antenna circuit for optimum sensitivity
Full broadcast frequency coverage, 540 Kc to 1650 Kc
Alnico No. 5 P.M. Speaker-full tonal range

Alignment Procedure

Output meter across voice coil (3.2 ohm)
Volume control at maximum for all adjustments.
Align for maximum output. Reduce input as needed to keep output near 1.28 volts (0.5 watt).

SIGNAL GENERATOR					
Fre- quency	Coupling Capacitor	Connection to Receiver	Ground Connection	Tuner Setting	
455 kc	0.1 mf	12BE6 grid	B-	Rotor fully open (plates out of mesh)	Primary \& Second- ary slugs of I. F. transformer
1650 kc	0.1 mf	12BE6 grid	B-	Rotor fully open (plates out of mesh)	Osc. trimmer
1500 kc		Radiating loop		1500 kc	Antenna trimmer

JEWEL PAGE 23-11

PAGE 23-12 JEWEL
MODELS 5200, 5200U

Part No.	Description		
		Coils and Transformers	
Resistors			
		$60-32$	Oscillator coil
20-223-31	$22 \mathrm{~K} \Omega 1 / 2 \mathrm{w} 20 \%$	$61-26$	I. F. transformer
20-334-31	$330 \mathrm{~K} \Omega 1 / 2 \mathrm{w} 20 \%$		
20-335-31	3. $3 \mathrm{M} \Omega 1 / 2 \mathrm{w} 20 \%$	Miscellaneous	
20-474-31	$470 \mathrm{~K} \Omega 1 / 2 \mathrm{w} 20 \%$		
50-11B	Volume cont. $2 \mathrm{M} \Omega$ SPST Switch	80-17B	Speaker 4"
		120-70	Cabinet
Capacitors		122-57	Knob, selector
		122-15	
3146 $32-4$	40/40/150V elect.	125-62	Rack with loop
32-4	. 05 mf 200 V paper tub.		
$32-5$ $32-17$. 05 mf 400 V paper tub.	Tubes	
32-17	. 002mf 200V paper tub.	12	
32-30	. 1 mf 200 V paper tub.	12BE6	
35-1	250 mmf 500 V mica	12AV6	
35-29	. 01 mf disc ceramic	12AU6	
35-29	. 01 mf disc ceramic	50C5	
35-30	100 mmf 500 V ceramicon	35W4	
35-33	$4 \mathrm{mmf} 500 \mathrm{~V} 10 \%$ ceramicon		

SPECIFICATIONS
Power supply............ 117 volts $50 / 60$ cycles AC
Power consumption 95 watts
Power output 10 watts
Intermediate frequency 455 kc ./ 10.7 mc .
Tuning frequency range:
Broadcast Band $540-1620 \mathrm{kc}$.
FM Band. 88-108 mc.
Tubes:
R-F Amplifier 6BA6
Converter 6BE6
lst I-F Amplifier (AM-FM) 6BA6
2nd I-F (FM), Detector and AVC (AM) 6BA6
Limiter 6AU6
Discriminator 6AL5
First Audio 6AV6
Inverter 6SN7GT
Power output (push-pull stage) (2) 6 V 6 GT
Rectifier 5Y3GT
Dial Lamps Mazda No. 44
Speaker:
Field coil resistance500 ohms
Voice coil impedance (400 cycles) 3.0 ohms
Output transformer $8,000 / 3$ ohms
ALIGNMENT PROCEDURE
Alignment of this receiver requires the use of anaccurately calibrated r-f signal generator, range455 kc . to 107 mc ., an output meter, and a vacuumtube voltmeter of greater than 10 megohm input im-pedance. All trimmer condensers can be identifiedby stampings on the chassis and gang condensercover and are shown on the chassis layout diagram.

The pointer on the radio dial should line up with the first vertical mark on the low frequency end of the dial glass. If the pointer does not line up, loosen the pointer on the dial string and move it to correct position. Re-tighten and re-cement the pointer to the string. Be sure the gang is fully meshed for this pointer alignment. Align AM first.

AM ALIGNMENT

I-F ALIGNMENT

1. Set treble control to SHARP TUNE position. Set volume and bass controls to maximum, the Band Switch to Broadcast position, and dial pointer to 1000 kc .
2. Tune the signal generator to EXACTLY 455 kc .
3. Connect output of modulated signal generator to the signal grid of the 6BE6 (pin 7) through a . 01 mfd . capacitor and signal generator ground to radio chassis.
4. AM and FM i-f transformers min this model are separate and can be identified on the chassis layout diagram Figure 3.
5. Connect output meter across voice coil of speaker and adjust the i-f transformers for peak output as indicated on the output meter.
ALTERNATE VISUAL ALIGNMENT OF I-F STAGES
6. Connect 455 kc . sweep generator having approximately 20 kc . sweep to signal grid of 6BE6 (pin 7) through a .01 mfd . capacitor. Connect an oscilloscope through a 1 meghom isolating resistor across the 220,000 ohm diode load resistor. Align for best possible peak in sharp tune position and symmetry in full range position.

R-F ALIGNMENT

1. Remove the signal generator lead from the 6BE6 grid and connect it across H and L on terminal strip on the rear of the chassis. The high side of the signal generator should be connected to H and the signal generator ground to L .
2. Check the tuning dial pointer adjustment. When the plates of the tuning condenser are completely meshed, the dial pointer must be in line with the last calibration mark at the low frequency end of the dial. If it is not, slide the pointer on its string to the correct position. Be sure to crimp the lugs (on the rear of the pointer) tightly around the string to hold the pointer in adjustment.
3. Set the signal generator and the radio receiver to 1400 kc ., adjust the 1400 kc . oscillator trimmer and the 1400 kc . r-f trimmer for maximum output.
4. Set the signal generator and radio receiver to 600 kc . Adjust the oscillator and r-f coil slugs for maximum output. If considerable adjustment was necessary re-check the 1400 kc . trimmer settings.
5. Replace chassis in cabinet and connect loop antenna leads to proper terminals on the rear of the chassis.
6. Form three turns of wire into a loop, connect this loop to the signal generator and loosely couple it to the receiver loop antenna.
7. With the signal generator and dial at 1400 kc ., adjust the loop antenna trimmer for maximum output.
10 KC FILTER ADJUSTMENT
This chassis incorporates a 10 kc . filter circuit to eliminate the beat note heard as a whistle between stations on the broadcast band. If the trimmer is out of adjustment, the following procedure should be observed:
8. Set the Selectivity Switch to FULL RANGE by turning the Treble Control knob clockwise as far as possible.

1287

CHASSISCR-321

2. Connect the output of an audio oscillator to the phonograph pickup socket on the radio chassis and adjust the oscillator to EXACTLY 10,000 cycles.
3. Set the band selector to PHONO and adjust the 10 kc . trimmer for minimum output.
4. If an audio oscillator is not available for making this adjustment, set the band selector to BDCST, connect an antenna to the receiver and set the gang condenser to a point between two stations on adjacent channels having approximately the same power. If the 10 kc . trimmer is out of adjustment, a whistle will be heard. Adjust the trimmer until the whistle is eliminated.

FM ALIGNMENT

 DISCRIMINATOR ALIGNMENT1. Tune signal generator to EXACTLY 10.775 mc . and connect to pin 1 of the 6AU6 Limiter tube socket through a .01 mfd . capacitor.
2. Connect a DC vacuum tube voltmeter between point " B " on schematic diagram and ground.
3. Peak both discriminator slugs at 10.775 mc .
4. Retune signal generator to exactly 10.7 mc . and adjust bottom slug for zero volts.
5. The DC voltage at 10.625 mc . should be within 10% of the voltage at 10.775 mc . and of opposite polarity.
Note: If the signal generator is not capable of sufficient output to produce a readable DC voltage, the amplification of the last i-f stage can be used to increase the signal input to the limiter for discriminator alignment. To accomplish this, align the last i-f stage as indicated in "I-F Alignment". Then align discriminator as above leaving the signal generator connected to the grid of the 6BA6 2nd i-f tube.

I-F ALIGNMENT

1. Connect high side of signal generator, through a .01 mfd . capacitor and a 1000 ohm resistor in series, to pin 4 of the 6SG7 2nd i-f tube. Connect low side of generator to chassis.
2. Close gang condenser and connect vacuum tube voltmeter across 220,000 ohm limiter grid resistor; (Point "A" on schematic to ground). Adjust signal generator output until a reading of at least 3 volts is obtained. In order to reduce regeneration caused by the vacuum tube voltmeter leads, a l-megohm isolating resistor, connected with as short leads as possible to point " A " should be used in series with the vacuum tube voltmeter. Align the 3rd i-f transformer for best peak as indicated on voltmeter.
3. Repeat above for each succeeding transformer by connecting signal generator to signal grid of first i-f tube 6BA6 then to the signal grid of 6BE6 converter. The i-f stages should be aligned in this order.

WARNING—After each i-f stage has been aligned, do not repeak with the signal into the grid of the 6BE6.

ALTERNATE VISUAL ALIGNMENT

 OF I-F STAGES1. Replace signal generator with sweep generator having approximately 300 kc . sweep and tune generator to 10.7 mc . Connect oscilloscope across 220,000 ohm limiter grid resistor through a l-megohm isolating resistor. The order of alignment is the same as when using a vacuum tube voltmeter. Each i-f transformer should be individually aligned for best peak and symmetry.

R-F ALIGNMENT

1. Connect vacuum tube voltmeter across limiter grid resistor as in FM I-F alignment.
2. Ground one side of the FM Antenna by placing a wire jumper from one FM connection on the antenna terminal strip to the ground connection.
3. Connect unmodulated signal generator through a 300 ohm resistor to ungrounded antenna post and chassis, and tune signal generator to 107 mc .
4. Set radio dial to 107 mc . and tune oscillator trimmer to peak output on vacuum tube voltmeter. Adjust signal generator output until a reading of at least 3 volts is obtained.
5. Tune 107 mc . r-f and antenna trimmers for maximum indication on voltmeter-it may be necessary to rock the dial while adjusting the r-f trimmer.

SPECIAL SERVICE INFORMATION

The following information is provided for the service man who has a vacuum tube voltmeter or a similar measuring instrument available.

STAGE GAINS*

Antenna Post to R-F Grid at:
\qquad

R-F Grid to Converter Grid at:
600 kc 14.5
98 mc 9.4
R-F on Converter Grid to 455 kc . on I-F Grid at: 600 kc 25.0
98 mc 3.2
I-F on Converter Grid to lst I-F Grid at:455 kc . (gang closed)28.01st I-F Grid to 2nd I-F Grid** at:455 kc .95
10.7 mc 33
2nd I-F Grid to Limiter Grid at:
10.7 mc .33.4
OSCILLATOR OUTPUT VOLTAGEThe DC voltage developed across the Oscillator GridResistor:
600 kc 6.6 V .
98 mc 6.0 V .
or 0.3 ma. through 22,000 ohm Oscillator GridResistor at 600 kc . and 0.27 ma . at 98 mc .

AUDIO GAIN

Voltage required across the Volume Control to produce 0.1 watt speaker output*** at 400 cycles is .016 volt with Input Selector Switch in BDCST setting.
*Variations of $\pm 20 \%$ are permissible. All readings made with sufficient input signal to provide 0.5 watt speaker output. 0.5 speaker output at 400 cycles is equivalent to a reading of 1.25 V . as measured by a high resistance $A C$ voltmeter across the voice coil of the speaker **Detector Plate on AM.
${ }^{* * *} 0.1$ watt speaker output at 400 cycles is equivalent to a reading of 0.55 volts as measured by a high resistance AC voltmeter across the voice coil of speaker.

DIAE CORD REPLACEMENT

Two separate drive cables are used in the CR-321 dial assembly. One cable is used to transmit the motion from the tuning knob to the large pulley that is coupled to the condenser gang; the other cable actuates the dial pointer whenever the large pulley on the condenser gang is rotated. Separate instructions for replacing either of these cables is given in the following paragraphs.

CONDENSER DRIVE CABLE REPLACEMENT

Remove dial assembly after taking out four screws on each side of chassis. Slide a short length (approximately $1 / 2 \mathrm{inch}$) of sleeving over one end of a length of dial cable, form a small loop and tie a knot in the manner shown on Figure l. Tie spring to opposite end of cable making length excluding spring $191 / 2$ inches. Hook loop over the metal hook in pulley " D " and lace the cable through the pulley slot and around the pulley in a counterclockwise direction when viewed from the rear of the dial assembly keeping the cable to the rear of the pulley groove. Lace the cable around the smaller diameter portion of the tuning control shaft wrapping $21 / 2$ turns from front to back; then around the opposite side of pulley " D " into the pulley through the slot. Hook the end of tension spring " F " in the hole provided in pulley " D ", completing this operation.

DIAL POINTER DRIVE CABLE REPLACEMENT

of sleeving over a 42 -inch length of dial cable. Tie the two ends to the loop end of the cable spring " E " securely so that the cable doubled measures 195/8 inches end to end excluding spring.

Place spring hook in top hole and draw cable through slot of pulley " D ". Loop one end of cable around pulley " D " in a clockwise direction in front of condenser drive cable (viewing dial assembly from front) then loop the remaining end around pulley in a counterclockwise direction. Secure both ends of cable to chassis at edge of pulley slot with scotch tape, keeping piece of sleeving on remaining loop of cable.

Replace dial assembly and loop cable over pulley "A". While holding cable taut remove scotch tape and loop cable over pulleys " B " and " C " as shown in Figure 1.

Turn the tuning control shaft until the condenser gang is completely meshed and slide the dial pointer on its track until it is in line with the last calibration mark at the low frequency end of the dial. The short piece of sleeving installed prior to the stringing operation should be slid to the rear of the dial pointer and the crimping lug on the pointer pressed over the sleeving. After checking to make certain that the condenser gang is completely meshed and the dial pointer is in the position specified previously, apply a few drops of cement to each end of the sleeving Remove dial assembly after taking out four screws to which the dial pointer is fastened. This completes on each side of chassis. Slip a one-half inch length the operation.

REFERENCE NO. T 101 Transformer, 1st i-f (FM)		MAGNAVOX PART NO.	LIST PRICE
		.. 360374-1	1.10
T 102	Trantsformer, 2nd i-f (FM)	360374-1	1.10
T 103	Transformer, 3rd i-f (FM)	360374-1	1.10
T 104	Transformer, discriminator	360375-1	1.40
T 105	Transformer, 1st i-f (AM).	360508-1	1.45
T 106	Transformer, 2nd i-f (AM)	360373-1	1.25
T 107	Transformer, power	300050-2	12.00
L 101	Coil assembly, antenna (FM)	360321-2	. 65
L 102	Coil, choke	360284-1	. 20
L 103	Coil assembly, r-f (AM)	360348-1	1.00
L 104	Coil assembly, r-f (FM)	360322-2	2.55
L 105	Coil assembly, oscillator (AM)	360407-1	. 55
L 106	Coil assembly, oscillator (FM)	360323-1	. 90
L 107	Coil assembly, 10 kc .	360244-2	1.55
C 101	Capacitor, tuning	260103-1	5.20
C 102	Capacitor, mica, 100 mmf ; 500 V .	250187-53	. 15
C. 103	Capacitor, mica, 220 mmf .500 V .	250159-86	. 25
C 104	Capacitor, trimmer	250046-2	. 20
C 105	Capacitor, ceramic, 5000 mmf .	250175-1	. 20
C 106	Capacitor, ceramic, . 01 mfd .	250175-2	. 20
C 107	Capacitor, mica, 47 mmf .500 V .	250187-49	. 15
C 108	Capacitor, paper, . 047 mfd .200 V .	250205-11	. 20
C 109	Capacitor, mica, 15 mmf .	250187-43	. 15
C 110	Capacitor, mica, 15 mmf .	250187-43	. 15
C 111	Capacitor, trimmer	260067-6	. 70
C 112	Capacitor, ceramic, 5000 mmf .	250175-1	. 20
C 113	Capacitor, ceramic, $50 \mathrm{mmf} . \pm 10 \%$, 500 V .	250088-39	. 15
C 114	Capacitor, ceramic, . 01 mfd .	250175-2	. 20
C 115	Capacitor, ceramic, . 01 mfd .	250175-2	. 20
C 116	Capacitor, paper, . 047 mfd .200 V .	250205-11	. 20
C 117	Capacitor, ceramic, . 01 mfd .	250175-2	. 20
C 118	Capacitor, ceramic, . 01 mfd .	250175-2	. 20
C 119	Capacitor, ceramic, . 01 mfd .	250175-2	. 20
C 120	Capacitor, mica, 100 mmf .500 V.	250187-53	. 15
C 121	Capacitor, paper, . 01 mfd .600 V .	250203-7	. 20
C 122	Capacitor, ceramic, . 01 mfd .	250175-2	. 20
C 123	Capacitor, mica, $680 \mathrm{mmf} . \pm 10 \%, 500 \mathrm{~V}$.	250160-62	. 20
C 124	Capacitor, ceramic, .01 mfd .	250175-2	. 20
C 125	Capacitor, mica, 47 mmf .500 V .	250187-49	. 15
C 126	Capacitor, ceramic, . 01 mfd .	250175-2	. 20
C 127	Capacitor, ceramic, . 01 mfd .	250175-2	. 20
C 128	Capacitor, mica, 330 mmf .500 V .	250159-88	. 25
C 129	Capacitor, paper, . 02 mfd .600 V .	250129-3	. 25
C 130	Capacitor, paper, . 02 mfd .600 V .	250129-3	. 25
C 131	Capacitor, paper, . 02 mfd .600 V	250129-3	. 25
C 133	Capacitor, paper, . 015 mfd .200 V .	250185-1	. 20
C 134	Capacitor, paper, 220 mmf .500 V .	250159-86	. 20
C 135	Capacitor, paper, 3300 mmf .600 V .	250203-4	. 15
C 136	Capacitor, paper, 1500 mmf .600 V .	250203-2	. 15
C 137	Capacitor, paper, 1000 mmf .600 V .	250203-1	. 15
C 138	Capacitor, paper, 4700 mmf .600 V .	250203-5	. 15
C 139	Capacitor, paper, 3300 mmf .600 V .	250203-4	. 15
C 140	Capacitor, mica, 330 mmf .500 V .	250159-88	. 25
C 141	Capacitor, paper, . 1 mfd .600 V .	250203-13	. 25
C 142	Capacitor, paper, . 033 mfd .600 V .	250203-10	. 20
C 143	Capacitor, paper, 2200 mmf .600 V.	250203-3	. 15
C 144	Capacitor, paper, 1000 mmf .600 V .	250203-1	. 15
C 145	Capacitor, electrolytic, 30-10 mfd. 475 V .	270023-2	1.60
C 146	Capacitor, electrolytic, 20 mfd .25 V . -10 mfd .475 V .	270023-13	. 85
C 147	Capacitor, electrolytic, 20-10 mfd. $475 \mathrm{~V} .-20 \mathrm{mfd} .25 \mathrm{~V}$.	270023-12	1.65
C 148	Capacitor, trimmer, 10 kc .	259610-2	. 55
C 149	Capacitor, mica, 2200 mmf .600 V .	250203-3	. 15

- John F. Rider

$\begin{gathered} \text { REFERE } \\ \text { NO. } \end{gathered}$	NCE description	MAGNAVOX PART NO.	$\begin{aligned} & \text { LIST } \\ & \text { PRICE } \end{aligned}$
R 101	Resistor, carbon, 10,000 ohms, $1 / 2 \mathrm{~W}$.	230104-74	. 05
R 102	Resistor, carbon, 68 ohms, $1 / 2 \mathrm{~W}$.	230104-48	. 05
R 103	Resistor, carbon, 4700 ohms, $1 / 2 \mathrm{~W}$.	230104-70	. 05
R 104	Resistor, carbon, 1 megohm, $1 / 2 \mathrm{~W}$.	230104-98	. 05
R 105	Resistor, carbon, 47,000 ohms, 1 W .	230105-82	. 10
R 106	Resistor, carbon, 1 megohm, $1 / 2 \mathrm{~W}$.	230104-98	. 05
R 107	Resistor, carbon, 33 ohms, 1/2 W.	230104-44	. 05
R 108	Resistor, carbon, 68 ohms, $1 / 2 \mathrm{~W}$.	230104-48	. 05
R 109	Resistor, carbon, 1000 ohms, $1 / 2 \mathrm{~W}$.	230104-62	. 05
R 110	Resistor, carbon, 1 megohm, $1 / 2 \mathrm{~W}$.	230104-98	. 05
R 111	Resistor, carbon, 22,000 ohms, $1 / 2 \mathrm{~W}$.	230104-78	. 05
R 112	Resistor, carbon, 1000 ohms, $1 / 2 \mathrm{~W}$.	230104-62	. 05
R 113	Resistor, carbon, 4700 ohms, $1 / 2 \mathrm{~W}$.	230104-70	. 05
R 114	Resistor, carbon, 1000 ohms, $1 / 2 \mathrm{~W}$.	230104-62	. 05
R 115	Resistor, carbon, 100 ohms, $1 / 2 \mathrm{~W}$.	230104-50	. 05
R 116	Resistor, carbon, 1000 ohms, $1 / 2 \mathrm{~W}$.	230104-62	. 05
R 117	Resistor, carbon, 1000 ohms, $1 / 2 \mathrm{~W}$.	230104-62	:05
R 118	Resistor, carbon, 47,000 ohms, $1 / 2 \mathrm{~W}$.	230104-82	. 05
R 119	Resistor, carbon, 220,000 ohms, $1 / 2 \mathrm{~W}$.	230104-90	. 05
R 120	Potentiometer, volume control	220074-1	. 65
R 121	Resistor, carbon, 470,000 ohms, $1 / 2 \mathrm{~W}$.	230104-94	. 05
R 122	Resistor, carbon, 470,000 ohms, $1 / 2 \mathrm{~W}$.	230104-94	. 05
R. 123	Resistor, carbon, 3300 ohms, 1 W.	230105-68	. 05
R 125	Resistor, carbon, 220,000 ohms, $1 / 2 \mathrm{~W}$.	230104-90	. 05
R 126	Resistor, carbon, 8200 ohms, 1 W.	230105-73	. 05
R 127	Resistor, carbon, 8200 ohms, 1 W .	230105-73	. 05
R 128	Resistor, carbon, 100,000 ohms, 1/2 W.	230104-86	. 05
R 129	Resistor, carbon, 68,000 ohms, $1 / 2 \mathrm{~W}$.	230104-84	. 05
R 130	Resistor, carbon, 150,000 ohms, $1 / 2 \mathrm{~W}$.	230104-88	. 05
R 131	Resistor, carbon, 150,000 ohms, $1 / 2 \mathrm{~W}$.	230104-88	. 05
R 132	Resistor, carbon, 100,000 ohms, $1 / 2 \mathrm{~W}$.	230104-86	. 05
R 135	Resistor, carbon, 3300 ohms, $1 / 2 \mathrm{~W}$.	230104-68	. 05
R 136	Resistor, carbon, 150,000 ohms, $1 / 2 \mathrm{~W}$.	230104-88	. 05
R 137	Resistor, carbon, 330,000 ohms, $1 / 2 \mathrm{~W}$.	230104-90	. 05
R. 138	Potentiometer, treble control, 1 megohm	220071-4	1.15
R 139	Potentiometer, bass control, 1 megohm .	220073-18	. 80
R 140	Resistor, carbon, 47,000 ohms, 1/2 W.	230104-82	. 05
R 141	Resistor, carbon, 6.8 megohm, $1 / 2 \mathrm{~W}$.	230104-108	. 05
R 142	Resistor, carbon, $330,000 \mathrm{ohms}, 1 / 2 \mathrm{~W}$.	230104-92	. 05
R 143	Resistor, carbon, 1500 ohms, $1 / 2 \mathrm{~W}$.	230104-64	. 05
R 144	Resistor, carbon, 100,000 ohms, 1 W .	230105-86	. 10
R 145	Resistor, carbon, 100,000 ohms, 1 W .	230105-86	. 10
R 146	Resistor, carbon, 4700 ohms, $1 / 2 \mathrm{~W}$.	230104-70	. 05
R 147	Resistor, carbon, 220,000 ohms, $\pm 5 \%, 1 / 2 \mathrm{~W}$.	230094-215	. 10
R 148	Resistor, carbon, 15,000 ohms, $\pm 5 \%, 1 / 2 \mathrm{~W}$.	230094-187	. 10
R 149	Resistor, carbon, 270,000 ohms, $1 / 2 \mathrm{~W}$.	230104-91	. 05
R 150	Resistor, carbon, 100 ohms, $1 / 2 \mathrm{~W}$.	.230104-50	. 05
R 151	Resistor, carbon, 100 ohms, $1 / 2 \mathrm{~W}$.	230104-50	. 05
R 152a	Resistor, carbon, 680 ohms, 1 W.	230105-60	. 10
R 152b	Resistor, carbon, 680 ohms, 1 W.	.230105-60	. 10
R 153	Resistor, wire wound, 6500 ohms.	240035-9	. 50
R 154	Resistor, carbon, 1000 ohms, $1 / 2 \mathrm{~W}$.	230104-62	. 05
RC 101	Printed circuit (capacitor-resistor filter).	250170-1	. 30
S 101	Selector switch.	160194-1	2.25
J 101	Socket, speaker.	.180504-16	. 15
J 103	Socket, T.V.	.180060-1	. 10
」104	Socket, phono.	.189741-1	. 10
J 105	Socket, phono power	180520-4	. 20
F 101	Loop antenna	*	

F 101 Loop antenna
*The part number of the Loop Antenna Assembly changes with different cabinets. It is therefore important that you specify the style rumber of the instrument when ordering a replacement Loop Antenna Assembly.

ALL PRICES SUBJECT TO CHANGE WITHOUT NOTICE

SPECIFICATIONS

ALIGNMENT PROCEDURE

Alignment of these receivers requires the use of an accurately calibrated r-f signal generator, range 455 kc . to 107 mc ., an output meter, and a vacuum tube voltmeter of greater than 10 megohm input impedance. All trimmer condensers can be identified by stampings on the chassis and gang condenser cover and are shown on the chassis layout diagram.
The pointer on the radio dial should line up with the first vertical mark on the low frequency end of the dial glass. If the pointer does not line up, loosen the pointer on the dial string and move it to correct position. Re-tighten and re-cement the pointer to the string. Be sure the gang is fully meshed for this pointer alignment. Align AM first.

AMALIGNMENT

I-F ALIGNMENT

1. Set treble control to SHARP TUNE position. Set volume and bass controls to maximum, the Band Switch to Broadcast position, and dial pointer to 1000 kc.
2. Tune the signal generator to EXACTLY 455 kc .
3. Connect output of modulated signal generator to the signal grid of the 6BE6 (pin 7) through a . 01 mfd . capacitor and signal generator ground to radio chassis.
4. AM and FM i-f transformers on these models are separate and can be identified on the chassis layout diagram Figure 3.
5. Connect output meter across voice coil of speaker and adjust the i-f transformers for peak output as indicated on the output meter.

ALTERNATE VISUAL ALIGNMENT OF I-F STAGES

1. Connect 455 kc . sweep generator having approximately 20 kc . sweep to signal grid of 6BE6 (pin 7) through a .01 mfd . capacitor. Connect an oscilloscope through a 1 meghom isolating resistor across the 220,000 ohm diode load resistor. Align for best possible peak in sharp tune position and symmetry in full range position.

R-F ALIGNMENT

1. Remove the signal generator lead from the 6BE6 grid and connect it across H and L on terminal strip on the rear of the chassis. The high side of the signal generator should be connected to H and the signal generator ground to L .
2. Set the signal generator and the radio receiver to 1400 kc., adjust the 1400 kc . oscillator trimmer and the 1400 kc . r-f trimmer for maximum output.
3. Set the signal generator and radio receiver to 600 kc . Adjust the oscillator and r-f coil slugs for maximum output. If considerable adjustment was necessary re-check the 1400 kc . trimmer settings.
4. Replace chassis in cabinet and connect loop antenna leads to proper terminals on the rear of the chassis.
5. Form three turns of wire into a loop, connect this loop to the signal generator and loosely couple it to the receiver loop antenna.
6. With the signal generator and dial at 1400 kc . adjust the loop antenna trimmer for maximum output.

10 KC. FILTER ADJUSTMENT

This chassis incorporates a 10 kc . filter circuit to eliminate the beat note heard as a whistle between stations on the broadcast band. If the trimmer is out of adjustment, the following procedure should be observed:

1. Adjust the treble control switch to the No. 4 setting.
2. Connect the output of an audio oscillator to the phonograph pickup socket on the radio chassis and adjust the oscillator to EXACTLY 10,000 cycles.
3. Set the band selector to PHONO and adjust the 10 kc . trimmer for minimum output.
4. If an audio oscillator is not available for making this adjustment set the band selector to BDCST, set the treble control to position 4, connect the antenna to the receiver and set the gang condenser to a point between two stations on adjacent channels having approximately the same power. If the 10 kc . trimmer is out of adjustment, a whistle will be heard. Adjust the trimmer until the whistle is eliminated.

FM AEIGNMENT

DISCRINIINATOR ALIGNMENT

1. Tune signal generator to EXACTLY 10.775 mc . and connect to pin 1 of the 6AU6 Limiter tube socket through a .01 mfd . capacitor.
2. Connect a $D C$ vacuum tube voltmeter between point " B " on schematic diagram and ground.
3. Peak both discriminator slugs at 10.775 mc .
4. Retune signal generator to exactly 10.7 mc . and adjust bottom slug for zero volts.
5. The DC voltage at 10.625 mc . should be within 10% of the voltage at 10.775 mc . and of opposite polarity.

Note: If the signal generator is not capable of sufficient output to produce a readable DC voltage, the amplification of the last i-f stage can be used to increase the signal input to the limiter for discriminator alignment. To accomplish this, align the last i-f stage as indicated in "I-F Alignment". Then align discriminator as above leaving the signal generator connected to the grid of the 6BA6 2nd i-f tube.

I-F ALIGNMENT

1. Connect high side of signal generator, through a .01 mfd . capacitor and a 1000 ohm resistor in series, to pin 1 of the 6BA6 2nd i-f tube. Connect low side of generator to chassis.
2. Close gang condenser and connect vacuum tube voltmeter across 220,000 ohm limiter grid resistor; (Point " A " on schematic to ground). Adjust signal generator output until a reading of at least 3 volts is obtained. In order to reduce regeneration caused by
the vacuum tube voltmeter leads, a l-megohm isolating resistor, connected with as short leads as possible to point " A " should be used in series with the vacuum tube voltmeter. Align the 3rd i-f transformer for best peak as indicated on voltmeter.
3. Repeat above for each succeeding transformer by connecting signal generator to signal grid of first i-f tube 6BA6 then to the signal grid of 6BE6 converter. The i-f stages should be aligned in this order.

WARNING-After each i-f stage has been aligned, do not repeak with the signal into the grid of the 6BE6.

ALTERNATE VISUAL ALIGNMENT OF I-F STAGES

1. Replace signal generator with sweep generator having approximately 300 kc . sweep and tune generator to 10.7 mc . Connect oscilloscope across 220,000 ohm limiter grid resistor through a l-megohm isolating resistor. The order of alignment is the same as when using a vacuum tube voltmeter. Each i-f transformer should be individually aligned for best peak and symmetry.

R-F ALIGNMENT

1. Connect vacuum tube voltmeter across limiter grid resistor as in FM I-F alignment.
2. Ground one side of the FM Antenna by placing a wire jumper from one FM connection on the antenna terminal strip to the ground connection.
3. Connect unmodulated signal generator through a 300 ohm resistor to ungrounded antenna post and chassis, and tune signal generator to 107 mc .
4. Set radio dial to 107 mc . and tune oscillator trimmer to peak output on vacuum tube voltmeter. Adjust signal generator output until a reading of at least 3 volts is obtained.
5. Tune 107 mc . r-f and antenna trimmers for maximum indication on voltmeter-it may be necessary to rock the dial while adjusting the r-f trimmer.

SPECIAL SERVICE INFORMATION

The following information is provided for the service man who has a vacuum tube voltmeter or a similar measuring instrument available.

STAGE GAINS*

Antenna Post to R-F Grid at:
600 kc .
98 mc .
1.15
R-F Grid to Converter Grid at:
600 kc 14.5
98 mc 9.4
R-F on Converter Grid to 455 kc. on I-F Grid at:
600 kc 25.0
98 mc 3.2
I-F on Converter Grid to lst I-F Grid at: 455 kc . (gang closed) 28.0
1st I-F Grid to 2nd I-F Grid** at: 455 kc 95
10.7 mc 33
2nd I-F Grid to Limiter Grid at: 10.7 mc 33.4
OSCILLATOR OUTPUT VOLTAGE

The DC voltage developed across the Oscillator Grid Resistor:
600 kc 6.6V.
98 mc 6.0 V .
or 0.3 ma . through 22,000 ohm Oscillator Grid Resistor at 600 kc . and 0.27 ma . at 98 mc .

AUDIO GAIN

Voltage required across the Volume Control to produce 0.1 watt speaker output ${ }^{* * *}$ at 400 cycles is .016 volt with Input Selector Switch in BDCST setting.
*Variations of $\pm \mathbf{2 0 \%}$ are permissible. All readings made with sufficient input signal to provide 0.5 watt speaker output. 0.5 watt speaker output at 400 cycles is equivalent to a reading of 2.74 V . as measured by a high resistance AC voltmeter across the output transformer secondary.
**Detector Plate on AM.
***0.1 watt speaker output at 400 cycles is equivalent to a reading of 1.25 volts as measured by a high resistance AC voltmeter across the voice coil of speaker.

DIAL CORD REPLACEMENT

Two separate drive cables are used in the CR-322 dial assembly. One cable is used to transmit the motion from the tuning knob to the large pulley that is coupled to the gang condenser; the other cable actuates the dial pointer whenever the large pulley on the gang condenser is rotated. Separate instructions for replacing either of these cables is given in the following paragraphs.

CONDENSER DRIVE CABLE REPLACEMENT

Remove dial assembly after taking out four screws on each side of chassis. Slide a short length (approximately $1 / 2$ inch) of sleeving over one end of a length of dial cable, form a small loop and tie a knot in the manner shown on Figure 1. Tie spring to opposite
end of cable making length excluding spring 191/2 inches. Hook loop over the metal hook in pulley "D" and lace the cable through the pulley slot and around the pulley in a counterclockwise direction when viewed from the rear of the dial assembly keeping the cable to the rear of the pulley groove. Lace the cable around the smaller diameter portion of the tuning control shaft wrapping $21 / 2$ turns from front to back; then around the opposite side of pulley " D " into the pulley through the slot. Hook the end of tension spring " F " in the hole provided in pulley " D ", completing this operation.

DIAL POINTER DRIVE CABLE REPLACEMENT

Remove dial assembly after taking out four screws on each side of chassis. Slip a one-half inch length of sleeving over a 42 -inch length of dial cable. Tie the two ends to the loop end of the cable spring " E " securely so that the cable doubled measures 195/8 inches end to end excluding spring.

Place spring hook in top hole and draw cable through slot of pulley " D ". Loop one end of cable around pulley " D " in a clockwise direction in front of condenser drive cable (viewing dial assembly from front) then loop the remaining end around pulley in a counterclockwise direction. Secure both ends of cable to chassis at edge of pulley slot with scotch tape, keeping piece of sleeving on remaining loop of cable.

Replace dial assembly and loop cable over pulley "A". While holding cable taut remove scotch tape and loop cable over pulleys " B " and " C " as shown in Figure 1.

Turn the tuning control.shaft until the gang condenser is completely meshed and slide the dial pointer on its track until it is in line with the last calibration mark at the low frequency end of the dial. The short piece of sleeving installed prior to the stringing operation should be slid to the rear of the dial pointer and the crimping lug on the pointer pressed over the sleeving. After checking to make certain that the gang condenser is completely meshed and the dial pointer is in the position specified previously, apply a few drops of cement to each end of the sleeving to which the dial pointer is fastened. This completes the operation.

PAGE 23-14 MAGNAVOX
CHASSIS CR -322

PAGE 23-16 MAGNAVOX
CHASSIS
CR-322

REFERENCE	
NO.	
R	DESCRIPTION

E 101 Loop antenna.

*The part number of the Loop Antenna Assembly changes with different cabinets. It is therefore important that you specify the style number of the instrument when ordering a replacement Loop Antenna Assembly.

- John F. Rider

SPECIFICATIONS

Intermediate frequency 455 kc.
Tuning frequency range:
Broadcast band 530-1610 kc.
Short wave band $4.9-18.1 \mathrm{mc}$.
Tubes:
R-F Amplifier 6SK7
Converter 6SA7
I-F Amplifier 6SK7
Detector and AVC $6 J 5$
First Audio 6J5
Second Audio 6J5
Tuning Indicator 6U5
Dial lamps Mazda No. 51

Abstract

\section*{GENERAL}

Model CR-188 radio chassis is a two-band tuner that must be used in conjunction with a power amplifier, such as the Model AMP-101 for speaker operation. Heater and plate voltages for the CR-188 radio chas- sis are supplied from the amplifier chassis; it is therefore essential that the radio and amplifier chassis be interconnected during alignment or for other electrical service operations.

METHODFOR REMOVING CHASSIS FROM CABINET

Model CR-188 radio chassis is designed for easy removal from the cabinet in which it is installed. As the radio panel is permanently fastened to the chassis, the control knobs need not be removed when the chassis is taken out of the cabinet for service. To remove the chassis, first remove the antenna leads from their terminals and all plugs from the receptacles on the rear of the chassis. Then remove the two Phillips-head screws from the angular slots in the flange at the rear of the chassis. Lift the rear of the chassis about one inch and pull it straight back. Never remove the chassis tray from the cab-inet-it has been properly positioned to bring the radio panel in place when the chassis is replaced. In replacing the chassis, slide it so that the small hooks near the front, ride inside the flanges on the
sides of the chassis tray. Push the chassis forward as far as it will go and the hooks should then engage the slots in the chassis tray. Replace the two Phillipshead screws and nuts and tighten securely. Replace all plugs in their receptacles and the antenna leads on their correct terminals. The antenna terminal board for the loop antenna connections is designated S-L-H. The end of the short wave antenna that is fastened to the inside of the cabinet connects to S. Always disconnect this antenna from terminal S when an outdoor antenna is used as it may pick up noise. The two terminals on the loop are designated L and H . The leads connected to these terminals should be wired to the corresponding terminals (L and H) on the chassis.

ALIGNMENT PROCEDURE

The alignment of this receiver requires.the use of an accurately calibrated r-f signal generator and an output meter. All trimmer condenser locations are shown on the chassis layout diagram, Figure 5. The radio volume control should be turned to maximum and the signal generator output kept as low as possible during alignment to prevent the AVC from operating and giving false readings. Always set the Treble Control to SHARP TUNE before aligning the i-f stages. This is done by turning the Treble Control Knob to the No. 1 position.

I-F RIGNMENT

1. Connect the output of the signal generator to the oscillator grid (pin No. 5) of the 6SA7 tube through a .00025 mfd . capacitor. The ground on the signal generator should be connected to the radio chassis ground.
2. Turn the condenser gang until it is completely meshed, (low-frequency end of dial calibration) and set the band selector switch to BDCST as for broadcast band reception.
3. Adjust the signal generator to EXACTLY 455 kc . and peak the second i-f transformer and the first i-f transformer trimmers in that order.
On early models of the CR-188 chassis, the two i-f trimmers are located in the top of the respective i-f transformers as shown in the layout diagram Figure 5. In later production, one trimmer is accessible from the top and the other from the bottom of each transformer.

BROADCAST BAND ALIGNMENT

1. Remove the signal generator lead from the 6SA7 grid and connect it to the radio antenna terminal through the .00025 mfd . capacitor. The ANT-LOOP switch (60) must be in the ANT. setting.
2. Check the tuning dial pointer adjustment. When the plates of the tuning condenser are completely meshed, the dial pointer must be in line with the last calibration mark at the low frequency end of the dial. If it is not, loosen the set screws in the hub of pulley " D " shown on Figure 1 and make the necessary adjustment.
3. With the band selector still set for broadcast band reception, adjust the signal generator and the radio receiver to 600 kc . While rocking the gang condenser a few degrees to the right and to the left, adjust the 600 kc . oscillator padder for maximum indication on the output meter.
4. Set the signal generator and the radio receiver to 1400 kc .; adjust the 1400 kc . oscillator trimmer and the 1400 kc . antenna trimmer for maximum output. If considerable adjustment was necessary, rechecik the 600 kc . padder setting.
5. If the loop antenna trimmer is out of adjustment it should be set after the radio chassis is in the cabinet. Set the ANT-LOOP switch (60) to the LOOP position. Adjust the signal generator to 1400 kilocycles and connect its output to a loop containing approximately five turns of wire eight inches in diameter placed eighteen inches from the receiver loop and in the same plane.
6. Set the receiver to 1400 kc . and adjust the trimmer on the receiver loop for maximum output.

SHORT WAVE BAND ALIGNMENT

1. Set the band selector switch to SW as for short wave reception and substitute a 400 ohm resistor for the capacitor in series with the signal generator lead connected to the antenna terminal on the receiver. 2. Set the signal generator and the radio receiver to 15 mc .; then adjust the 15 mc . oscillator trimmer and the 15 mc . antenna trimmer for maximum output. While adjusting the 15 mc . oscillator trimmer two peaks may be observed; only one is the correct peak for 15 mc . alignment. Screw in the trimmer to maximum capacity-then decrease the capacity until the first peak is observed. This is the correct one.

10 KC FILTER ADJUSTMENT

This chassis incorporates a 10 kc . filter circuit to eliminate the beat note heard as a whistle between stations on the broadcast band. If the trimmer is out of adjustment, the following procedure should be observed.

1. Turn the Treble Control to FULL RANGE (No. 4 position).
2. Connect the output of an audio oscillator to the phonograph pickup socket on the radio chassis and adjust the oscillator to EXACTLY 10,000 cycles.
3. Set the band selector to PHONO and adjust the 10 kc . trimmer (8) for minimum output.
4. If an audio oscillator is not available for making this adjustment, set the band selector to BDCST, connect an antenna to the receiver and set the gang condenser to a point between two stations on adjacent channels having approximately the same power. If the 10 kc . trimmer is out of adjustment, α whistle will be heard. Adjust the trimmer until the whistle is eliminated.

STAGE GAINS*

600 kc .

Special service INFORMATION

The following information is provided for the service man who has a vacuum tube voltmeter or a similar measuring instrument available.

Antenna Post to R-F Grid at:7.0
6 mc 1.63
R-F to Converter Grid at:
600 kc 3.4
6 mc 3.4
R-F on Converter Grid to.I-F Grid at: 600 kc 40.0
6 mc 35.5 -
I-F on Converter Grid to . F Grid at: 455 kc 59
I-F Grid to Detector Plate at: 455 kc 68

AUDIO GAIN

Voltage required across Volume Control to produce .05 watt speaker output** at 400 cycles is .014 volt with Band Selector Switch in BDCST setting.

OSCILLATOR OUTPUT VOLTAGE

The DC voltage developed across Oscillator Grid Resistor (40) at: 600 kc .
6 mc .

* Variations of $\pm 20 \%$ are permissible. All readings made with sufficient input signal to provide .05 watt speaker output.
**. 05 watt speaker output at 400 cycles is equivalent to a reading of 0.35 volts as measured by a high resistance AC voltmeter across the voice coil of either speaker.

DIAE CORD REPLACEMENT

Rotate the brass pulley designated " A " in Figure 1 until the dial pointer strikes the stop at the high frequency end of the dial calibration. In this condition the slot in pulley " A " should be approximately ten degrees to the left of being vertical-see Figure 1 . If the slot in the pulley is in some other position under the above mentioned conditions, the pointer set
screw is probably loose and has allowed the pointer to slip.
To correct this condition, first remove the glass dial and loosen the pointer screw. Then while holding pulley " A " so that its slot is approximately ten degrees to the left of vertical (when viewed from the rear) adjust the pointer until it is resting against the

FIGURE 1

CHASSIS CR-188

stop at the high frequency end of its travel. Then tighten the pointer.set screw securely and replace the glass dial.
Completely unmesh the condenser gang and check the location of the hole or slot in pulley "D.' If this hole is not approximately 45 degrees back from vertical as shown on Figure 1, loosen the two No. 6 Allen set screws in the hub of pulley "D" and slip the pulley on its shaft (while holding the condenser gang unmeshed) until the specified adjustment is obtained; then tighten one of the set screws securely. It will be shown later that this is a temporary setting. Next, tie a double knot in the exact center of a 25 -inch length of dial cable and fold the cable back on itself so that the knot is at one end. The correct method for tying this knot is shown as an inset on Figure l. Grasp the cable near the knotted end and slide it into the pulley slot so that the knot is against the inside rim of the pulley as shown in the sketch. The piece of cable nearest the dial frame should be wound in the direction shown for one-half turn; then over the lower pulley " B," around the bottom of the large pulley " D " and into the hole. Pull the cable

CONDTNSAR

MDTUSTMENTS

Whenever any of the mechanical parts in the condenser gang drive assembly require replacement due to rough handling or for any other reason, it is extremely important that clearances and adjustments shown on Figures 2 and 3 are effected; otherwise the tuning mechanism will be sluggish or it may slip during operation.
In reassembling the mechanism after any part was replaced, follow the procedure outlined billow:

1. Assemble the Tuning Shaft, Drive Collar, Compression Spring, Spring Retainer and Flywheel in the manner shown on Figure 3. Note that the Tuning Shaft must extend $3 / 4^{\prime \prime}$ from the front of the assembly and that the spacing between the rear of the Drive Collar and the front of the Flywheel must be 3-5/64". Any excess length in the Tuning Shaft may extend beyond the rear of the Flywheel. See Figure 2.
taut and wrap the end around the small hook on pulley " D " temporarily.
The remaining piece of cable should be wound around pulley " A " in the direction shown, for one complete turn, over the upper pulley " C ,' and over the top of pulley " D.' Thread the end through the small hole in pulley " D " and pull both ends of the cable taut. With one end of tension spring " E " fastened to the hook on pulley "D" lace the two free ends of the cable through the opposite end of the spring and tie a knot at α point that will allow $1 / 4^{\prime \prime}$ to $5 / 16^{\prime \prime}$ of cable between the spring and the inside rim of pulley "D.'. Be sure to tie the knot around one coil of the spring in the manner shown.
Now with the condenser gang completely meshed, check the position of the dial pointer. If it is not in line with the last calibration mark at the low frequency end of the dial, loosen the set screw in pulley " D " and turn it until the pointer is in the specified position. Be sure that the condenser gang does not move during this adjustment. Then tighten the two screws in pulley "D" securely completing the operation.

GANG DRIVE

2. The distance between the rubber-tired Drive Wheel and the smaller diameter section of the Spring Retainer must be $1 / 32^{\prime \prime}$ to $1 / 16^{\prime \prime}$ (Figure 3). This adjustment is effected by loosening the two No. 6 Allen set screws in the Drive Wheel hub and sliding the wheel on its shaft until the required clearance is obtained. When the adjustment is completed, tighten the two screws in the hub of the Drive Wheel. sure of the front surface of the Drive Collar, when the Tuning Shaft is pulled out. The function of this switch is to open the muting circuit when setting up the push buttons. As its contacts are wired in series with the large muting switch (contacts are shorted by pressing any push button), pulling out on the Tuning Shaft causes the small switch contacts to open the muting circuit so that a station can be heard while the push button is held in and tightened. On rare occasions it may be necessary to adjust the

3. While pressing down on the Treadle Bar at the location shown on Figure 3, adjust the Thrust Bracket until the clearance between the rear of the Flywheel and the projection on the Thrust Bracket is .010" as shown on the diagram. To make this adjustment, loosen the two No. 6 Allen set screws (use No. 6 Allen Wrench-Magnavox Part No. 800044G2) in the hub of Thrust Bracket and rotate the bracket until the specified clearance is obtained when the push buttons are NOT actuated. Tighten the two screws securely when the adjustment is completed. Press each push button and check that the Drive Collar is pushed away from the rubber-tired Drive Wheel. 4. Next, adjust the clearance in the muting switch contacts by turning the Phillips-head screw designated Adjustment " A " on Figure 2, until the specified clearance of $.025^{\prime \prime}$ is obtained (when the push but-
tons are NOT actuated.)
4. While pressing any one of the push buttons in as far as possible, turn the screw designated Adjustment " B " until a minimum clearance of .015 " is obtained between the front surface of the Drive Collar and the switch spring directly in front of it. This setting should also cause a minimum clearance of .010" between the switch contacts actuated by presrelation between the push button bars and the Treadle Bar. Such adjustment might be required if when pushing any of the push buttons, sufficient motion is not transmitted to the Treadle Bar to cause a disengagement between the Drive Collar and the Drive wheel.
This can usually be accomplished by loosening the two screws designated " C " and " D " on Figure 3, and moving plate " B " in the direction required to correct this condition.

FIGURE 3

CHASSIS CR-188

CHASSIS CR-188

REFERENCE
NO. DESCRIPTION
MAGNAVOX PART NO.1 Coil Assembly, antenna, two band2 Coil Assembly, r-f, two band360254G13 Coil Assembly, oscillator, two band360254G24 Coil Assembly, 10 kc. filter360253G1
5 Transformer, first i-f. 360244G1
60266G16 Transformer, second i-f
7 Capacitor, variable, three-gang tuning360267G1
8 . Capacitor, variable, 10 kc . trimmer 259610G1
9 Capacitor, ceramic, 50 mmf 250088G25
10 Capacitor, molded mica, 510 mmf 250159G64
11 Capacitor, silvered mica, $490 \mathrm{mmf} . \pm 1 \%$ 250085G32
12 Capacitor, molded mica, 220 mmf 250159G100
13 Capacitor, molded mica, 100 mmf 250159G98
14 Capacitor, paper, 008 mfd 250129G11
15 Capacitor, paper, . 005 mfd 250129G10
16 Capacitor, molded mica, . 0047 mfd. 250161G5
17 Capacitor, paper, . 004 mfd 250129G7
18 Capacitor, paper, . 012 mfd 250129G13
19 Capacitor, paper, .05 mfd 250129G5
20 Capacitor, paper, . 01 mfd 250129G9
21 Capacitor, paper, 0.1 mfd 250152G22
22 Capacitor, paper, 0.25 mfd 250152G21
23 Capacitor, electrolytic, $20 \mathrm{mfd} .25 \mathrm{~V}-10 \mathrm{mfd} .450 \mathrm{~V}$ 270023G6
31. Resistor, composition, 100 ohm $1 / 2 \mathrm{~W}$. 230084G7
32 Resistor, composition, 150 ohm $1 / 2 \mathrm{~W}$. 230084G8
33 Resistor, composition, 470 ohm $1 / 2$ W. 230084G11
34 Resistor, composition, 820 ohm $1 / 2 \mathrm{~W}$. 230084G61
35 Resistor, composition, 2200 ohm $1 / 2$ W 230084G15
36 Resistor, composition, 4700 ohm $1 / 2 \mathrm{~W}$ 230084G17
37 Resistor, composition, 10,000 ohm $1 / 2$ W. 230084G19
38 Resistor, composition, 10,000 ohm 1 W. 230085G19
39 Resistor, composition, 15,000 ohm 1 W. 230085G20
40 Resistor, composition, 22,000 ohm $1 / 2 \mathrm{~W}$. 230084G21
41 Resistor, composition, 47,000 ohm $1 / 2 \mathrm{~W}$. 230084G23
42 Resistor, composition, 100,000 ohm $1 / 2 \mathrm{~W}$. 230084G25
43 Resistor, composition, 100,000 ohm 1 W. 230085G25
44 Resistor, composition, 220,000 ohm 1/2 W. 230084G27
46 Resistor, composition, 470,000 ohm $1 / 2 \mathrm{~W}$. 230084G29
47 Resistor, composition, 560,000 ohm $1 / 2 \mathrm{~W}$. 230084G95
48 Resistor, composition, 1 megohm $1 / 2 \mathrm{~W}$. 230084G31
49 Resistor, composition, 1.5 megohm $1 / 2 \mathrm{~W}$. 230084G32
50 Resistor, composition, 33,000 ohm $1 / 2$ W. 230084G22
56 Control, volume, 1 megohm 220044G15
57 Control, bass, 1 megohm with switch 220045G2
58 Switch, rotary, treble control 160161G1
59 Switch, rotary, band selector. 160160G1
60 Switch, rotary, loop to outdoor antenna. 160157G1
61 Switch assembly, muting 160158G2
62 Socket, external input. 180060GI
63 Socket, phonograph input 189741G1
64 Plug, octal, amplifier connection 180511G14
Antenna, loop assembly *
Dial glass assembly 150285
PARTS LIST

[^14] when ordering a replacement loop antenna assembly.

SPECIFICATIONS

Power supply.. 117 volts 50/60 cycles AC	
Power consumption.	150 watts
Power output.	20 watts
Intermediate frequency .455 kc .	
Tuning frequency range:	
Broadcast band.	$520-1620 \mathrm{kc}$.
Short Wave band	$5.0-18.2 \mathrm{mc}$.
Tubes:	
Converter	6SA7
I-F Amplifier	6SK7
Detector and AVC	6 J 5
First Audio	6J5
Inverter	6SN7GT
Power output (push-pull stage)	(2) 6L6G
Rectifier	.5U4G
Tuning Indicator	6U5
Dial lamps.	Mazda No. 51
Speakers:	No. 582815 No. 582847
Field coil resistance.	250 ohms 250 ohms
Voice coil impedance (400 cycles).	5.7 ohms 5.4 ohms
Output transformer.	None $5,000 / 3$ ohms

Meinod for Removing Chassis from Cabinet

Model CR-193 radio chassis is designed for easy removal from the cabinet in which it is installed. As the radio panel is permanently fastened to the chassis, the control knobs need not be removed when the chassis is taken out of the cabinet for service.

To remove the chassis, first remove the antenna leads from their terminals and all plugs from the receptacles on the rear of the chassis. Then remove the two Phillips-head screws from the angular slots in the flange at the rear of the chassis. Lift the rear of the chassis about one inch and pull it straight back. Never remove the chassis tray from the cab-inet-it has been properly positioned to bring the radio panel in place when the chassis is replaced. In replacing the chassis, slide it so that the small hooks near the front, ride inside the flanges on the
sides of the chassis tray. Push the chassis forward as far as it will go and the hook should then engage the slots in the chassis tray. Replace the two Phillipshead screws and nuts and tighten securely. Replace all plugs in their receptacles and the antenna leads on their correct terminals. The antenna terminal board for the loop antenna connections is designated S-L-H. The end of the short wave antenna that is fastened to the inside of the cabinet connects to S . Always disconnect this antenna from terminal S when an outdoor antenna is used as it may pick up noise. The two terminals on the loop are designated L and H . The leads connected to these terminals should be wired to the corresponding terminals (L and H) on the chassis.

AHIGNMENT PROCEDURE

The alignment of this receiver requires the use of an accurately calibrated r-f signal generator and an output meter. All trimmer condenser locations are shown on the chassis layout diagram, Figure 5. The radio volume control should be turned to maximum and the signal generator output kept as low as possible during alignment to prevent the AVC from operating and giving false readings. Always set the Selectivity Switch to SHARP TUNE before aligning the i-f stages. This is done by turning the Treble Control counter-clockwise as far as possible.

I-F ALIGNMENT

1. Connect the output of the signal generator to the oscillator grid (pin No. 5) of the 6SA7 tube through a .00025 mfd . capacitor. The ground on the signal generator should be connected to the radio chassis ground.
2. Turn the condenser gang until it is completely meshed, (low-frequency end of dial calibration) and set the band selector switch to BDCST as for broadcast band reception.

CHASSIS CR-193

3. Adjust the signal generator to EXACTLY 455 kc . and peak the second i-f transformer and the first i-f transformer trimmers in that order.

On early models of the CR-193 chassis, the two i-f trimmers are loçated in the top of the respective i-f transformers. In later production, one trimmer is accessible from the top and the other from the bottom of each transformer as shown in the layout diagram, Figure 5.

BROADCASTBAND ALIGNMENT

1. Remove the signal generator lead from the 6SA7 grid and connect it to the radio antenna terminal through the .00025 mfd . capacitor. The ANT-LOOP switch (70) must be in the ANT. setting.
2. Check the tuning dial pointer adjustment, When the plates of the tuning condenser are completely meshed, the dial pointer must be in line with the last calibration mark at the low frequency end of the dial. If it is not, loosen the set screws in the hub of pulley " D " shown on Figure 1 and make the necessary adjustment.
3. With the band selector still set for broadcast band reception, adjust the signal generator and the radio receiver to 600 kc . While rocking the gang condenser a few degrees to the right and to the left, adjust the 600 kc . oscillator padder for maximum indication on the output meter.
4. Set the signal generator and the radio receiver to 1400 kc ., adjust the 1400 kc . oscillator trimmer and the 1400 kc . antenna trimmer for maximum output. If considerable adjustment was necessary, recheck the 600 kc . padder setting.
5. If the loop antenna trimmer is out of adjustment it should be set after the radio chassis is in the cabinet. Set the ANT-LOOP switch (70) to the LOOP position. Adjust the signal generator to 1400 kilocycles and connect its output to a loop containing approximately five turns of wire eight inches in diameter placed eighteen inches from the receiver loop and in the same plane.
6. Set the receiver to 1400 kc . and adjust the trimmer on the receiver loop for maximum output.

SHORTWRVEBAND ALIGNMENT

1. Set the band selector switch to SW as for short wave reception and substitute a 400 ohm resistor for the capacitor in series with the signal generator lead connected to the antenna terminal on the receiver. 2. Set the signal generator and the radio receiver to 15 mc .; then adjust the 15 mc . oscillator trimmer and the 15 mc . antenna trimmer for maximum output. While adjusting the 15 mc . oscillator trimmer two peaks may be observed; only one is the correct peak
for 15 mc . alignment. Screw in the trimmer to max imum capacity-then decrease the capacity until the first peak is observed. This is the correct one.

10 KC FILTER ADJUSTMENT

This chassis incorporates a 10 kc . filter circuit to eliminate the beat note heard as a whistle between stations on the broadcast band. If the trimmer is out of adjustment, the following procedure should be observed.

1. Set the Selectivity Switch to FULL RANGE by turning the Treble Control knob clockwise as far as possible.
2. Connect the output of an audio oscillator to the phonograph pickup socket on the radio chassis and adjust the oscillator to EXACTLY 10,000 cycles.
3. Set the band selector to PHONO and adjust the 10 kc . trimmer (7) for minimum output.
4. If an audio oscillator is not available for making this adjustment, set the band selector to BDCST, connect an antenna to the receiver and set the gang condenser to a point between two stations on adjacent channels having approximately the same power. If the 10 kc . trimmer is out of adjustment, a whistle will be heard. Adjust the trimmer until the whistle is eliminated.

Special service INFORMATION

The following information is provided for the service man who has a vacuum tube voltmeter or a simliar measuring instrument available.
STAGE GAINS*

Antenna Post to Converter Grid α t:
600 kc .
. 5.5

6 mc .
2.0

R-F on Converter to I-F Grid at:
600 kc .28
6 mc
I-F on Converter Grid to I-F Grid at: 455 kc 34
I-F Grid to Detector Plate at: 455 kc 67
AUDIO GAIN

Voltage required across Volume Control to produce .05 watt speaker output** at 400 cycles is .010 volt with Band Selector Switch in BDCST setting. OSCILLATOR OUTPUT VOLTAGE
The DC voltage developed across Oscillator Grid Resistor (48) at:

600 kc . 5.6 6 mc . 6.0

* Variations of $\pm 20 \%$ are permissible. All readings made with sufficient input signal to provide .05 watt speaker output.
provide . 05 watt speaker output. by a high resistance AC voltmeter across the voice coil of either speaker.

DIALCORD REPLACEMENT

Rotate the brass pulley designated " A " in Figure 1 until the dial pointer strikes the stop at the high frequency end of the dial calibration. In this condition the slot in pulley " A " should be approximately ten degrees to the left of being vertical-see Figure 1. If the slot in the pulley is in some other position under the above mentioned conditions, the pointer set screw is probably loose and has allowed the pointer to slip.
To correct this condition, first remove the glass dial and loosen the pointer screw. Then while holding pulley " A " so that its slot is approximately ten degrees to' the left of vertical (when viewed from the rear) adjust the pointer until it is resting against the stop at the high frequency end of its travel. Then tighten the pointer set screw securely and replace the glass dial.
Completely unmesh the condenser gang and check the location of the hole or slot in pulley "D.' If this hole is not approximately 45 degrees back from vertical as shown on Figure l, loosen the two No. 6 Allen set screws in the hub of pulley " D " and slip the pulley on its shaft (while holding the condenser gang unmeshed) until the specified adjustment is obtained; then tighten one of the set screws securely. It will be shown later that this is a temporary setting. Next, tie a double knot in the exact center of a 25 -inch length of dial cable and fold the cable back on itself so that the knot is at one end. The correct method for tying this knot is shown as an inset on

Figure l. Grasp the cable near the knotted end and slide it into the pulley slot so that the knot is against the inside rim of the pulley as shown in the sketch. The piece of cable nearest the dial frame should be wound in the direction shown for one-half turn; then over the lower pulley " B ,' around the bottom of the large pulley " D " and into the hole. Pull the cable taut and wrap the end around the small hook on pulley " D " temporarily.
The remaining piece of cable should be wound around pulley " A " in the direction shown, for one complete turn, over the upper. pulley "C", and over the top of pulley "D.' Thread the end through the small hole in pulley "D" and pull both ends of the cable taut. With one end of tension spring " E " fastened to the hook on pulley "D" lace the two free ends of the cable through the opposite end of the spring and tie a knot at a point that will allow $1 / 4^{\prime \prime}$ to $5 / 16^{\prime \prime}$ of cable between the spring and the inside rim of pulley "D.' Be sure to tie the knot around one coil of the spring in the manner shown.
Now with the condenser gang completely meshed, check the position of the dial pointer. If it is not in line with the last calibration mark at the low frequency end of the dial, loosen the set screw in pulley " D " and turn it until the pointer is in the specified position. Be sure that the condenser gang does not move during this adjustment. Then tighten the two screws in pulley " D " securely completing the operation.

CONDENSERGRNGDRIVE ADJUSTMENTS

Whenever any of the mechanical parts in the condenser gang drive assembly require replacement due to rough handling or for any other reason, it is extremely important that clearances and adjustments shown on Figures 2 and 3 are affected; otherwise the tuning mechanism will be sluggish or it may slip during operation.
In reassembling the mechanism after any part was replaced, follow the procedure outlined below: 1. Assemble the Tuning Shaft, Drive Collar, Compression Spring, Spring Retainer and Flywheel in the manner shown on Figure 3. The Tuning Shaft must extend $3 / 4^{\prime \prime}$ from the front of the assembly and that the spacing between the rear of the Drive Collar and the front of the Flywheel must be $3-5 / 64^{\prime \prime}$ as specified on Figure 2. Any excess length in the Tuning Shaft may extend beyond the rear of the Flywheel.
3. While pressing down on the Treadle Bar at the location shown on Figure 3, adjust the Thrust Bracket until the clearance between the rear of the Flywheel and the projection on the Thrust Bracket is . $010^{\prime \prime}$ as shown on the diagram. To make this adjustment, loosen the two No. 6 Allen set screws (use No. 6 Allen Wrench-Magnavox Part No. 800044G2) in the hub of Thrust Bracket and rotate the bracket until the specified clearance is obtained when the push buttons are NOT actuated. Tighten the two screws securely when the adjustment is completed. Press each push button and check that the Drive Collar is pushed away from the rubber-tired Drive Wheel.
4. Next, adjust the clearance in the muting switch contacts by turning the Phillips-head screw designated Adjustment " A " on Figure 2, until the specified clearance of $.025^{\prime \prime}$ is obtained (when the push but-

FIGURE 2
2. The distance between the rubber-tired Drive Wheel and the smaller diameter section of the Spring Retainer must be $1 / 32^{\prime \prime}$ to $1 / 16$.' This adjustment is effected by loosening the two No. 6 Allen set screws in the Drive Wheel hub and sliding the wheel on its shaft until the required clearance is obtained. When the adjustment is completed, tighten the two screws in the hub of the Drive Wheel. See Figure 3.
tons are NOT actuated.)
5. While pressing any one of the push buttons in as far as possible, turn the screw designated. Adjustment " B " (Figure 3) until a minimum clearance of $.015^{\prime \prime}$ is obtained between the front surface of the Drive Collar and the switch spring directly in front of it. This setting should also cause a minimum clearance of $.010^{\prime \prime}$ between the switch contacts actuated
by pressure of the front surface of the Drive Collar, when the Tuning Shaft is pulled out. The function of this switch is to open the muting circuit when setting up the push buttons. As its contacts are wired in series with the large muting switch (contacts are shorted by pressing any push button), pulling out on the Tuning Shaft causes the small switch contacts to open the muting circuit so that a station can be heard while the push button is held in and tightened. On rare occasions it may be necessary to adjust the
relation between the push button bars and the Treadle Bar. Such adjustment might be required if when pushing any of the push buttons, sufficient motion is not transmitted to the Treadle Bar to cause a disengagement between the Drive Collar and the Drive wheel.
This can usually be accomplished by loosening the two screws designated " C " and " D " on Figure 3, and moving plate " B " in the direction required to correct this condition.

FIGURE 3

MAGNAVOX PAGE 23-31

PARTSIIST

REFERENCE

Model 9030 Radio-Phonograph

GENERAL FEATURES

The Model 9030 is a combination designed for the reception of radio broadcast programs and reproduction of phonograph records, television or other external sound. The combination includes: (1) radio-phono chassis, (2) record changer, and (3) high fidelity loudspeaker.

TECHNICAL DATA

Power Input

100 watts at 117 volts, 50-60 cycles. (Phono motor 60 cycles, 25 watts additional.) Tube Complement

Seven including one rectifier: (1) 6BE6 osc. converter, (1) 6BA6 I.F. amplifier, (1) 6 SQ7 detector 1st audio, (1) 6SN7 phase splitter, (2) 6V6 power amplifier,
(1) 5 Y3GT rectifier.

Tuning Range
AM - 540-1600 kc
Speaker
10 inch high fidelity PM type.
Controls
Five - station selector, function switch, on-off bass control, volume control,treble control.

INSTALLATION

The Model 9030 Radio-Phonograph comes complete with all equipment installed and ready for operation after taking the following precautions:

1. Remove any packing material which may be used to hold the tubes in place.
2. Remove any tape or rubber bands which may be holding the pickup arm and accessories in place.
3. Insert the a.c. line plug into convenient electrical outlet.

The large center knob adjusts the receiver to the desired station. The dial pointer follows the rotation of the knob and indicates the frequency to which the receiver is tuned. Assigned frequencies of AM broadcast stations are on the radio page of your newspaper.

Volume Control
The knob directly to the left of the large station selector knob adjusts the volume of sound. Turn clockwise to increase volume and counter-clockwise to decrease volume. The control is designed to give smooth and gradual control of sound volume.
Function Switch
The knob directly to the right of the large station selector knob adjusts for the various functions desired. As indicated on the front escutcheon panel the positions are AM, TV and Phono. Turn to desired position.

Treble Control

The second knob to the left of the station selector controls the amount of high audio tones to be reproduced. Turn clockwise to increase high tones or counterclockwise to decrease high tones. Set for individual preference.

Off-On Bass Control

This knob is the second knob to the right of the station selector. This control regulates the amount of low frequency or "Bass'" response to be reproduced. Turn clockwise to increase Bass response and counter-clockwise to decrease. Set for individual preference.

TUNING THE RECEIVER

To receive broadcast station programs proceed as follows:

1. Turn the knob marked 'Off-On Bass' clockwise about half way. The dial will illuminate indicating that the receiver is connected to the power source. Allow about thirty seconds as warm-up time for tubes.
2. Turn the function switch to AM position.
3. Turn the large station selector knob to a dial number of a local station.
4. Turn the volume control clockwise slowly to the desired level. Re-adjust the station selector knob until reception is clearest.
5. Adjust the "Bass"' and "Treble"' controls until the reproduction is most pleasing.

For phonograph or TV sound operation turn the function knob to the desired position and use Volume, Bass \& Treble controls as described.

FUSE REPLACEMENT

A fuse is provided for the protection of the receiver against excessive power line voltages or failure of any component which would cause heavy current drain and fire hazard. CAUTION: Always replace the defective fuse with one of the same rating. If the fuse continues to blow after replacement, remove the receiver chassis for examination and service by qualified personnel. The fuse is accessible at the rear panel of the chassis.

A license and rating label located on the cabinet wall gives the tube socket locations. Consult this chart when testing or replacing tubes. I.F. Alignment -455 kc

1. Connect suitable output meter with 8 ohm shunt load across speaker terminals located on rear of chassis.
2. Connect signal generator "hot side"' through a . 01 mfd . paper condenser to pin 7 on the 6BE6 socket. Connect generator ground to receiver chassis. Bass, Treble and Volume in maximum position.
3. Set signal generator to 455 kc and receiver dial to 1600 kc . Adjust T2 Top and Bottom Cores for maximum output. Adjust T1 Top and Bottom Cores for maximụm output. Always keep generator output at low level to assure sharp tuning of the cores. Repeat procedure until no increase in output is noted.

VOLTAGE CHART

Tube	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8
6BE6	-15	0	A.C. 6.3	0	140	140	0	--
6BA6	.3	0	A.C. 6.3	0	130	140	1.6	--
6SQ7	0	-1	0	-5	-5	70	0	A.C. 6.3
6SN7	0	80	3	22	120	30	0	A.C. 6.3
6V6	0	0	230	240	6	30	A.C. 6.3	13
6V6	0	0	230	240	1.7	120	A.C. 6.3	13
5Y3GT	270	--	A.C. 280	--	A.C. 280	--	270	--

All voltages taken with Voltohmyst or equivalent VTVM between indicated pin and chassis frame. Unless indicated, voltages are d.c. and positive in respect to chassis.

Line voltage - 117 V a.c.
Selector switch in AM position with no signal input.
R.F. Alignment

1. Connect signal generator "hot side" loosely to the loop antenna coil.
(Clipping to the sleeving about $1 / 4^{\prime \prime}$ from coil winding gives adequate coupling.) Output meter connections remain the same as for I.F. alignment. Bass, Treble and Volume controls in maximum positions.
2. Set signal generator and receiver dial to 1600 kc . Adjust C 1 trimmer on tuning gang for maximum output.
3. Set signal generator and receiver dial to 600 kc . Remove tape from Ferrite Rod coil L1 and slide to a position giving maximum output. Secure coil with tape after adjustment.
4. Set signal generator and receiver dial to 1400 kc . Adjust C2 trimmer on tuning gang for maximum output. Repeat steps $3 \& 4$ until uniform sensitivity is obtained across the entire tuning range.

PART NO.
ALA-10032A
CC-15500
CM-15680
CC-15101
CCX-10005
CL-10075
CM-15391
CM-15430
CMX-10002
CVB-10028
DB-10000
DD-10015
DD-10016
DDA-10017
DI-10012
DM-10002
DP-10015
DSB-10119
FA-10000
KA-10131
KA-10132
RX-10030
TOB-10059
TP-10021
TRC-10026
TSA-10058
VCA-11110
VCA-11111
VCA-11112
VSA-10021A
6BE6
6BA6
6SQ7
6V6
5 Y 3

DESCRIPTION

Antenna Ferrite Rod
50MMF 500V. Ceramic Condenser
68MMF 500V. Ceramic Condenser 100 MMF 500 V . Ceramic Condenser 2 X 100MMF 500V. Condenser Ceramic Electrolytic Condenser 40-20-40-450V
Mica Cap. 390MMF 500V
Mica Cap. 430MMF 500V
Herlic .005MFD 500V Condenser
Cond. Variable 2 Gang AM
Lamp-6-8V . 150 Amp .
Idler Pulley Shaft
Dial Shaft Collar
Shaft-Dial Drive
Dial Pointer
Dial Cord Tension Spring
Dial Idler Pulley
Dial Glass With Calibration
Fuse-3 Amp. 3 AG
Knob-Brown-Red Arrow
Knob-\#3000-Brown
Wire Wound Resistor-2500 Ohm 10 Watt
Output Transformer
Power Transformer
AM-Oscillator Coil
IF-AM Coil
Pot. Volume . 5 Meg .
Pot. Treble .5 Meg .
Pot. Bass Off \& On . 5 Meg .
Switch Selector
Tube
Tube
Tube
Tube
Tube

MECK PAGE 23-5
MODEL 9030

PAGE 23-2 MITCHELL

TO TURN RADIO OFF AUTOMATICALLY WHEN RETIRING AND AWAKEN TO
Set controls as in Illustration 1 and set "Sleep" knob as in Illustration 4.
TO TURN RADIO OFF AUTOMA TICALLY WHEN RETIRING AND AWAKEN TO
Set controls as in Illustration 2 and set "Sleep" knob as in Illustration 4.
TO TURN RADIO OFF AUTOMA TICALLY WHEN RETIRING, AWAKEN TO
Set controls as in Illustration 3 and set "Sleep" knob as in Illustration 4.
TO AUTOMATICALLY TURN ON RADIO AND EXTERNAL ELECTRICAL
APPLIANCE.
Insert plug of appliance into the electrical outlet provided at rear of receiver and set clock controls as in Illustration 1.
This feature may be used with any electrical appliance which operates on a 110-120 volt, 60 cycle power supply and which DOES NOT EXCEED THE
WATTAGE RATING FOR THE OUTLET SHOWN ON THE CABINET BACK. Current is available at this outlet whenever the radio is turned on.
TO TURN RADIO AND A.PPLIANCE OFF AUTOMATICALLY.
The controls may be set to turn off the radio and appliance at any time up
to 60 minutes after the original starting time. to 60 minutes after the original starting time.
To use this feature, simply plug in the appliance, turn the AUTO-OFF-ON
SWITCH KNOB to the "OFF" position rotate the "Sleep" knob in a clockwise direction for the length of time required.
Precise time setting with this "Sleep" control will require practice. ALIGNMENT

CARE MUST BE TAKEN NOT TO BOW SHADE MORE THAN NECESSARY.

SERVICE DATA

Lack of sensitivity and poor tone quality may be due to any one or a combination of causes such as weak or defective tubes or speaker, open or grounded bias resistor, bypass condenser, etc. Never attempt to realign set until all other possible sources of trouble have been first thoroughly investigated and definitely proved not to be the cause.
NOTE: IT IS ABSOLUTELY NECESSARY THAT AN ACCURATELY CALIBRATED TEST OSCILLATOR WITH SOME TYPE OF OUTPUT MEASURING DEVICE BE USED WHEN ALIGNING THE RECEIVER AND THAT THE PROCEDURE BE CAREFULLY FOLLOWED, OTHERWISE THE RECEIVER WILL BE INSENSITIVE AND THE DIAL CALIBRATION WILL BE INCORRECT. THE TRIMMERS WILL BE REFERRED TO BY THEIR FUNCTION AS INDICATED ON THE PARTS DIAGRAM.

ALIGNMENT PROCEDURE

$\begin{aligned} & \text { STEP } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { POSITION } \\ \text { OF } \\ \text { GANG } \end{gathered}$	SIGNAL GENERATOR frequency	GENERATOR CONNECTION	DUMMY ANT FNNA	adjustment	TYPE OF ADJUSTMENT
1.	Open	$455 \mathrm{KC}$.	$\begin{gathered} \text { Rear } \\ \text { Gang } \\ \text { Terminal } \end{gathered}$. 1 mfd .	I.F. Slugs	Adjust for Haximum Uutput
2.	Open	$1620 \mathrm{KC}$.	Dummy Antenna	2 Turns of Hookup Wire $2!$ ' in Dia. (Place Approx. a Foot from \& parallel to loop.)	$\begin{gathered} \text { Front } \\ \text { Gang } \\ \text { Trimmer } \end{gathered}$	Adjust for Maximum Output
3.	$1400 \mathrm{KC}$.	$1400 \mathrm{KC}$.				Adjust for Maximum Output
4.	$600 \mathrm{KC}$.	$600 \mathrm{KC}$.				Check Gang Alignment

REF. No.	PART No.
C1,C4,C7	N-1345
C2;C5	$\mathrm{N}-8801$
C3,C6	-
C8	$\mathrm{N}-6015$
C9	Part of
C10,*C12	$\mathrm{N}-4894$
*C11	$\mathrm{N}-6988$
C13	$\mathrm{N}-1344$
C14	$\mathrm{N}-1346$
C15)	$\mathrm{N}-8873$
C16)	
R1	$\mathrm{N}-4025$
R2;R10	$\mathrm{N}-1262$
R3	$\mathrm{N}-6485$

description		
Condenser, Paper . 05 MFD. 200 V .		
Condenser, Gang Tuning		
Trimmers on Gang Condenser		
Condenser, Ceramic	100 MMFD.	500 V. 20\%
N-8796 2nd I.F. Coil		
Condenser, Paper	. 005 MFD .	600 V.
Condenser, Ceramic	250 MMFD.	500 V .
Condenser, Paper	. 01 MFD.	400 V .
Condenser, Paper	. 05 MFD.	400 V .
Electrolytic	(50 MFD.	150 V.$)$
	(30 MFD.	150 V.$)$
Resistor 22,000 Oh	22,000 Ohms 1/2 Watt 20\%	
Resistor 1.0 Mego	1.0 Megohm $1 / 2$ Watt 20%	
Resistor 68 Oh	68 Ohms 1/2.Watt 10\%.	

REF. No.	PART NO.	DESCRIPTION
R4	$\mathrm{N}-7890$	Volume Control with switch 0.5 Megohm
R5	$\mathrm{N}-4028$	Resistor 6.8 Megohms 1/2.Watt 20\%
${ }^{*} \mathrm{R} 6$	$\mathrm{N}-4026$	Resistor 220,000 Ohms $1 / 2$ Watt 20%.
*R1	$\mathrm{N}-4027$	Resistor 470,000 Ohms $1 / 2$ Watt 20% -
R8	$\mathrm{N}-4024$	Resistor $\quad 220$ Ohms 1/2.Watt 10%
R9	$\mathrm{N}-4900$	Resistor 1200 Ohms 1.0 Watt 10%.
R11	$\mathrm{N}-4068$	Resistor $\quad 33$ Ohms 1.0 Watt 20\%
	N -8247	Speaker, 3\%/2 P.M.
L1	$\mathrm{N}-8795$	Loop Coil
L2	$\mathrm{N}-8797$	Oscillator Coil
Tl	$\mathrm{N}-7981$	1st I.F. Transformer
T2	$\mathrm{N}-8796$	2nd I.F. Transformer
T3	N -7899	Output Transfomer

* Some sets were produced with an Audio Couplate, part number N-8215, to replace resistors (Illus. No. R6 and R7) and Condensers (Illus. No. C11 and C12).

	$$			
空弯	$\underset{\sim}{\text { ®ü }}$			
든흘 를 룽				
	$\begin{aligned} & \text { ن} \\ & \text { in } \\ & \text { n } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { u } \\ & 0 \\ & 0 \\ & \end{aligned}$	0 4 8 	0 0 8 8 8
	$\begin{aligned} & \text { ⿷匚⿱丷天心 } \\ & 0 \end{aligned}$	－	0 O 0	0 0 0 0 0
受울	$\stackrel{\sim}{\sim}$	$\dot{\sim}$	\cdots	4

CONTROLS AND OPERATION

BOTTOM KNOB．（Manual Volume Control and＂On－Off＂Switch）．Turn this knob to the extreme right．Wait about a minute for the tubes to become heated．When
signal comes in adjust volume as desired．

TOP KNOB．（Station Selector）Move the knob over a narrow range of the dial at a point where the desired station is located，until the station is received with use the station selector to adjust volume as this practice results in distorted toine quality and deficient bass response．The Volume Control only is to be used
for this purpose．For maximum clarity the indicator should be adjusted to the center of the area covered by the station being tuned．

TUNING RANGE

This receiver is designed to operate over the standard broadcast band which extends from 540 to 1600 Kilocycles（KC）．

DIAL CALIBRATION．The scale is calibrated from 55 to 160 （Standard Broad－ cast）．This band covers all Standard Broadcast frequencies of the United States，
Canada，Mexico，Cuba and many Central and South American Countries．Add a zero to figures on the scale to obtain kilocycles． Before connecting the set，be sure that your home is wired for the voltage and
 the wrong type of current will result in improper operation or damage．

POWER SUPPLY．This receiver is designed to operate on any alternating cur－ rent supply（AC）ranging from current supply（DC）ranging from 110 to 120 volts．

CONNECTING THE SET

SPECIAL INSTRUCTIONS FOR DC OPERATION．When operating from a DC （direct current）power supply，it may be necessary to reverse the power cord dition of a direct current supply．If the receiver fails to perform after being turned on one minute，simply reverse the power plug．

TUBES．Four tubes（including rectifier）are used．Type numbers and locations
are shown in the tube location diagram on the cabinet back．
ANTENNA．This receiver has a built－in＂loop＂aerial．Its excellent design is such as to increase pick－up from stations having wide variations in signal strength．
The efficiency and selectivity of the loop provide outstanding reception without the use of an external aerial．The＂loop＂aerial used on this receiver is somewhat directional so reception from weak stations can be improved by turning the set
in the proper direction． in the proper direction．

GROUND．No ground connection should be used when operating this receiver．
The receiver gets its ground connection through the power line and any external The receiver gets its ground connection through the power ine and any exter
connection to the chassis may cause a short circuit and consequent damage．

MODELS 1258, 1259,

1266, The Rondeau

Resistor - 2.2 Megohm - $1 / 2$ Watt - 20%
Volume Control 2.0 Megohm

Resistor - 6.8 Megohm - $1 / 2$ Watt - 20% Resistor $-6.8 \mathrm{Megohm}-1 / 2 \mathrm{Watt}-20 \%$
Resistor
$82828 \mathrm{Ohms}-2.0$ Watts -10% Resistor - 220,000 Ohms - $1 / 2$ Watt - 20%
Resistor - $\mathbf{~ W 7 0 , 0 0 0 ~ O h m s ~ - ~}$ Resistor - $\quad 180$ Ohms - $1 / 2$ Watt -10%
Resistor - $\quad 2,200$ Ohms - $1 / 2$ Watt -10% Coil - 1st, I.F.
Coil - Loop Antenn

Speaker - 4" PM with Transformer

PARTS LIST
$\mathrm{N}-4277$
$\mathrm{~N}-7142$

N
1
Z

 Capacitor - Paper
Capacitor - Paper
Capacitor - Cerami Capacitor - Ceramic
Capacitor - Ceramic

Capacitor - Paper
Capacitor - Paper

$\mathrm{N}-8832$
$\mathrm{~N}-8681$ N-7824 Capacitor - Ceramic 50 MMFD. 500 Volts $10 \% \left\lvert\, \begin{aligned} & \text { R1 } \\ & \text { R2 }\end{aligned}\right.$

SL98-N
S8E9-N
 $\mathrm{N}-4894$
$\mathrm{~N}-1344$ zZZ

C 1
$\mathrm{C} 2, \mathrm{C} 5$
C 4
C 7
C 8
*C9
*C10
C11
C12
C13)
C14)
C15)

MONTGOMERY WARD PAGE 23-1

GENEIEAL HESCIEIPTIUN

The above mentioned models are a 5 tube, AC/DC superheterodyne receiver, designed to operate on 115 volts. The sets contain a built-in loop antenna and will operate in the standard broadcast band of 540 to 1600 kilocycles.

The only difference between the B and C series letter at the end of each model number is the rectifier tube being used. The B series sets use a $35 Z 5$ rectifier tube while the C series sets use a $25 Z 6$.

ALIGNMENT PRIDCEIDURE
Dial Stringing Diagram

- Loop must be connected and volume set to maximum.

463-1

SIGNAL GENERATOR				TUNER SEtting	ADJUST FOR MAXIMUM OUTPUT
Frequency	Coupling Capacitor	Connection to Radio	Ground Connection		
455 kc.	. 1 mf	12BE6, Pin 7		Capacitor fully open (plates out of mesh)	Top and bottom Cores in output and input $`$ I.F. cans
1620 kc.	. 1 mf	12BE6, Pin 7		Capacitor fully open (plates out of mesh)	Oscillator trimmer C1-D on gang
535 kc.	. 1 mf.	12BEb, Pin 7		Capacitor fully closed	Check for adequate range
1400 kc.		Lay generator lead near back of cabinet		Tune in 1400 kc . signal	Antenna trimmer $\mathrm{C}-1 \mathrm{C}$ on gang

PAGE 23-2 MONTGOMERY WARD
MODELS 05BR-1525B, C -1526B, C, 05BR-1531B, C, 05BR-1532B, C

notice:
THIS MODEL USES ONE OF THE TWO RECTIFIER CIRCUITS SHOWN.

SCHEMATIC DIAGRAM

IMPORTANT-All prices in this literature are subject to change without notice and are subject to an additional charge to cover any applicable sales tax, use, occupation, or other tax affecting our purchase or sale of merchandise.

MONTGOMERY WARD PAGE 23-3 MODELS 15BR-1525D, 15BR-1526D, 15BR-1531D, 15BR-1532D

SERVICE DATA

Power Supply 115 volts, DC or 50-60 cycle AC,24 watts.	
Frequency Range 540	540 to 1600 Kc.
Intermediate Freq. 455	455 Kc .
Selectivity At	At 1000 Kc., 60 Kc . at $1000 \times$ signal
Sensitivity................ 150 u. v. per meter.	
Power Output............ 0.8	0.8 watts undistorted, 1.0 watt max.
Loud Speaker............. 4"	4" PM., v.c. impedance, 3.2 ohms.
12BA6, IF Amplifier	25Z6, Rectifier
12AV6 or 12AT6,	
Detector, AVC, Audio	

50C5, Audio output 25Z6, Rectifier
 Detector, AVC, Audio

Dial Stringing Diagram

ALIGNMENT PROCEDURE

- Loop must be connected and volume set to maximum.

SIGNAL GENERATOR				TUNER SETTING	ADJUST FOR MAXIMUM OUTPUT
Frequency	Coupling Capacitor	Connection to Radio	Ground Connection		
455 kc.	. 1 mf	12BE6, Pin 7		Capacitor fully open (plates out of mesh)	Top and bottom Cores in output and input I.F. cans
1620 kc.	. 1 mf	12BE6, Pin 7		Capacitor fully open (plates out of mesh)	Oscillator trimmer C1-D on gang
535 kc.	. 1 mf .	12BE6, Pin 7		Capacitor fully closed	Check for adequate range
1400 kc.		Lay generator lead near back of cabinet		Tune in 1400 kc . signal	Antenna trimmer C-1C on gang

PAGE 23-4 MONTGOMERY WARD

MODELS 15BR-1525D, 15BR-1526D,
 15BR-1531D, 15BR-1532D

Please specify part number and Model Number when ordering replacements.

[^15]

GENERAL DESCRIPTION

This is a four tube (plus rectifier) AC operated Radio or Record player. The record playing mechanism is designed to play any of the 33,45 , or 78 RPM records. Ten or twelve inch records may be intermixed provided they are of the same type.
INSTALLATION

PREPARING FOR OPERATION

Shipping Boits: Before placing in operation, the changer must be floated freely on the mounting springs. During shipping, the mechanism is secured by means of two machine screws on either side of the base plate. These two screws are to be loosened sufficiently to allow the changer to float freely on its springs.

Location: The phonograph should be placed on a level surface convenient to an electric outlet. Do
not place the phonograph near a radiator, or other heater, since certain elements may be damaged.

Power Sukply: This phonograph is designed for operation from 105-125 volt, 60-cycle alternating current (ac) supply only. If you are not sure of the power voltage and frequency at your home, your power company will furnish the information.
ELECTRICAL SPECIFICATIONS

Remove two wood screws holding back board. This will expose the antenna. Remove antenna plug.

Remove two wood screws holding back of chassis. Remove two nuts holding front panel. Chassis may now be removed.

ALIGNMENT PROCEDURE

The following equipment is required for aligning: A signal generator which will provide an accurately calibrated signal at the indicated test frequencies; an output indicating meter; a nonmetallic screwdriver.

Radiation Loop: 2-turn loop, 6 inches in diameter.
Conditions for Alignment:
Tone - Treble
Volume - Maximum
Selector Switch - "Radio" position
Test loop coupled loosely to receiver by spacing - receiver loop in same position as it will
be with chassis in cabinet.

HOW TO REPAIR ORDER PARTS

Repair Parts may be ordered from your nearest Wards Retail Store, Catalog Order Office, or Mail Order House. To have your order filled promptly and correctly, please furnish the following information:

1. MODEL NUMBER which appears on nameplate.
2. PART NUMBER AND NAME OF PART (see Re pair Parts List).

PARTS LIST							
SCHEMATIC LOCATION	$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	LIST PRICE	SCHEMATIC LOCATION	$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	LIST PRICE
		22,000 0 REM $1 / 2$ watt		R5, C12	813	.01 MF 5 Meg OHM Common Terminal Connection	\$. 54
R1	517	22,000 OHM $/ 2$ hatt	\$. 17			Common Terminal Connection	\$. 54
R2	615	2.2 Meg OHis $/ 2 \mathrm{Watt}$. 14	R10. C15	814	. $01 \mathrm{MF} 100,000 \mathrm{OHM}$. 54
R3		See Capristors		R10. ${ }^{\text {c15 }}$	814	Common Terminal Connection	. 54
R4	520	47 OHM 1/2 Watt	. 14			TRANSFORMERS	
R5		See Capristors		T1	1201	Output Transformer	2.26
R6	401	500,000 OHM Vol. Control		T3, T4	1402	I.F. Transformers	2. 00
		with Switch	1.12			MISCELLAVEOUS	
8.7	516	1 : eg OHM $1 / 2$ Watt	. 14	S1	401	On-Off Switch on Volume	
R8, R11	502	$510,000 \mathrm{OHM} 1 / 2$ Watt	. 14			Control	1.12
R9	408	500,000 OHM Tone Control	. 90	S2	407	Motor Switch on	
R10		See Capristors				Changer Assembly	
R12	505	150 OHM $4 / 2$ Watt	. 14	S3	1892	Radio-Phono Slide Switch	.36
R13	607.	1000 OHM 1 Watt	. 18	PL1	307A	Loop Antenna Plug	. 30
R14	602	270 OHM 1 Watt	. 18	PL2	307	Changer A.C. Plug	. 30
R15	534	$30 \mathrm{Ohm} \mathrm{1/2} \mathrm{W}$.	. 14	PL3	305	Pickup Plug	. 12
		CAPACITORS		RE1	106A	Loop Antenna Receptacle	. 30
C1, C2		Tuning Gang and Trimmer		RE2	106	Changer A.C. Receptacle	. 30
C3, C4	1004A	Assembly	4.96	RE3	104	Pickup Receptacle	. 22
C5, C6		Trimmer Condensors in		X1	2534	Pickup Cartridge EV-334	6.00
C7, C8		I.F. Cans.			62-349	. 0023 Needle	1.47
C9, C22	804	. 1 MFD. 200 V .	. 28	V2503BZ		Tone Arm less Cartridge	1.60
C10, C11		See Capristors		V-2917		Strengthener and Bracket	
C12		See Capristors				Assembly	. 64
C13	817	250 Maf. Ceramic	. 28	LS 1 - T1	2607	5' Speaker and Output	
C14	825	. 01 MF. Ceramic	. 40			Transformer	6.16
C15		See Capristors			2411	Knob	. 22
C17	824	. 005 MF. Ceramic	. 40	T2	1512	Loop Antenna	2. 25
C18, C 19	1003	40-40-20 MFD/ 150 Volts	2.34		1736A	Dial Pointer	. 22
C20, C16	1003	$20 \mathrm{MFD} / 25$ Volts			2307	Dial Bezel	. 32
C21	803A	. 05400 V . Tubular	. 28		2146	Front Panel	2.30
		CAPRISTORS			1722C	Dial	. 76
R3, C10	811	100 MRF. 50,000 OHM 100 MMF Dual Shunt Connection	. 72		.		

IMPORTANT - All prices in this literature are subject to change without notice and are subject to an additional charge to cover any applicable sales tax, use, occupation, or other tax affecting our purchase or sale of merchandise.

PARTS LIST
 WHEN ORDERING PART, STATE MODEL NO. OF RADIO AND PART NO.

Ref. No.	Part No.	Description	Price	Ref. No.	Part No.	Description	Price
		CONDENSER				RESISTORS	
CI-20-23	ACl	. $05-150 \mathrm{~V}$.	. 20	R8-9	AR7	$5.6^{\prime \prime}-1 / 2$ Watt	. 20
26				RIO	AR8	$2.2^{\prime \prime}-1 / 2{ }^{\prime \prime}$. 20
C2-C3	AMI	2 Gang Var.		RII	AR9	$15 \mathrm{~K}-1 / 2{ }^{\prime \prime}$. 20
C9-Cl0			1.60	R12-R13		$1 \mathrm{~K}-1 / 2 \quad$. 20
C4	AC2	. $1-150 \mathrm{~V}$.	. 25	R14	ARII	2.5 Meg. - $1 / 2$.	. 20
C5	AC3	$2-200 \mathrm{~V}$	35	R16	ARI2	1 Meg . - $1 / 2$. 20
Cs	AC3	. 2200 V .		R17	ARI3	25 OHM - 1	. 25
$\mathrm{C} 6-\mathrm{C} 7$	AC4	50 MFD-I 50 V. (C6-C7)	1.60	R18	ARI4	3000 " - 1	. 25
		3 Section Filter		R19	ARI5	470 " - 1/2 "	. 20
		Condenser	\cdots	R20	ARI6	2500 " - 10 "	. 60
C8	AC5	$50 \mathrm{MMF}-150 \mathrm{~V}$.	. 20	R21-R23	ARI7	360 " - 1/2 "	. 20
				R22	ARI 8	$510 \quad{ }^{\prime \prime}-1 / 2$. 20
$\mathrm{ClI}-\mathrm{Cl} 2$	\cdots	Ist I.F. Trimmers Part of T-I					
$\mathrm{Cl3-Cl4}$	\cdots	2nd I.F. Trimmers Part of T-2				MISCELLANEOUS	
$\mathrm{Cl}_{6-\mathrm{Cl}}^{7}$	AC6	100 MMF-150 V.	. 20	SP	AM2	4" Speaker with Output Trans.	4.20
				SR	AM3	Selenium Rectifier, 100 Mil .	1.80
C18-C19	AC7	. $005-150 \mathrm{~V}$.	. 20	TI-T2	AM4	I.F. Transformer	. 90
C21	AC8	. $01-150 \mathrm{~V}$.	. 20	\cdots	AM5	I.F. Trans. Mounting Clip	. 10
C22	A	.006-I50 V.	. 20	T3	AM6	Oscillator Coil	. 60
				S	AM7	Switch, "Electric-Battery"	1.00
C24	ACIO	. $05-400 \mathrm{~V}$.	. 25		AM8	Socket, Tube, Miniature	. 20
C25	ACII	100 MFD-25 V.	. 60		AM9	Socket, Tube, Octal	. 25
					AMIO	Dial, Tuning	1.20
					AMII	Knob, "AC-DC-Battery" or 'Volume"	. 25
R2-R15	ARI	$470 \mathrm{~K} \quad-1 / 2 \mathrm{Watt}$. 20			Specify Push on Knob or Set Screw Knob	
R3	AR2	1800 OHM - $1 / 2$. 20		AMI2	Loop Antenna	1.00
R4	AR3	$100 \mathrm{~K} \quad-1 / 2$. 20		A	Grill Cloth, Plastic	. 80
R5	AR4	$47 \mathrm{~K} \quad-1 / 2{ }^{\prime \prime}$. 20		AM14	Cabinet-Leatherette Covered	9.50
R6	AR5	$560 \mathrm{~K}-1 / 2$. 20		AMI5	Line Cord with Plug	. 50
R7	AR6	2 Meg . Vol. Control	. 80		AMI6	Battery Plug with Leads	. 50

HOW TO ORDER REPAIR PARTS

Repair Parts may be ordered from your nearest Wards Retail
Store, Catalog Order Office, or Mail Order House. To have
your order filled promptly and correctly, please furnish the
following information:

1. Model Number which appears on nameplate.
2. Part Number and Name of Part (see Repair Parts List).

IMPORTANT-All prices in this literature are subject to change without notice and are subject to an additional charge to cover any applicable sales tax, use, occupation, or other tax affecting our purchase or sale of merchandise.

MONTGOMERY WARD PAGE 23-11 MODELS 15GSL-1564A, 15GSL-1565A, 15GSL-1566A, 15GSL-1567A

ELECTRICAL SPECIFICATIONS

POWER SUPPLY - - 115 Volts, either DC or 50 to 60 cycles AC

FREQUENCY RANGE - 540 to 1600 kc
INTERMEDIATE FREQ. - 455 kc
SELECTIVITY - At $1000 \mathrm{kc}, 100 \mathrm{kc}$ at
1000 X signal.
SENSITIVITY - 3000 microvolts average for .05 watts output.

POWER OUTPUT -

$$
\begin{array}{ll}
\text { Undistorted } & -0.9 \text { Watt } \\
\text { Maximum } & -1.8 \text { Watts }
\end{array}
$$

LOUD SPEAKER - 4 Inch Round P.M.

VOICE COIL IMPEDANCE - $\begin{array}{r}3.2 \\ 400 \text { Ohms at } \\ \text { cycles. }\end{array}$

TUBE COMPLEMENT

$12 A U 6$	- Converter
12AV6	- Diode - 1st. Audio
$50 C 5$	- Power Output
$35 Z 5 G T$	- Rectifier

501A
TOP VIEW OF CHASSIS

ALIGNMENT PROCEDURE

The signal source must be an accurately calibrated signal generator capable of supplying 455 Kc and up to 1620 Kc signals modulated 30% with a 400 -cycle audio signal.
Volume control at maximum for all adjustments.

Align for maximum output. Reduce input as needed to keep output near 0:4 volts.

Loop antenna should be connected to receiver and in its proper position when making the adjustments.

SIGNAL GENERATOR				TUNER SETTING	ADJUST FOR MAXIMUM OUTPUT
FREQUENCY	COUPLING CAPACITQR	CONNECTION TO RADIO	GROUND CONNECTION		
455 Kc	. 05 Mfd .	Rear stator plates of tuning condenser.	Buss Lead	Any point near center where no interfering signal is received.	Slugs at top and bottom of I.F. Coil T-1
1620 Kc	. 05 Mfd .	Rear stator plates of tuning condenser.	Buss Lead	$\begin{aligned} & \text { Exactly } \\ & 1620 \mathrm{Kc} . \end{aligned}$	Oscillator trimmer of Gang. (C6)
1400 Kc	--	Lay Generator lead near back of cabinet	Buss Lead	$\begin{aligned} & \text { Exactly } \\ & 1400 \mathrm{Kc} . \end{aligned}$	Antenna trimmer of Gang. (C3)

MONTGOMERY WARD PAGE 23-13 MODELS 15GSL-1564A, 15GSL-1565A, 15GSL-1566A, 15GSL-1567A

HOW TO ORDER PARTS - Should it be necessary to write us or to order any repair parts, it is important that the complete model number which appears on the cabinet back of this
receiver be specified. Repair parts should be ordered from your nearest Wards Retail Store, Catalog Order Office or Mail Order House.

PARTS LIST

IMPORTANT: All prices in this literature are subject to change without notice and are subject to an additional charge to cover any applicable sales tax, use, occupation, or other tax affecting our purchase or sale of merchandise.

GENERAL DESCRIPTION

This is a two band, seven tube (plus rectifier tube) AM and FM receiver. Controls are provided at the front of the cabinet for tuning, volume, tone and band or phono selection. A phono input socket is provided at the rear of the receiver to which a record player may be connected. The l-F stages use high gain miniature type tubes. Air Wave Aerials are provided for the FM and Broadcast bands. Features include, a grounded grid R-F amplifier stage on the FM band, compensator circuits to prevent oscillator drift, automatic volume control, beam power output stage, P.M dynamic loud speaker and an electrostatic shield in the power transformer to reduce power line noise.

500A

ELECTRICAL SPECIFICATIONS

Power Supply \qquad 105-125 volts AC $50-60$ cycles, 40 watts.
Frequency Ranges............. Broadcast $540-1600 \mathrm{KC}$ Frequency Modulation 88-108 MC
Intermediate Frequency....AM-455 KC FM-10.7 MC
Selectivity \qquad AM-45 KC broad at 1000 times signal, measured at 1000 KC I.F. FM-200 KC broad at 2 times down I.F. FM-950 KC broad at 200 times down
AM Sensitivity \qquad (For .5 watt output with external antenna) 25 microvolts average
FM Sensitivity \qquad (For . 5 watt output) 25 microvolts average
Power Output............ 1.9 watts maximum 0.8 watts 10% distortion Loud Speaker............... $5^{\prime \prime}$ PM Dynamic
Voice Coil Impedance...... 3.2 ohms 400 cycles
Tube and Dial Lamp 1 12AT7 R-F Amplifier \& Mixer Complement 1 6BE6 AM Converter \& FM Osc. 1 6BA6 1st I-F Amplifier 1 6BA6 2nd I-F Amplifier 1 6AL5 FM Discriminator 1 6AVG Audio Amplifier, AM 2nd Detector and AVC 1 6V6GT Audio Output No. 47 Dectifier Lamps
DRIVE CORD REPLACEMENT DIAL POINTER CORD

Use a new 10X80 drive cord assembly or a new length of cord 52 inches long for the installation. Install the cord as shown in the illustration, winding three turns counter-clockwise around the drive shaft with the turns progressing toward the chassis. After completing the installation rotate the drive shaft a few turns to take up the slack in the cord.

ALIGNMENT PROCEDURES AM STAGES

The following is required for aligning:
An All Wave Signal Generator Which Will Provide an Accurately Calibrated Signal at the Test Frequencies as Listed.
Output Indicating Meter, Non-Metallic Screwdriver, Dummy Antennas -.1 mf , and 50 mmf .

Volume Control Maximum all Adjustments.
Connect Radio Chassis to Ground Post of Signal Generator with a Short Heavy Lead.
Allow Chassis and Signal Generator to "Heat Up" for Several Minutes.

SIGNAL GENERATOR				GANG CONDENSER SETTING	ADJUST	ADJUST FOR
FREQUENCY SETTING	CONNECT GENERATOR OUTPUT TO	THROUGH DUMMY ANTENNA	CONNECT GROUND TO			
455 KC	Control Grid 1st 6BA6 Pin No. 1	. 1 mf	Chassis Base	Rotor Fully Open	$\begin{aligned} & \text { 2nd I.F. Pri. (1) } \\ & \text { and Sec. (2) } \\ & \hline \end{aligned}$	Maximum Output
455 KC	Control Grid 6BE6 Pin No. 7 1st Det.	. 1 mf	Chassis Base	Rotor Fully Open	1st I.F. Pri. (3) and Sec. (4)	Maximum Output
455 KC	Control Grid 6BE6 Pin No. 7	. 1 mf	Chassis Base	Rotor Fully Open	$\begin{aligned} & \text { 2nd I-F Pri. (1) } \\ & \text { and Sec. (2) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Maximum } \\ \text { Output } \\ \hline \end{gathered}$
1620 KC	Control Grid 6BE6 Pin No. 7	. 1 mf	Chassis Base	Rotor Fully Open	Oscillator C-41	Maximum Output
1400 KC	External Antenna Terminal	50 mmf	Chassis Base	Turn Rotor to Max. Output. Set Pointer to 1400 KC See Note A	Antenna C-2	Maximum Output

NOTE A-If the pointer is not at 1400 KC on the dial, reset pointer to the $1400^{\circ} \mathrm{KC}$ mark on the dial scale.

FM STAGES

The following is required for aligning:
An accurately calibrated signal generator providing unmodulated signals at the test frequencies listed below.

Non-metallic screwdriver.
Dummy Aniennas and I-F Loading Resistor-2500 mmf, $\mathbf{3 0 0}$ ohms

Zero center scale $D C$ vacuum tube voltmeter having a range of approximately 3 volts.
(If a zero center scale meter is not available, a standard scale vacuum tube voltmeter may be used by reversing the meter connections for negative readings).
Allow chassis and signal generaior io "Heat Up" for several minuies.

SIGNAL GENERATOR			THROUGH DUMMY ANTENNA	BAND SWITCH SETTING	\qquad	ADJUST	ADJUST FOR
	FREQUENCY SETTING	CONNECT GENERATOR OUTPUT TO					
Discriminator	10.7 MC	6BA6 2nd I-F Pin 1 and Chassis	2500 mmf	FM	Rotor Fully Open	Disc. Pri. (5) Note A	Maximum Deflection
	10.7 MC	6BA6 2nd I-F Pin 1 and Chassis	2500 mmf	FM	Rotor Fully Open	Disc. Sec. (6) Note B	
I-F	10.7 MC Note C	6BA6 lst I-F Pin 1 and Chassis	2500 mmf	FM	Rotor Fully Open	2nd I-F Pri. (7) Sec. (8) Note D	Maximum Deflection
$\overline{\text { Discriminator }}$	10.7 MC	6BA6 1st l-F Pin 1 and Chassis	2500 mmf	FM	Rotor Fully Open	$\begin{gathered} \hline \text { Disc. Pri. (5) } \\ \text { Note D } \end{gathered}$	Maximum Deflection
I-F	$10.7 \mathrm{MC}$	Junction C-32A \& B (Dual 100 mmf cond.) And chassis	2500 mmf	FM	Rotor Fully Open	$\begin{aligned} & \hline \text { 1st I-F Pri. (9) } \\ & \text { \& Sec. (10) } \\ & \text { 2nd I-F Pri. (7) } \\ & \text { \& Sec. (8) } \\ & \text { Disc. Pri. (5) } \\ & \text { In Order Shown } \\ & \text { Note D } \\ & \hline \end{aligned}$	Maximum Deflection
	10.7 MC	Same as above	2500 mmf	FM	Rotor Fully Open	$\begin{gathered} \text { Disc. Sec. (6) } \\ \text { Note B } \end{gathered}$	
RECHECK I-F ADJUSTMENTS IN ORDER GIVEN							
Oscillator	108.5	Disconnect built-in dipole antenna and connect generator to dipole terminals with resistor in series.	300 ohms	FM	$\begin{aligned} & \text { Rotor Fully } \\ & \text { Open } \end{aligned}$	Osc. C-25	Deflection Maximum
Antenna	104.5	Same as above	300 chms	FM	Tune rotor for max. AVC voltag	Ant. C-39	Maximum Deflection

RECHECK ANTENNA \& OSC. ADJUSTMENTS IN ORDER GIVEN

FM ALIGNMENT NOTES

NOTE A-The zero center scale DC vacuum tube voltmeter is to be connected between chassis ground and the AVC line. A signai of .1 volt must be fed into the receiver for this adjustment.
Note output voltage on the zero center DC vacuum tube voltmeter.
NOTE B-Disconnect zero center DC vacuum tube voltmeter from AVC and connect it at the audio takeoff point at the

27 K ohm resistor ($\mathrm{R}-10$) and its junction with the terminal strip. Adjust for zero voltage indication.

NOTE C-AM I-F coils must be aligned before attempting to align the FM I-F coils.
NOTE D-Connect zero center DC vacuum tube voltmeter as in Note A. Adjust input to give same output on the zero center $D C$ vacuum tube voltmeter as in Note A.

PAGE 23-16 MONTGOMERY WARD

PARTS INFORMATION

HOW TO ORDER REPAIR PARTS
Repair Parts may be ordered from your nearest Wards Retail Store, Catalog Order Office, or Mail Order House. To have your order filled promptly and correctly, please furnish the following information:

PARTS LIST
Use only genuine factory tested parts to insure service jobs you can depend on and to obtain original set performance
Prices subject to change without notice.

1. MODEL NUMBER which appears on model label on the rear of the chassis.
2. PART NUMBER AND NAME OF PART.

PARTS LIST

PAGE 23-18 MONTGOMERY WARD
MODELS 15WG-2761A, 15WG2765B, 15WG-2765C, 25WG-2765D

GENERAL DESCRIPTION

This is a two band, nine tube (plus rectifier tube) AM and FM receiver with an automatic record changer. The I-F stages use high gain miniature type tubes. Built-in Air Wave Aerials are provided for the FM and Broadcast bands. Features include, compensator circuits to prevent oscillator drift, automatic volume control, push-pull pentode power output stage, PM dynamic loud speaker and an electrostatic shield in the power transformer to reduce power line noise.

The receiver and record changer are housed in a console combination cabinet with controls provided for tuning, volume, tone and band or phono selection.

DRIVE CORD REPLACEMENT

Use a new 10X54 drive cord assembly or a new length of cord 48 inches long for the installation, winding three turns clockwise around the drive shaft with the turns progressing away from the chassis. After completing the installation, rotate the drive shaft a few turns to take up the slack in the cord.

ELECTRICAL SPECIFICATIONS

Power Supply	105-125 volts AC 60 cycles, 80 watts, 100 watts with record changer
Frequency Ranges	Broadcast 540-1600 KC Frequency Modulation 88-108 MC
Intermediate Frequency. .AM-455 KC FM-10.7 MC	
Selectivity	AM-43 KC broad at 1000 times signal, measured at 1000 KC I.F. FM-200 KC broad at 2 times down
	I.F. FM-760 KC broad at 200 times down
AM Sensitivity	. (For . 5 watt output with external antenna) 10 microvolts average
FM Sensitivity	(For . 5 watt output) 30 microvolts average
Power Output	8.5 watts maximum 6.0 watts 10% distortion
Loud Speaker 12" PM Dynamic	
Voice Coil Impedance . 3.2 ohms 400 cycles	
Tube and Dial Lamp Complement	1 6BA6 AM-FM R-F Amplifier
	1 6BA6 FM-AM 1st I-F Amplifier 1 6BA6 FM 2nd I-F Amplifier
	1 6AL5 FM Detector
	1 6AV6 Audio Amplifier, AM 2nd Detector and AVC
	2 6K6-GT Audio Output
	1 5Y3-GT Rectifier
	1 6AV6 Phase Inverter
	2 No. 47 Dial Lamps

ALIGNMENT PROCEDURE AM STAGES

The following is required for aligning:
An All Wave Signal Generator Which Will Provide an Accurately Calibrated Signal at the Test Frequencies as Listed.
Output Indicating Meter, Non-Metallic Screwdriver, Dummy Antennas $-.1 \mathrm{mf}, 200 \mathrm{mmf}$.

Volume Control-Maximum all Adjustments
Connect Radio Chassis to Ground Post of Signal Generator with a Short Heavy Lead.
Allow Chassis and Signal Generator to "Heat Up" for Several Minutes.

SIGNAL GENERATOR		CONNECT GENERATOR OUTPUT TO	THROUGH DUMMY ANTENNA	BAND SWITCH SETTING	\qquad	ADJUST	ADJUST FOR
	frequency SETTING						
I-F	455 kc	12AT7 Pin 7 and Chassis	. 1 mf	Broadcast	Rotor Fully Open	2nd I-F Pri. \& Sec. (1) \& (2) 1st I.F Pri. \& Sec. (3) \& (4)	
Broadcast	1620 kc	External ant. term.	200 mmf	Broadcast	Rotor Fully Open	Broadcast Oscillator C-33	Maximum
	1400 kc	External ant. term.	200 mmf	Broadcast	Turn Rotor to Max. Output Set pointer to	Broadcast Interstage C-29	Output
	1400 kc	External ant. term.	200 mmf	Broadcast	1400 kc See Note A	Loop Antenna C-48	

FM STAGES

The following equipment is required for aligning:
An accurately calibrated signal generator providing unmodulated signals at the test frequencies listed below.

Non-metallic screwdriver.
Dummy Antennas and I-F Loading Resistor-. 01 mf, 300 ohms and 1000 ohms.

Zero center scale $D C$ vacuum tube voltmeter having a range of approximately 3 volts.
(If a zero center scale meter is not available, a standard scale vacuum tube voltmeter may be used by reversing the meter connections for negative readings.)
Allow chassis and signal generator to warm up for several minutes.

Recheck R-F and Osc. Adjustments in order given

NOTE A-Test Equipment connections are as given in the table. The zero center scale DC vacuum tube voltmeter is to be connected between chassis ground and the AVC line at the junction of resistor R-22 and condenser C-18 for all adjustments except the discriminator secondary adjustment, for which See Note C.
NOTE B-A signal of .1 volt must be fed into the receiver for this adjustment.
NOTE C-Disconnect zero center DC vacuum tube voltmeter from AVC and connect to junction of R-18 and C-62. Adjust for zero voltage indication.

NOTE D-Before adjusting Pri, core connect 1000 ohm load resistor across the 2nd I.F. secondary terminals. Input may have to be increased to .1 volt if receiver is badly mis-aligned.
NOTE E-Disconnect 1000 ohm load resistor from secondary terminals and connect across the 2nd I.F. primary terminals. Input may have to be increased to .I volt if receiver is badly mis-aligned.
NOTE F-Input can be reduced to 10,000 mperovolts.
NOTE G-Oscil!ator frequency above signal frequency.
NOTE H-Remove the 1000 ohm load resistor before attempting to check the R-F and oscillator adjustments.

PAGE 23-20 MONTGOMERY WARD
MODELS 15WG-2761A, 15WG-2765B, 15WG2765C, 25WG-2765D
(2)

TUBE SOCKET VOLTAGES
Socket voltages are shown on the Schematic diagram at the tube socket terminals. All voltages are between the socket terminal and chassis ground. Plate, screen and cathode voltages were taken with a 1000 ohm-per-volt meter with a 300 volt scale used for plate and screen voltages. Audio grid voltages were read with a vacuum tube volt-meter. Conditions of measurement are:

Line voltage 117 Volts AC
A variation of $\pm 10 \%$ is usually permissible.

MONTGOMERY WARD

PARTS INFORMATION

HOW TO ORDER REPAIR PARTS

Repair Parts may be ordered from your nearest Wards Retail Store, Catalog Order Office, or Mail Order House. To have your order filled promptly and correctly, please furnish the following information:

1. MODEL NUMBER which appears on the model label on the rear of the chassis.
2. PART NUMBER AND NAME OF PART.

PARTS LIST
Use only genuine factory tested parts to insure service jobs you can depend on and to obtain original set performance Prices subject to change without notice.

Ref. No.	Part No.		Descripti	Qty. Used in Set	Selling Price
CAPACITORS-Cont.					
C-48 Part of T-7 (Loop Antenna)					
C-50A		40 mf			
$\left.\begin{array}{l} \mathrm{C}-50 \mathrm{~B} \\ \mathrm{C}-50 \mathrm{C} \end{array}\right\}$	45X374	40 mf	450 V 25	Dry Electrolytic 1	2.22
C-52	F66103	. 01 mf	600 V	Tubular...... 1	. 10
C-53	47X468	220 mmf	f	Ceramic...... 1	. 18
$\left.\begin{array}{l} \mathrm{C}-54 \\ \mathrm{C}-59 \end{array}\right\}$	F66203	. 02 mf	600 V	Tubular...... 2	. 16
$\begin{aligned} & \mathrm{C}-55) \\ & \mathrm{C}-60 \end{aligned}$	F66102	. 001 mf	600 V	Tubular...... 2	. 12
C. 56	B66203	. 02 mf	200 V	Tubular...... 1	-12
C-57	F66602	. 006 mf	600 V	Tubular...... 1	. 12
C-58	B66502	. 005 mf	200 V	Tubular...... 1.	. 12
C.61	47X471	68 mmf		Ceramic...... 1	. 18
C-62	47×492	2700 mm		Molded Mica. . 1	. 34
C-63	46X328	. 01 mf	120 V	Tubular...... 1	. 12
			SISTO	RS	
		Ohms	Watt		
R-1					
$\left.\begin{array}{l} \mathrm{R}-10 \\ \mathrm{R}-22 \end{array}\right\}$	B85105	1 meg .	0.5	Carbon...... 3	. 06
R-15	B8360				
$\left.\begin{array}{l} \text { R-3 } \\ \text { R-11 } \end{array}\right\}$	B84563	56K	0.5	Carbon...... 2	. 08
R-13					
R-5	B85104	100K	0.5	Carbon...... 1	. 06
R-7	B84103	10K	0.5	Carbon. 1	. 08
R-9	B85225	2.2 meg.	0.5	Carbon...... 1	. 06
R-14	885473	47K	0.5	Carbon...... 1	. 06
R-16	C84393	39K	1.0	Carbon. 1	. 10
R-17	B85222	2200	0.5	Carbon...... 1	. 06
R-18	B84273	27K	0.5	Carbon...... 1	. 08
R-19	43×233	3.6	0.5	Wirewound. . 1	. 14
$\left.\begin{array}{l} R-20 \\ R-21 \end{array}\right\}$	B83682	6800		Carbon...... 2	. 10
R-23	43×242	1400	5.0	Wirewound... 1	. 40
R-25	36X372	0.5 meg .		Volume Control 1	. 74
R-26	B85153	15K	0.5	Carbon...... 1	. 06
R-27	40×285	3 meg .		Toine Control. . 1	. 48

PAGE 23-22 MONTGOMERY WARD
MODELS 15WG-2761A, 15WG2765B, 15WG-2765C, 25WG-2765D

	RESISTORS-Cont.				
$\left.\begin{array}{l} \text { R-28 } \\ R-33 \end{array}\right\}$	B85106	10 meg .	0.5	Carbon...... 2	. 06
$\left.\begin{array}{l} \text { R-29 } \\ \text { R-34 } \end{array}\right\}$	B85274	270K	0.5	Carbon...... 2	. 06
R-30	D83561	560	2.0	Carbon...... 1	. 20
$\left.\begin{array}{l} \mathrm{R}-31 \\ \mathrm{R}-35 \\ \mathrm{R}-38 \end{array}\right\}$	B85474	470K	0.5	Carbon...... 3	. 06
R-32	B84822	8200	0.5	Carbon...... 1	. 08
R-36	B84682	6800	0.5	Carbon...... 1	. 08
R-37	B84562	5600	0.5	Carbon...... 1	. 08
R-39	B84221	220	0.5	Carbon......	. 08

TRANSFORMERS AND COILS

L-2	9A2025	Interstage Coil (AM)	1	1.32
L-3	9A2024	Interstage Coil (FM)	1	. 06
L-4	9 A 2022	Oscillator Coil (AM)	1	. 10
L-5	35A5	Insulated Choke	1	. 16
L-6	9 Al 1881	Filament Choke	1	. 48
L. 7	9A2023	Oscillator Coil (FM)	1	. 10
L-8	35A7	Mixer Choke (FM)	1	. 20
L-9	9A2027	Antenna Coil (FM)	1	. 64
T-1	9A2043	1st I-F Trans. (FM)	1	1.30
T-2	9A2029	1st I-F Trans. (AM)	1	1.20
T-3	9A2030	2nd I-F Trans. (FM)	1	1.12
T-4	9 A2042	2nd I-F Trans. (AM)	1	: 88
T-5	9A2064	Disfriminator Coil	1	1.76
T-6	9A2004	Dipole Antenna	1	. 58
r-7	9 A 2041	"B" Range Loop Antenna	1	1.56
T-8	53×286	Power Transformer	1	8.70
T-9	51×142	Output Transformer.	1	1.88

DIAL AND DRIVE ASSEMBLY

58×723	Dial Glass	1	. 50
25X1634	Dial Bracket	1	1.06
41×88	Dial Light Reflector	2	. 10
15X251	Pointer		. 10
10×54	Drive Cord Assembly	1	. 12
28×113	Drive Cord Spring		. 02
7A103	No. 47 Pilot Light	2	. 16
7A199	Pilot Light Socket Assembly	1	. 28
19×192	"C" Washer (mtg. Drive Shaft)	2	. 02
26×512	Drive Shaft	1	. 30
6X67	Rubber Grommet	4	. 02

MISCELLANEOUS

12A502	Speaker 12" P.M. 1	9.22
3A305	Phono Socket-Single Pin Tip . . 1	. 06
3 A 435	Tube Socket-Octal (8 prong) Molded \qquad	. 10
3 A 436	Tube Socket-Noval (miniature) 1	. 48
32×388	Tube Shield-Noval	. 40
32X390	Tube Shield (miniature) 1	. 06
3A439	Tube Socket (miniature) 6	. 10
2A391	Band Change Switch	1.80
13×546	Line Cord \& Plug Assembly 1	. 54
104713	Knobs (Mah.) 4	. 10
4X1049	Escutcheon 1	2.76
10A765	Knobs (Blond.) 4	. 16

GENERAL DESCRIPTION

RADIO

Four tubes including tube rectifier. Built-In loop antenna. Permanent Magnet Dynamic Speaker.

AUTOMATIC CLOCK

Self Starting.
Turns on radio automatically.
Turns on radio, and buzzer alarm sounds 10 minutes later.

TUBE COMPLEMENT

12AU6

12AV6	Diode - 1st Audio
50 C 5	Power Output
$35 W 4$	Rectifier

ELECTRICAL SPECIFICATIONS

POWER SUPPLY - 110 to 120 volts 60 cyIs. (Alternating Current)

FREQUENCY RANGE - 540 to 1600 KC

INTERMEDIATE FREQ. -
455 KC

SENSITIVITY - 3000 microvolts average for .05 watts output

SELECTIVITY -At $1000 \mathrm{KC}, 100 \mathrm{KC}$ at 1000 X signal

LOUD SPEAKER - 4 Inch Round P. M.

VOICE COIL IMPEDANCE - 3.2 Ohms at 400 cycles

ALIGNMENT PROCEDURE

The signal source must be an accurately calibrated signal generator capable of supplying 455 Kc an up to 1620 Kc signals modulated 30% with a 400 -cycle audio signal.

Volume control at maximum for all adjustments.

Align for maximum output. Reduce input as needed to keep output near 0.4 volts.

Loop antenna should be connected to receiver and in its proper position when making the adjustments.

TOP VIEW OF CHASSIS

BOTTOH VIEW OF CHASSIS

[^16] an additional charge to cover any applicable sales tax, use, occupation, or other tax affecting our purchase or sale of merchandise.

GENERAL DESCRIPTION
4 Tubes Plus Selenium Rectifier. Operates Either On Electric Current or Self-Contained Batteries.
Built-in Iron Core Rod Type Antenna. Permanent Magnet Dynamic Speaker. Automatic Volume Control.

BATTERY		NFORMATION		
BATTERY TYPE	A - BATT.			
4-1/2V				- BATT.
---	---	---	---	---
90 V	$	$	MONTGOMERY WARD	$62-26$
:---	:---:	:---:		
Eveready	736	490		
Burgess	F3	N-60		
Ray-O-Vac	P93A	4390		
General Dry Battery	38 OR 3F3	132		

ELECTRICAL SPECIFICATIONS

POWER SUPPLY: VOLTAGE - 110-120 Volt Direct Current or 110-120 Volt 50-60 Cycle Alternating Current. 12 Watts

OR
BATTERIE S - One 4-1/2 Volt "A" Battery (Cat. No. 62-26), One 90 Volt "B" Battery (Cat. No. 62-46).

FREQUENCY RANGE: 540 to 1600 KC
INTERMEDIATE FREQ: 455 KC
POWER OUTPUT Undistorted 180 MW Maximum 300 MW

LOUD SPEAKER - 4 Inch Round P. M.
VOICE COIL IMPEDANCE - 3.2 Ohmsat, 400 Cycles.

TUBE COMPLEMENT
1R5 - Converter
1U4 - I. F. Amplifier
1U5 - Diode-Audio Amplifier
3V4 - Power Output
Rectifier - Selenium Type

ALIGNMENT PROCEDURE

For alignment procedure read tabulations from left to right and make the adjustments marked (1) first. (2) next. (3) third.

Before starting alignment:
(A) Remove the chassis and loop antenna from the cabinet at the same time by removing the battery connectors from the batteries, pulling off knobs and removing the two screws on the chassis tabs which fasten the chassis to the cabinet.
(B) Use an accurately calibrated test oscillator with some type of output measuring device.

					．
$\begin{aligned} & \text { z } \\ & \text { O } \\ & \text { B } \\ & \text { B } \\ & 0 \\ & \text { OHO } \end{aligned}$					
	$\div \stackrel{0}{\circ}$可药 30 \％©动色 플 	$\sum_{\substack{e}}^{N}$			：
$$	\cdots	N	∞	\square	\％

Top View of Chassis

© John F. Rider

PARTS LIST

GENERAL DESCRIPTION

RADIO

- Six tubes including tube rectifier.
- Built-In loop antenna.
- Permanent Magnet Dynamic Speaker.
- Variable Tone Control.

PHONO

Motor Speeds of 33, 45 and 78 RPM.
Automatically plays either ten 12", twelve $10^{\prime \prime}$ or fourteen $7^{\prime \prime}$ records at either 33-1/3, 45 or 78 RPM.

Automatically shuts off after last record has played.
Automatically intermixes ten $10^{\prime \prime}$ and $12^{\prime \prime}$ records of same speed.

Spindle adapters for 45 RPM record.
VM950 Changer -
ELECTRICAL SPECIFICATIONS

```
POWER SUPPLY - 110 to 120 volts 60 cycles (Alternating
    Current)
FREQUENCY RANGE - 540 to 1600 KC
INTERMEDIATE FREQUENCY - 455 KC
POWER OUTPUT - Undistored .8 Watt
    Maximum 1.4 Watts
SENSITIVITY - }18\mathrm{ microvolts average for . 05 watis output
SELECTIVITY - 1000 KC, 44 KC at 1000 X signal
LOUD SPEAKER - }8\mathrm{ Inch Round P.M.
VOICE COIL IMPEDANCE - 3.2 Ohms at 400 cycles
```

TUBE COMPLIMENT

12BA6 R. F. Amplifier
12BA6
12BE6
12AV6

35C5
35W4

ALIGNMENT PROCEDURE

The signal source must be an accurately calibrated signal Align for maximum output. Reduce input as needed to keep generator capable of supplying 455 Kc and up to 1620 Kc output near 0.4 volts.
signals modulated 30% with a 400 -cycle audio signal.
Volume control at maximum for all adjustments.
Loop antenna should be connected to receiver and in its proper position when making the adjustments.

SIGNAL GENERATOR				TUNER SETTING	ADJUSTMENT
Frequency	Coupling Capacitor	Connection To Radio	Ground Connection		
455 Kc.	. 05 MFD.	Pin 7 of 12BE6 Converter	B Minus Buss Lead	Any Point Near Center Where No Interfering Signal Iṣ Received	Slugs at Top and Bottom of 2nd I. F. (T2) and then both Slugs of 1st I. F. (T1) for Maximum Output.
455 Kc.	--	Lay Generator Lead Near Loop	B Minus Buss Lead	Set At Maximum Capacity	I. F. Trap Slug (L3) for MINIMUM Output.
1620 Kc.	. 05 MFD.	Antenna Stator Plates of Tuning Condenser	B Minus Buss Lead	1620 Kc.	Oscillator Trimmer of Gang (C3) for Maximum Output.
1400 Kc.	-	Lay Generator Lead Near Loop	B Minus Buss Lead	1400 Kc.	Antenna Trimmer of Gang (C1) For Maximum Output.

DIAL STRINGING

REAR OF CHASSIS

REF. No.	Part no.	DESCRIPTION CONDENSERS	PRICE EACH
C1, C3		Trimmers on Gang Condenser	
C2, C4	N-9658	Assembly, Variable Gang. Condenser \& Pulley	\$2.38
C5		Paper . 05 MFD. 200 Volts	
Có	N-8092	Paper . 08 MFD. 200. Volts	. 19
C7, C17, C14		Paper $\quad .01$ MFD. 400 Volts	
C8, C11	N-9655	Ceramic 220 MMFD. 500 Volts 20%	. 14
C9	N-9577	Ceramic 33 MMFD. 600 Volts 10%	. 14
C10		Paper $\quad .02$ MFD. 400 Volts	
C12		Ceramic 100 MMFD. 500 Volts 10%	
C13, *C16		Paper .005 MFD. 600 Volts	
*C15		Ceramic 250 MMFD. 500 Volts	
$\left.\begin{array}{l} \mathrm{C} 18 \\ \mathrm{C} 19 \end{array}\right\}$	N-9641	Electrolytic $\begin{cases}50 & \text { MFD. } 150 \text { Volts } \\ 50 & \text { MFD. } 150 \text { Volts }\end{cases}$	1.80
C20		Paper . 05 MFD. 400 Volts	
		RESISTORS	
R1		33 Ohms $1 / 2$ Watt 10\%	
R2		33 K Ohms $1 / 2$ Watt 10\%	
R3		6800 Ohms $1 / 2$ Watt 10\%	
R4, *R11		220K Ohms $1 / 2$ Watt 20\%	
R5		22K Ohms $1 / 2$ Watt 20\%	
R'6		68 Ohms 1/2 Watt 10\%	
R8	N-9639	Volume Control \& Switch 1.0 Megohm	. 97
R7, R15, R18		1. Megohm $1 / 2$ Watt 20%	
R9		3.3 Megchms $1 / 2$ Watt 20\%	
R10	N-9642	Variable Tone Control 1.0 Megohm	. 65
*R12		470K Ohms $1 / 2$ Watt 20\%	
R13		150 Ohms $1 / 2$ Watt 10\%	
R14		1000 Ohms 1.0 Watt 10\%	
R16		33 Ohms $1 / 2$ Watt 20\%	
R17		100 Ohms $1 / 2$ Watt 20\%	
		TRANSFORMERS \& COILS	
T1, T2	N-9657	1st \& 2nd I. F. Transformers	1.28
T3	N-9664	Output Transformer	1.73
1.1	N-9652	Loop Antenna Coil	1.40
L2	N-8709	Oscillator Coil	. 70
L3	N-9650	I. F. Trap Coil	. 70
		MISCELLANEOUS PARTS	
	N-8215	Audio Couplate (R11, R12, C15, C16)	. 42
	N-9651	$8^{\prime \prime}$ P.M. Speaker	**7.26
	N-7334	Tube Socket, 7 Pin Miniature W/ Center Shield	. 14
	N-7336	Tubes Socket, 7 Pin Miniature W/O Center Shield	. 14
	N-1147	Dial Lamp	. 16
		Cartridge Shure P76V - 60H24 W/Needles	
		Needle (For 78 RPM Records) 61H29 Sapphire	
		Needle (For 33-45 RPM Records) 61H30 Sapphire	
	N-1090	Line Cord \& Plug	. 46
	N-7925	Fiber 45 RPM Record Adapter	. 14
	N-9648	Dial Scale	. 32
	N-9629	Dial Pointer	. 24
	N-9732	Knob, Volume, Tuning, Tone \& Switch	. 14

* Replacement Parts for Couplate N-8215
 ** Excise Tax Included

NOTE: Use Universal Parts Where No Part Numbers or Prices Are Shown.
IMPORTANT: All prices in this literature are subject to change without notice, and are subject to an additional charge to cover any applicable sales tax, use, occupation, or other tax affecting our purchase or sale of merchandise.

GENERAL

This radio is a personal receiver for broadcast re tuning Range from 540 to 1640 KC and is equipped ception, operated from batteries only. It has a with the latest type Ferrite antenna.

TUBE COMPLIMENTS: |R5-Converter
IT4 or IL4 I.F. Amplifier IU5 Det.-AVC Ist A.F. 3V4 Power Amp.
POWER SUPPLY: Batteries as listed on pg. POWER OUTPUT: 70 Milliwatt undistorted SPEAKER:

SENSITIVITY:

31/2" P.M.—V.C.
impedance 3.2 ohm
320 Microvolts per meter for .05 watt output

BATTERY REQUIREMENTS

The following batteries are required:
QUANTITY TYPE MANUFACTURER
2 I $1 / 2$ Volt "A" Airline \#62-23 Eveready size "D", Burgess \#2, Ray-O-Vac size 'D' or equivalent.
I 671/2 Volt "B' Airline \#62-43 Eveready \#467, Burgess type XXD, Ray-O-Vac type \#4367 or equivalent.

ALIGNMENT PROCEDURE

Volume Control-Maximum All Adjustments.

The equipment in column at right is required for aligning:

Signal Generator which will provide an accurately calibrated signal at the test frequencies as listed. Output Indicating Meter; Non-Metallic Screwdriver. Dummy Antenna -. 1 mf .

Frequency Settinq	SIGNAL GENERATOR		Ground Connection	Variable Condenser Setting	ADJUST TRIMMERS TO MAXIMUM See Trimmer Illustration
	Coupling Capacitor	Connection to Radio			
455 KC	. 1	CONTROL GRID OF IR5	$\begin{gathered} \text { TO } \\ \text { CHASSIS } \end{gathered}$	CLOSED	Ist AND 2nd I.F. Al-A2-A3-A4
540 KC	. 1	CONTROL GRID OF IR5	$\begin{gathered} \text { TO } \\ \text { CHASSIS } \end{gathered}$	CLOSED	OSCILLATOR COIL SCREW
1640 KC	. 1	CONTROL GRID OF IR5	$\begin{gathered} \mathrm{TO} \\ \mathrm{CHASSIS} \end{gathered}$	WIDE OPEN	OSCILLATOR TRIMMER A5
1400 KC	. 1	CONTROL GRID OF IR5	$\begin{gathered} \text { TO } \\ \text { CHASSIS } \end{gathered}$	TO 1400 KC SIGNAL	ANTENNA TRIMMER A6

BATTERY INSTALLATION
" A " Batteries:
Set radio on a table or solid object. Unscrew the
thumb screws which hold the handle in place. Lift same procedure as above except detach
cut Radio chassis carefully. Remove "A" batteries battery terminal clip and snap on fresh battery.
from the battery container and replace. Replace
radio chassis with top cover carefully back in the as instructed in previous paragraph.
cabinet. Replace thumb screws through handle
slots.
SCHEMATIC DIAGRAM FOR MODEL 15-GHM-1067A

Repair Parts may be ordered from your nearest Wards Retail Store, Catalog Order Office, or Mail Order House. To have your order filled promptly and correctly, please furnish the following information:

1. Model Number which appears on nameplate.*
2. Part Number and Name of Part (see Repair Parts List).

You pay charges from shipping point. Shipping charges are based on size and total weight of order. Use any one of the following shipping methods:

PARTS LIST

Ref. No.	PART No.	dESCRIPTION	Price
		CONDENSERS	
Cl	1067-99	10 MFD-100 Volt	. 64
C6-C2-CII	1067-100	.05-150 Volt	. 26
C3-C10	1067-101	50 MMF - 150 Volt	. 26
C5	1067-103	100 MMF - 150 Volt	. 26
C7-C4	1067-105	.005-150 Volt	. 26
C8	1067-106	. 001 -150 Volt	. 26
C9-A	- 1067-107	Variable Condenser	1.60
C9-B			
		RESISTORS	
RI	1067-108	100K—1/4 Watt	. 20
R2-R6	1067-109	2.2 Meg.-1/4 Watt	. 20
R3	1067-110	$10 \mathrm{Meg} . \mathrm{L} / 44 \mathrm{Watt}$. 20
R4	1067-111	4.7 Meg.-1/4 Watt	. 20
R5	1067-112	$1 \mathrm{Meg} . \mathrm{L} / 1 / 4 \mathrm{Watt}$. 20
R7	1067-113	390 Ohms-1/4 Watt	. 20
R8	1067-114	Volume Control and Switch 2 Meg .	1.00
R9	1067-114-A	$\begin{aligned} & 680 \mathrm{~K}-1 / 4 \text { Watt } \\ & \text { MISCELLANEOUS } \end{aligned}$. 20
LI	1067-115	Antenna Assembly	1.24
L2	1067-116	Oscillator Coil Assemb.'y	. 60
SPR	1067-117	Speaker 31/4" P.M. with Output Transformer T3	3.80
TI T2	1067-118	I.F. Transformer	1.40
	1067-119	Cabinet	6.50
	1067-120	Handle	1.00
	1067-121	"A" Battery Container	. 76
	1067-123	"B'' Battery Clips \& Terminal Strip	. 30
	1067-124	Dial "Tuning"	. 76
	1067-125	Dial "Volume"	. 76
	1067-126	Handle Thumb Screw	. 26
	1067-127	Socket, Tube	. 10

IMPORTANT-All prices in this literature are subject to change without notice and are subject to an additional charge to cover any applicable sales tax, use, occupation, or other tax affecting our purchase or sale of merchandise.

Model 25GSE-1555A,

 25GSE-1556A

ALIGNMENT PROCEDURE

For alignment procedure read tabulations from left to right, and make the adjustment marked (1) first, (2) next, (3) third.

Before starting alignment:
(A) Check tuning dial adjustment by tuning gang condenser until plates are completely in mesh, at which point the dial needle must be exactly even with the last line at the low frequency end of the dial calibration. If dial needle does not point exactly to last line move to correct position.
(B) Use an accurately calibrated test oscillator with some type of output measuring device.
(C) When the chassis is removed from the cabinet the loop must be mounted on the loop mounting brackets, and the two wires connected to the loop.
(D) When aligning the 1660 KC OSCILLATOR TRIMMER or the 1400 KC ANTENNA TRIMMER, couple test oscillator to receiver loop by: (1) make loop consisting of five to ten turns of NO. 20 to NO. 30 size wire, wound on a $2^{\prime \prime}$ to $3^{\prime \prime}$ form ; (2) connect this loop across output of test oscillator; (3) place test oscillator loop near radio loop. BE SURE THAT NEITHER LOOP MOVES WHILE ALIGNING.

The 1400 KC ANTENNA TRIMMER should only be adjusted after all other adjustments are made.

ELECTRICAL SPECIFICATIONS

POWER SUPPLY........VOLTAGE: $110-120$ Volt Direct Current or 110-120 Volt 50-60 cycle Alternating Current. 35 Watts.	TUBE COMPLEMENT		
	1	12BE6	MODULATOR:OSCILLATOR
TUNING RANGE.. 540 to 1660 KC			
INTERMEDIATE FREQ. .455 K.C.	1	12BA6	I.F. AMPLIFIER
I.F. STAGES One	1	12AV6	DETECTOR, AVC, 1St AUDIO
	1	50C5	POWER OUTPUT
LOUD SPEAKER... 5^{51} P.M.			
'VOICE COIL IMPEDANCE...................................3.2 OHM	1	35W4	RECTIFIER
POWER OUTPUT.. Maxistorted 09 Watts			

$\begin{aligned} & \stackrel{\sim}{2} \\ & \stackrel{1}{む} \\ & \stackrel{N}{2} \end{aligned}$	Set receiver dial to:	TEST OSCILLATOR			Refer to parts layout diagram for location of trimmers mentioned below :
		$\begin{aligned} & \text { Adjust test } \\ & \text { oscillator } \\ & \text { frequency to: } \end{aligned}$	Use dummy antenna in series with output of test oscillator consisting of :	Attach output of test oscillator to:	
1	Any point where no interfering signal is received.	455 K. C.	. 02 MFD . condenser	High side to rear stator plates of tuning condenser. Low side to common negative.	Adjust each of the second I.F. transformer trimmers for maximum output--then adjust each of the first I.F. trimmers for maximum output.
2	$\begin{gathered} \text { Exactly } \\ 1660 \mathrm{~K} . \mathrm{C} . \end{gathered}$	$\begin{gathered} \text { Exactly } \\ 1660 \text { K. C. } \end{gathered}$	See paragraph (D) above.	See paragraph (D) above.	Adjust 1660 K. C. oscillator trimmer for maximum output.
3	$\begin{aligned} & \text { Approx. } \\ & 1400 \mathrm{~K} . \mathrm{C} . \end{aligned}$	$\begin{gathered} \text { Approx. } \\ 1400 \mathrm{~K} . \mathrm{C} . \end{gathered}$	See paragraph (D) above.	See paragraph (D) above.	Adjust 1400 K. C. antenna trimmer for maximum output.

PAGE 23-40 MONTGOMERY WARD

HOW TO ORDER PARTS—Should it be necessary to write us or to order any repair parts, it is important that the complete model number which appears on the label attached to the back of the radio chassis be specified. Repair parts should be ordered from your nearest Wards Retail Store, Catalog Order Office or Mail Order House.

PARTS LIST

GENERAL INFORMATION

TYPE - Three-power (AC/DC, Battery) portable radio receiver. Four miniature type tubes and a selenium rectifier are used in a superheterodyne circuit.

RECEIVER MODELS

Model	Color
52M1U	Green
52M2U	Maroon
52M3U	Gray

TUNING RANGE - 535 to 1620 Kc IF -455 Kc
POWER SUPPLY -

Operates from 117 V AC/DC (15 watts) or from the following batteries:
2-1-1/2 volt flashlight cells
Use: Eveready 950
or Burgess 2
or Ray-O-Vac 2LP
or any equivalent size "D" flashlight cell.
1-67-1/2 volt "B" battery
Use: Eveready 467
or Burgess XX45
or Ray-O-Vac 4367
or equivalent.

TUBE COMPLEMENT
Type ${ }^{\text {Tunction }}$
1R5 \quad Converter
lU4 IF Amplifier
1 U5 Det, AVC \& Ist AF Amp
3S4 Power Amplifier
Rectifier Şelenium type -for
AC/DC operation

OPERATING INSTRUCTIONS

TO OPEN FRONT COVER. The front cover is opened by pushing up on the cover release button, located in the center of the front cover. The receiver is automatically turned on when the front cover is opened and raised to a vertical position.

TO OPEN BACK COVER. The back cover is opened by grasping it at the top and gently pulling cover open. When closing the cover, be careful not to pinch the power line cord or other leads between the cover and the cabinet.

HOUSE CURRENT OPERATION. The power cord is located inside the cabinet and can be reached by opening the back cover. Pass the line cord through the slot on the side of the receiver before closing the cover. Plug the power cord into any 117 volt AC or DC power outlet. Reverse the line cord plug in power outlet if the receiver does not operate from DC power. When operating from AC power, reception may sometimes be improved by reversing the power plug in power outlet. It is not necessary that batteries be installed if the receiver is to be operated only from house power lines.

BATTERY OPERATION. Open the back cover and install batteries by following the instructions found on label located on back cover or as shown in Figure 2. Plug the power line cord into the receptacle on the receiver chassis, as shown on label, or the receiver will not play from batteries. If the receiver is to be-operated for a long period of time from AC or DC house power lines, or is to be placed in storage, remove the batteries and store them in a cool place.

IMPORTANT: Never leave low or run-down batteries in your receiver because they will leak or swell and damage your receiver.

TUNING CONTROL. Stations are tuned in with the righthand knob. Tune carefully until you are exactly on a station; tuning to either side of it will result in poor tone quality and excessive noise. Do not regulate volume by detuning the station; always tune exactly on the station, then adjust volume control to desired loudness.

VOLUME CONTROL. The left-hand knob controls volume.
Rotation to the right will increase volume; rotation to the left will decrease it.

TO TURN OFF. Closing the front cover will automatically turn off the receiver.

ANTENNA. A super-sensitive "Aerovane" loop antenna is built into the front cover of this receiver. Because of the slightly directional characteristics of the loop antenna, reception from some stations may be improved by rotating the receiver. In extremely noisy locations, rotate the receiver until minimum noise and maximum signal pick-up is obtained.

BATTERY REPLACEMENT. If low volume or fuzzy tone is noticed when operating from batteries, replace the flashlight cells. Normally, the 67-1/2 volt "B" battery will last for 3 or 4 changes of the flashlight cells.
NOTE: The condition of the batteries will not affect operation of receiver from 117 volts AC or DC. Complete battery replacement instructions will be found inside the receiver back cover.

SERVICE NOTES

The chassis of this receiver is isolated from the AC TO REMOVE THE CHASSIS FROM THE CABINET: power line circuit by a capacitor-choke assembly to eliminate the shock hazard when handling the receiver. How-1. Open the rear cover and remove the batteries. ever, as an additional precaution when aligning or servicing the receiver from AC, an isolation transformer should be inserted between the power line and the chassis.
2. Remove the two hex head screws that mount the chassis
to the cabinet
3. Slide the chassis from the cabinet.

The tubes are exposed when the rear cover is opened. It is not necessary to remove the chassis to replace tubes. 4. Disconnect the two loop antenna leads from the hinges.

AIIGNMENT

NOTE: The receiver may be operated either from batteries 4. Turn the receiver volume control to maximum. or from the commercial power lines during alignment. If AC power is used, it is recommended that an isolation transformer be placed between the power line and the re-5. Use a small fibre screwdriver for aligning the IF and ceiver. If an isolation transformer is not available, connect diode transformers.
the low side of the signal generator to B - through a. 1 mf
capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to B-.
3. Set the signal generator for 400 cycle, 30% modulation.
4. Adjust the signal generator output to produce. 40 volts (. 05 watts) across the voice coil. As stages are aligned, to avoid overloading the receiver, reduce the generator output to maintain the . 40 volt level.
5. See Figure 1 for adjusting locations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY ANT ENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	GANG SETTING	ADJUST	REMARKS
$\begin{aligned} & \text { IF ALIC } \\ & \text { 1. } \end{aligned}$	GNMENT .1 mf	Grid of conv (pin 6, 1R5)	455 Kc	Fully open	$\begin{aligned} & 1,2 \& 3 \\ & (\text { IF cores }) \end{aligned}$	Adjust for maximum.
$\begin{aligned} & \text { RF ALI } \\ & 2 . \end{aligned}$	GNMENT . I mf	Grid of conv (pin 6, 1R5)	1620 Kc	Fully open	4 (Osc)	Adjust for maximum.
3.	-	-	-	-	-	Install chassis in cabinet, leaving output meter connected to speaker.
4.	-	Radiation loop*	1400 Kc	Tune for max	5 (Ant)	Adjust for maximum. Trimmer is reached through hole under plug button on side of cabinet.

*Connect generator output across 5" diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least 12'apart.

FIGURE 1. TUBE AND TRIMMER LOCATIONS

FIGURE 2. REAR VIEW OF RECEIVER

PAGE 23-4 MOTOROLA
MODELS 52M1U, 52M2U,
52M3U, Ch. HS-300

FREQ. RANGE 535 KC -1620 KC.
FRE

(园)

MODELS 52M1U, 52M2U
52M3U, Ch. HS-300

PARTE LIET

NOTE: When ordering parts, specify model and chassis numbers of set in addition to part number and description of part.

Part Number	Description	$\begin{array}{r} \text { List } \\ \text { Price } \\ \hline \end{array}$	Part Number	$\underline{\text { Description }}$	$\begin{array}{r} \text { List } \\ \text { Price } \end{array}$
26A692005	'Shield heat (around R-3)....... doz	. 30	557770		
26B691996	Shield, switch (over AC/DC-Battery switch).	. 20	5S7786	(hinge insulator mtg)........per/c Rivet: . $088 \times 3 / 16$; stl; blk nkl	. 50
9A690129	Socket, tube: miniature; 7-prong..	. 15		(front hinge mtg)............per/c	. 50
41 K 680029	Spring, battery contact (in "A" battery retainer)................doz	. 20	3S8144	Screw, self-tapping: \#2 x 3/16; Phillips flat head; ant cop	
31K470880	Strip, 'B" battery terminal: with leads. \qquad	. 40		(mounts loop to front cover) ...	1.00
31K37504	Strip, terminal: 1 insulated lug, \#l mtg.	. 05	3S400356	Screw, sheet metal: \#4 x 1/4 hex head (chassis mtg).......per/c	. 50
31K470746	Strip, terminal: 3 insulated lugs, \#2 mtg.	. 05	3S2995	Screw, machine: 5-40 x 5/16 pl hex head (handle mtg),...........per/c	. 50
4K470939	Washer, fibre ($\mathrm{R}-3 \mathrm{mtg}$)...... $\mathrm{per} / \mathrm{c}$. 50	41A470909	Spring, door latch (inside front cover).................................doz.	. 55
			41 K 692167	Spring, handle (inside plastic handle)	
			2S7981	Speednut: for $1 / 8^{\prime \prime}$ stud (grille mtg).................................. . doz	. 15
MODEL 52M1U	Cabinet part		41K601712	Spring, rear cover latch.......doz	.35
			46A601807	Stud, front hinge mtg \& loop con-	
35B611249	Baffle, speaker: cardboard.	. 05		nectors.	. 05
38B601741	Button, cover release (on front cover)	. 15	46A601726	Stud, latch retainer (front cover latch on grille).	.10
38K692050	Button, plug: green finish (loop trimmer adj hole cover)...........	. 10	46K690079	Stud, trimount: blk nkl (on loop panel -for operating on-off	
1X610664	Cabinet: complete; less handle, grille and antenna loop and front cover assembly;	7.55*		switch)........................	. 25
55A692058	Cover, handle intg (over ends of handle)	. 40			
55A27113	Foot, cabinet bottom: felt.....doz	. 60	MODEL 52M2U	CABINET PARTS - Same as Model 52M1U	rcept:
1×610667	Front Cover Assembly: complete; less loop; green plastic..........	1.90	38K600106	Button, plug: maroon finish (loop	
1×610668	Grille Assembly: complete with latch retainer stud, upper \& lower speaker grilles..............	2.20	1X610681	trimmer adj hole cover)........... Cabinet: complete, less handle, grille and antenna loop and front	
13A610656	Grille, speaker (upper)............	10		cover assembly; maroon............ 7	7.55*
13B610657	Grille, speaker (lower)............	.20	1X610684	Front Cover Assembly: complete,	
55K692166	Handle, carrying: green plastic; less spring.............................	. 20	55K600107	less loop; maroon plastic......... 1 Handle, carrying: maroon plastic;	
55C601756	Hinge, front cover: complete; left-hand........................	1.30	5 S 2828	less spring............................ Rivet: . $088 \times 3 / 16 ;$ stl; statuary	
55K601757	Hinge, front cover: complete; 	1.30		bronze (front cover hinge mtg) ..	. 50
55K30198	Hinge, rear cover...............didoz	. 25	46K680035	Stud, trimount: statuary bronze	
14 A 601753	Insulator, cap: plastic (on grille assembly lugs).	. 05		(on loop panel -for operating on-off switch).....................doz	. 25
14 A 601752	Insulator, hinge....................	. 05			
36C601724	Knob, control (tuning).............	.55			
36K601725	Knob, control (volume).............	. 55			
1X601765	Latch and Plate Assembly (inside front cover).	. 30			
4S8406	Lockwasher, int: \#2 (loop)...per/c	.50			
4S7695	Lockwasher, int: \#5 (handle mtg) 50	MODEL 52M3U	CABINET PARTS - Same as Model 52M1U ex	
29R5399	Lug, soldering (under front hinge, for loop connection).........per/c	. 50	38K611116	Button, plug: gray finish (loop trimmer adj hole cover)...........	$\text { . } 10$
64C610735	plate, background (behind control knobs) \qquad	. 55	1X611139	Cabinet: complete, less handle, grille and loop antenna and	
64A692191	plate, handle mtg (under handle mtg covers)............................ . . doz	. 35	1X611254	front cover assembly; gray........ 7 Front Cover Assembly: complete	
5S8487	Rivet: . $088 \times 3 / 32$; stl; blk nkl (rear cover hinges \& latch spring mtg)......................................	. 50	55K692166	less loop; gray plastic............ 1 Handle, carrying: green plastic; less spring................................	$\begin{array}{r} 1.90 \\ .20 \end{array}$

[^17]
GENERAL INFORMATION

TYPE - FM-AM table model receiver

| TUNING RANGE - AM | 535 to 1620 Kc | IF -455 Kc |
| ---: | ---: | ---: | ---: |
| FM | 88 to 108 Mc | IF -10.7 Mc |

TUBE COMPLEMENT - 12BA6 - FM-AM RF Amplifier
12BA7 - FM-AM Converter
12BA6 - FM-AM IF Amplifier
12BA6 - FM IF Amplifier
19 T 8 - FM Ratio Detector, AM
Detector \& lst Audio Amp
50C5 - Power Amplifier
Rectifier - Selenium type
POWER SUPPLY - 117V AC or DC, 40 watts

INSTALLATION \& OPERATING INSTRUCTIONS

ANTENNA \& GROUND

No outside antenna or ground is required for standard broadcast (AM) reception. A loop antenna for broadcast reception is located at the rear of the cabinet.

An FM antenna, built into the power cord, eliminates the need for an external $F M$ antenna when the receiver is used in normal $F M$ service areas such as are found in and for a few miles around metropolitan areas. In 'fringe' or weak signal areas, improved FM reception can be obtained by using an FM antenna mounted as high as possible. The FM antenna should be connected through a 300 ohm twin transmission line to the two screws on the rear of the set. Refer to the instructions on the antenna penel for proper transmission line connections. Orient the antenna so that maximum volume of FM station or stations is obtained.

NOTE: When the built-in FM antenna is used, connect the green lead from the chassis to the RIGHT-HAND terminal on the loop. Since the FM antenna is incorporated in the power line cord, stretch the line cord to its full length to obtain strong $F M$ reception.

CAUTION: Do not connect antenna or chassis to water pipe, radiator, or other ground.

CONTROLS

POWER SWITCH \& VOLUME CONTROL. The power switch and volume control are combined and are operated by the left-hand knob.

BANDSWITCH. The small (inner) right-hand knob selects FM or AM reception. Rotate the knob clockwise for AM or counterclockwise for FM.

TUNING. Tuning of both $F M$ and $A M$ is accomplished with the large (outer) right-hand knob. The standard broadcast dial (AM) is read in kilocycles by adding two zeros to the figures. The frequency modulation (FM) dial scale is read in megacycles (88 to 108).

Tuning of FM stations should be done very carefully, for best sound reproduction, not necessarily for strongest volume received.

SERVICE NOTES

OPERATING NOTES:

The chassis of this receiver is connected directly to the power line. When operating the chassis (from AC line) outside of its cabinet; use an isolation transformer between the power line and the receiver to reduce the possibility of electrical shock. If an isolation transformer is not available, check the $A C$ voltage between the chassis and the bench ground. If there is any indication of voltage, reverse the line plug before handling the set.

When operating the receiver from an $A C$ power line, reception can sometimes be improved by reversing the plug in the power outlet. If the receiver does not operate from a DC power line, after being turned on for a few minutes, reverse the plug in the power outlet.

TO CALIBRATE DIAL:

1. Turn the tuning knob counterclockwise until the end of its travel is reached.
2. Through the hole in the bottom of the cabinet, loosen the Allen head setscrew in the pointer sleeve. 3. Move the pointer until it coincides with the center of the "5" on the AM broadcast scale.
3. Tighten the setscrew.

NOTE: If the pointer is accidentally moved
by hand, it will be released from a detent in the pointer collar assembly, and no damage to the tuning mechanism will result. To reset the pointer, merely move it back and forth until it again engages in the detent.

TO REMOVE CHASSIS FROM CABINET:

1. Remove the pointer, as described above.
2. Pull off the control knobs.
3. From the rear of the cabinet, remove the two screws holding the chassis to the cabinet.
4. Remove the two split plugs at the top of the loop, which hold the loop to the cabinet.
5. Slide the chassis from the cabinet.

TO REMOVE POINTER:

1. Remove the two screws holding the medallion, from beneath the cabinet.
2. Turn the tuning knob until the pointer reaches the low frequency end of its range.
3. Through the hole in the bottom of the cabinet, insert an Allen head wrench into the setscrew in the pointer sleeve and hold the wrench. This keeps the sleeve from turning and breaking the dial string. 4. Remove the nut and washers from the front of the pointer.
4. Pull off the pointer.

PAGE 23-10 MOTOROLA
MODELS 72XM21, 72XM22, Ch. HS-303

FIGURE I. STRING DRIVE DETAIL

ALIGNMENT

GENERAL INFORMATION

1. Maximum performance can be obtained only if extreme care is exercised during alignment.
2. If $A C$ power is used, it is recommended that an isolation transformer be placed between the power line and the receiver during alignment to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to the receiver chassis through a . 1 mf capacitor.
3. Use a small fibre screwdriver for aligning the IF transformers.
4. Refer to Figure 2 for the location of all alignment trimmers and cores.
5. As the stages are brought into alignment, reduce the signal generator output to a low value to avoid overloading the receiver.

ORDER OF ALIGNMENT AND EQUIPMENT REQUIRED

1. Broadcast Band IF \& RF Alignment
a. 455 to 1620 Kc AM signal generator
b. Low range output meter

2 (A) FM Band IF \& RF Alignment (Preferred Method)
a. $\quad 10.7$ to 108 Mc FM signal generator
b. Oscilloscóope
(B) FM Band IF \& RF Alignment (Alternate Method) a. 10.7 to 108 Mc signal generator (unmod.)
b. Low range $D C$ electronic voltmeter.

BROADCAST BAND - IF \& RF ALIGNMENT

1. Connect the $A M$ signal generator as in chart below, with 400 cycle, 30% modulation.
2. Connect the output meter across the speaker voice coil. Throughout alignment reduce the generator output to a level which produces less than . 40 volts across the voice coil, to avoid overloading
the receiver.
3. Set the bandswitch to the $A M$ position.
4. Turn the receiver volume control to maximum.
5. Proceed as shown in the following chart.

MOTOROLA PAGE 23-11
MODELS 72XM21,

4. If, after the receiver has been aligned as above, it is found to be badly off calibration, it will be necessary to adjust oscillator core (7) as follows: connect the generator to the grid of the converter tube and, with the gang fully closed, adjust core (7) at 535 Kc . It is advisable to repeat the oscillator adjustments at 1620 Kc and 535 Kc several times until the tuning range is correct. Core (7) has been pre -set at the factory and normally should require no retuning.

* If difficulty is encountered in tuning trimmer (5), adjust trimmer (6) to $1 / 2$ turn from tight.
**Connect generator output across 5" diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least $12^{\prime \prime}$ apart.

FM BAND - IF \& RF ALIGNMENT (PREFERRED METHOD)

1. The following FM alignment procedure, using an FM signal generator and an oscilloscope, is to be preferred because the actual response pattern may be observed on the scope and adjusted for best symmetry and maximum amplitude.
2. Connect the vertical input terminals of the oscilloscope between the chassis and the junction of resistor $\mathrm{R}-24$ (33 K) and capacitor $\mathrm{C}-29$ (1000 mmf)
3. Connect the FM signal generator sync voltage output terminals, through a phase shifting network, to the horizontal input terminals of the scope, as -in Figure 3. (Other values of resistance and capa-
citance may be required, depending upon the scope). The phasing control should be adjusted to give only one trace on the scope. NOTE: If the FM generator has a built-in phase control, the phase shifting network is not necessary.
4. Set the bandswitch to the FM position.
5. Throughout alignment, reduce the generator out. put to keep the signal just above the noise level, to avoid overloading the receiver.
6. Proceed as shown in the following chart.

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	TUNER SETTING	ADJUST	REMARKS
IF ALIGNMENT						
1.	1000 mmf	Grid of 2nd IF Amp V-4 (pin 1, 12BA6)	10.7 Mc $\pm 100 \mathrm{Kc} \mathrm{dev}$.	Fully opened	$\underset{\underset{\text { pri) }}{ }{ }^{9}{ }^{9} \text { det }}{ }$	Adjust for maximum amplitude of pattern.*
2.	1000 mmf	Grid of 2nd IF Amp V-4 (pin 1, 12BA6)	$\begin{gathered} 10.7 \mathrm{Mc} \\ \pm 100 \mathrm{Kc} \text { dev. } \end{gathered}$	Fully opened	$\underset{\substack{\text { (ratio } \\ \text { sec })}}{10}$	Adjust for symmetrical curve, as shown in Figure 4.
3.	-	-	-	-	-	Repeat steps 1 \& 2 for maximum amplitude and best symmetry.
4.	1000 mmf	Grid of lst IF Amp V-3 (pin 1, 12BA6)	$\begin{gathered} 10.7 \mathrm{Mc} \\ \pm 100 \mathrm{Kc} \mathrm{dev} \end{gathered}$	Fully opened	$\begin{aligned} & 11 \text { \& } 12 \\ & \text { (2nd IF sec } \\ & \text { \& pri) } \end{aligned}$	Adjust for maximum amplitude of pattern.*
5.	1000 mmf	Grid of conv. V-2 (pin 7, 12BA7)	$\begin{gathered} 10.7 \mathrm{Mc} \\ \pm 100 \mathrm{Kc} \mathrm{dev} \end{gathered}$	Fully opened	$\begin{aligned} & 13 \& 14 \\ & \left(\begin{array}{l} 13 \mathrm{st} \text { IF sec } \\ \& \text { pri) } \end{array}\right. \end{aligned}$	Adjust for maximum amplitude of pattern.*
6.	1000 mmf	Grid of conv. V-2 (pin 7, 12BA7)	$\begin{array}{r} 10.7 \mathrm{Mc} \\ \pm 100 \mathrm{Kc} \mathrm{dev} \end{array}$	Fully opened	$\begin{aligned} & 11,12, \\ & 13 \& 14 \end{aligned}$	Readjust for maximum amplitude and best symmetry.
RF ALI	ENT 270 ohms	FM terminals on loop	87.5 Mc $\pm 221 / 2 \mathrm{Kc} \operatorname{dev}$	Fully closed	$\begin{gathered} 15 \\ \text { (osc adj } \\ \text { nut) } \end{gathered}$	Adjust for maximum amplitude of pattern.*
8.	-	-	-	Fully closed	$\underset{\substack{16 \\ \text { (RF adj } \\ \text { nut }}}{ }$	Turn counterclockwise until core is at bottom of pipe, then turn four turns clockwise.
9.	270 ohms	FM terminals on loop	$\begin{gathered} 90 \mathrm{Mc} \\ \pm 22 \frac{1}{2} \mathrm{Kc} \operatorname{dev} \end{gathered}$	Tune in signal	$\begin{aligned} & 17 \\ & \text { (RF tun- } \\ & \text { ing plug) } \end{aligned}$	Adjust for maximum amplitude of pattern.*
10.	270 ohms	FM terminals on loop	$\begin{gathered} 105 \mathrm{Mc} \\ \pm 221 / 2 \mathrm{Kc} \mathrm{dev} \end{gathered}$	Tune in signal	16 (RF adj nut)	Adjust for maximum amplitude of pattern.*
11.	-	-	-	-	-	Repeat steps 9 \& 10 until no further adjustment is necessary.

*An output meter across the speaker voice coil will also indicate maximum amplitude. It should not be used in place of the scope, however, since it will not show symmetry of the curve.

FM SIGNAL GENERATOR \& OSCILLOSCOPE HOOK-UP

RATIO DETECTOR WAVEFORM

FM BAND - IF \& RF ALIGNMENT (ALTERNATE METHOD)

1.. The following procedure for $F M$ alignment, with an unmodulated carrier generator and a DC electronic voltmeter, is not as desirable as the preceding method; but it may be used if no FM generator is available.
2. Connect the signal generator as in chart below, with no modulation:
3. Set the bandswitch to the FM position.
4. Except in step 2 below, connect the electronic voltmeter across resistor $\mathrm{R}-23$ (15K) in the ratio detector stage.
5. Throughout alignment reduce the signal generator output to a value which produces no more than a 5 volt rise above no signal voltage, to avoid overloading the receiver.
6. In step 2 below, connect two 100 K ohm resistors in series across R-23. Connect the electronic voltmeter between the volume control side of resistor R-24 (33K) and the junction of the two 100K resistors, with the low side of the meter at the 100 K resistors.
7. Proceed as shown in the following chart.

PAGE 23-14 MOTOROLA

FIGURE 5. PARTS LOCATIONS

PARTS LIST

NOTE: When ordering parts, specify model number of set in addition to part number and description of part.

MOTOROLA PAGE 23-17 MODELS 52C6, 52C7, A, 52C8, Ch. HS-310

GENERAL INFORMATION

TYPE - AC table model superheterodyne with appliance outlet and self-contained electric clock for controlling automatically the operation of the radio and the outlet.

RECEIVER MODELS

Model	Color
52C6	Walnut
52C7	Ivory
52C8	Green

TUNING RANGE - 535 to 1620 Kc
IF - 455 Kc

TUBE COMPLEMENT

- Type	Function
12BE6	Converter
12BD6	IF Amplifier
12AT6	Det, AVC \& AF Amp
50C5	Power Amplifier
35W4	Rectifier

POWER SUPPLY - Operates from 117 volts, 60 cycle, alternating current only. Power consumption 37 watts.

CLOCK - Telechron self-starting electric clock, with Motorola face and hands.

OPERATING INSTRUCTIONS

The locations and functions of the clock and radio controls are shown in the photo above.

NORMAL RADIO OPERATION
Knob "A" on the clock turns the radio on or off. Select stations with the TUNING knob, and adjust volume with the VOLUME control.

A built-in loop antenna eliminates the need for an outside antenna in most locations. When receiving a weak station, rotate the receiver slightly for best signal strength. If additional pick-up is necessary, connect an external antenna to the radio by following the instructions printed on the rear panel. CAUTION: Never connect the radio chassis to a water pipe, radiator, or other ground.

CLOCK OPERATION

The clock will start as soon as the receiver is plugged into an electrical outlet. To set the hands to the correct time, rotate the TIME SET knob (on the rear of the radio)
in a clockwise direction only.

ALARM OPERATION

To set the alarm, pull out knob "C" and rotate it in a counterclockwise direction to the desired time on the alarm dial scale. The alarm will ring for one hour, or until knob " C " is pushed in. The alarm function is completely independent of the other controls on the clock.

APPLIANCE OUTLET

To control an electrical appliance automatically, plug it into the receptacle on the back of the radio. See Figure 1. It will then be turned on or off simultaneously with the radio. CAUTION: Note that the rating of the outlet is 1100 watts or less.

If radio reception is not desired when operating the appliance, rotate the radio volume control to the minimum volume position.

FIGURE 1. REAR VIEW
BEDTIME CONTROL
The BEDTIME control will turn the radio and appliance off after any pre-set interval of time up to one hour.

Turn knob "A" to the "OFF" position and rotate knob "B" to any period of time between 0 and 60 minutes. The radio and appliance will be turned off automatically after the proper time has elapsed, and they will remain off until turned on again manually.

AUTOMATIC RADIO OPERATION

The clock controls may be pre-set to turn the radio on automatically at any time up to twelve hours in advance.

If an appliance is plugged into the receptacle on the back of the receiver, it will be turned on automatically, along with the radio.

Pull out knob "C", rotate it counterclockwise to the desired time on the alarm dial scale, and push the knob back in. Rotate knob "A" first to the "OFF" and then to the "AUTO" position. At the pre-set time, the radio will come on and will continue to play until turned off manually. The alarm will ring also if the knob " C " is left pulled out. The radio will come on first and, after an interval of about ten minutes, the alarm will ring.

BEDTIME AND AUTOMATIC OPERATIONS COMBINED

By combining the operations in the two sections above, the radio may be turned off automatically and on again automatically.

When setting the BEDTIME control, rotate knob "A" to the "AUTO" position instead of "OFF". IMPORTANT: It is necessary to turn knob "A" first to the "OFF" position before proceeding to "AUTO", otherwise the radio may not shut off.

ALIGNMENT

NOTE: It is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to Bthrough a. 1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to B -。
3. Set the signal generator for 400 cycle, 30% modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the $I F$ and diode transformers.
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than . 40 volts (. 05 watt) acros's the voice coil to avoid overloading the receiver.
7. See Figure 2 for adjustment locations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY ANT ENNA	GENERATÓR CONNECTION	GENERATOR FREQUENCY	GANG SETTING	ADJUST	REMARKS
IF ALIGNMENT						
1.	.1 mf	Grid of conv. (pin 7, 12BE6)	455 Kc	Fully open	$\begin{gathered} 1,2,3 \& 4 \\ (\mathrm{IF} \text { cores) } \end{gathered}$	Adjust for maximum.
$\begin{aligned} & \text { RF ALI } \\ & 2 . \end{aligned}$	GNMENT		-	$\begin{gathered} \text { Fully } \\ \text { closed } \end{gathered}$	-	Set pointer to horizontal position.
3.	. 1 mf	Grid of conv. ($\mathrm{pin} 7,12 \mathrm{BE} 6$)	1620 Kc	Fully open	5 (Osc)	Adjust for maximum.
4.	-	Radiation loop*	1400 Kc	Tune for	6 (Ant)	Adjust for maximum.

*Connect generator output across 5" diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least 12" apart.

FIGURE 2. TUBE AND TRIMMER LOCATION

SERVICE NOTES

TO REMOVE RADIO CHASSIS FROM CABINET

1. Pull off the two radio control knobs.
2. Remove the three hex head screws which hold the loop to the cabinet.
3. From the back of the cabinet, remove the two hex head screws at the rear edge of the radio chassis.
4. Slide the radio chassis and loop from the cabinet.
5. Disconnect the power leads to the radio chassis and to the appliance receptacle.

TO REMOVE CLOCK FROM CABINET

1. Remove the radio chassis as above.
2. Pull off the three clock control knobs.
3. From the back of the cabinet, remove the three hex head screws which hold the clock and its fibre insulator.
4. Carefully remove the clock, to prevent damage to its hands or face.

TO REPLACE CLOCK DIAL BACKGROUND

1. Remove the clock from the cabinet as above.
2. Carefully pull off the three hands.
3. Remove the alarm dial and dial background.

FIGURE 3. STRING DRIVE DETAIL
4. Install new background.
5. Turn the radio control shaft to "AUTO" position.
6. Slowly rotate the time set shaft clockwise until the switch contacts behind the radio control shaft close.
7. Reassemble the alarm dial and three hands. Set all the hands to indicate 12 o'clock. Set the figure " 12 " on the alarm dial to index with the small pointer on the hour hand.
8. Check the automatic operation to be sure the switch contacts close at the time indicated on the alarm dial.

PAGE 23-20 MOTOROLA
MODELS 52C6, 52C7, A,
52C8, Ch. HS-310

MOTOROLA PAGE 23-21

John F. Rider

PAGE 23-22 MOTOROLA
MODELS 52C6, 52C7, A, 52C8, Ch. HS-310

PARTS LIST

NOTE: When ordering parts, specify model and chassis numbers of set in addition to part number and description of part.

Transformers

CLOCK PARTS

Note:
The following Motorola parts are for use with Telechron clock movement, Part No. 59K610835.

34K610826	Alarm dial: silver color	. $40 \cdot$
42K601734	Clamp, line cord	. 05
30K600980	Cord, line: with plug; 6 ft long..	. 85
64K620049	Dial background: silver color	. 40
52K610836	Hand, hour: luminous	. 40
52K610837	Hand, minute: luminous	. 40
52K610829	Hand, second: black	. 15
36K601002	Knob, time set	. 20
59K610568	Motor, clock (rotor assembly only)	3.40

S U P P LEMENT

This manual contains a supplementary Replacement Parts List covering production revisions in the 52C6series of receivers.

OUTPUT TRANSFORMER

An alternate output transformer, interchangeable with the original, has been added. Both transformers are listed below.

SPEAKER

Four alternate speakers have been added. All speakers are listed below.

DIAL BACKGROUND
In later production Model 52C7 receivers, the dial background color was changed from gold to silver. The color remains gold for Models 52C6 and 52C8.

PARTS LIST SUPPLEMENT

NOTE: When ordering parts, specify model number of set in addition to part number and description of part.

NOTE: When ordering parts, specify model number of set in addition to part number and description of part. The follow ing parts are revisions of or additions to the original iternadisted in the HS-310 Service Manual.

GENERAL INFORMATION

Model 52C7A is the same as Model 52C7 except for styling. A complete listing of 52C7A cabinet parts is given below.

Refer to HS-310 Service Manual for service instructions, chassis replacement parts, and clock replacement parts.

Part Number	Description	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$
CABINET PARTS		
1V621721	Cabinet, table model: ivory; with medallion; less overlays and clock \& radio crystals............	6.30*
$61 \mathrm{C621528}$	Crystal, plastic (clock face cover)	1.45
61 K 621529	Crystal, plastic (radio face cover)	. 85
36K621520	Knob, clock control (black).......	. 20
13K621670	Medallion (on spkr grille)........	. 55
13K621669	Overlay, clock background: silver color	. 80
$13 C 621668$	Overlay, radio background: silver color.	. 80
2S490840	Speednut: for $1 / 16^{\prime \prime}$ stud (medallion mtg)doz	. 15

GENERAL INFORMATION

TYPE - AC-DC table model superheterodyne receiver with loop antenna.

RECEIVER MODELS

Model	Color
52 HllU	Walnut
52 H 12 U	Ivory
52 H 13 U	Green
52 H 14 U	Gray

TUNING RANGE - 535 to 1620 Kc IF -455 Kc

| TUBE COMPLEMENT - Type | Function |
| ---: | :--- | :--- |
| 12BE6 | Converter |
| 12BD6 | IF Amplifier |
| 12AT6 | Det, AVC \& 1st AF Amp |
| 50C5 | Power Amplifier |
| 35W4 | Rectifier |

POWER SUPPLY - 117 volts AC or DC, 35 watts

OPERATING INSTRUCTIONS

POWER SWITCH AND VOLUME CONTROL. Operated with the inner knob. NOTE: Reverse the line cord plug in the wall outlet if radio does not operate from DC. When operating from AC, reversing the line cord plug in the wall outlet may sometimes improve reception.

TUNING. Tune stations with the outer knob.

ANTENNA. A built-in loop antenna eliminates the need for an outside antenna in most locations. When receiving a weak station, rotate the receiver slightly for best signal strength. If additional pick-up is necessary, connect an external antenna to the radio by following the instructions printed on the rear panel. CAUTION: Never connect the radio chassis to a water pipe, radiator, or other ground.

The chassis of this receiver is isolated from the AC power line circuit by a capacitor to eliminate the shock hazard when handling the receiver. However, as an additional precaution when aligning or servicing the receiver from AC, an isolation transformer should be inserted between the power line and the chassis.

TO REMOVE CHASSIS FROM CABINET:

1. Pull off the two radio control knobs. A flat head screw holding the dial scale will be exposed.
2. Remove the flat head screw,
3. Remove the dial scale.
4. Pull off the pointer.
5. Remove the split plugs which hold the loop to the cabinet.
6. From the back of the cabinet, remove the two hex head screws at the rear edge of the radio chassis.
7. Slide the radio chassis and loop from the cabinet.

MOTOROLA PAGE 23-25
MODELS 52H11U, 52H12U, 52H13U, 52H14U, Ch. HS-313

ALIGNMENT

NOTE: If AC power is used, it is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to B - through a .1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to \mathbf{B}-.
3. Set the signal generator for 400 cycle, 30% modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers.
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than. 40 volts (. 05 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 2 for adjustment locations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	GANG SETTING	ADJUST

*Connect generator output across $5^{\prime \prime}$ diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least 12 "apart.

FIGURE 2. TUBE AND TRIMMER LOCATIONS

PAGE 23-26 MOTOROLA MODELS 52H11U, 52H12U, 52H13U, 52H14U, Ch. HS-313

FIGURE 3. PARTS LOCATIONS

MOTOROLA

PAGE 23－28 MOTOROLA
MODELS 52H11U，52H12U，
$52 \mathrm{H} 13 \mathrm{U}, 52 \mathrm{H} 14 \mathrm{U}, \mathrm{Ch} . \mathrm{HS}-313$

PARTS LIST

NOTE：When ordering parts specify model and chassis numbers of set in addition to part number and description of part．

$\begin{aligned} & \text { Ref。 } \\ & \text { No。 } \\ & \hline \end{aligned}$	Part Number	Description	$\begin{array}{r} \text { List } \\ \text { Price } \\ \hline \end{array}$	Part Number	Description	$\begin{array}{r} \text { List } \\ \text { Price } \end{array}$
CHASSIS PARTS－ELECTRICAL				$\begin{aligned} & 30 \mathrm{~A} 470651 \\ & 5 \mathrm{~S} 7805 \end{aligned}$	Cord，line：with plug； 6 ft lg．．．． Eyelet，snap－in（vol control in－	． 75
Capacitors					sulator mtg）．．．．．．．．．．．．．．．．．．．．．doz	． 15
$\overline{\mathrm{C}}$－1	19B610878	```Variable, 2-gang: with pulley................```		5A19658	Eyelet，spacer（gang mtg）．．．．．．doz	． 20
			2.70	5A70404	Grommet，gang mtg：rubbe	05
C－2	8R9821	Paper：． $05 \mathrm{mf} \mathrm{200V.}$.	． 20	14A482844	Insulator，line cord outlet：	
C－3	8R490232	Molded paper ：47，000 mmf 400V	． 25		fibre．．．．．．．．．．．．．．．．．．．．．．．．．．doz	． 25
C－4	21B482847	```Ceramic, multiple: 2000, 220, 220, 5000 mmf...............```	． 65	14A611064	Insulator，volume control：fibre （over vol control）．．．．．．．．．．．．．．．	． 10
C－5	8R9802	Paper：． $02 \mathrm{mf} \mathrm{400V........}$.	． 20	2S7051	Nut，hex：palnut：3／8－32 x 9／16	
C－6	23B600855	Electrolytic： $50-30 \mathrm{mf} / 150 \mathrm{v}$ 。	1.10		（volume control mtg）．．．．．．．．．．．doz	． 15
C－7	8K72686	Paper：． $15 \mathrm{mf} \mathrm{200V........}$.	． 25	1×611087	Pulley and Bushing Assembly， pointer drive． \qquad	． 20
$\frac{\text { Coils }}{L-1}$				47A611028	Shaft，tuning．	15
	24C610884	Antenna Loop and Panel Assembly．．．．．．．．．．．．．．．．．．．．．． Oscillator coil．．．．．．．．．．．．．．．	1．30＊	9K580218	Socket，tube：miniature；7－prong； with dummy lug and center shield；	
L－2	24K600812		． 85		wafer type．	． 15
				41A471681	Spring，tension（drive cord）．．．doz	． 40
Speaker				4A73639	Washer，＂C＂（tuning shaft re－	
LS－1	$50 \mathrm{B611018}$				tainer）．．．．．．．．．．．．．．．．．．．．．．．．doz	． 20
or	$50 \mathrm{C611450}$	Speaker：4＇PM；3．2 ohm VC．。	3．90＊	4A21491	Washer，flat（on tuning shaft）doz	． 15
		exch	2.95	4K482859	Washer，insulated shoulder（loop	
					brkt mtg）．．．．．．．．．．．．．．．．．．．．．．．doz	． 15

Resistors
Note：All resistors are insulated carbon type CABINET PARTS unless otherwise specified．

R－1	6R6028	22，000 20\％1／2W．．．．．．．．．doz	1.20
R－2	6R2039	68 10\％1／2W．．．．．．．．．．．．．didoz	1.20
R－3	6 R 3927	2.2 meg 20\％1／2W．．．．．．．didoz	1.20
R－4	$18 \mathrm{B611017}$	Volume control： $1 \mathrm{meg} ;$ in－ cludes on－off switch．	1.50
R－5	6R2109	$10 \mathrm{meg} 20 \%$ l／2W．．．．．．．．dodoz	1.20
R－6	6R6032	470，000 20\％1／2w．．．．．．．doz	1.20
R－7	6R6032	470，000 20\％1／2W．．．．．．．doz	1.20
R－8	6R6373	150 10\％1／2W．．．．．．．．．．．．doz	1.20
R－9	6R5683	27 10\％1／2W．．．．．．．．．．．．．d．doz	1.20
R－10	6R6327	1000 10\％IW．	． 20
Transformers			
T－1，2	24C485553	IF and Diode Transformer： 455 Kc ；complete with capa－ citors，cores and shield．．．	． 95
T－3	25K485973	Output transformer	． 80
Part			List
Number		Description	Price
CHASSIS PARTS－MECHANICAL			
7K4859	71 Brack	t，loop mtg．．．．．．．．．．．．．．．．．．．	． 05
7A6108	61 Brack	t，speaker mtg（top）．．．．．．．．．	． 10
7A6108	65 Brack	t，speaker mtg（bottom）．．．．．	． 10
7K6108	75 Brack	t，tuning shaft mtg．．．．．．．．．．	． 05
7K6108	70 Brack	t，volume control mtg．．．．．．．	． 05
42A610	858 Clip，	electrolytic mtg．．．．．．．．．．．．．	． 05
42A 485	548 Clip，	IF trans mtg．．．．．．．．．．．．．．doz	． 20

64A611499	Baffle，speaker：cardboard．．．．．．．．．	． 05
16E610760	Cabinet，table model：plastic； walnut；less speaker grille and dial scale（52Hllu）． \qquad	4．30＊
16K610761	Cabinet，table model：plastic； ivory；less speaker grille and dial scale（52H12U）．	5．95＊
16K610762	Cabinet，table model：plastic； green；less speaker grille and dial．scale（52H13U）．．．．．．．．．．．．．．	5
16K610763	Cabinet，table model：plastic； gray；less speaker grille and dial scale（52H14U）．．．．．．．．．．．．．	5．95＊
13A610872	Grille，speaker：perforated metal．	． 20
36B610880	Knob，tuning：walnut（ 52 HllU ）．．．．．	． 25
36K610881	Knob，tuning：ivory（ $52 \mathrm{Hl2U}$ ）	． 25
36K610882	Knob，tuning：green（52H13U）	． 25
36K610883	Knob，tuning：gray（ 52 H 14 U ）	． 25
36B611024	Knob，volume：walnut（52Hllu）	． 25
36K611025	Knob，volume：ivory（52Hl2U）	． 25
36K611026	Knob，volume：green（52H13U）	． 25
36K611027	Knob，volume：gray（ $52 \mathrm{Hl4U}$ ）	． 25
38A25507	Plug，split（loop panel mtg）．．．doz	． 15
52A611011	Pointer，dial：red（52Hllu）	． 20
52K611088	Pointer，dial：dark gray（52H12U \＆ 52 H 14 U ）	，20
52K611089	Pointer，dial：light gray（52H13U）	． 20
34D610859	Scale，dial：plastic（52HllU）．．．．．	1.35
34K611077	Scale，dial：plastic（52H12U \＆ 52H14U） \qquad	1.35
34K611078	Scale，dial：plastic（52H13U）	1.35
2S7092	Speednut（speaker grille mtg）．．doz	． 15

[^18]
GENERAL INFORMATION

TYPE - AC-DC operated table model superheterodyne receiver with loop antenna.

RECEIVER MODELS - Model \quad Color \quad| | |
| :--- | :--- |
| $62 \times 11 \mathrm{U}$ | Walnut |
| $62 \times 12 \mathrm{U}$ | Ivory |
| $62 \times 13 \mathrm{U}$ | Green |

TUNING RANGE - 535 to 1620 Kc IF -455 Kc

| TUBE COMPLEMENT - Type | Function |
| ---: | :--- | :--- |
| 12BD6 | RF Amplifier |
| 12BE6 | Converter |
| 12BD6 | IF Amplifier |
| 12AT6 | Det, AVC \& 1st AF Amp |
| 35C5 | Power Amplifier |
| 35W4 | Rectifier |

POWER SUPPLY - 117 volts AC or DC, 35 watts

OPERATING INSTRUCTIONS

POWER SWITCH AND VOLUME CONTROL. Operated with left-hand knob. NOTE: Reverse the line cord plug in the electrical outlet if the radio does not operate from DC. When operating from AC, reversing the plug in the wall outlet may sometimes improve reception.

TUNING. Tune stations with right-hand knob.

ANTENNA. A built-in loop antenna eliminates the need for an outside antenna in most locations. When receiving a weak station, rotate the receiver slightly for best signal strength. If additional pick-up is necessary, connect an external antenna to the radio by following the instructions printed on the rear panel. CAUTION: Never connect the radio chassis to a water pipe, radiator, or other ground.

FIGURE 1. DIAL RESTRINGING DETAIL

MODELS 62X11U, 62X12U, 62X13U, Ch. HS-314

SERVICE NOTES

The chassis of this receiver is isolated from the AC power line circuit by a capacitor to eliminate the shock hazard when handling the receiver. However, as an additional precaution when aligning or servicing the receiver from AC, an isolation transformer should be inserted between the power line and the chassis.

TO REMOVE THE CHASSIS FROM TIIE CABINET

1. Pull off the two control knobs.
2. Remove split plugs which hold the loop to the cabinet. 3. From the back of the cabinet, remove the two hex head screws at the rear edge of the radio chassis.
3. Slide the radio chassis and loop from the cabinet.

ALIGNMENT

NOTE: If AC power is used, it is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to B - through a .1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to $\mathrm{B}-$.
3. Set the signal generator for 400 cycle, 30% modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers.
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than. 40 volts (. 05 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 2 for adjustment locations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{aligned} & \text { GANG } \\ & \text { SETTING } \end{aligned}$	ADJUST	REMARKS
$\begin{aligned} & \text { IF ALI } \\ & \text { 1. } \end{aligned}$	NMENT .1 mf	Rear stator of tuning capacitor	455 Kc	Fully open	$\begin{aligned} & 1,2,3 \& 4 \\ & \text { (IF cores) } \end{aligned}$	Adjust for maximum.
WAVET 2.	RAP .1 mf	Rear stator of tuning capacitor	455 Kc	Fully open	$\begin{gathered} 5 \\ \text { (Wavetrap) } \end{gathered}$	Adjust for minimum.
RF AL 3.	GNMENT .1 mf	Rear stator of tuning capacitor	1620 Kc	Fully open	$\begin{gathered} 6 \\ (\mathrm{Osc}) \end{gathered}$	Adjust for maximum.
4	-	Radiation loop*	1400 Kc	Tune for max	$\begin{gathered} 7 \\ (\text { Ant }) \end{gathered}$	Adjust for maximum.

*Connect generator output to $5^{\prime \prime}$ diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least $12^{\prime \prime}$ apart.

FIGURE 2. TUBE AND TRIMMER LOCATIONS

MOTOROLA PAGE 23-31 MODELS 62X11U, 62X12U, 62X13U, Ch. HS-314

PAGE 23-32 MOTOROLA
MODELS 62X11U, 62X12U, 62X13U, Ch. HS-314

rigilire: 4. SChematic diagram

John F. Rider

MOTOROLA PAGE 23-33 MODELS 62X11U, 62X12U, 62X13U, Ch. HS-314

PARTS LIST

NOTE: When ordering parts, specify model and chassis number of set in addition to part number and description of part.

Ref.	Part		List	Part		List
No.	Number	Description	Price	Number	Description	Price

CHASSIS PARTS - ELECTRICAL

C-1	8R9821	Paper: . 05 mf 200V.......... . 20
C-2	19B611094	Variable, 2-gang; with pulley 2.80
C-3	21R6641	Mica: 100 mmf 500V........... . 20
C-4	21 R115312	Ceramic, disc: 5000 mmf 500 V . 25
C-5	20A26941	Mica, variable: $6 \mathrm{mmf}-60 \mathrm{mmf}$; includes bracket.............
C-6	8R9821	Paper: . 05 mf 200V.......... . 20
C-7	21B482847	Ceramic, multiple: 2000 mmf , $220 \mathrm{mmf}, 220 \mathrm{mmf}, 5000 \mathrm{mmf}$. . 65
C-8	8R9802	Paper : . $02 \mathrm{mf} \mathrm{400V.........}. \mathrm{}$.
C-9	8R9843	Paper: . $15 \mathrm{mf} \mathrm{200V.........}. \mathrm{}$.
C-10	8R490232	Molded paper: 47,000 mmf 400V . 25
C-11	23K484234	Electrolytic: $\mathbf{4 0 - 2 0 - 2 0 ~ m f / 1 5 0 V ~} 1.40$
C-12	21R115312	Ceramic, disc: 5000 mmf 500V (in some sets)............... . 25

Capacitor-Resistor

CR-1	21B484227	Capacitor-Resistor: 2 lead; 33,000 ohms, 5000 mmf (in some sets) \qquad

Resistors
Note: All resistors are insulated carbon type unless otherwise specified.

R-1	6R6075	100,000 20\% 1/2W........doz	1.20
R-2	6R5550	47 10\% 1/2w.............doz	1.20
R-3	6R6039	4700 20\% 1/2w...........doz	1.20
R-4	6R6028	22,000 20\% 1/2w.........doz	1.20
R-5	6R6028	22,000 20\% 1/2W........ddoz	1.20
R-6	6R5550	47 10\% 1/2W.............doz	1.20
R-7	6R2118	$3.3 \mathrm{meg} 20 \%$ l/2w.......didoz	1.20
R-8	18K611039	Volume control: 1 meg; includes on-off switch........	1.50
R-9	6R2109	$10 \mathrm{meg} 20 \%$ 1/2W........doz	1.20
R-10	6R6032	470,000 20\% 1/2w........doz	1.20
R-11	6R6032	470,000 20\% 1/2w.......ddoz	1.20
R-12	6R3992	150 20\% 1/2W............doz	1.20
R-13	6R5683	27 10\% 1/2w.............doz	1.20
R-14	6R488025	100 20\% 1w.............each	. 20
R-15	6R3953	1000 20\% 1W...........eeach	. 20
R-16	6R6012		1.20
Transformers			
T-1,2	24C485553	IF and Diode Transformer: 455 Kc; complete with capacitors, cores, and shield............	. 95
T-3	25B482858	Output Transformer..........	. 95

CHASSIS PARTS - MECHANICAL

45A610890	Arm, pointer suppo	. 05
7K600579	Bracket, loop mtg	10
7A600476	Bracket, tuning	10
42A610858	Clip, electrolytic mtg	05
42B485548	Clip, IF trans mtg...............doz	20
30A470651	Cord, line: with plug; $6 \mathrm{ft} \mathrm{lg} . . .$.	. 75
5A19658	Eyelet, spacer (gang mtg)......d.doz	20
5A70404	Grommet, gang mtg: rubber	. 05
14A482844	Insulator, line cord outlet: fibre.................................doz	. 25
2S7051	Nut, hex palnut: 3/8-32 x 9/16 (volume control mtg)............doz	. 15
35K611043	Pad, cushion: sponge rubber: $2-5 / 8^{\prime \prime} 1 g \times 1 / 4^{\prime \prime}$ wide $\times 1 / 4^{\prime \prime}$ thick (on spkr mtg plate).................	. 05
35K611045	Pad, cushion: sponge rubber; $7-1 / 4^{\prime \prime} \lg \times 1 / 4^{\prime \prime}$ wide $\times 3 / 8^{\prime \prime}$ thick (on spkr mtg plate)..................	. 10
1×611179	Plate, speaker mtg: with pointer bearing; less cushion pads........	. 90
1×620123	Pointer, dial: with tubing.	. 15
$49 \mathrm{A611183}$	pulley, pointer mtg	. 25
$34 C 611032$	Scale, dial	. 15
3S114795	Screw, machine: 3-48 x 5/16" slotted binder head (pointer arm mtg)................................. ${ }^{\text {doz }}$. 25
1K611042	Shaft, tuning: with pulley.	. 15
26A481521	Shield, spring (for 12AT6 tube) doz	. 50
41A471681	Spring, tension (pointer drive cord).............................. . . doz	. 40
41A14244	Spring, tension (gang drive cord)...............................doz	. 55
9 K 580218	Socket, tube: miniature; 7-prong; with dummy lug and center shield; wafer type.	. 15
4K501364	Washer, " C " (tuning shaft and pointer pulley mtg).............doz	. 15
4K482859	Washer, insulated shoulder (loop brkt mtg)..........................doz	.15

CABINET PARTS

16E610796	Cabinet, table model: plastic; walnut; less speaker grille and dial crystal (62X11U)............	6.80*
16K610797	Cabinet, table model: plastic; ivory; less speaker grille and dial crystal (62X12U)..............	8.35*
16K610798	Cabinet, table model: plastic; green; less speaker grille and dial crystal (62X13U)...........	8.35*
610610814	Crystal, dial	1.50
134611181	Grille, speaker	. 30
36B611132	Knob, control: walnut (62X11U)	. 10
36K611133	Knob, control: ivory (62X12U)	. 15
36K611134	Knob, control: green (62X13U).....	. 15
38A25507	Plug, split (loop panel mtg)...doz	. 15
353394	Screw, thread cutting: 8-18 x 1/4 plain hex head; cad pl (dial crystal mtg)	. 15
$2 \mathrm{S476112}$	Speednut (spkr grille mtg)...per/c	. 50

PAGE 23-34 MOTOROLA
MODELS 62X11U, 62X12U,
62X13U, Ch. HS-314

n

GENERAL INFORMATION

TYPE－AC－DC table model superheterodyne receiver with ＂printed＂circuit and Ferrite Magnetic Iron Core Antenna．
RECEIVER MODELS－Model \quad Color

TUBE COMPLEMENT

－Type	Function
12BE6	Converter
12BD6	IF Amplifier
12AT6	Det，AVC \＆AF Amp
50C5	Power Amplifier
35W4	Rectifier

TUNING RANGE－ 535 to 1620 Kc IF－ 455 Kc

POWER SUPPLY－ 117 volts AC or DC； 35 watts

INSTALLATION \＆OPERATING INSTRUCTIONS

POWER SWITCH \＆VOLUME CONTROL．Operated with the small lower knob．NOTE：Reverse the line cord plug in the wall outlet if radio does not operate from DC．When operating from AC，reversing the line cord plug in the wall outlet may sometimes improve reception．

TUNING．Stations are tuned in with the large upper knob。

ANTENNA．A built－in Ferrite Magnetic Iron Core Antenna eliminates the need for an outside antenna．When receiving －a weak station，rotate the receiver slightly for best signal strength．

CAUTION：Never connect the radio chassis to a water pipe，radiator，or other ground．

service notes

TO REMOVE CHASSIS FROM CABINET：

1．Remove the four screws which hold the back cover，and remove the cover and line cord．

2．Pull off the two control knobs from the front of the re－ ceiver。

3．Remove the Phillips head screw under the tuning knob， on the front of the receiver．

4．From the back，remove the screw which holds the line cord plug．

5．Disconnect the leads from the speaker．

6．From the back，remove the three screws which moun the chassis．CAUTION：Do not lose the insulating washers on the screws－they prevent damage to the printed circuit
by the heads of the screws．See Figure 1 ．
7．Slide the chassis from the cabinet．

CIRCUIT DESCRIPTION

1．The circuit of this chassis is conventional－there are no built－in resistors or capacitors．Leads are printed on both sides of the chassis base，thereby replacing the usual connecting wires and making wiring more uniform。

2．The metal printing extends through all the holes on the chassis，connecting circuits on the front with those on the pear．

3．Reference to the schematic diagram and to Figures 3 and 4 will permit the circuit to be traced easily，Figures 3 and 4 show the front and rear of the chassis，wired and unwired．

MODELS 52R11, 52R12,

52R13, 52R14, 52R15,
52R16, Ch. HS-289

SAFETY PRECAUTIONS

1. The chassis of this receiver is connected directly to the power line. However, the power cord circuit is broken by an interlock when the cabinet back is removed for replacing tubes. When aligning or servicing the chassis'from AC, an isolation transformer should be inserted between the power line and the chassis.
2. Do not service the chassis on a metal plate, because of the possibility of a short circuit.
3. Use caution when handling the chassis with power applied, because all high voltage leads are exposed.
4. The outer edges of the chassis and the large printed areas in the center are at ground potential.

COMPONENT REPLACEMENT

1. To prevent tube breakage, remove them before replacing components. CAUTION: Remove the tubes only by pulling them straight out. Wiggling a tube may bend a socket clip causing poor contact with the tube pin
2_{0} WHEN REMOVING DEFECTIVE COMPONENTS USE ONLY A SMALL SOLDERING IRON (60 WATTS OR LESS) TO AVOID DAMAGE TO THE WIRING. DO NOT USE A SOLDERING GUN. WARNING: THE LEADS ARE VERY THIN, AND. EXCESSIVE HEAT WILL BURN THEM OR LOOSEN THEM FROM THE BASE MATERIAL.
2. Printed connections or leads, if damaged, may be replaced with a jumper of regular hookup wire.
3. It is recommended that IF transformers, the volume control, or the electrolytic capacitor be removed by im. mersing all the lugs simultaneously into a small soldering pot. The component may then be lifted off the chassis easily. If a soldering pot is not available, heat each lug individually with a small soldering iron, and shake off as much molten solder as possible. Then, by alternately heat-
ing and loosening each lug, the entire component will be freed. The disadvantage of using a soldering iron instead of a soldering pot is that the printed connections may be pulled loose from the chassis.
4. An individual tube clip may be removed by squeezing it with a pliers and then unsoldering it. The new clip snaps into the hole.
5. Resistors or capacitors may be removed by unsoldering one end at a time.

CAUTION: Clean ail the solder from the holes before installing a new component. Do not let the solder run onto an adjacent lead, as a short circuit will be created.
7. Be careful, when removing or replacing the volume control mounting nut or gang mounting screws, that the printing around the holes is not damaged.
8. When the chassis is fastened into place in the cabinet, be sure the insulating washers are on the mounting screws, otherwise the heads of the screws may damage the printing. ANT ENNA

1. A Ferrite Magnetic Iron Core Antenna replaces the conventional "pancake" loop in this receiver. This newer loop is more compact and efficient than the previous type. Its inductance has been pre-set at the factory and requires no adjustment in the field.
2. Under certain circumstances, in early models, AC hum was induced into the loop antenna. This condition was corrected in later models by repositioning the loop. Figure 3 shows the revised location.
3. The service man may convert early models, if necessary, by replacing the loop mounting insulator with the later type, shown in Replacement Parts List. The loop coil itself remains the same。

ALIGNMENT

NOTE: If AC power is used, insert an isolation transformer between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to ground (the outer edges of the chassis) through a . 1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to ground.
3. Set the signal generator for 400 cycle, 30% modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers (a "K-Tran" alignment tool is recommended).
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than 40 volts (. 05 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 2 for adjustment locations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{gathered} \hline \text { GANG } \\ \text { SETTING } \end{gathered}$	ADJUST	REMARKS
IF ALI 1.	NMENT .1 mf	Grid of conv. (pin 7, 12BE6)	455 Kc	Fully open	$\begin{aligned} & 1,2,3 \& 4 \\ & \text { (IF cores) } \end{aligned}$	Adjust for maximum.
$\begin{aligned} & \text { RF AL } \\ & 2 . \end{aligned}$	GNMENT . 1 mf	Grid of conv. (pin 7, I2BE6)	1620 Kc	Fully open	5 (Osc)	Adjust for maximum.
3.	-	Radiation loop*	1400 Kc	Tune for max	6 (Ant)	Adjust for maximum.

*Connect generator output acroṣs $5^{\prime \prime}$ diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least 12" apart.

FIGURE 1. REAR VIEW OF RECEIVER (LATE MODEL)

PAGE 23-38 MOTOROLA

FIGURE 4. REAR VIEW OF CHASSIS - WIRED AND BLANK (LATE MODEL)

PAGE 23-40 MOTOROLA MODELS 52R11, 52R12, 52R13, 52R14, 52R15, 52R16, Ch. HS-289

FIGURE 5. FRONT VIEW OF CHASSIS (EARLY MODEL)

FIGURE 6. REAR VIEW OF CHASSIS (EARLY MODEL)

PARTS LIST

NOTE: When ordering parts, specify model and chassis numbers of set in addition to part number and description of part.

[^19]NOTE: When ordering parts, specify model and chassis number of set in addition to part number and description of part. the HS-289 Service Data.
List
.30
Chassis HS-289A is the same as HS-289 except for the A dual 250 mmfd ceramic capacitor replaces capacitors C-3 and C-6 used in chassis HS-289. All other chassis
 HS-289 Service Data.
PARTS LTST SUPPTHMPNT

0

GHNERAL INFORMATION
Chassis HS-289A is the same as HS-289 except for the
locations of electrical components (see Figures 1 and 2). For information on Operating Instructions,
and Alignment refer to HS-289 Service Data.

$\begin{array}{ll}\text { Ref. } & \text { Part } \\ \text { No. } & \text { Number }\end{array}$

Description
C-3,6 21B484337 Ceramic: dual $250 \mathrm{mmfd} / 450 \mathrm{~V}$ (Replaces C-3, C-6

figure 1.

GENERAL INFORMATION

TYPE - Three-power (AC/DC, Battery) portable radio re-
ceiver. Four miniature-type tubes and a selenium
rectifier are used in a superheterodyne circuit.
TUNING RANGE - 535 to 1620 Kc IF - 455 Kc
POWER SUPPLY - Operates from $117 \mathrm{~V} \mathrm{AC/DC}. \mathrm{(15} \mathrm{watts)}$
or from the following batteries:
Two $1-1 / 2 \mathrm{~V}$ size "D" flashlight cells
Use: Eveready 950
or Burgess 2
or equivalent.
One $67-1 / 2 \mathrm{~V}$ "B" battery
Use: Eveready 457
or Burgess K45
or equivalent.

TUBE COMPLEMENT - Type Function
1R5 Converter
1 U4 IF Amplifier
1 U5 Det, AVC \& 1 st AF Amp
3S4 Power Amplifier
Rectifier Selenium type -for
AC/DC operation

FIGURE 1. 52BIU RECEIVER

OPERATING INSTRUCTIONS

TO REMOVE LOWER HOUSING. Insert a large coin into the fastener on the bottom of the receiver (see Figure 1 for location), and rotate it counterclockwise until the housing is released. Then pull off the housing.

TO REPLACE LOWER HOUSING. Make certain, when the lower housing is assembled to the upper portion of the set, that the fastener is on the side of the housing which faces the speaker. Rotate the fastener clockwise until the housing is locked into place.

HOUSE CURRENT OPERATION. The power cord is located inside the cabinet and can be reached by removing the lower housing. - Uncoil the line cord from its retainer and pass it through the slot in the end of the housing. Plug the cord into any 117 volt AC or DC power outlet. Reverse the plug in the outlet if the receiver does not operate from DC power. When operating from $A C$, reception may sometimes be improved by reversing the power plug in the outlet. It is not necessary that batteries be installed if the receiver is to be operated only from house power lines.

BATTERY OPERATION. Remove the lower housing and install batteries by following the instructions on the label located inside the housing, or refer to Figure 2. Plug the power line cord into the receptacle on the chassis, or the receiver will not play from batteries. If the radio is to be operated for a long period of time from house power lines,
or is to be placed in storage, remove the batteries and keep them in a cool place. IMPORTANT: Never leave low or run-down batteries in the receiver, as they will leak or swell and damage it.

CONTROLS. The volume control and power switch are combined and are operated with the VOLUME knob (see Figure 1). Select stations with the TUNING knob. The markings around the TUNING knob can be read in kilocycles by adding one zero to the figures.

ANTENNA. A Ferrite Magnetic Iron Core Antenna is built into this receiver. Because of the slightiy directional characteristics of the built-in antenna, reception from some stations may be improved by rotating the receiver. In extremely noisy locations, rotate the set until minimum noise and maximum signal pickup are obtained.

BATTERY REPLACEMENT. If low volume or fuzzy tone is noticed when operating from batteries, replace the flashlight cells. Normally, the $67-1 / 2$ volt "B" battery will last for 3 or 4 changes of the flashlight cells. Complete battery replacement instructions will be found inside the lower housing of the receiver, or refer to Figure 2。NOTE: The condition of the batteries will not affect operation of the receiver from the house power lines.

SERVICE NOTES

The chassis of this receiver is isolated from the AC power line circuit by a capacitor-choke assembly to eliminate the shock hazard when handling the receiver. However, as an additional precaution when aligning or servicing the receiver from AC, an isolation transformer should be inserted between the power line and the chassis.

The tubes are exposed when the lower housing is removed. It is not necessary to remove the chassis to replace tubes.

TO REMOVE THE CHASSIS FROM THE CABINET:

1. Remove the lower housing (see Operating Instructions).
2. Pull off the knobs.
3. Remove the two hex head screws under the knobs.
4. Pull outward on the two studs which hold the handle and lift off the top housing.

ALIGNMENT

NOTE: The receiver may be operated either from batteries or from the commercial power lines during alignment. If AC' power is used, it is recommended that an isolation transformer be placed between the power line and the receiver. If an isolation transformer is not available, connect the low side of the signal generator to B - through a . 1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to B-.
3. Set the signal generator for 400 cycle, 30% modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers.
6. Adjust the signal generator output to produce . 40 volts (. 05 watts) across the voice coil. As stages are aligned, reduce the generator output to maintain the . 40 volt level, to avoid overloading the receiver.
7. See Figure 3 for adjusting locations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{gathered} \text { GANG } \\ \text { SETTING } \end{gathered}$	ADJUST	REMARKS
$\mathrm{IF} \mathrm{ALI}$ $1 .$	NMENT . 1 mf	Grid of conv (pin 6, 1R5)	455 Kc	Fully open	$\begin{aligned} & 1,2 \& 3 \\ & \text { (IF cores) } \end{aligned}$	Adjust for maximum.
$\begin{aligned} & \text { RF AL } \\ & \text { 2. } \end{aligned}$	GNMENT .1 mf	Grid of conv (pin 6, lR5)	1620 Kc	Fully open	4 (Osc)	Adjust for maximum.
3.	-	-	-	-	-	Install batteries in chassis, leaving output meter connected to speaker.
4.	-	Radiation loop*	1400 Kc	Tune for max.	5 (Ant)	Adjust for maximum.

*Connect generator output across 5" diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least 12" apart。

PAGE 23-46 MOTOROLA

MODELS 52B1U, 52B2U,

52B3U, 52B4U, Ch. HS-305

FIGURE 2. REAR VIEW OF RECEIVER

FIGURE 3. TUBE AND TRIMMER LOCATIONS

MOTOROLA PAGE 23-47 MODELS 52B1U, 52B2U, 52B3U, 52B4U, Ch. HS-305

FIGURE 4. PARTS LOCATIONS

PAGE 23-48 MOTOROLA
MODELS 52B1U, 52B2U, 52B3U, 52B4U, Ch. HS-305

FIGURE 5. SCHEMATIC DIAGRAM

PARTS LIST

NOTE: When ordering parts, specify model and chassis number of set in addition to part number and description of part.

GENERAL INFORMATION

Model	Color
52B2U	Green
52B3U	Brown
52B4U	Tan

PARTS LIST SUPPLEMENT
NOTE: When ordering parts, specify model and chassis number of set in addition to part number and description of part. The following parts are revisions of or additions to the original items listed in the HS - 305 Service retainer are listed below.
ment Parts List for receiver models 52B2U, 52B3U, and 52B4U. Except for the lower housing locking nut, the chas-
sis parts and 52 Bl - cabinet parts are the same as listed in 52BlU

On later model HS -305 chassis, the welded "tee" nut,
which held the lower housing locking fastener, was replaced with a removable nylon nut and its retainer. The nut and
 This supplement contains a complete cabinet Replace-
ment Parts List for receiver models $52 \mathrm{~B} 2 \mathrm{U}, 52 \mathrm{~B} 3 \mathrm{U}$, and

Part Number	Description	$\begin{array}{r} \text { List } \\ \text { Price } \end{array}$	Part Number	Description	List Price
CHASSIS PARTS SUPPLEMENT			15K621226	Housing, top: satin brass finish; less handle and studs.............	3.80*
2A620252	Nut, square: $10-32 \times 7 / 16$; nylon (lower housing locking)...........	$.05$	18611479	Insulator, chassis: fibre; with grille cloth (inside top housing)	. 45
2K620251 R	Retainer, nut (for lower housing		36K621220	Knob, volume control: green (52B2U)	. 45
	locking nut)	. 05	36K621222	Knob, volume control: brown (52B3U)	. 45
			36K621224	Knob, volume control: \tan (52E4U) 。	. 45
			36K621221	Knob, tuning control: green (52B2U)	. 45
MODEL 52B2U,	52B3U, 52B4U CABINET PARTS		36K621223	Knob, tuning control: brown (52B3U)	. 45
			36K621225	Knob, tuning control: tan (52B4U).	. 45
46K621231	Button, plug: satin brass finish (in top housing)................ doz	. 15	41A611538	Spring, compression (on handle mtg stud).............................doz	. 15
13A611521	Cloth, grille (on chassis insulator) 25	46A621295	Stud, handle mtg: less spring; bright brass finish.	. 15
3A621293	Fastener, locking: bright brass finish (locks lower housing).....	. 15	4K601456	$\begin{aligned} & \text { Washer, "C" (on handle mtg } \\ & \text { stud).. } \end{aligned}$. 15
55K621229	Handle: green (52B2U)	1.10	4A21577	Washer, "C" (locking fastener	
55K621228	Handle: brown (52B3U)	1.10		mtg)........................... ${ }^{\text {doz }}$. 15
55 K 621227	Handle: tan (52B4U)	1.10	4A620230	Washer, fibre (locking fastener	
1V621252	Housing, lower: plastic; green; with locking fastener (52B2U)....	6.95*	4S1706	mtg) ... Washer, flat: $3 / 8$ x . 203 x .033;	. 15
1V621253	Housing, lower: plastic; brown; with locking fastener (52B3U)....	6.95*		```steel (locking fastener mtg)..```	. 50
1V621254	Housing, lower: plastic; tan; with locking fastener (52B4U)..........	6.95*	4K620224	Washer, shoulder: fibre (chassis mtg to top housing)...........doz	.15
	PRICES SUBJECT *Plus Fede	0 CH Excise	NGE WIT ax At Current	HOUT NOTICE	

GENERAL INFORMATION

TYPE - AC-DC table model superheterodyne receiver with loop antenna.

```
TUNING RANGE - 535 to 1620 Kc IF - 455 Kc
TUBE COMPLEMENT - 12BE6 - Converter
12BA6 - IF Amplifier
12AT6 - Detector, AVIC \& lst AF Amp
50C5 - Power Amplifier
35W4 - Rectifier
```

POWER SUPPLY - 117 volts AC or DC, 35 watts

INSTALLATION \& OPERATING INSTRUCTIONS

POWER SWITCH AND VOLUME CONTROL. Operated with the left-hand knob. NOTE: Reverse the line cord plug in the wall outlet if radio does not operate from DC. When operating from $A C$, reversing the line cord plug in the wall outlet may sometimes improve reception and reduce hum.

TUNING. Tune stations with right -hand knob.
ANTENNA. A loop antenna is built into this receiver, eliminating the need for an external antenna. Reception from some stations may be improved by
rotating the whole receiver; this is due to the slight directional characteristic of the loop antenna. In extremely noisy locations, rotate the entire receiver till minimum noise and maximum sigo nal pickup are obtained. For additional pickup, an external antenna may be connected by winding lead-in wire in slots on radio back panel.

GROUND. Never connect antenna or chassis to water pipe, radiator or other ground, as one side of the power line is connected directly to chassis.

SERVICE NOTE

The chassis of this receiver is connected directly to the power line. When operating chassis (from AC line) outside of its cabinet, use an isolation transformer between power line and receiver to reduce possibility of electrical shock. If iso-
lation transformer is not available, check the AC voltage between chassis and bench ground; if there is any indication of voltage, reverse the line plug before handling set.

TO REMOVE CHASSIS FROM CABINET

1. Set pointer to extreme low frequency end to expose pointer setscrew. Loosen pointer setscrew with a slab head wrench.
2. Remove the knobs; they pull off.
3. Remove the two split plugs that hold top of loop panel to cabinet.
4. Remove the two screws that hold the chassis to the cabinet. These screws are accessible through slots in the loop panel.

ALIGNMENT

If AC power is used, use an isolation transformer between power line and receiver. If isolation transformer is not available, connect low side of signal generator to chassis through .l mf capacitor.

Connect low range output meter across speaker
voice coil and set volume control at maximum. For greatest accuracy, keep output of receiver at approximately .05 watt (. 05 watt $=.40$ volt on output meter) throughout alignment by reducing signal generator output as stages are brought into alignment. Use a small fibre screwdriver for aligning IF \& diode transformers.

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{aligned} & \text { GANG } \\ & \text { SET TO } \end{aligned}$	ADJUST	REMARKS
$\begin{aligned} & \text { IF ALI } \\ & 1 . \end{aligned}$	GNMENT $.1 \mathrm{mf}$	Rear stator of tuning capacitor	455 Kc	Gang opened	$1,2,3 \& 4$	Adjust for maximum.
RF AL $2 .$	GNMENT	Radiation loop*	1620 Kc	$\begin{gathered} \text { Gang fully } \\ \text { opened } \end{gathered}$	5	Adjust for maximum.
3.	-	Radiation loop*	1400 Kc	Tune for maximum	- 6	Adjust for maximum.

* Connect generator output to $5^{\prime \prime}$ diameter, 3 turn loop and couple to receiver loop. Keep loops at least $12^{\prime \prime}$ apart.
(3) SEC. (BOT.)
(4) PRI. (TOP)

FIGURE 2. TUBE \& TRIMMER LOCATION

MODELS 59H11,

59H12I, Ch. HS-206

GENERAL INFORMATION

TYPE - Three-power (AC/DC, Battery) portable radio receiver. Four miniature type tubes and a selenium rectifier are used in a superheterodyne circuit.

RECEIVER MODELS

Model	Color
52L1	Green
52L2	Maroon
52L3	Gray

TUNING RANGE - 535 to 1620 Kc IF -455 Kc

POWER SUPPLY - Operates from 117V AC/DC (15 watts) or from the following batteries:

2-1-1/2v "A" batteries (Eveready \#964 or equivalent)

1-67-1/2V 'B' battery (Eveready \#477 or equivalent)

FIGURE 1. FRONT VIEW OF RECEIVER

TUBE COMPLEMENT - Type	Function
$1 R 5$	Converter
1 U 4	IF Amplifier
$1 U 5$	Det, AVC \& 1st AF Amp
$3 S 4$	Power Amplifier
Rectifier	Selenium type-for AC/DC
	operation

OPERATING INSTRUCTIONS

TO OPEN BACK COVER. Press the release button on the top of the cabinet and, with the fingers, pull the back cover open. When closing the cover, be careful not to pinch the power line cord or other leads between the cover and the cabinet.

HOUSE CURRENT OPERATION. The power cord is located inside the cabinet and can be reached by opening the back cover. Pass the cord through the slot on the side of the receiver before closing the cover. Plug the cord into any 117 volt AC or DC power outlet. Reverse the plug in the outlet if the receiver does not operate from DC power. When operating from AC, reception may sometimes be improyed by reversing the power plug in the outlet. It is not necessary that batteries be installed if the receiver is to be operated only from house power lines.

BATTERY OPERATION. Open the back cover and install the batteries by following the instructions on the label located inside the cover, or refer to Figure 2. Plug the power line cord into the receptacle on the chassis, or the receiver will not operate from batteries. If the radio is to be oper ated for a long period of time from house power lines, or is to be placed in storage, remove the batteries and keep
them in a cool place. IMPORTANT: Never leave low or run-down batteries in the receiver, as they will swell or leak and damage the set.

CONTROLS. The volume control and power switch are combined and are operated with the VOLUME knob (see Figure 1). Select stations with the TUNING knob. The markings on the dial scale can be read in kilocycles by adding two zeros to the figures.

ANTENNA. A Ferrite Magnetic Iron Core Antenna is built into this receiver. Because of the slightly directional characteristics of the built-in antenna, reception from some stations may be improved by rotating the receiver. In extremely noisy locations, rotate the set until minimum noise and maximum signal pickup are obtained.

BATTERY REPLACEMENT. Replace the batteries when low volume or fuzzy tone is noticed. Complete battery replacement instructions will be found inside the back cover, or refer to Figure 2. NOTE: The condition of the batteries will not affect operation of the receiver from the house power lines.

SERVICE NOTES

The chassis of this receiver is isolated from the AC power line circuit by a capacitor to eliminate the shock hazard when handling the receiver. However, as an additional precaution when aligning or servicing the receiver from AC, an isolation transformer should be inserted between the power line and the chassis.

The tubes are exposed when the rear cover is opened. It is not necessary to remove the chassis to replace tubes.
to remove the chassis From the cabinet
Refer to Figure 2 for the locations of the items mentioned below.

1. Open the back cover and remove the batteries.
2. Remove the two wire clips which hold the plastic retainer blocks at each end of the "A" battery compartment.
3. Remove the screw holding the cover stop cord to the chassis.
4. Remove the chassis mounting screws, at the four corners of the chassis.
5. Slide the chassis, with knobs and escutcheon, from the cabinet.
6. Remove one of the handle clips. (Squeeze the sides of the clip until it is released from the escutcheon.)
7. Remove the two screws located under the handle, and lift off the escutcheon.
8. Pull off the knobs.

REAR COVER HINGE INSTALLATION

The proper method for installing a new hinge is shown in Figure 3. Note that the under side of the cabinet should rest on an iron block during the heating process to prevent the formation of a heat bubble on the bottom of the cabinet.

PAGE 23-56 MOTOROLA
MODELS 52L1, 52L2,
52L3, Ch. HS-327

FIGURE 2. REAR VIEW OF RECEIVER

FIGURE 3. REAR COVER HINGE INSTALLATION

ALIGNMENT

NOTE: The receiver may be operated either from batteries or from the commercial power lines during alignment. If $A C$ power is used, it is recommended that an isolation transformer be placed between the power line and the receiver. If an isolation transformer is not available, connect the low side of the signal generator to $B-$ through a . 1 mf capacitor.

PROCEDURE:-

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to $\mathbf{B -}$ -
3. Set the signal generator for 400 cycle, 30% modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers.
6. Adjust the signal generator output to produce. 40 volts (. 05 watts) across the voice coil. As stages are aligned, reduce the generator output to maintain the .40 volt level, to avoid overloading the receiver.
7. See Figure 4 for adjusting locations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	GANG SETTING	ADJUST	REMARKS
IF ALIGNMENT						
1.	.1 mf	Ant section of gang (green loop lead)	455 Kc	Fully open	$\begin{gathered} 1,2 \& 3 \\ \text { (IF cores) } \end{gathered}$	Adjust for maximum.
RF A.L $2 .$	GNMENT	-	-	-	-	Attach chassis bottom cover.
3.	-	-	-	-	-	Install batteries in chassis.
4.	. 1 mf	Ant section of gang (green loop lead)	1620 Kc	Fully open	$\begin{gathered} 4 \\ \text { (Osc trim) } \end{gathered}$	Adjust for maximum.
5.	-	Radiation loop*	1400 Kc	Tune for maximum	$\stackrel{6}{(\text { Ant trim) }}$	Adjust for maximum.
6. **	-	Radiation loop*	600 Kc	Tune for maximum	(Osc core)	Simultaneously tune gang and adjust core for maximum signal.
7. **	-	Radiation loop*	1620 Kc	Fully open	$\stackrel{4}{(\text { Osc } \operatorname{trim})}$	Readjust for maximum, if necessary.
8. **	-	Radiation loop*	1400 Kc	Tune for maximum	$\begin{gathered} 6 \\ \text { (Ant trim) } \end{gathered}$	Readjust for maximum, if necessary.

*Connect generator output across 5 " diameter, 5 -turn loop and couple inductively to receiver loop. Keep loops at least 12 " apart.
**Steps 6, 7, \& 8 need not be performed unless receiver is off calibration or mistracks badly at low frequencies.

PAGE 23-58 MOTOROLA
MODELS 52L1, 52L2,
52L3, Ch. HS-327

FIGURE 5. PARTS LOCATIONS

FIGURE 6. SCHEMATIC DIAGRAM

PAGE 23-60 MOTOROLA

MOTOROLA PAGE 23-61 MODELS 52CW1, 52CW2, 52CW3, 52CW4, Ch. HS-329

GENERAL INFORMATION

TYPE - Wall mounted, "Pin-Up" model superheterodyne radio, combined with an electric clock which may be set to automatically turn the radio on.

RECEIVER MODELS	Model	Color
	52CW 1	Yellow
-	52CW2	White
	52CW 3	Green
	52CW4	Red

TUNING RANGE - 535 to $1620 \mathrm{Kc} \quad$ IF -455 Kc TUBE COMPLEMENT

Type	Function
12BE6	Converter
12BD6	IF Amplifier
12AT6	Det, AVC \& AF Amp
50C5	Power Amplifier
35W4	Rectifier

CLOCK - Sessions self-starting electric clock, with Motorola, face and hands.

MOUNTING

Mount the "Pin-Up" clock radio in a suitable location on the wall with two \#10 $\times 1-1 / 4$ " round head wood screws or two 1 " long picture hangers (furnished with each new "PinUp" clock radio). Use the screws for fastening the clock radio to a wooden wall or into a stud in a plastered wall. and the picture hangers for attaching the set to a plastered or plasterboard wall. The spacing between the two screws or hangers should be 6-7/8', as shown in Figure 2.

OPERATING INSTRUCTIONS

The locations and functions of the clock and radio controls are shown in Figure 1.

NORMAL RADIO OPERATION
Knob " B " on the clock turns the radio on or off. Select stations with the TUNING knob, and adjust volume with the VOLUME control.

A built-in ferrite magnetic iron core antenna eliminates the need for an outside antenna. CAUTION: Never connect the radio chassis to a water pipe, radiator, or other ground.

FIGURE 1. FRONT VIEW OF RECEIVER

FIGURE 2. MOUNTING LOCATIONS

CLOCK OPERATION

The clock will start as soon as the reçeiver is plugged into an electrical outlet. To set the hands to the correct time, pull out knob " A " and rotate it in a clockwise direction only.

AUTOMATIC RADIO OPERATION

The clock controls may be pre-set to.turn the radio on
automatically at any time up to ten hours in advance.

Rotate knob "C" clockwise to the desired time on the automatic time dial scale. Rotate knob "B" to the "AUTO" position. At the pre-set time the radio will begin to play.

If the radio has been turned on automatically and is left unattended, with knob "B" in the "AUTO" position, it will shut off after approximately two hours. To permit continuous operation, rotate knob ' B " to the "ON" position.

PAGE 23-62 MOTOROLA

MODELS 52CW1, 52CW2,

 52CW 3, 52CW4, Ch. HS-329
SERVICE NOTES

The chassis of this receiver is isolated from the AC power line circuit by a capacitor, to eliminate the shock hazard when handling the receiver. However, as an additional precaution when aligning or servicing the receiver, an isolation transformer should be inserted between the power line and the chassis.

TO REMOVE CHASSIS FOR SERVICE

1. Pull off the two radio control knobs.
2. Remove the four screws from the back cover of the cabinet.
3. Pull off the back cover. See Figure 3.
4. Disconnect the speaker leads.
5. Disconnect the three leads to the clock.

TO REMOVE CLOCK FROM CABINET

1. Remove the radio chassis as above.
2. Pull off the three clock control knobs.
3. Remove the clock dial scale.
4. Remove the three speed nuts which fasten the clock to the cabinet.
5. Remove the clock carefully, to prevent damage to its hands or face.

TO REPLACE CLOCK DIAL BACKGROUND

1. Remove the clock from the cabinet as above.
2. Carefully pull off the four hands.
3. Remove the clock dial background.
4. Install new background.
5. Turn the radio control shaft ("B") to "AUTO" position.
6. Slowly rotate the automatic time set shaft ('C") clockwise until a "click" is heard, indicating that the switch contacts have closed. Do not overshoot this point.
7. Reassemble all four hands in the 12 o'clock position.
B. Check the operation of the clock to be sure the radio turns on at the time indicated on the automatic time dial scale.

FIGURE 3. BACK COVER REMOVAL

MOTOROLA PAGE 23-63 MODELS 52CW1, 52CW2, 52CW3, 52CW4, Ch. HS-329

ALIGNMENT

NOTE: It is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to B-through a. 1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to B-.
3. Set the signal generator for 400 cycle, 30% modulation.
ALIGNMENT
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers.
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than. 40 volts (. 05 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 4 for adjustment locations and the following chart for procedure.

CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FRECUENCY	$\begin{gathered} \text { GANG } \\ \text { SETTING } \end{gathered}$	ADJUST	REMARKS
$\begin{aligned} & \text { IF AL } \\ & 1 . \end{aligned}$	GNMENT .1 mf	Grid of conv. (pin 7, 12BE6)	455 Kc	Fully open	$\begin{aligned} & 1,2,3 \& 4 \\ & \text { (IF cores) } \end{aligned}$	Adjust for maximum.
$\begin{aligned} & \text { RF AL } \\ & \text { 2. } \end{aligned}$	GNMENT .1 mf	Grid of conv. (pin 7, 12BE6)	1620 Kc	Fully open	5 (Osc)	Adjust for maximum.
3.	-	Radiation loop*	1400 Kc	Tune for max	6 (Ant)	Adjust for maximum.

*Connect generator output across 5 " diameter, 5 turn loop and couple inductively to receiver loop. Keep generator loop perpendicular to axis of and at least 12 inches from receiver iron core loop.

FIGURE 4. TUBE AND ALIGNMENT LOCATIONS

PAGE 23-64 MOTOROLA
MODE LS 52CW1, 52CW2,
52CW3, 52CW4, Ch. HS-329

FIGURE 5. PARTS LOCATIONS

MOTOROLA PAGE 23-65 MODELS 52CW1, 52CW2, 52CW3, 52CW4, Ch. HS-329

John F. Rider

MODELS 52CW1, 52CW2, 52CW3, 52CW4, Ch. HS-329 PARTS LIST
 NOTE: When ordering parts, specify model number of set in addition to part number and description of part.

GENERAL INFORMATION

TYPE - AC table model superheterodyne with self-contained electric clock for controlling automatically the operation of the radio.

COLOR - Walnut
TUNING RANGE - 535 to 1620 Kc
IF -455 Kc

TUBE COMPLEMENT - Type \quad Function \quad| 12BE6 | Converter |
| ---: | :--- |
| 12BD6 | IF Amplifier. |
| 12AT6 | Det, AVC \& AF Amp |
| 50C5 | Power Amplifier |
| 35W4 | Rectifier |

POWER SUPPLY - Operates from 117 volts, 60 cycle, alternating current only. Power consumption 37 watts.

CLOCK - Telechron self-starting electric clock with Motorola face and hands.

OPERATING INSTRUCTIONS

The locations and functions of the clock and radio controls are shown in the photo above.

NORMAL RADIO OPERATION
Knob "A" on the clock turns the radio on or off. Select stations with the TUNING knob, and adjust volume with the VOLUME control.

A built-in loop antenna eliminates the need for an outside antenna in most locations. When receiving a weak station, rotate the receiver slightly for best signal strength. If additional pick-up is necessary, connect an external antenna to the radio by following the instructions printed on the. rear panel. CAUTION: Never connect the radio chassis to a water pipe, radiator, or other ground.

CLOCK OPERATION

The clock will start as soon as the receiver is plugged into an electrical outlet. To set the hands to the correct time, rotate the TIME SET knob (on the rear of the radio) in a clockwise direction only.

AUTOMATIC RADIO OPERATION

The clock controls may be pre-set to turn the radio on automatically at any time up to twelve hours in advance.

Pull out knob "B"; rotate it counterclockwise to the desired time on the alarm dial scale, and push the knob back in. Rotate knob "A" first to the "OFF" position and then to the "AUTO" position. At the pre-set time, the radio will come on and will continue to play until turned off manually. The alarm will ring also if the knob " B " is left pulled out. The radio will come on first and, after an interval of about ten minutes, the alarm will ring.

ALIGNMENT

NOTE: It is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to chassis through a . 1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to chassis.
3. Set the signal generator for 400 cycle, 30% modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers.
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than. 40 volts (. 05 watts) across the voice coil to avoid overloading the receiver.
7. See Figure 1 for adjustment locations and the following chart for procedure.

ALIGNMENT CHART

STEP	$\begin{gathered} \text { DUMMY } \\ \text { ANTENNA } \end{gathered}$	GENERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{gathered} \text { GANG } \\ \text { SETTING } \end{gathered}$	ADJUST	REMARKS
IF ALI 1.	GNMENT .1 mf	Grid ot conv. (pin 7, 12BE6)	455 Kc	Fully open	$\begin{aligned} & 1,2,3 \& 4 \\ & (\text { IF cores }) \end{aligned}$	Adjust for maximum.
RF AL 2.	GNMENT	-	-	Fully closed	-	Set pointer to horizontal position.
3.	. 1 mf	Grid of conv. (pin 7, 12BE6)	1620 Kc	Fully open	5 (osc)	Adjust for maximum.
4.	-	Radiation loop*	1400 Kc	Tune for max	6 (Ant)	Adjust for maximum.

*Connect generator output across 5" diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least 12" apart.

698620311-0

FIGURE 1. TUBE AND TRIMMER LOCATION

MOTOROLA PAGE 23-69 MODELS 52C1, 52C1A,
SERVICE NOTES
Ch. HS-309
The chassis of this receiver is connected directly to the power line. When operating the chassis outside of its cabinet, use an isolation transformer between the power line and the receiver to reduce the possibility of an electrical shock.

TO REMOVE RADIO CHASSIS FROM CABINET

1. Pull off the two radio control knobs.
2. Remove the three hex head screws which hold the loop to the cabinet.
3. From the back of the cabinet, remove the two hex head screws at the rear edge of the radio chassis.
4. Slide the radio chassis and loop from the cabinet.
5. Disconnect the power leads to the radio chassis.

TO REMOVE CLOCK FROM CABINET

1. Remove the radio chassis as above.
2. Pull off the two clock control knobs.
3. From the back of the cabinet, remove the thr ee hex head screws which hold the clock and its fibre insulator.
4. Carefully remove the clock, to prevent damage to its hands or face.

TO REPLACE CLOCK DIAL BACKGROUND

1. Remove the clock from the cabinet as above.
2. Carefully pull off the three hands.
3. Remove the alarm dial and dial background.

FIGURE 2. STRING DRIVE DETAIL
4. Install new background.
5. Turn the radio control shaft to "AUTO" position.
6. Slowly rotate the time set shaft clockwise until the switch contacts behind the radio control shaft close.
7. Reassemble the alarm dial and three hands. Set all the hands to indicate 12 o'clock. Set the figure " 12 " on the $^{\prime}$. alarm dial to index with the small pointer on the hour hand.
8. Check the automatic operation to be sure the switch contacts close at the time indicated on the alarm dial.

FIGURE 3. PARTS LOCATION

PAGE 23-70 MOTOROLA

MODELS 52C1, 52C1A,

 Ch. HS-309

PARTS LIST

NOTE: When ordering parts, specify model number of set in addition to part number and description of part.

Part Number	Description	List Price		
		CLOCK PARTS		
	plate, radio dial background: silver color....................	. 55	Note:	The following Motorola parts are for use with Telechron clock movement Part No. 59D610825.
52A610809	Pointer, radio dial: light green..	. 25		
1A610808	Shaft, tuning: with pulley.........	. 15		
9B472534	Socket, tube: miniature; 7-prong..	. 15		
41 A 73996	Spring, tension (electrolytic mtg)	. 05	34K610826	Alarm Dial: silver color 40
41A73619	Spring, tension (gang drive cord).............................doz	. 40	42A470832	Alarm Dial: silver color........... 40
4A 70015	Washer, "C" (tuning shaft mtg).............................. ${ }^{\text {per }}$ /c	. 50	$30 K 478137$ $64 K 620049$	Cord, line: with plug; 6 ft long.. . 55 Dial background: silver color..... . 40
14A11493	```Washer, shoulder: fibre (loop bracket mtg)....................doz```	.35	$52 \mathrm{~K} 610828$	Hand, hour: green..................... . 15 Hand, minute: green.................. . 15
CABINET PA			36K601002	Hand, second: black.................. 15
1×610824			59K610568	Motor, clock (rotor assembly only) 3.40
1X610824	less overlays and clock and radio scales.........................	4.75*	PRICES	SUBJECT TO CHANGE WITHOUT
28A600064	Connector, wire (connects clock \& radio power leads)................	. 05	NOTICE	
14B611368	Insulator, clock: fibre (over back of clock)	. 15		Plus Federal Excise Tax At Current Rate
36B610817	Knob, clock control: black.........	. 20		
36B610815	Knob, radio control: black.........	. 20		
13A610802.	Overlay, clock background: gold color.	. 15		
13A610804	Overlay, radio background: gold color.	. 20		
34K610.822	Scale, clock dial: plastic	1.45		
34C610791	Scale, radio dial: plastic.........	1.50		

GENERAL INFORMATION

Model 52C1A is the same as Model 52Cl except for styling. A complete listing of 52C1A cabinet parts is given below.

Refer to HS-309 Service Manual for service instructions, chassis replacement parts, and clock replacement parts.

NOTE: When ordering parts, specify model and chassis number of set in addition to part number and description of part. The following parts are revisions of or additions to the original items listed in the HS-309 Service Manual.

Part Number	Description	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$			
CABINET PARTS			36K621520	Knob, clock control (bla	20
			13A792195	Medaliion, on speaker grille	. 55
1V622095	Cabinet, table model: walnut; with medallion; less overlays.........	5.85*	13K621892	Overlay, clock background: with numbers.	. 95
61 K 621891	Crystal, plastic (clock face cover)	. 85	$13 C 621527$	Overlay, radio background: with	
61K621529	Crystal, plastic (radio face cover)	. 85		numbers.	. 95
64K621523	Dial background....................	.45	43A600095	Sleeve, paper (on pointer	
59 K 621787	Electric Clock Assembly: Telechron;			shaft)..... per/c	. 50
	with hands; less line cord.......	$\begin{array}{r} 10.25 \\ 7.70 \end{array}$	2S 490840	Speednut, medallion mtg.......doz	. 15

PRICES SUBJECT TO CHANGE WITHOUT NOTICE *Plus Federal Excise Tax At Current Rate

PAGE 23-72 MOTOROLA
MODELS 52C1, 52C1A,
Ch. HS-309

John F. Rider
GENERAL INFORMATION

APPLIANCE OUTLET - For use with 117 volt AC appliances only, rated at 1100 watts or less.
CLOCK - Telechron self-starting electric clock, with Motorola face and hands.

OPERATING INSTRUCTIONS

CLOCK OPERATION

The clock will start as soon as the receiver is plugged
on electrical outlet. To set the hands to the correct time, rotate the TIME SET knob (on the rear of the radio) in a clockwise direction only.
ALARM OPERATION
To set the alarm, pull out AUTO SET knob and rotate it
a counterclockwise direction to the desired time on the in a counterciockwise direction the the desired time on the til AUTO SET knob is pushed in. The alarm function is completely independent of the other controls on the clock.
SLEEP CONTROL
The SLEEP control will turn the radio and appliance off
after any pre-set interval of time up to one hour.
The locations and functions of the clock and radio con-
trols are shown in the photo above.
NORMAL RADIO OPERATION
The OPERATION SELECTOR knob on the clock turns the radio on or off. Select stations with the TUNING knob, and adjust volume with the VOLUME control.
A built-in loop antenna eliminates the need for an outside antenna in most locations. When receiving a weak station, rotate the receiver slightly for best signal strength. If additional pick-up is necessary, connect an external antenna to the radio by winding the antenna lead-in around the
tongue on the rear panel. (This couples external antenna tongue on the rear panel. (This couples external antenna chassis to a water pipe, radiator, or other ground.

PAGE 23-74 MOTOROLA

MODELS 53C6, 53C7,

 53C8, 53C9, Ch. HS-338
TO SET SLEEP CONTROL

Turn OPERATION SELECTOR knob counterclockwise. The farther the control is turned, the longer the radio will play, up to a maximum of 60 minutes.

AUTOMATIC RADIO OPERATION

The clock controls may be pre-set to turn the radio on automatically at any time up to twelve hours in advance.

If an appliance is plugged into the receptacle on the rear of the receiver, it will be turned on automatically along with the radio.

TO SET RECEIVER FOR AUTOMATIC OPERATION

1. Turn OPERATION SELECTOR knob to ON. Allow a short period of time for tube warm-up.
2. Set the radio dial to the station you would like to hear at any pre-determined time, up to twelve hours in advance, and adjust volume to desired loudness.
3. Pull out and turn AUTO SET knob until RADIO ALARM SET POINTER indicates time radio is to be turned on automatically.
4. Turn OPERATION SELECTOR to OFF and then pull OPERATION SELECTOR out for AUTO. Leave in AUTO position.
5. The radio is now set to turn on automatically at the time indicated by RADIO ALARM SET POINTER. The radio will turn on at the pre-set time and will continue to play until

OPERATION SELECTOR is pushed in and located in the OFF position.

SLEEP CONTROL AND AUTOMATIC OPERATIONS COMBINED

By combining the sleep control and automatic radio operation, it is possible to turn the radio off automatically and to turn it on again automatically.

TO USE THIS FEATURE, SET CONTROLS AS FOLLOWS:

1. Pull out and turn AUTO SET knob until RADIO ALARM SET POINTER indicates time radio is to be turned on automatically; push knob back in (if you wish alarm to ring, leave AUTO SET knob pulled out).
2. Turn OPERATION SELECTOR to OFF and then pull OPERATION SELECTOR out for AUTO.
3. Turn OPERATION SELECTOR counterclockwise for SLEEP CONTROL.
4. Tune in desired station and adjust volume.

APPLIANCE OUTLET

To control an electrical appliance automatically, plug it into the receptacle on the back of the radio. It will then be turned on or off simultaneously with the radio.

CAUTION: Note that the rating of the outlet is 1100 watts or less.

If radio reception is not desired when operating the appliance, rotate the radio volume control to the minimum volume position.

SERVICE NOTES

TO REMOVE RADIO CHASSIS FROM CABINET

1. Pull off the two radio control knobs.
2. Remove the four hex head screws which hold the loop to the cabinet, disconnect leads, and remove loop.
3. From the back of the cabinet, remove the two hex head screws at the rear edge of the radio chassis.
4. Disconnect clock plug from radio chassis.
5. Slide the radio chassis from the cabinet.
6. To service chassis when clock is disconnected, connect jumper wire between pins 3 \& 4 of clockreceptacle on chassis to complete power circuit.

TO REMOVE CLOCK FROM CABINET

1. Remove radio chassis from cabinet as described above.
2. Remove clock control knobs. They pull off.
3. Carefully pry off the plastic crystal.
4. Lift off the clock background overlay.
5. From the inside of cabinet, remove two nuts that mount clock.
6. Carefully remove clock from cabinet.

TO SYNCHRONIZE HANDS AND ALARM

If the hands have been moved accidentally, it will be
necessary to re-synchronize them with the alarm dial, as outlined below:

1. Pull out the OPERATION SELECTOR knob to the "AUTO" position.
2. Slowly rotate the time set knob clockwise (as viewed from rear) until the clock switch contacts close. This is indicated by an audible click, or an ohmmeter connected to pins 3 \& 4 of the clock plug, can be used as a visual indicator.
3. Set all the hands to indicate 12 J'clock.
4. Check the automatic operation to be sure the switch contacts close at the time indicated on the alarm dial.

CLOCK REPAIR INFORMATION

Telechron timers can be repaired at Authorized Telechron Service Stations or at the Product Service Department, Ashland, Mass. Consult your Motorola Distributor for the name of the nearest Telechron Service Station, or refer to the classified section of the telephone directory in large cities.

The timer should be removed from the radio cabinet and packed carefully in order that no further damage results during shipment.

An acknowledgement with a quotation and a request for payment will be sent to the dealer before the repair is made. The timer will be returned to the dealer on receipt of payment. If the timer is within warranty, repairs will be made on a no-charge basis.

NOTE: Use an isolation transformer placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to B - through a.l mf capacitor.

1. Connect a low range output meter across speaker voice coil.
2. Connect the low side of the signal generator through a
. 1 mf capacitor to B -
3. Set the signal generator for 400 cycle, 30% modulation.

ALIGNMENT
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers.
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than. 40 volts (. 05 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 1 for adjustment locations and the following chart for procedure.

CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{aligned} & \text { GANG } \\ & \text { SETTING } \end{aligned}$	$\begin{gathered} \text { ADJUST } \\ \text { (SEE FIG. 1) } \end{gathered}$	REMARKS
IF ALI $1 .$	NMENT . 1 mf	Grid of conv. (pin 7, 12BE6)	455 Kc	Fully open	$\begin{aligned} & 1,2,3 \& 4 \\ & \text { (IF cores) } \end{aligned}$	Adjust for maximum.
RF AL $2 .$	GNMENT .1 mf	Grid of conv. (pin 7, 12BE6)	1620 Kc	Fully open	$5 \text { (Osc) }$	Adjust for maximum.
3.	-	Radiation loop*	1400 Kc	Tune for max	6 (Ant)	Adjust for maximum.

*Connect generator output across $5^{\prime \prime}$ diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least 12" apart.

FIGURE 1. TUBE \& TRIMMER LOCATIONS

PAGE 23-76 MOTOROLA
MODELS 53C6, 53C7,
53C8, 53C9, Ch. HS-338

FIGURE 3. PAKT'S LOCATIONS

PARTS LIST

NOTE: When ordering parts, specify model number of set in addition to part number and description of part.

GENERAL INFORMATION

TYPE - AC table model superheterodyne with appliance outlet and self-contained electric clock for controlling automatically the operation of the radio and the outlet.

RECEIVER MODELS

Model	Color
$62 C 1$	Walnut
$62 C 2$	Ivory
$62 C 3$	Green

TUNING RANGE -535 to $1620 \mathrm{Kc} \quad \mathrm{IF}-455 \mathrm{Kc}$
TUBE COMPLEMENT - Type \quad Function

Type	Function
12BD6	RF Amplifier
12BE6	Converter
12BD6	IF Amplifier
12AT6	Det, AVC \& AF Amp
35C5	Power Amplifier
35W4	Rectifier

POWER SUPPLY - Operates from 117 volts, 60 cycle, alternating current only. Power consumption 30 watts.

FIGURE 1. FRONT VIEW OF RECEIVER

APPLIANCE OUTLET - For use with 117 volt AC appliances only, rated at 1100 watts or less.

CLOCK -
Telechron self-starting electric clock, with Motorola face and hands.

OPERATING INSTRUCTIONS

The locations and functions of the clock and radio controls are shown in Figure 1.

NORMAL RADIO OPERATION

Knob "A" on the clock turns the radio on or off. Select stations with the TUNING knob, and adjust volume with the VOLUME control.

A built-in ferrite magnetic iron core antenna eliminates the need for an outside antenna. When receiving a weak station, rotate the receiver slightly for best signal strength. CAUTION: Never connect the radio chassis to a water pipe, radiator, or other ground.

CLOCK OPERATION

The clock will start as soon as the receiver is plugged into an electrical outlet. To set the hands to the correct time, rotate the TIME SET knob (on the rear of the radio) in a clockwise direction only.

ALARM OPERATION

To set the alarm, pull out knob "C" and rotate it in a counterclockwise direction to the desired time on the alarm dial scale. The alarm will ring for one hour, or until knob "C" is pushed in. The alarm function is completely independent of the other controls on the clock. APPLIANCE OUTLET

To control an electrical appliance automatically, plug it into the receptacle on the back of the radio. It will then be' turned on or off simultaneously with the radio.

CAUTION: Note that the rating of the outlet is 1100 watts or less.

If radio reception is not desired when operating the appliance, rotate the radio volume control to the minimum volume position.

AUTOMATIC RADIO OPERATION

The clock controls may be pre-set to turn the radio on automatically at any time up to twelve hours in advance.

If an appliance is plugged into the receptacle on the back of the receiver, it will be turned on automatically, along with the radio.

Pull out knob "C", rotate it counterclockwise to the desired time on the alarm dial scale, and push the knob back in. Rotate knob "A" first to the "OFF" position and then to the "AUTO" position. At the pre-set time, the radio will come on and will continue to play until turned off manually. The alarm will ring also if the knob "C" is left pulled out. The radio will come on first and, after an interval of about ten minutes, the alarm will ring.

BEDTIME CONTROL

The BEDTIME control will turn the radio and appliance off after any pre-set interval of time up to one hour.

Turn knob "A" to the "OFF" position and rotate knob "B" to any period of time between 0 and 60 minutes. The radio and appliance will be turned off automatically after the proper time has elapsed, and they will remain off until turned on again manually.

AUTOMATIC AND BEDTIME OPERATIONS COMBINED

By combining the operations in the two sections above, the radio may be turned off automatically and on again automatically.

When setting the BEDTIME control, rotate knob "A" to the "AUTO" position instead of "OFF". IMPORTANT: It is necessary to turn knob "A" first to the "OFF" position befor proceeding to "AUTO", otherwise the radio may not shut off.

CHASSIS HS-299

ALIGNMENT

NOTE: It is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to B through a . 1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to B-.
3. Set the signal generator for 400 cycle, 30% modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers.
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than. 40 volts (. 05 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 2 for adjustment locations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	GANG SETTING	ADJUST	REMARKS
If ALIGNMENT						
1 。	. 1 mf	Grid of conv (RF section of gang)	455 Kc	Fully open	$1,2,3 \& 4$ (IF cores)	Adjust for maximum.
RF ALIGNMENT						
2.	. 1 mf	Grid of conv. (RF section of gang)	1620 Kc	Fully open	5 (Osc trim)	Adjust for maximum.
3.	-	Radiation loop*	1400 Kc	Tune for max	6 (RF trim)	Adjust for maximum.
4.	-	Radiation loop*	1400 Kc	Tune for max	$\begin{aligned} & 7 \text { (Ant } \\ & \text { trim) } \end{aligned}$	Adjust for maximum.

*Connect generator output across 5 -inch diameter, 5 turn loop and couple inductively to receiver loop. Keep generator loop perpendicular to axis of and at least 12 inches from receiver iron core loop.

SERVICE NOTES

The chassis of this receiver is isolated from the AC power line circuit by a capacitor to eliminate the shock hazard when handling the receiver. However, as an additional precaution when aligning or servicing the receiver, an isolation transformer should be inserted between the power line and the chassis.

TO REMOVE CHASSIS FOR SERVICE

1. Remove the two screws from the bottom of the cabinet.
2. Remove the two screws from the back of the cabinet.
3. Pull the chassis and front cover from the cabinet.
4. Pull off radio and clock control knobs.
5. Insert a screwdriver into the loops on the ends of the front cover retainer springs, and pry the springs from their slots in the chassis.
6. Pull off the front cover.

TO REPLACE CLOCK DIAL BACKGROUND

1. Remove the clock from the chassis.
2. Carefully pull off the three hands.
3. Remove the alarm dial and dial background.
4. Install new background.
5. Turn the radio control shaft to "AUTO" position.
6. Slowly rotate the time set shaft clockwise until the switch contacts behind the radio control shaft close.
7. Reassemble the alarm dial and three hands. Set all the hands to indicate 12 o'clock. Set the figure " 12 " on the alarm dial to index with the small pointer on the hour hand.
8. Check the automatic operation to be sure the switch contacts close at the time indicated on the alarm dial.

PAGE 23-82 MOTOROLA

PARTS LIST

NOTE: When ordering parts, specify model number of set in addition to part number and description of part.

Transformers

| T-1,2 | 24 C 485553 | IF and Diode Transformer: | |
| :--- | :--- | :--- | :--- | :--- |
| | | $455 \mathrm{Kc}:$ complete.......... | 1.45 |
| T-3 | $25 K 610738$ | Output transformer.......... | 1.50 |

PRICES SUBJECT TO CHANGE WITHOUT NOTICE *Plus Federal Excise Tax At Current Rate

Frequency Range:
BATTERIES: 1 - $11 / 2^{2}$ Eveready \#950, or 1050, or Burgess 2R or Ray-O-Vac 2LP or equivalent.
 against any metallic surface. Since all loop antennas are directional, reception may be improved by orienting the position of the set for best reception of the desired station.

An automatic OFF-ON switch turns the receiver ON when the cover is opened and OFF when the cover is closed. Since the useful life of the batteries is limited it is important to CLOSE the cover when the set is not in use. Battery power is consumed as long as the cover is open, although no sound is audible.

CAUTION: WHEN OPENING OR CLOSING THE COVER OR THE BOTTOM OF THE RECEIVER MOVE THE SMALL BUTTON OF THE CATCH IN THE DIRECTION OF THE ARROW. DO NOT SLAM THE COVER AS THIS MAY DAMAGE THE CATCH MECHANISM. Controls:

There are two receiver controls. The left knob serves as a volume control but does not turn the receiver ON or OFF.
The right knob is the TUNING control.
To exchange the batteries, keep the receiver cover closed. Turn the receiver face down and move the button which is on the short side, in the direction of the arrow. Opening the bottom of the receiver will permit access to the batteries. WHEN TENDENCY TO SWELL AND SOMETIMES LEAK CAUSING DAMAGE TO THE RECEIVER. OUT BATTERIES HAVE A SERVICE AND ALIGNMENT INSTRUCTIONS
 driver, radiation loop (1 turn of about $6^{\prime \prime}$ "or $8^{\prime \prime}$ " of \#12 or \# 14 wire connected across output of signal generator and placed parallel to receiver loop about $8^{\prime \prime}$ or $10^{\prime \prime}$ away), one $.1 / 400 \mathrm{v}$ condenser.

With the receiver bottom open, connect output meter or vacuum tube voltmeter and signal generator as directed in the alignment procedure chart and keeping the output of the generator as low as possible, proceed exactly in the sequence shown in the chart.

Before aligning close the variable condenser fully counterclockwise (plates fully closed) and check pointer position. ALIGNMENT PROCEDURE CHART

PAGE 23-2 OLYMPIC

MODEL 489

PARTS LIST

Part No..	Description	Part No.	Description
$\begin{aligned} & \text { CL-253I } \\ & \mathrm{CO}-1323 \end{aligned}$	Coil-Oscillator Coil Condenser-8 MFD 100 W.V. Electrolytic Condenser	MS-1403 PC-2489 PO-1310	I.F. Mounting Clip Pentode Couplate Network Pointer
CV-1291-1	Condenser-Variable Condenser (2 Section)	PP-1317	"B' Battery Snap Connector Assembly
ES-1288	Escutcheon	PT-1313	I Meg. Volume Control
KN-1309	Knob	SH-1284	Drive Shaft Assembly
LP-1316	Loop	SK-1283	Speaker-31/2" P.M. Speaker (. 68 oz. Alnico)
MP-1290	Moulded Cover	SP-1286	Spring-Pointer Drive Spring
MP-1292	Moulded Case	SW-1280	Switch-Door Switch
MP-1302	Plastic Handle	TR-1279	Transformer-Output Transformer
MP-I306	Loop Cover, Moulded	TR-1314	Transformer-I.F. Transformer

Frequency Range Broadcast 540 k -c to $1610 \mathrm{k}-\mathrm{c}$-Shortwave $4.75 \mathrm{~m}-\mathrm{c}$ to $16.1 \mathrm{~m}-\mathrm{c}$ Power Requirement $105-125$ Volts d-c or 50 to 60 cycles a-c
Power Consumption 30 watts
Model $9-435$ is a 5 tube (four tubes plus rectifier) a-c or $d-c$ operated 2 band superheterodyne receiver employing a
built in loop antenna which will provide satisfactory reception under normal operating conditions. This type of antenna is directional and noise or interference from other stations can be minimized by rotating the receiver. If the receiver is used in ocations where signal strength is very low, as in steel buildings, or in locations remote from broadcast stations, an outside antenna may be connected to a lead protruding through the back of the cabinet. For satisfactory reception on short wave, an outside antenna is essential. A ground connection is unnecessary.
On d-c operation, if no signal is heard after about one minute warm up period, reverse the line plug. If a slight hum is heard on $a-c$ opetation a similar reversal of the plug may reduce the hum.
CONTROLS
TUNING
To place this receiver in operation insert the line plug into a suitable electric outlet of 105-125 volts d-c or 50-60 cycles a-c. For operation on 220 volts $d-c$ or $50-60$ cycles a-c an adapter cord our part number LC530 must be inserted between the line plug and the electric outlet.
Then turn the OFF-ON knob clockwise until a click is heard. Allow about one half minute warm-up period for the tubes before the set is ready to function.

BROADCAST

SHORT WAVE

For broadcast reception turn BC-SW knob counter-clockwise to the BC position. The Tuning knob should now be turned
until the dial pointer is at the frequency of the desired station. Dial numbers are converted to kilocycles by adding one zero. For example, 70 on the dial is 700 kilocycles. With the volume control set to low volume level turn the Tuning knob until the desired station is received loudest. Now adjust volume control to the desired level and tone control to the desired tone. DO NOT USE TUNING KNOB TO ADJUST VOLUME BY TUNING OF STATION AS THIS WILL RESULT IN POOR TONE QUALITY..

NOTE: In case of dial light failure, replace the lamp (Mazda \#47) as soon as possible to prevent damage to the $35 Z 5$ tube.

as described for broadcast reception. Use the lower part of the dial scale calibrated in megacycles and meters. The tuning on the
short wave band should be very slow as the dial setting is very sensitive and stations may be "passed by" very easily.
For short wave reception turn BC-SW knob clockwise to SW position and tune to the desired frequency in the same manner
as described for broadcast reception. Use the lower part of the dial scale calibrated in megacycles and meters. The tuning on the
ALIGNMENT INSTRUCTIONS
Equipment required: Modulated r-f signal generator, output meter, insulated screw driver, two . 1 mfd . 400 V . Condensers,
one 400 ohms resistor.
To align the receiver it is necessary to remove the chassis from the cabinet, check that the pointer is horizontal and
coincides with the two horizontal reference lines on the dial. In this position the condenser should be completely closed. Turn volume control to maximum and connect the output meter across the voice coil.
Then connect the low side of the signal generator to the receiver chassis through a .1 mfd . condenser and keeping the output as low as possible proceed in the sequence as shown on the alignment chart.
To insure alignment a radiated signal will be required during part of the alignment procedure. To radiate a signal connect a loop of about $6^{\prime \prime}$ to $8^{\prime \prime}$ diameter, (one turn of \#14 or \#12 wire) across the output of the signal generator and place this loop parallel to the loop of the receiver to be aligned, at a distance of about $8^{\prime \prime}$ or $10^{\prime \prime}$.

				ALIG	GNMENT PROCEDURE CHART	
	STEP	$\begin{array}{\|c\|} \hline \text { SET BAND } \\ \text { SWITCH } \\ \text { ON } \\ \hline \end{array}$	CONNECT HIGH SIDE OF SIGNAL GENERATOR TO-	SET SIGNAL GENERATOR TO-	TURN RECEIVER .DIAL TO-	ADJUST THE FOLLOWING FOR MAXIMUM OUTPUT. (KEEP SIGNAL FROM SIGNAL GENERATOR AS LOW AS POSSIBLE).
	1	B. C.	R.F. SECTION OF VARIABLE CONDENSER OR PIN 4 OF THE I2SK7 TUBE IN SERIES WITH A . 1 MFD. 400 VOLT CONDENSER.	455 KC .	FULL CLOCKWISE POSITION (CONDENSER PLATES FULLY OPEN).	L4 AND L3 (2 мं. I.F. TRANSFORMER)
	2	B.C.	R.F. SECTION OF VARIABLE CONDENSER OR PIN 8 OF THE I2SA7 TUBE IN SERIES WITH A . IMFD. 400 VOLT CONDENSER.	455 KC .	FULL CLOCKWISE POSITION (CONDENSER PLATES FULLY OPEN).	$\begin{array}{lll} & \text { L2 } & \text { AND L1 } \\ \text { (1st. } & \text { I.F. } & \text { TRANSFORMER) }\end{array}$
	3	B. C.		REPEAT	STEPS 1.AND 2	
N	4	B. C.		1600 KC.	$\begin{gathered} 1600 \mathrm{KC} . \\ (160 \text { ON DIAL) } \end{gathered}$	$\begin{gathered} \text { C } 3 \\ \text { (OSCILLATOR TRIMMER) } \end{gathered}$
	5	B. C.	RADIATED SIGNAL (CONNECT BOTH SIDES	1400 KC.	MAXIMUM SIGNAL (APPROX. 140 ON DIAL)	$C 1$ (ANTENNA TRIMMER)
	6	B. C.		600 KC .	MAXIMUM SIGNAL (APPROX. 60 ON DIAL)	C5 (PADDER) ROCK VARIABLE FOR MAXIMUM SIGNAL
	7	B. C.		REPEAT.	STEPS 4,5, AND 6	
-	8	S. W.		15 MC .	15 MC . (APPROX. 15 ON DIAL)	C4 (OSCILLATOR TRIMMER) SECOND PEAK FROM TIGHT POSITION C2 (ANTENNA TRIMMER)
: .	9	S. W.	A 400 OHM RESISTOR.	5.5 MC.	RESONANCE (APPROXX 5.5 ON DIAL)	GHECK THAT POINTER (AT RESONANCE) COINCIDES WITH 5.5 MC. CALIBRATION POINT ON DIAL. IF NOT REPEAT STEP 8.

Part No.
BU-187
CA-327W
CA-327V
CL-933
CL-940
CO-1715
CT-389
CT-440
CT-939
CV-772
DL-934
KN-1077
KN-1078
KN-1085
KN-1103
KN-1104
KN-1105
LP-937
PO-259W
PO-259V
PT-102
RCM20A101M Condenser- $100 \mathrm{mmfd} . \pm \mathbf{2 0 \%}$ mica condenser
RCM20A221M Condenser- 220 mmfd. $\pm \mathbf{2 0 \%}$ mica condenser
RCM20A331M Condenser—330 mmfd. $\pm \mathbf{2 0 \%}$ mica condenser
*When ordering be sure to specify with r-f choke
Condenser - 40/40/150 W.V. electrolytic condenser
Condenser - 3-35 mmfd. dual trimmer condenser
Condenser - 350-780 mmfd. padder condenser
Condenser-3-35 mmfd. trimmer condenser
Condenser- 2 section ganged variable condenser
Dial-dial scale
Knob-walnut knob marked "Off-On-Volume"
Knob-walnut knob marked "Tuning"
Knob-walnut knob marked "BC-SW"
Knob-ivory knob marked "Off-On-Volume"
Knob-ivory knob marked "Tuning"
Knob-ivory knob marked "BC-SW"
Loop-loop antenna
Pointer-moulded pointer (walnut)
Pointer-molded pointer (ivory)
Control- $1 / 2$ megohm volume control with offon switch

Part No.
RCM20A470M
RCM30B402J
RCP10W4104L Condenser-. 1/400 W.V. tubular paper conRCP10W4203A $\begin{gathered}\text { denser* } \\ \text { Condenser--.02/400 W.V. tubular paper con- }\end{gathered}$ RCP10W4503A Condenser-.05/400 W.V. tubular paper condenser
RCPIOW6I03A Condenser-. 01 /600 W.V. tubular paper condenser
RCP10W6502A Condenser-. 005/600 W.V. tubular paper
REB-105M
REB-106M
REB-151K
REB-223M
REB-224M
REB-225M
RE-473M
REB-474M
REC-221K
RED-102M
SK-838-1
SP-191
SP-295
ST-255-1
SW-839
TR-1644
Description
Condenser- $-47 \mathrm{mmfd} . \pm 20 \%$ mica condenser Condenser- $4000 \mathrm{mmfd} . \pm 5 \%$ mica condenser condenser
Resistor-1 megohm $\pm 20 \% 1 / 2$ watt resistor
Resistor- 10 megohms $\pm 20 \% 1 / 2$ watt resistor
Resistor- 150 ohms $\pm 10 \% 1 / 2$ watt resistor
Resistor- 22,000 ohms $\pm 20 \% 1 / 2$ watt resistor
Resistor-220,000 ohms $\pm 20 \% 1 / 2$ watt resistor
Resistor-2.2 megohms $\pm 20 \% 1 / 2$ watt resistor
Resistor-47,000 ohms $\pm 20 \% 1 / 2$ watt resistor
Resistor- 470,000 ohms $\pm 20 \% 1 / 2$ watt resistor
Resistor- 220 ohms $\pm 10 \% 1$ watt resistor
Resistor- 1000 ohms $\pm 20 \% 2$ watt resistor
Speaker-5"' p.m. speaker
Spring-drive shaft retaining spring
Spring-dial drive spring
Back-cardboard back
Switch-4 P.D.T. band switch
Transformer-455 k-c I.F. transformer

PAGE 23-6 OLYMPIC.
MODELS 9-435W,
$\begin{array}{cc}9-435 V & \\ & \\ & 6 \\ & 60\end{array}$

Figure 1. Automafic Clock-Controlled Radio.

DESCRIPTION

Model 621 Automatic Clock-Controlled Radio is a six tube superheterodyne receiver contained in brown or ivory plastic cabinet. A PM (Permanent Magnet) speaker is used with the radio and the tubes are standard miniature tubes. The clock is a Telechron movement and is equipped with alarm.

SPECIFICATIONS:

Overall Dimensions:

Height - 6 inches
Width - 5 inches
Length - 10 inches
Weight - 6 pounds
Electrical Rating:
Line Voltage - 110-120 AC 60 cycle only
Power Consumption - 28 watts
Tuning Frequency Range:
540 to 1620 KC
Intermediate Frequency: 455 KC
Electrical Power Output (Maximum): 1.7 watts

Loudspeaker:
Type - permanent magnet
Outside Cone Diameter - 4 inches
Voice Coil Impedance - 3.2 ohms @ 400 C.P.S.*
Magnet Rating - . 68 Oz Alnico V.
*NOTE: Production runs were made using an 83009 speaker of 6 ohms impedance at 400 C.P.S. In those cases, I1 was 2500 to 6 ohm output, Part No. 89433.

TUBE COMPLEMENT:

NO.	TUBE
$\mathrm{V}-1$	6 BJ 6
$\mathrm{~V}-2$	12 BE 6
$\mathrm{~V}-3$	$6 \mathrm{BJ6}$
$\mathrm{~V}-4$	12 AV 6
$\mathrm{~V}-5$	50 C 5
$\mathrm{~V}-6$	35 W 4

FUNCTION
R-F Amplifier
Frequency Converter I-F Amplifier 2nd Detector - 1st Audio Power Amplifier Rectifier

SPECIAL SERVICE INFORMATION:

Resistances measured are D-C. Allow a 10\% tolerance between values given and readings made.

1 st I-F Coil:
Primary - 17.5 ohms
Secondary - 17.5 ohms
2nd I-F Coil:
Primary - 12.2 ohms
Secondary - 11.5 ohms

Oscillator Coil:

Primary -- 1 ohm
Secondary - 5.5 ohms

I-F Trap:

Primary - 31.5 ohms

Ferro Loop:

Resistance - 1 ohm

SOCKET VOLTAGES:

The voltages shown on Schematic Diagram, figure 4, were measured under the following conditions:

1. D.C. Voltages with a vacuum tube voltmeter from socket contacts to B minus.
2. Filament voltages measured with a 1,000 ohms per volt A.C. meter across the filament of each tube.
3. Volume and Tone Controls maximum.
4. 117 volts A.C. line.
5. Voltages are subject to a 10% variation.

For voltages, see figure 4.

OSCILLATOR CATHODE VOLTAGES:

Measured with an A-C vacuum tube voltmeter (input impedance above 10 megohms) at 117 volts - A-C line.

$$
\begin{aligned}
& 1500 \mathrm{KC}-1.0 \mathrm{VAC} \\
& 1000 \mathrm{KC}-1.0 \mathrm{VAC} \\
& 750 \mathrm{KC}-1.1 \mathrm{VAC} \\
& 540 \mathrm{KC}-1.1 \mathrm{VAC}
\end{aligned}
$$

OPERATING INSTRUCTIONS

GENERAL:

This clock-radio operates on 110-120 volt, 60-cycle alternating current only.

The clock movement is self-starting and will begin operating when the cord is plugged into the proper outlet. The correct time is set by means of the Time Set Control at the right rear of the chassis. Turn the Time Set Control in a Clockwise Direction Only as Viewed From the Rear.

Figure 2. Controls and Connections.

AWAKE TO MUSIC AND BUZZER ALARM:

1. Adjust the radio for normal operation.
2. Pull out Alarm Knob and set the small, rotating alarm dial for the desired awakening time. Turn Alarm Knob in counterclockwise direction only.
3. Turn the Radio Knob to the "AUTO" position.*
*NOTE: Music will turn on exactly as set. Buzzer Alarm will sound ten minutes later as a reminder.
4. Push Alarm Knob in if buzzer alarm is not desired.

TO OPERATE THE RADIO ONLY:

1. Turn the Radio Knob to the "ON" position.
2. Turn the Volume Knob to about middle position.
3. Select desired station with the Tuning Knob.
4. Adjust the Volume and Tone Knobs as desired.

TO AWAKEN TO BUZZER ALARM ONLY:

1. Pull out Alarm Knob and set the small, rotating alarm dial for desired awakening time. Turn Alarm Knob in counterclockwise direction only.
2. Turn Radio Knob to "OFF" position.
3. Allow Alarm Knob to remain in the out position.

FOR SLUMBER MUSIC UP TO 60 MINUTES DURATION:

1. Adjust the radio for normal operation.
2. Turn the Sleep Set Knob fully clockwise. Radio will operate 60 minutes, then shut off automatically. For playing time less than 60 minutes, set knob accordingly.
3. Turn Radio Knob to "AUTO" position.

CLOCK REPLACEMENT GENERAL:

When the clock becomes defective, do not attempt to repair it; replace it.

Tools required to replace clock are: soldering iron and $1 / 4$-inch spin-tite wrench.

CLOCK REPLACEMENT PROCEDURE:

.1. Remove all control knobs. (Do not lose metal clip inside Volume Knob.)
2. Remove three screws from bottom of cabinet.
3. Remove chassis.
4. Remove back and slide to one side being careful not to break loop leads.
5. Remove three screws from face and remove dial face, backing card, and dial-face gasket. (Be sure to replace spacer between backing card and chassis behind the lower right hand screw during reassembly.)
6. Remove 12AV6, 50C5, and 35W4 tubes from chassis. (See tube location diagram on back of radio.)
7. Remove two screws, located on the left side (viewing the radio from the front) of clock bracket, which hold cover in place. Remove cover.
8. Unsolder wires at clock, leading to chassis.*
*NOTE: A-C leads to clock switch must be replaced so that the leads are fastened to the same points as before disassembly.
9. Remove three nuts located on back of clock cover and remove clock.
10. Reassemble clock-radio following above procedure in the inverse order.

ALIGNMENT PROCEDURE

Alignment procedure consists of the step outlined in the Alignment Chart. See Figure 3 for location of trimmers. Make certain each step is done with a minimum input signal. Connect output meter to speaker voice coil.

A, B, C, D - I-F Trimmers

E-I-F Trap
F - Osc. Trimmer
G - Ant. Trimmer
Note 1.

Figure 3. Chassis.

STEP	CONNECT TEST OSC. TO	TEST OSC. SETTING	POINTER SETTING	ADJUST FOR MAX. OUTPUT
1	Mixer Grid \& Ground	455 KC	540 KC	Trimmers A,B,C \& D
2	Mixer Grid \& Ground	455 KC	540 KC	Trimmer E for minimum output
3	Mixer Grid \& Ground	1620 KC	1620 KC	TrimmerF
4	Test Loop	1500 KC	1500 KC	TrimmerG
5	REPEAT STEPS 3 \& 4			

Note 2.

REPLACEABLE PARTS

To be assured of genuine Packard-Bell replacement parts, order by the Packard-Bell part number from any of the following Packard-Bell Service Divisions.

LOS ANGELES	1101 So. Hope Street
SEATTLE	2310 Fourth Ave.
SAN DIEGO	3069 EI Cajon Blvd.
SAN FRANCISCO	1157 Post Street
RIVERSIDE	247 La Cadena Drive
SALT LAKE CITY	624 So. State Street
SOUTH GATE	8640 State Street

REF. SYMBO	OL DESCRIPTION P	P.B. PART NO.	$\begin{array}{r} \text { REF. } \\ \text { SYMB } \end{array}$	OL DESCRIPTION	$\begin{gathered} \text { P.B. } \\ \text { PART NO. } \end{gathered}$
CAPACITORS			RESISTORS		
C1A			R1	Carbon, 120 ohms, $1 / 2$ watt, 10\%	73014
			R2	Carbon, 4700 ohms, $1 / 2$ watt, 10%	73033
\& B	Variable, 2 gang	23528	R3	Carbon, 1 megohm, $1 / 2$ watt, 10%	73161
C2	Tubular, . 1 Mfd .200 volt	23019	R4	Carbon, 22,000 ohms, $1 / 2$ watt, 10\%	73041
C3	Ceramic, 220 Mmf. G.P.	23915	R5	Carbon, 2.2 megohms, 1/2 watt, 20\%	73165
C4	Ceramic, 220 MmF . G. P.	23915	R6	Carbon, 220 ohms, $1 / 2$ watt, 10\%	73017
C5	Tubular, . 05 Mfd .200 volt	23017	R8	Carbon, 4.7 megohms, 1/2 watt, 20\%	73169
C6	Ceramic, 220 Mmf. G.P.	23915	R9	Carbon, 470,000 ohms, $1 / 2$ watt, 20\%	73157
C7	Ceramic, 5000 Mmf . G.P.	23931	R10	Carbon, 150 ohms, $1 / 2$ watt, 10%	73015
C7	Ceramic, 5000 Mmf. G.P.	23831	R11	Carbon, 180 ohms, 1 watt, 10\%	73216
C8	Ceramic, 470 Mmf . G.P.	23916	R12	Carbon, 1000 ohms, 1 watt, 10%	73225
C9	Ceramic, 10,000 Mmf. G.P.	23939			
C10	Ceramic, 5000 Mmf . G.P.	23931	TRANSFORMER		
C11A Electrolytic, 20 Mfd . 25 volt		24034	T1	Output, 2,500 to 3.2 ohms	89417
C11B	Electrolytic, 30 Mfd .150 volt	24034			*See note.
C11C	Electrolytic, 20 Mfd . 150 volt	24034	MISCELLANEOUS PARTS		
C11D	Electrolytic, 20 Mfd .150 volt	24034		MISCELLANEOUS PARTS	
C12	Tubular, . 005 Mfd .600 volt	23004	Cabine	(specify color)	521-621
C13	Tubular, .05 Mfd .200 volt	23017	Ferro-L	oop Antenna	29343A
			A.C. C	ord, 6 ft.	32011
			Dial, St	ationized	38128
	CONTROLS		Clock	Assembly	58038
			Clock	nobs (specify color)	58038-1
R7A			Tuning	Knob (specify color)	52079
\& B	Volume and Tone (Dual) 500,000 ohms.		Volume	Knob (specify color)	52074
\& B		. 25026	Tone K	nob (specify color)	52073
			Dial La	mp No. T-47	54002
			A-C So	cket	79096
	COILS		Dial Lit	Socket	79082
			Tube S	cket, 7 pin miniature	79067
L-1.	I-F Trop	29005	Speake	r, 4-inch P.M.	83008
L-2	Oscillator	29220			*See note.
L-3	1st I-F, 455 KC	29045			
L-4	2nd I-F, 455 KC	29046		of 6 ohms impedance at 400 C.P.S.	those cases,
L-5	Loop	29343A		T1 was 2500 to 6 ohm output, Part No	89433.

SPECIFICATIONS

Figure 1. Symbolized Chassis, Showing Parts Placement

CIRCUIT .5-tube superheterodyne fREQUENCY RANGE ... $540-1630 \mathrm{kc}$. AUDIO OUTPUT 1.2 watts
operating voltage \qquad 105-125 volts, a.c. or d.c. POWER CONSUMPTION . 30 watts

AERIAL \qquad .High-impedance loop; connector for external aerial INTERMEDIATE FREQUENCY \qquad .455 kc 。

PHILCO TUBES (5) \qquad 7A8, 12BA6, 12AV6, 50L6GT, 35Z5GT

TP-7865F-1
Figure 2. Drive-Cord Installation Details, Models 52-540 and 52-540-I

MODEL 52-541, CODE 123

Changes to parts list:
Backplate 76-7556
Springs, diffusion panel (2)
The position of the pilot-lamp socket and mounting clip was changed from under the speaker to about center of the front side of the sub-base.

TP1-1130
Figure 3. Top View, Showing Trimmer Locations

ALIGNMENT PROCEDURE

CONTROLS: Turn on radio and set volume control to maximum.
DIAL POINTER: Turn tuning condenser to full-mesh position. Set dial pointer to index mark, located to left of " 55 ."
OUTPUT METER: Connect across voice-coil terminals.

SIGNAL GENERATOR: Connect as indicated in chart. Use modulated output.

OUTPUT LEVEL: During alignment, attenuate signal-generator output to maintain outputmeter indication below 1.25 volts.

STEP	SIGNAL CENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	DIAL SETTINC	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Ground lead to B-; output lead through .l-uf. condenser to pin 6 of 7R8 converter.	455 kc .	540 kc . (gang fully meshed)	Adjust tuning cores, in order given, for maximum output.	TC4-2nd i-f sec. TC3-2nd i-f pri. TC2-lest i-f sec. TCl-lst i-1 pri.
2	Radiating loop; see note below.	1600 kc.	1600 kc.	Adjust trimmer for maximum output.	C1B-osc.
3	Same as step 2.	1500 kc.	1500 kc.	Adjust trimmer for maximum output.	C1A-aerial

RADIATING LOOP: Make up a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads and place near radio loop antenna.

Figure 5. Drive-Cord Installation Details, Model 52-542-I

Figure 4. Drive-Cord Installation Details, Models 52-541 and 52-541-1

TP1-1131

MODELS 52-540, 52-540-1, 52-541, 52-541-1, 52-542-1
 PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$	MISCELLANEOUS Service
Cl	Condenser, tuning gang	Description Part No.
	Model 52-540 ...21-2751-6 Models 52-541 and 52-542375	MODELS 52-540 AND 52-540-1
C2	Condenser, i-f bypass, . 1 f.61-0113*	Cabinet, mottled mahogany ...
C3	Condenser, a-v-c by-pass, . 05μ.61-0122*	Back ...-747777
C4	Condenser, d-c blocking, $47 \mu \mu \mathrm{f}$.60-00475417*	Fastener, back mounting (4)W2235-2FA9
C5	Condenser, screen by-pass, . $003 \mu \mathrm{f}$.61-0109*	Baffle, speaker ...54-7761
C6	Condenser, d-c blocking, $01 \mu \mathrm{f}$.61-0120*	Dial-backplate assembly ..76-4658
C7	Condenser, dual ceramic30-1239-4	Knob (2) ...4-4527-11
C7	Condenser, d-c blocking, . 007 ¢f.Part of C7	Mount, rubber (3) ...-474711.1
C7B	Condenser, grid by-pass, 220 $\mu \mu \mathrm{f}$.Part of C7	Pointer ...56-4362-6
C8	Condenser, tone compensation Models 52-540 and 52-541: . 05μ f.61-0122*	MODELS 52-541 AND 52-541-J
	Model 52-542: . 02μ f.61-0108*	Cabinet, mahogany ... 10747
C9	Condenser, electrolytic, 3 -section30-2573	Knob (2) ..-44674
C9	Condenser, filter, $20 \mu \mathrm{f} .1$	Cabinet, ivory ..10747-1
C9B	Condenser, filter, $25 \mu \mathrm{f}$., 150vPart of C9	Back (2) .. 54.467.
c9C	Condenser filter, 30μ., 150vPart of C9	
C	Condenser, line by-pass, $04 \mu \mathrm{f}$.45-3500-2*	Baffle, speaker ... 54.7761
C11	Condenser, external-aerial coupling, 4.7 $\mu \mu \mathrm{f} . . .30-1230$	Backplate, bracket and pulley assembly76-6235
	Pilot lamp (Models 52-541 and 52-542-1 only).34-2068	Dial-backplate assembly ...76-4570
LA1	Loop aerial Models 52-540 and 52-540-1 \qquad 32-4052-33	Fastener, pilot-lamp shield mounting (2)......................W2235-1FA9 Speed clip, grille mounting (4) \qquad 1W56920FE7
	Models 52-541 and 52-541-I32-4052-31	Jewel ..44304
	Model 52-542-I32.4052-38	Mount, rubber (3) ...27-4771-1
LS1	Speaker, p-m	Spring, pointer drive ..36.167
	Models 52-540, 52-540-I, 52-541 and	Pulley-and-shaft assembly ...-36-3671-2
	52-541-I ...325-3	Scale strap, dial mounting
R1	Resistor, leakage, 150,000 ohms66-4158340*	RH ..56-7373-1
R2	Resistor, grid return, 100,000 ohms66-4108340*	Socket assembly, pilot lamp27-6233-6
R3	Resistor, screen dropping, 39,000 ohms66-3398340*	MODEL 52-542-I
R4	Resistor, grid return, 2.2 megohms66-5228340*	Cabinet, ivory ..10769-8
R5	Resistor, cathode bias, 68 ohms66-0688340*	Back ..4479-11
R6	Resistor, i-f filter, 47,000 ohms66-3478340*	Fastener, back mounting (4)W2235FA9
R7	Resistor, diode load, 2.2 megohms66-5228340*	Clips, baffle mounting .. ${ }^{\text {W }}$ W6920FE7
R8	Volume control, 500,000 ohms	Baffle, speaker \qquad 54.7761
	Models 52-540 and 52-540-I33-5538-7	Screw, scale mounting (2) \qquad IW14504FA1
	Models 52-541 and 52-541-I33-5566-4	Dial-backplate assembly ...4-4929
	Model 52-542-I33-5566-4	Knob (2) ...54-4718-33
R9	Resistor, grid return, 3.3 megohms66-5338340*	Backplate, bracket-and-pulley assembly76-7048
R10	Resistor, plate load, 470,000 ohms66-4478340*	Fastener, pilot-lamp shield mounting (2)W2235-1FA9
R11	Resistor, grid return, 470,000 ohms66-4478340*	Grille, plastic ...4.4919-1
R12	Resistor, cathode bias, 130 ohms66-1133260*	Mointer rubber (3)..
R13	Resistor, filter, 1200 ohms66-2128340*	Sprinq, pointer drive ..-36-3167
R14	Resistor, filter, 220 ohms, 1 watt66-1224340*	Pulley-and-shaft assembly ...76-3671.2
R15	Resistor, tone compensation, 2200 ohms (Models 52-540, 52-540-I, 52-541 and	Socket assembly, pilot lamp ..-623-623-6 PARTS COMMON TO ALL MODELS
R16	Resistor, aerial isolating, 150.0.0.0.0............666	Bushing, pulley and shaft ...27-9437
S1	Switch, off-onPart of R8	Clamp, electrolytic mounting ..-1466
T1	Transformer, oscillator-4263	Drive cord, 25 -foot spool
T2	Transformer, output32-8384	Socket, Loktal (1) ..-176269
W1	Line cord ..L-2183*	Socket, miniature (2) ...27-6265
21	Transformer, st i-f32-4160-6A	Socket, octal (2) ..27-6174
22	Transformer, 2nd i-f32-4240-A	Spring, gang drive ..56-2617

MODEL 52-544-I

SPECIFICATIONS

CABINET

Model 52-544-1 \qquad Molded phenolic, Ivory Molded phenolic, white
Model 52-544-W \qquad FREQUENCY RANGE \qquad 540-1600 kc. AUDIO OUTPUT \qquad 1 watt

OPERATING VOLTAGE \qquad 117 volts, a-c. POWER CONSUMPTION \qquad
AERIAL \qquad High-impedance loop; connector for external aerial INTERMEDIATE FREQUENCY. \qquad 455 kc.

PHILCO TUBES (5)
(5) \qquad 7A8, 12BA6, 12AV6, 50L6GT, 3575

TP1-1139
Figure 1. Base View, Showing Symbolized Chassis

ALIGNMENT PROCEDURE

RADIO CONTROLS - Set volume control to maximum. Set tuning control as indicated in chart.
OUTPUT METER - Connect across voice-coil terminals.

SIGNAL GENERATOR - Connect generator and set frequency as indicated in chart. Use modulated output.
OUTPUT LEVEL - During alignment, adjust signal-generator output to hold output-meter reading below 1.25 volts.

STEP	SICNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Connect ground lead to B-; output lead through . $1-\mu$. condenser to grid (pin 6) of 7A8.	455 kc .	Tuning condenser fully meshed.	Adjust tuning cores, in order given, for maximum output.	TC4-2nd i-f sec. TC3-2nd i-f pri. TC2-lst $1-2$ sec. TCl-lat i - prl .
2	Radiating loop (see note below).	1600 kc .	1600 kc .	Adjust trimmer for maximum output.	C1B-Osc.
3	Same as step 2.	1500 kc.	1500 kc .	Adjust trimmer for maximum output.	ClA-Aerial

RADIATING LOOP: Make up a 6-8 turn, 6 -inch-diameter loop, from insulated wire; connect to signal-generator leads and place near radio loop aerial.

Figure 2. Top View, Showing Trimmer Locations

PHILCO PAGE 23-7
MODELS 52-544,
52-544-I, 52-544-W

MODELS 52-544,
 52-544-I, 52-544-W

PARTS LIST

NOTE: Part numbers marked with an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part } \\ \text { No. }\end{gathered}$	MISCELLANEOUS Service
Cl	Condenser, tuningsgang, 2-section31-2751-5	Description Part No.
Cla	Condenser, trimmer, aerialPart of Cl	Cabinet
ClB	Condenser, trimmer, oscillatorPart of Cl	MODEL 52-544 ... 10745
C2	Condenser, aerial coupling, $5 \mu \mu \mathrm{f}$.30-1230	MODEL 51-544-I ..10745-1
C3	Condenser, d-c blocking, $47 \mu \mu \mathrm{f}$.60-00475417*	MODEL 52-544-W ...10745-4
C4	Condenser, temperature compensating, 7.5 $\mu \mu$. ...30-1224-65	
C5	Condenser, screen by-pass, . 05μ.61-0122*	Baffle-and-cloth assembly
C6	Condenser, a-v-c by-pass, . 05μ.61-0122*	Model 52-544 ..40-7730
C	Condenser, by-pass, . $2 \mu \mathrm{f}$. \qquad .45-3500-3*	Model 52-544-1 ...40-7730-1
C8	Condenser, d-c blocking, . 01μ f. \qquad 45-3505-58	Model 52-544-W ..40-7730-2
C9	Condenser, d-c blocking, . $01 \mu \mathrm{f}$. \qquad .45-3505-58	Jewel (used on mahogany and ivory cabinets)54-4304
	Condenser, d-c blocking, . 01 M.45-3505-58	Jewel (used on white cabinet only)54-4304-1
C10	Condenser, parasitic suppressor, $330 \mu \mu$. ...60-10335417*	Knobs
Cl1	Condenser, tone compensation, . $02 \mu \mathrm{f}$.61-0108*	MODEL 52-544
$\mathrm{Cl2}$	Condenser, electrolytic, 3-section30-2575-27	VOLUME ...27-4820
C12A	Condenser, filter, $30 \mu \mathrm{f}$., 150vPart of C12	AUTO-OFF-ON
C12B	Condenser, filter, 25μ., 150vPart of C12	DELAYED OFF ..54-4736
Cl2C	Condenser, filter, $20 \mu \mathrm{f} ., 150 \mathrm{v}$................Part of Cl2	TIME SET 54-4736-4
Cl3	Condenser, line filter, . 04 ¢f.45-3500-2*	
Il	Pilot lamp ..34-2068	MODEL 52-544-I
J1	Socket, clock motor and switch27-6273	VOLUME ..54-4118
J2	Receptacle, appliance, a-c76-3931	DELAYED OFF \qquad 54-4736.1
L. 11	Loop aerial ..32-4052-32	AUTO SET ..54-4736-3
LS1	Speaker, p-m ...36-1627-8	TIME SET ..54-4736-4
R1	Resistor, isolating, 150,000 ohms66-4158340*	MODEL 52-544-W
R2	Resistor, grid return, 100,000 ohms66-4108340*	VOLUME ...27-4817-7
R3	Resistor, screen dropping, 27,000 ohms66-3278340*	AUTO-OFF-ON
R4	Resistor i-f filter 47,000 ohms66-3478340*	DELAYED OFF ..54-4736-5
R5	Resistor, diode load, 2.2 megohms66-5228340*	AUTO SET ...54-4736-6
R6	Volume control, 500,000 ohms33-5565-6	TIME SET ...54-4736-7
R7	Resistor, grid return, 3.3 megohms66-5338340*	Clamp, electrolytic mounting ...56-1466
R8	Resistor, plate load, 470,000 ohms66-4478340*	Clip, pilot-lamp mounting \qquad 56-3545-6FA3
R9	Resistor, grid return, 470,000 ohms66-4478340*	Clock-and-cable asse
R10	Resistor, cathode bias, 130 ohms66-1138340*	MODEL 52-544-I, 60-cycle ...76-6724
R	Resistor, filter, 1200 ohms66-2128340*	MODEL 52-544-W, 60-cycle ..76-6725
		Clock cover ...56-6710
	2243	Dial scale, mahogany and ivory54-5055-2
R13	Resistor, leakage, 150,000 ohms66-4158340*	Dial scale, white ..54-5055-4
R14	Resistor, cathode bias, 68 ohms66-0688340	Lead assembly, aerial ...76-1472'
S1	Switch, AUTO-OFF-ONPart of clock assembly	Mount, rubber, gang mounting (3)27-4771-1
T1	Transformer, oscillator32-4263	Shield, pilot lamp ...56-9074-3
		Socket, clock ..27-6273-7
	er, outputPart of Lsi	Socket, Loktal (1) ...27-6269
W	Line cord ..L-2183*	Socket, octal (2) ...27-6174
21	Transformer, 1st i-f32-4160-6A	Socket, miniature (1) ..27-6265
Z2	Transformer, 2nd i-f32-4240A	Socket assembly, pilot lamp ..27-6233-6

PHILCO PAGE 23-9

MODELS 52-543, -545, -547, -550
PRELIMINARY INFORMATION

Models 52-543, 52-545, 52-547, and 52-550 are electrically similar to Model 52-544, but they are housed in different style cabinets, and incorporate certain circuit refinements over Model 52-544.

The following diagrams and the Service Information and Parts List given on page $1 \mathbf{1 '}^{\prime}$ of this Service Manual are for Models 52-543, 52-545, 52-547, and 52-550 only. For Alignment Procedure and the basic Schematic Diagram and Parts List for all models, refer to 52-544.

Figure 2. Model 52-550, Drive-Cord Installation Details

NOTE: TCI AND TC 3 ARE
LOCATED ON UNDERSIDE
OF CHASSIS

Figure 3. Model 52-550, Top View, Showing Trimmer Locations

PHILCO PAGE 23-1 1

Figure 4. Models 52-543, 52-545,-and TP2-1335 52-547, Output Circuit

MODELS 52-543,
52-545, 5-2547, 52-550

Figure 5. Model 52-550, Output Circuit

Figure 6. Model 52-543, Power and Clock Circuits

Figure 7. Models 52-545, 52-547, and 52-550, Power and Clock Circuits

MODELS 52-543,

52-545, 52-547, 52-550

SERVICE INFORMATION

MODELS 52-543, 52-545, 52-547, AND 52-550
Dual condenser, C9 and C10, Part No. 30-1239-4, used for audio coupling (. $007 \mu \mathrm{f}$.) and grid by-pass ($220 \mu \mu \mathrm{f}$.) respectively. Output tube changed from 50L6GT to a 35L6GT.
Isolating condenser, C7, Part No. 61-0113; from 7A8 converter-tube cathode to ground, was changed from a $.2 \mu$ f. condenser to a $.1 \mu \mathrm{f}$. condenser.
MODELS 52-543, 52-545, AND 52-547
Pilot light and bracket are mounted on rear of clock cover.

MODEL 52-543

Clock is nonautomatic; has TIME SET control only.

Appliance receptacle on rear of chassis is connected directly to a-c OFF-ON switch is part of VOLUME control, R6.

MODEL 52-547
Loop assembly, LA1, is Part No. 32-4052-64.
MODEL 52-550
Included with this model is Philco Private Listening unit receptacle, J3, Part No. 42-1975-2. A shunt resistor, R16, has been provided from J3 to ground. This shunt resistor reduces volume to level required for Private Listening. R16 is a 3.3 -ohm resistor, Part No. 66-9334540.

Loop assembly, LA1, is Part No. 32-4052-64.
Speaker, p.m., LS1, is Part No. 36-1627-11.

PARTS LIST

FOR MODELS 52-543, 52-545, 52-547, AND 52-550
For all parts not listed in this Service Manual, refer to Page er

MISCELLANEOUS

Description. $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
Cabinet	TIME SET ..4-4736-11
Models 52-543M and 52-545M10745-9	VOLUME ..44-4773
Model 52-5451 ...10745-10	Models 52-550M and 550L
Model 52-547L ..10908-1	
Model 52-547M .. 10908	AUTO SET \qquad
Model 52-550L ...10907-1	AUTO-OFF-ON ..54-4736-9
Model 52-550M ... $10 . .$.	TUNING ..44-4718-6
Back, cabinet	TIME SET ...4-4736-11
Models 52-543M, 52-545M, and 52-545154-8391	VOLUME ...4-4718-6
Models 52-547L and 52-547M44-8634	
Models 52-550L and 52-550M54-8637	Bracket-and-pulley assembly
Baffle-and-cloth assembly	Models 52-550M and 52-550L ...76-7580
Models 52-543M and 52-545M40-7730	Clock cover-and-clip assembly
Model 52-545I ..40-7730-1	Models 52-543M, 52-545M and 52-545I76-7547
Knobs	Models 52-547M and 52-547L76-7638
Model 52-543M	Models 52-550M and 52-550L ..76-7625
DIAL SCALE ...	Clock and plug assembly
56-9656	Model 52-543M ..76-7559
	Models 52-545M, 52-5451, 52-547M, and 52-547L ..76-7544
Models 52-545M and 52-545I	Models 52-550M and 52-550L76-7596
AUTO SET ..44-4736-10	
AUTO-OFF-ON ...44-4736-9	Dial-and-backplate assembly Models 52-550M and 52-550L \qquad 76-7579
DELAYED OFF ..44-4736-9	
DIAL SCALE ...-54-5055-5	Socket, clock
TIME SET ..-47-4736-11	Models 52-543M, 52-545M, 52-5451, 52-547M,
VOLUME ..-6-4815-9	
Models 52-547M and 52-547L	
AUTO SET ..44-4736-10	Plug, clock ..48-4878-2
AUTO-OFF-ON ...-4736-9	Tuning shaft ..66-9659
DELAYED OFF ...-44-4736-9	
DIAL SCALE ..4-5055-5	Shaft assembly, pointer ..76-7581

Figure 1. Drive-Cord Installation Details

MODEL 52-548

ALIGNMENT PROCEDURE

DIAL POINTER-Turn tuning condenser to full-mesh position. Set dial pointer to index mark, located to the left of " 55 ".

CONTROLS-Set volume control to maximum, and tuning control as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.
SIGNAL GENERATOR-Ground lead to B-, output lead as indicated in chart.
OUTPUT LEVEL-During alignment, attenuate signalgenerator output to hold output-meter indication below 1.25 volts.

STEP	SIGNAL GENERATOR		RADIO		ADJUST TRIMMER
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Through a . 01- $\mu \mathrm{f}$. condenser to pin 6 of 7A8 converter tube.	455 kc .	Gang fully open.	Adjust, in order given, for maximum output. TCl and TC4 are located at top of transformers.	TC4—2nd i-f sec. TC3-2nd i-f pri. TC2-lst i-f sec. TCl-lst i-f pri.
2	Radiating loop (see note below).	1600 kc .	1600 kc .	Adjust for maximum.	ClB-osc. trimmer
3	Same as step 2.	1500 kc .	1500 kc .	Adjust for maximum.	C1A-ant. trimmer

RADIATING LOOP: Make up a 6-8-turn, 8 -inch-diameter loop from insulated wire, connect to signal generator output leads, and place near radio loop.

Figure 2. Base View, Showing Parts Placement and Alignment Points

PHILCO PAGE 23-15

Figure 3. Philco Radio Model 52-548, Schematic Diagram

MODEL 52-548
PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Reference Symbol	$\begin{array}{ll} & \text { Service } \\ \text { Description } & \text { Part }\end{array}$	Reference Symbol	Description	Service Part No.
Cl	Condenser, tuning gang31-2751-10	R7	Resistor, diode load, 2.2 megohms	...66-5228340*
C1A	Condenser, trimmer, aerialPart of Cl	R8	Resistor, grid return, 10 megohms66-6108340*
C1B	Condenser, trimmer, oscillatorPart of Cl	R9	Resistor, plate load, 470,000 ohms66-4478340*
C2	Condenser, osc. grid, d-c blocking, $47 \mu \mu f$. \qquad 60-00475	$\begin{aligned} & \text { R10 } \\ & \text { R11 } \end{aligned}$	Resistor, grid return, 470,000 ohms Resistor, cathode bias, 150 ohms66-4478340* 66-1154340*
C3	Condenser, leakage, . 1 ¢f.45-3505-47	R12	Resistor, filter, 220 ohms, 2 watts66-1225340*
C4	Condenser, temperature compensating.	R13	Resistor, filter, 1200 ohms Resistor, surge limiting, 880 ohms	$66-2128340^{*}$
C5	Condenser, screen by-pass, . $1 \mu \mathrm{f}$.61-0113*		100 ohms hot	...33-1343-3
C6	Condenser, a-v-c by-pass, . 1μ f.61-0113*	S1	Switch, off-on	Part of R6
C7	Condenser, cathode by-pass, . $05 \mu \mathrm{f}$.61-0122*	T1	Transformer, output	32-8384*
C8	Condenser, B+ by-pass, .l, $\mu \mathrm{f}$.45-3505-47*	W1	Line cord	L2183.
C9	Condenser, audio coupling, . $01 \mu f$.45-3505-58*	Z1	Transformer, lst i-f	.32-4160A
Clo	Condenser, dual ceramic30-1239-4	Z2	Transformer, 2nd i-f	...32-4240A
C10A	Condenser, audio coupling, . $007 \mu \mathrm{f}$.Part of C10			
Cl0B	Condenser, grid by-pass, $220 \mu \mu f$.Part of C10			
Cll	Condenser, electrolytic, 4 -section30-2575-32*		MISCELLANEOUS	
Cl1A	Condenser, cathode by-pass, $25 \mu f . \ldots \ldots . . .$. Part of Cll		MSCELLANEOUS	
Cl1B	Condenser, filter, $40 \mu \mathrm{f}$.Part of Cl1	Description		Service Part No.
CllC	Condenser, filter, $40 \mu \mathrm{f}$.Part of C11	Description		
Clld	Condenser, filter, $40 \mu \mathrm{f}$.Part of C11	Cabinet		10887
C12	Condenser, tone compensation, . $01 \mu f$.45-3505-58*	Faste	(5 required)	W2235-1FA9
C13	Condenser, line by-pass, . $04 \mu \mathrm{f}$.30-1226-17*	Knob	required)	54-4774-9
C14	Condenser, aerial, fixed trimmer, $10 \mu \mu f$. ..30-1224-26*	Knob	cutcheon (2 required)	.54-4927
Il	Pilot lamp, type 4734-2068	Dial backp	e assembly	76-7056
L1	Coil, oscillator ..32-4263	Drive	rd, 25-foot spool	.45-8750
LA1	Loop antenna (Magnecor)32-4455-6	Dial scale		.54-5128
LS1	Speaker, 51/4" round36-1639-9	Lamp asse	ly, pilot	27-6233-18
R1	Resistor, leakage, 150,000 ohms66-4158340*	Pointer		56-5630-40
R2	Resistor, grid return, 100,000 ohms66-4108340*	Shaft,	ning	. 56-9272
R3	Resistor, dropping, 27,000 ohms66-3278340*	Spring		56-2617
R4	Resistor, cathode bias, 180 ohms66-1188340*	Spring	hairpin	57-1468FA3
R5	Resistor, i-f filter, 47,000 ohms66-3478340*	Mount, rub	(3 required)	. 27-4596
R6	Resistor, volume control, . 5 megohm	Socket, Lo	al (3 required)	.27-6207
	(with switch)33-5566-36	Socket, min	ture (2 required)27-6265
SUPPLEMENT TO MODEL 52-548				
Additions to parts list:				
Cabinet, ivory				10887-3
Escutcheon, knob (2)				54-4927
Knob (2)				4774-10
Scale				54-5128

MODEL 52-640

MODEL 52-641

SPECIFICATIONS

Figure 1. Bottom View, Showing Symbolized Chassis

ALIGNMENT PROCEDURE

DIAL POINTER-With tuning-condenser plates fully meshed, set pointer to coincide with first index hole above pointer.

OUTPUT METER-Connect across speaker voice coil terminals.

SIGNAL GENERATOR-Connect signal generator as indicated in chart. Use modulated output.

RADIO CONTROLS-Set volume control to maximum. Set tuning control and signal-generator frequency as indicated in chart.
OUTPUT LEVEL_During alignment, signal-generator output must be attenuated to maintain output-meter reading below .5 volt.
NOTE: While the radio is being aligned, the batteries (if used) should be in the same position with respect to the chassis and loop as they are in the cabinet.

TPO-392
Figure 2. Top View, Showing Trimmer Locations

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Through . $1-\mu \mathrm{f}$. condenser to antenna section of tuning condenser.	455 kc .	Tuning gang fully meshed	Adjust, in order given, for maximum output.	TC4—2nd i-i sec. TC3-1st i-f sec. TC2-lst i-f pri.
2	Radiating loop. See note below.	1620 kc .	1620 kc .	Adjust for maximum output.	C1B-osc. trimmer
3	Same as step 2.	1500 kc .	1500 kc .	Adjust for maximum output.	C1A-aerial trimmer
4	Same as step 2.	535 kc.	Tuning gang fully meshed	Adjust for maximum output; then repeat steps 2 and 3 until no further increase in output is obtained. This step SHOULD NOT be necessary unless the oscillator transformer has been replaced.	TCl-osc. core

[^20]PHILCO PAGE 23-19

© John F. Rider

PAGE 23-20 PHILCO

Figure 4. Drive-Cord-Installation Details

TP0-390
PARTS LIST

NOTE: Part replacement	numbers identified by an asterisk (*) are general items. These numbers may not be identical with	Reference Symbol	Description Part No.
those on fa	ory parts; also, the electrical values of some replace-	R10	Resistor, screen dropping, 4.7 megohms..66-5478340*
ment items	nay differ from the values indicated in the schematic	R11	Resistor, plate load, 1 megohm66-5108340*
diagram and	parts list. The values substituted in any case are	R12	Resistor, grid return, 2.2 megohms66-5228340**
so chosen th	at the operation of the radio will be either unchanged	R13	Resistor, bias, 2200 ohms66-2228340*
or improved Part No."	When ordering replacements, use only the "Service	R14	Resistor, filament dropping and filter, 2100 ohms (center-tapped) \qquad 33-3445
		R15	Resistor, filter, 820 ohms66-1828340*
R	Service	R16	Resistor, current limiting, 120 ohms33-1334-14
Symbol	Description Part No.	R17	Resistor, bias, 1500 ohms66-2158340**
Cl	Condenser, tuning gang, 2-section	R18	Resistor, bias, 330 ohms66-1338340*
	Model 52-64031-2735-3	S1	Switch, off-on ..Part of R8
	Model 52-64131-2735-2	T1	Transformer, oscillator32-4453-1
C1A	Condenser, trimmer, antennaPart of Cl	T2	Transformer, output32-8434
C1B	Condenser, trimmer, oscillatorPart of Cl	W1	Line cord ...LL2183
C2	Condenser, neutralizing, $1.5 \mu \mu \mathrm{f}$.30-1221-3	WS	Wafer switch, voltage change-over42-1925
C3	Condenser, α-v-c by-pass, . $05 \mu \mathrm{f}$.61-0122*	Z1	Transformer, 1st i-f32-4160-4A
C4	Condenser, i-f by-pass, .1 $\mu \mathrm{f}$.61-0113**	Z2	Transformer, 2nd i-f32-4454-1A
C5	Condenser, d-c blocking, $47 \mu \mu \mathrm{f}$.62-051009001*		MISCELLANEOUS
C6	Condenser, dual ceramic30-1239		
C6A	Condenser, osc. B+ by-pass, . $004 \mu \mathrm{f}$.Part of C6	Description	ervice Part No.
C6B	Condenser, grid by-pass, . $004 \mu \mathrm{f}$.Part of C6	Cabinet, M	del 52-640, maroon ..10816-3
C7	Condenser, temperature compensation, . 30-1224-83	Back,	back ...56-4807-3
C8	Condenser, filament by-pass, . $25 \mu \mathrm{f}$.30-4656-1	Handle-	and-bracket assembly76-6967
C9	Condenser, neutralizing, $1.5 \mu \mu \mathrm{f}$.30-1221-3	Handle	54-4811-2
C10	Condenser, ceramic, 4-section30-1327	Knob a	ssembly (2) ..76-6206
C10A	Condenser, d-c blocking, . 001 ¢f.Part of C10	Pointer	56-7973-1
C10B	Condenser, screen by-pass, $01 \mu \mathrm{f}$.Part of C10	Cabinet, Mo	del 52-641, maroon ..10799-1
C10C	Condenser, d-c blocking, . $002 \mu \mathrm{f}$.Part of C10	Back, m	aroon ...54-4767-1
C10D	Condenser, grid by-pass, $220 \mu \mu \mathrm{f}$.	Cabinet, Mo	del 52-641, red ...10799-2
Cl1	Condenser, tone compensation, . $004 \mu \mathrm{f}$.61-0179*	Back, r	ed ...54-4767-2
C12	Condenser, electrolytic, filament by-pass, $50 \mu \mathrm{f} ., 25 \mathrm{v}$..30-2417-12	Cabinet, Mo Back, N	del 52-641, Nile ..10799-4
C13	Condenser, electrolytic, 3-section30-2568-39	Cabinet, Mo	del 52-641, sand ..10799-5
C13A	Condenser, filter, $40 \mu \mathrm{f} ., 150 \mathrm{v}$...............Part of C13	Back, s	and ...54-4767-5
Cl3B	Condenser, filter, $10 \mu \mathrm{f} ., 150 \mathrm{v}$..............Part of C13	Clip (2),	back ...56-9162
C13C	Condenser, filter, $50 \mu \mathrm{f}$., 150vPart of C13	Fastene	(2) ...W2235-7FA9
C14	Condenser, line by-pass, . 047μ.45-3505-45*	Handle-	and-bracket assembly76-6061
C15	Condenser, antenna coupling, . $001 \mu \mathrm{f}$.45-3500-5	Handle	56-7940FCP
CR1	Selenium rectifier, 75 ma . at 117 volts34-8003-1*	Hinge,	l.h. ..56-7915
LA1	Loop aerial	Hinge,	h. ..56-7915-1
	Model 52-640 (flat loop)32-4052-52	Knob (2)	. 54-4773
	Model 52-641 (Magnecor)32-4455	Pointer	56-7973FCP
LSI	Speaker, 4-inch p.m.36-1627-21	Scale,	dial ..54-5087
R1	Resistor, current limiting, 470 ohms66-1478340**	Baffle-and	d-cloth assembly ...40-7884
R2	Resistor, grid return, 68,000 ohms66-3688340*	Insulator, e	lectrolytic-condenser mounting27-9508
R3	Resistor, bias, 880 ohms66-1888340*	Cable-and-c	nnector assembly, battery41-3988
R4	Resistor, leakage, 150,000 ohms66-4158340*	Drive c	ord (25-ft. spool) ..45-8750*
R5	Resistor, oscillator dropping, 15,000 ohms ...66-3158340*	Mount, Retainin	rubber, tuning gang ...27-4099-3
R6	Resistor, grid return, 3.3 megohms66-5338340*	Spring,	drive cord ...56-2617
R7	Resistor, α-v-c filter, 2.2 megohms66-5228340*	Socket	(2), tube, 1R5 and 1U427-6203
R8	Resistor, VOLUME control (with "off-on"	Socket	2), tube, 1U5 and 3V427-6203-12
	switch), 1 megohm33-5566-21	Tube sh	ield, 1U5 ..56-3978-1FA3
R9	Resistor, grid return, 4.7 megohms66-5478340*	Tuning	shaft ..56-7906FA42

MODEL 52-643

SPECIFICATIONS

TP1-1711
Figure 1. Drive-Cord-Installation Details

ALIGNMENT PROCEDURE

POINTER-Set pointer to coincide with first index mark from left side of dial backplate (looking at backplate).
RADIO CONTROLS-Set volume control to maximum.
OUTPUT METER-Connect across voice-coil terminals.
SIGNAL GENERATOR-Use modulated output.
OUTPUT LEVEL—During alignment, adjust signal-generator output to maintain output-meter indication below .5 volt.
SPECIAL NOTE-The orientation of the loop with respect to the chassis and battery is critical for correct tracking. During
alignment, with the cabinet back (containing the loop) lying flat on the bench, the chassis should be laid on its back in approximately its normal relation to the loop, with a $1 / 4^{\prime \prime \prime}$ thick wooden board separating the loop and chassis. The battery should also be placed as close as possible to its normal position with respect to the chassis and loop.
CRITICAL LEAD DRESS-To secure proper padding capacity, the green lead from pin 6 of the 1R5 tube to Zl must be dressed over wiring panel, away from chassis, and the green lead from Zl to the tuning condenser must be dressed away from chassis.

Figure 2. Top View, Showing Trimmer Locations
ALIGNMENT CHART

STEP	SIGNAL GENERATOR		R A DIO		ADJUST
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Through a .l- μ f. condenser to pin 6 of the 1R5 converter.	265 kc.	1620 kc. (gang fully open)	Adjust, in order given, for maximum output.	TC5-2nd i-f sec. TC4-2nd i-f pri. TC2-lst i-f pri. TC3-lst i-f sec.
2	Radiating loop. See note below.	1620 kc.	1620 kc. (gang fully open)	Adjust for maximum output. If low-frequency dial tracking is far off, make adjustments in steps 3 and 4 before making this adjustment.	ClC-osc. shunt
3	Same as step 2.	580 kc .	580 kc .	Adjust for maximum output while rocking tuning control.	Cl3-osc. series
4	Same as step 2.	580 kc .	580 kc .	Adjust for maximum output. This adjustment should not be made unless dial tracking is off, or sensitivity is low at low-frequency end (580 kc.).	TCl-r-r sec.
5	Same as step 2.	1500 kc .	1500 kc . (index mark at right)	Adjust, in order given, for maximum ouipui.	ClB-r-f trimmer C1A-aerial trimmer
6	Repeat steps 3 and 5 until no further improvement is obtained.				

RADIATING LOOP: Make up a six-to-eight-turn, 6 -inch-diameter loop using insulated wire; connect to signal-generator leads and place near radio loop.

MODEL 52-643 PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These »usmbers may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
Cl	Consender, tuning gang, 3-section31-2747-2
C1A	Condenser, antenna trimmerPart of Cl
C1B	Condenser, r-f trimmerPart of Cl
ClC	Condenser, osc. trimmerPart of Cl
C2	Condenser, d.c blocking, $100 \mu \mu \mathrm{f}$.62-11000900
C3	Condenser, bias filter, . $05 \mu \mathrm{f}$.61-0122*
C4	Condenser, fixed trimmer, $4.7 \mu \mu \mathrm{f}$.30-1230
C5	Condenser, filament by-pass, . 05μ f.61-0122*
C6	Condenser, screen by-pass, . $05 \mu \mathrm{f}$.61-0122*
C7	Condenser, neutralization, $1.5 \mu \mu \mathrm{f}$.30-1221-3
C8	Condenser, α-v-c filter, 05 uf.61-0122*
C9	Condenser, filament by-pass, . 1 ¢f.61-0113**
C	Condenser, filament by-pass, . $1 \mu \mathrm{f}$.61-0113*
Cl1	Condenser, d-c blocking, $47 \mu \mu \mathrm{f}$.60-00475417*
C12	Condenser, osc. series padder, 600 to $800 \mu \mu \mathrm{f}$. ..31-6473-16
Cl	Condenser, tone compensation, 004μ.61-0179*
C14	Condenser, screen neutralizing, . 003 μ f.61-0109*
C	Condenser, line by-pass, . 04 年.45-3500-2*
C16	Condenser, ceramic, 4 -section30-1237
C16	Condenser, screen by-pass, . $01 \mu \mathrm{f}$.Part of Cl 16
C16B	Condenser, by-pass, 200 uff.Part of $\mathrm{Cl6}$
C16C	Condenser, d-c blocking, . $002 \mu \mathrm{f}$.Part of C16
C16D	Condenser, d-c blocking, 001 f.Part of C16
C17	Condenser, electrolytic, 4 -section30-2568-26
C17A	Condenser, filament by-pass, $60 \mu \mathrm{f}$.Part of $\mathrm{Cl} 7^{\text {a }}$
C17B	Condenser, filter, $30 \mu \mathrm{f}$.Part of $\mathrm{Cl7}$
C17C	Condenser, filter, 10μ f.Part of Cl 7
C	Condenser, filter, $60 \mu \mathrm{f}$.Part of $\mathrm{Cl7}$
CR1	Selenium rectifier34-8003*
LA1	Coil, antenna ..32-4455-4
LSI	Speaker, 5-inch ..36-1625
PLI	Plug and cable, battery41-3712-5
R1	Resistor, grid return, l megohm66-5108340*
R2	Resistor, current limiting, 100 ohms66-1108340*
R3	Resistor, grid return, 4.7 megohms66-5478340*
R4	Resistor, grid return, 100,000 ohms66-4108340*
R5	Resistor, oscillator coupling, 3300 ohms ..66-2338340*
R6	Resistor, dropping, 15,000 ohms66-3158340*
R7	Resistor, grid return, 82 ohms66-0828340*

 Symbol R8
R9 R10 R11 R12
R13R14
R15R17R18R19
R20
R21R22
R23
R23A
R23B
R24
S1
S2
T1W1
Z1
$\mathrm{Z2}$
$\mathbf{Z 3}$

Description	Service Part No.
Resistor, grid return, 220 ohms $.66-1228340 * ~$	

MISCELLANEOUS

Handle mounting bracket, metal 56-9583

Figure 4. Bottom View, Showing Symbolized Chassis

MODEL 52-940

MODEL 52-941

MODEL 52-942

SPECIFICATIONS

CABINET

Model 52-940
Model 52-941
Model 52-942
CIRCUIT
FREQUENCY RANGE \qquad
\qquad AUDIO OUTPUT OPERATING VOLTAGE POWER CONSUMPTION AERIAL

INTERMEDIATE FREQUENCY
PHILCO TUBES (6) \qquad
\qquad
\qquad aerial 455 kc .
7B7 r-f ampl., 7A8 converter, 7B7 i-f ampl., 14B6 det.-a.v.c.lst audio, 35L6GT output, 35Z5GT rectifier

Figure 1. Dial-Cord Installation Details

TP1-1714
Figure 2. Bottom View, Showing Symbolized Chassis ALIGNMENT PROCEDURE

DIAL POINTER: Turn tuning condenser to full-mesh position. Adjust pointer so that center of pointer carriage coincides with the first scribe line from the left.

OUTPUT METER: Connect across speaker voice coil.
SIGNAL GENERATOR: Connect as indicated in chart. Use modulated output.

OUTPUT LEVEL: During alignment, attenuate signalgenerator output to maintain an output-meter indication of 1.25 volts.

VOLUME CONTROL: Set to maximum.
CRITICAL DRESS: The green lead from the osc. section of C 1 to C 5 must be dressed away from the chassis, with all excess under the chassis.

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		R A IO		ADJUST
	CONNECTION TO RADIO	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	SPECIAL INSTRUCTIONS	
1	Through a . $1-\mu \mathrm{l}$. condenser to stator of r-f section of gang. Ground lead to B-.	455 kc .	Gang fully meshed	Adjust, in order given, for maximum output.	TC5-2nd i-f sec. TC4-2nd i-f pri. TC3-1st i-f sec. TC2-1st i-i pri.
2	Radiating loop. (See note below.)			Preset $1 / 2$ turn from right.	C5-osc. series
3	Same as step 2.	1620 kc .	1620 kc .	Adjust for maximum.	C1B-osc. shunt
4	Same as step 2.	1500 kc .	1500 kc .	Adjust for maximum.	$\begin{aligned} & \text { ClC-r-f } \\ & \text { ClA-aerial } \end{aligned}$
5	Same as step 2.	580 kc.	580 kc.	Adjust for maximum while rocking tuning control.	C5-osc. series TCl-r-f core
6	Repeat sieps 3 and 4.				

RADIATING LOOP: Make up a 6-8 turn, 6 -inch-diameter loop from insulated wire; connect to signal-generator leads and place near radio loop aerial. The loop aerial must be connected to the radio.

TP9-636B
Figure 3. Top View, Showing Trimmer Locations

PARTS LIST

NOTE: Part numbers marked with an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$	Description Service Part No.
Cl	Condenser, tuning, 3-section31-2748-1	Cabinet, Model 52-940, mahogany10770-4
C1A	Condenser, trimmer, aerialPart of Cl	Cabinet, Model 52-940, gray ...10770-3
C1B	Condenser, trimmer, osc.Part of Cl	Back ..54-7917
ClC	Condenser, trimmer, r-fPart of Cl	Fastener (4), back ...W-2235FA9
C2	Condenser, by-pass, .1 μ f.61-0113*	Backplate, ornamental, mahogany cabinet56-7426FCP
C3	Condenser, by-pass, . $05 \mu \mathrm{f}$.	Backplate, ornamental, gray cabinet56-7426-1FCP
C4	Condenser, fixed trimmer, temperature comp., $13 \mu \mu f$. ..30-1224-68	Fastener, backplate mtg.W-2235-1FA9 Baffle ...54-7938-3
C5	Condenser, padder, osc. series ...773-17	Fastener (4), baffle mtg.W-2235-2FA9
C6	Condenser, d-c blocking, $47 \mu \mu \mathrm{f}$.60-00475417	Bezel, metal \qquad .56-7427
C7	Condenser, electrolytic, 3-section30-2575-27	Speed nut (2), bezel mtg. \qquad scale, mahogany cabinet \qquad \qquad 54-5070-3
C7 A	Condenser, filter, $30 \mu \mathrm{f} ., 150 \mathrm{v}$................Part of C7	Dial scale, gray cabinet ..5-5070-4
C7B	Condenser, filter, $40 \mu \mathrm{f}$., 150vPart of C7	Clip, scale mtg. ..36-7886FE7
C7C	Condenser, filter, $40 \mu \mathrm{f}$., 150vPart of C7	Knob (2), mahogany cabinet54-4718-4
C8	Condenser, line by-pass : 047 ¢f.45-3505-45	Knob (2), gray cabinet ...54-4718-7
C9	Condenser, α-v-c filter, . $05 \mu \mathrm{f}$.61-0122*	Pointer ..76-5341-1
C10	Condenser, d-c blocking, . $01 \mu \mathrm{f}$.61-0120*	Cabinet, Model 52-941 ... 10771
Cll	Condenser, dual ceramic30-1239-4	Back ..54-7921
Cl1A	Condenser, d-c blocking, . $007 \mu \mathrm{f}$.Part of Cll	Fastener (4), back ..W-2235FA9
Cl1B	Condenser, by-pass, $220 \mu \mu \mathrm{f}$.Part of Cll	Backplate, ornamental ...56-7434-1
Cl2	Condenser, tone compensation, . $02 \mu \mathrm{f}$.61-0108*	Baffle, cardboard \qquad .54-7922
C13	Condenser, antenna coupling, $5 \mu \mu \mathrm{f}$.30-1230	Fastener (4), baffle mtg.W-2235-2FA9
I1	Pilot lamp, 6-8v34-2068	Dial scale ...54-5071
J1	Jack, aerial input27-6214-1	Clip, dial mtg. ...56-7808FE7
LA1	Loop aerial, Model 52-94032-4052-57	Knob (2) ...54-4718-5
LA1	Loop aerial, Model 52-94132-4052-58	Pointer ..76-5341-4
LA1	Loop aerial, Model 52-94232-4052-59	Cabinet, Model 52-942 ... 10772
LSl	Speaker, p-m, 4 in. x 6 in. oval36-1633-1	Back ..54-7920
P1	Loop-aerial plug ...27-4788	Fastener (4), back ..W-2235FA9
R1	Resistor, α-v-c load, 2.2 megohms66-5228340*	
R2	Resistor, leakage, 150,000 ohms66-4158340*	Baffle, cardboard ..54-7919-2
R3	Resistor, dropping, 22,000 ohms66-3228340*	Fastener (4), baffle mtg.W-2235-2FA9
R4	Resistor, grid return, 100,000 ohms66-4108340*	Bezel, metal ..56-7536
R5	Resistor, filament dropping, 100 ohms33-1343-3	Speed nut, bezel mtg.1W60196FE7
R6	Resistor, filter, 220 ohms, 1 watt66-1224340*	Dial scale ...54-5072-1
R7	Resistor, i-f filter, 47,000 ohms66-3478340*	Clip (2), dial mtg. ..56-7572FE11
R8	Resistor, diode load, 2.2 megohms66-5228340*	Pointer ...56-5341-3
R9 ${ }^{\text {²}}$	Resistor, grid return, 3.3 megohms66-5338340*	Backplate, pulley-and-clip assembly76-5233
R10	Resistor, VOLUME control (with on-off switch), 500,000 ohms33-5566-13	Clamp, electrolytic mtg. ...56-1466FA5 Dial cord, 25 -foot spool ..45-8750*
R11	Resistor, plate load, 470,000 ohms66-4478340*	Spring, gang drive ...56-2617
R12	Resistor, grid return, 470;000 ohms66-4478340*	Spring, pointer drive ..28-8953
R13	Resistor, cathode bias, 130 ohms66-1138340*	Drive shaft ..76-3671-6
R14	Resistor, filter, 1200 ohms66-2128340*	Bushing, drive shaft ...27-9437
R15	Resistor, leakage, 150,000 ohms66-4158340*	Spring (2), hairpin, drive shaft \qquad Panel, wiring, external aerial \qquad 38-9837
S1	Switch, off-on ..Part of R10	Panel, wiring, 4-lug ...38-9161-1
T1	Transformer, oscillator32-4263-2	Plug, aerial, 4-pin ...6214-1
T2	Transformer, output32-8310-3	Rubber mount (4), gang mtg. ...27-4771-1
W1	Line cord ..L-2183*	Shield, tube, 14B6 ...56-1566
Z1	Transformer, r-f32-4399-2A	Socket (4), Loktal ...27-6269
Z2	Transformer, lst i-f32-4160A	Socket (2), octal ...27-6174
Z3	Transformer, 2nd i-f32-4240-3A	Socket assembly, pilot lamp ...27-6233-6

MODEL 52-944

SPECIFICATIONS

PHILCO TUBES (6)
12AU6 r-f ampl., 12AT7 converter, 12BA6 1st i-f ampl., 12AU6 2nd i-f ampl., 19V8 det.-a.v.c.-lst audio, 35C5 output

Figure 1. Dial-Cord Installation Details

MODEL 52-944

AM ALIGNMENT PROCEDURE

Make alignment with loop aerial connected to radio. The AM alignment should be completed before the FM alignment is made.
DIAL POINTER-With tuning-condenser plates fully meshed, adjust pointer to coincide with index mark at low-frequency end of dial backplate.
RADIO CONTROLS-Set volume control to maximum, set band switch for broadcast reception, and set tuning control as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.
SIGNAL GENERATOR-Use AM r-f signal generator, with modulated output. Connect generator and set frequency as indicated in chart.

OUTPUT LEVEL-During alignment, signal-generator output must be attenuated to hold output-meter reading below 1.25 volts.

AM ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Ground lead to chassis. Output lead through a .l- μ f. condenser to junction of LAl and L8.	455 kc .	Gang fully open	Adjust for maximum output.	TC10-2nd AM i-f sec. TCS-2nd AM i-f pri. TC4—lst AM i-f sec. TC3—lst AM i-f pri.
2	Radiating loop. See note below.	1620 kc .	1620 kc . (2nd index mark from right)	Adjust for maximum output.	ClC-osc. trimmer
3	Same as step 2.	1500 kc .	1500 kc .	Adjust for maximum output.	ClA-aerial trimmer

RADIATING LOOP: Make up a six-to-eight turn, 6 -inch-diameter loop from insulated wire; connect to generator terminals, and place near radio loop aerial. Radio loop aerial must be connected.

FM ALIGNMENT PROCEDURE

Make AM alignment first

RADIO CONTROLS--Set volume control to maximum, set band switch for FM reception, and set tuning control as indicated in chart.

OSCILLOSCOPE-Connect ground lead to chassis. Connect vertical input to FM TEST jack, J2; connect horizontal input to horizontal sweep output of sweep generator. (Oscilloscope is used for steps 1 and 2.)

SWEEP GENERATOR-Use r-f sweep signal generator. Connect ground lead to chassis. Connect output lead and set frequency and sweep width as indicated in chart.

OUTPUT METER—Connect across voice-coil terminals.

TP1-2111
Figure 2. Characteristic Curve of FM Detector

FM ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	DIAL SETTINC	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Connect FM signal generator through a $.01-\mu f$. condenser to control grid (pin 1) of 12AU6 2nd i-f amplifier.	9.1 mc . 75 - kc. deviation).	88 mc . (gang meshed).	Balance and adjust detector for maximum indication on scope as shown in figure 5.	TC8-detector sec. TC7-detector pri.

Figure 3. Top View, Showing Trimmer Locations
FM ALIGNMENT CHART (Cont.)

STEP	SIGNAL GENERATOR		* RADIO		ADJUST
	CONNECTION TO RADIO	DIAL SETTINC	DIAL SETTING	SPECIAL INSTRUCTIONS	
2	Connect FM signal generator through a $.01-\mu \mathrm{f}$. condenser to FM tuning gang stator lug, junction of Cl and pin 4 of L2.	Same as step 1.	$\begin{aligned} & \text { Same as } \\ & \text { step l. } \end{aligned}$	Adjust for maximum indication on scope as shown in figure 5.	$\begin{array}{llll} \text { TC6-FM } & \text { 2nd } & \text { i-f } \\ \text { sec. } & & & \\ \text { TC5-FM } & \text { 2nd } & \text { i-f } \\ \text { pri. } & & & \\ \text { TC2-FM } & \text { lst } & \text { i-f } \\ \text { sec. } & & & \\ \text { TCl-FM } & \text { lst } & \text { i-f } \\ \text { pri. } & & & \end{array}$
3	Connect FM signal generator to lug 2 of TB1, and ground side of generator to lug 3 of TB1. See note 1 below.	108.5 mc .	108.5 mc . (lst index mark from right).	Adjust for maximum indication on output meter.	C18-FM osc.
4	Same as step 3.	88 mc .	88 mc . (lst index mark from left).	Adjust for maximum indication on output meter. See note 2 below.	L5-FM osc.
5	Same as step 3.	105 mc.	105 mc . (3rd index mark from right).	Ādjust for maximum indication on output meter while rocking tuning condenser.	ClB-FM r-f
6	Same as step 3.	105 mc.	105 mc .	Adjust for maximum indication on output meter.	C47-FM derial.
7	Same as step 3.	92 mc .	92 mc . (3rd index mark from left).	Adjust for maximum indication on output meter. See note 3 below.	L2-FM r-ícoil.
If L1 is replaced, adjust antenna inductance as follows:-					
8	Same as step 3.	92 mc .	92 mc .	Adjust for maximum indication on output meter.	TC11-FM aerial.

NOTE 1: For proper and accurate results, the signal-generator output impedance must be 300 ohms to match the input impedance of TB1. If the signal-generator output impedance is less than 300 ohms, a resistor of the proper value may be used in series with the output lead to make the impedance correct. For example, if the output impedance is 150 ohms, place a 150 -ohm resistor in series with the output lead.
NOTE 2: If oscillator frequency does not tune as low as 88 mc ., compress the turns on the oscillator coil. If oscillator frequency tunes too low, spread the turns slightly. After coil is adjusted, repeat step 3.
NOTE 3: Ćheck resonance of coil L2 by inserting end of a tuning wand, such as Philco Part No. 56-6100, in the coil. If output increases when iron end is placed in coil, compress turns slightly. If output increases when brass end is placed in coil, spread the turns. If output decreases when either end is placed in coil, no adjustment is necessary. After the coil is adjusted, readjust trimmer ClB and repeat steps 3 through 8 until no further adjustment is necessary.

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts; also, the electrical values of some replacement items may, differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the sadio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$	Reference Symbol	Des=ription $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
Cl	Condenser, tuning gang, 5-section31-2762	C47	Condenser, FM aerial trimmer45-3034
	Condenser, trimmer, BC aerialPart of Cl	CR1	Selenium rectifier, $100 \mathrm{ma} ., 117 \mathrm{v}$................34-8003-1
CIB	Condenser, trimmer, FM r-fPart of Cl	I1	Pilot lamp, frosted, 117v, 7 watts34-2605
ClC	Condenser, trimmer, BC oscillatorPart of Cl	J1	Jack, male, α-c27-4785-13;
2	Condenser, aerial isolating, $3.3 \mu \mu \mathrm{f}$. 30-1224-49	J2	Socket, FM test
C3	Condenser, derial isolating, $220 \mu \mu \mathrm{f}$. ...62-122001001*	L1	
C4	Condenser, aerial isolating, . $01 \mu \mathrm{f}$.45-3505-41.	L2	Coil, FM r-f ...32-4415-2
C5	Condenser, cathode by-pass, $22 \mu \mu$. ...62-022009001	L3	Choke, r-f, $3.3 \mu \mathrm{~h}$.
C6	Condenser, d-c blocking, $100 \mu \mu \mathrm{f}$.62-110001001	14	
C7	Condenser, screen by-pass, $220 \mu \mu \mathrm{f}$. ...62-122001011**	L5	Coil, FM oscillator ...32-4414-1
C8	Condenser, oscillator grid, $100 \mu \mu \mathrm{f}$. ...62-110001021*	L6	Choke, fildment, 2.2 ¢h. ..42222-8
C9	Condenser, d-c blocking, $220 \mu \mu \mathrm{f}$, ,.......62-122001001	L7	
C10	Condenser, d-c blocking, . $01 \mu \mathrm{f}$.30-1226-10	L8	1.3
Cl	Condenser, neutralizing, $3.9 \mu \mu \mathrm{f} . \cdot \cdots30-1221-14$	LA1	AM loop and support assembly76-7030
Cl	Condenser, d-c blocking, $220 \mu \mu \mathrm{f}$.62-122001001	LA2	Line-cord aerial, FM \qquad Part of Wl
C13	Condenser, fixed trimmer, temperature compensating, $7.5 \mu \mu$ f.30-1224-8	LS1	Speaker, 4" p-m, including output trans- \qquad
C14	Condenser, d-c blocking, $220 \mu \mu \mathrm{f}$.62-122001001*	1	Resistor, cathode bias, 120 ohms66-1128340*
C1	Condenser, r-f by-pass, $220 \mu \mu \mathrm{f}$.62-12	R2	Resistor, screen decoupling, 470 ohms66-1478340**
C16	Condenser, plate decoupling, . $01 \mu \mathrm{f}$.30-4572	R3	Resistor, grid return, 15,000 ohms66-3158340*
C17	Condenser, r-f by-pass, $100 \mu \mu \mathrm{f}$.62-110	R4	Resistor, grid return, 2.2 megohms66-5228340**
C18	Condenser, trimmer, FM oscillator	R5	Resistor, parasitic suppressor, 680 ohms..66-1688340**
C19	Condenser, fixed trimmer, temperature compensating, $7.5 \mu \mu$ f.30-1224-8	R6	Resistor, parasitic suppressor, 470 ohms..66-1478340*
20	Condenser, α-v-c decoupling, $01 \mu \mathrm{f}$.61-0120	R8	Resistor, plate dropping, AM, 47,000
C21	Condenser, screen by-pass, . 002μ f.61-0062*		ohms ...66-3478340*
C22	Condenser, neutralizing, . $006 \mu \mathrm{f}$.45-3500-7**	R9	Resistor, plate dropping, 4700 ohms66-2478340*
C23	Condenser, i-f by-pass, 100μ	R10	Resistor, cathode bias, 47 ohms66-0478340*
C24	Condenser, cathode by-pass, . 01μ f.61-0120	R11	Resistor, screen decoupling, 1000 ohms66-2108340*
25	Condenser, screen by-pass, . $002 \mu \mathrm{f}$.61-0062*	R12	Resistor, plate decoupling, 2700 ohms66-2278340**
C26	Condenser, electrolytic, diode-load filter, $2 \mu \mathrm{f}$., 50v ..30-2417-7	R13.	Resistor, grid return, 1 megohm66-5108340*
C27	Condenser, i-f by-pass, $150 \mu \mu$ f.60-10155407	R15	Resistor, a-v-c filter, 2.2 megohms66-5228340*
C28	Condenser, d-c blocking, . 006 ¢f.45-3500-7*	R16	Resistor, decoupling, 470 ohms66-1478340*
	Condenser, i.f by-pass, $100 \mu \mu$ f.62-1100	R17	Resistor, FM diode load, 47,000 ohms66-3478340*
C31	Condenser, i.f by-pass, $100 \mu \mu \mathrm{f}$.62-110001001*	R18	Resistor, de-emphasis, 47,000 ohms66-3478340*
C32	Condenser, i-f by-pass, $100 \mu \mu \mathrm{f}$.62-110001001*		esistor, i-f filter, 47,000 ohms66-3478340*
C33	Condenser, plate by-pass, $680 \mu \mu \mathrm{f}$.62-168001001		
C34	Condenser, d-c blocking, . $02 \mu \mathrm{f}$.		500;000 ohms ...33-5566-20
C35	Condenser, d-c blocking, 006 ¢f.61-0105*	R22	Resistor, grid return, 10 megohms66-4478340*
C36	Condenser, grid by-pass, $100 \mu \mu \mathrm{f}62-110001001^{*}$	R23	Resistor, plate load, 470,000 ohms66-4478340*
C37	Condenser, tone compensation, $02 \mu \mathrm{f}$.61-0108*	R24	Resistor, grid return, 470,000 ohms66-4478340*
C38	Condenser, electrolytic, 4 -section30-2570-46	R25	Resistor, cathode bias, 150 ohms66-1158340*
C38A	Condenser, cathode by-pass, $25 \mu \mathrm{f}$., 25 v ..Part of C38	R26	Resistor, filter, 470 ohms, 1 watt66-1474340*
C38	Condenser, filter, $40 \mu \mathrm{f} ., 150 \mathrm{v}$.................Part of C38	R27	Resistor, filter, 150 ohms, 2 watts66-1155340*
C38C	Condenser, filter, $70 \mu \mathrm{f} .15 \mathrm{l} 50 \mathrm{v} \ldots$. Part of C 38	R28	esistor, current limiting, 22 ohms,
C38			2 watts ...66-0225360
C39	Condenser, filament by-pass, $005 \mu \mathrm{f}$.30-1238-1	R29	Resistor, current limiting, 100 ohms33-1343-3
C40	Condenser, line by-pass, 100 u f62-110001021*	R30	Resistor, grid return, 2.2 megohms66-5228340*
C41	Condenser, ceramic, 2 -section30-1239	R31	Resistor, loading, 100 ohms66-1108340*
C41	Condenser, filament by-pass, . $004 \mu \mathrm{f}$......Part of	S1	Switch, off-onPart of R21
C418	Condenser, filament by-pass, . $004 \mu \mathrm{f}$.......Part of C41	Tl	Transformer, AM oscillator32-4458-4
C42	Condenser, line by-pass, . 04μ.45-3500	T2	Transformer, outputPart of LSI
C43	Condenser, filament by-pass, $100 \mu \mu \mathrm{f.....62-110001021*}$	W1 L	Line cord ..L2183
C44	Condenser, plate decoupling, $220 \mu \mu \mathrm{f}$, ..66-122001001	W2	Cable, FM aerial, 72 -ohm twin lead41-3987
C45	Condenser, line bẏ-pass, $100 \mu \mu \mathrm{f}$.62-110001021*	ws	Switch, band, 2-wafer42-1924-1
C46	Condenser, r-f by-pass, $100 \mu \mu \mathrm{f}$.62-110001001		

Figure 5. Symbolized Chassis, Showing Parts Placement

MODEL 52-1340

SPECIFICATIONS

TP1-1835
Figure 1. Drive-Cord Installation Details

ALIGNMENT PROCEDURE

DIAL POINTER-Turn tuning condenser to fullmesh position. Set dial pointer to index mark, located to left of "55".

CONTROLS—Set volume control to maximum, radiophono switch to RADIO position, and tuning control as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.

SIGNAL GENERATOR-Ground lead to B-, and output lead as indicated in chart.

OUTPUT LEVEL-During alignment, attenuate sig-nal-generator output to hold output-meter indication below 1.25 volts.

TP1-1837
Figure 2. Base View, Showing Parts Placement and Alignment Points
ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		ADJUST TRIMMER
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Through a . $01-\mu$. condenser to pin 6 of 7A8 converter tube.	455 kc .	Gang fully open.	Adjust, in order given, for maximum output. TC2 and TC4 are located at top of transformers.	TC4-2nd i-f sec TC3-2nd i-f pri. TC2-lst i-f sec. TCl-lst i-f pri.
2	Radiating loop (see note below).	1600 kc .	1600 kc .	Adjust for maximum.	ClB-osc. trimmer
3	Same as step 2.	1500 kc .	1500 kc .	Adjust for maximum.	ClA-ant. trimmer

RADIATING LOOP: Make up a 6 to 8 turn, 8 -inch-diameter loop from insulated wire, connect to signal generator output leads, and place near radio loop.


```
MODEL 52-1340, Codes 121, 122
```


PARTS LIST

```
NOTE: Part numbers marked with an asterisk (*) are general replacement items. These numbers may not be identical with those on factory assemblies; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the receiver will be elther unchanged or improved. When ordering replacements, use only the "Service Part No."
```

| Reference |
| :--- | :--- | :--- |
| Symbol |\quad| Description |
| :---: |\quad| Service |
| :---: |
| Part No. |

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
R10	Resistor, grid return, 470,000 ohms66-4478340*
R11	Resistor, cathode bias, 180 ohms66-1184340
R12	Resistor, filter, 5000 ohms33-1335-95
R13	Resistor, filter, 270 ohms, 2 watts33-1335-91
R14	Resistor, surge limiting, 880 ohms cold, 100 ohms hot \qquad 33-1343-3
R15	Resistor, cathode bias, 180 ohms66-1188340.
R16	Resistor, bass compensation, 68,000 ohms..66-3688340
R17	Resistor, aerial loading, 150,000 ohms......66-4158340
S1	Switch, off-on ...Part of R8
T1	Transformer, output32-8384*
W1	Line cord ..L2183
WS1.	Wafer switch, radio-phono42-1949
Z1	Transformer, lst i-f32-4160A
Z2	Transformer, 2nd i-f32-4240A

MISCELLANEOUS

Description	Service Part No.
Backplate assembly ...76-6232	
Cabinet, complete, Code 121 ...10840-2	
Cabinet, complete, Code 122 ...10840-6	
Hinge (2) ...56-6603	
Lid ..54-4838	
Lid support	..56-6604
Changer Mounting Hardware	
Sleeve, rubber (3) ..54-7798	
Speed nut (3) ..W-2554	
Spring, heavy, top (3) ...56-7059FA9	
Spring, light, bottom (3)56-7059-1FJ47	
Dial scale ...54-5107	
Knob, off-on-volume ..54-4843	
Knob, radio-phono ...54-4842	
Knob, tuning ...54-4841	
Pilot-lamp socket assembly ..76-1179-7Fastener, pilot-lamp shield (2)W2235-1FA9	
Pointer $\quad .56-5630-31 ~$Spring, pointer drive ...56-2617	
Socket, Loktal (3)..27-6207	
Socket, octal (2) ..86-877Tuning shaft	

SPECIFICATIONS

MODEL 53-700

POWER CONSUMPTION \qquad 30 wafts AERIAL High-impedance loop; connector for external aerial
INTERMEDIATE FREQUENCY .455 kc.

PHILCO TUBES \qquad 12BE6 converter, 12BA6 i-f amplifier, 12AV6 det.-a.v.c.-Ist audio, 35C5 output, 35 W4 rectifier

MODEL 53-701

Figure 1. Base View, Showing Symbolized Chassis

ALIGNMENT PROCEDURE

RADIO CONTROLS-Set volume control to maximum. Set tuning control and band switch as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.

SIGNAL GENERATOR-Connect generator and set frequency as indicated in chart. Use modulated output. OUTPUT LEVEL-During alignment, adjust signalgenerator output to hold output-meter reading below 1.25 volts.

Figure 2. Top View, Showing Trimmer Locations

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO			ADJUST
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	BAND SWITCH SETTING	SPECIAL IRSSTRUCTIONS	
1	Ground lead to B-; output lead through a .1- $\mu \mathrm{f}$. condenser to grid (pin 7) of 12RE6.	455 kc .	Tuning gang fully open	Broadcast	Adjust tuning cores, in order given, for maximum output. (TCl and TC3 are located at top of transformers.)	TC4-2nd i-f sec. TC3-2nd i-f pri. TC2-1st i-f sec. TCl-1st i-f pri.
2	Radiating locp (See note below).	1620 kc .	${ }^{2} 1620 \mathrm{kc}$.	Broadcast	Adjust trimmer for maximum output.	C1-B-osc.
3	Same as step 2.	1500 kc .	1500 kc .	Broadcast	Adjust trimmer for maximum output.	C1-A-aerial (broadcast)
4	Same as step 2.	3200 kc .	3200 kc .	Special Services	Adjust trimmer for maximum output.	$\begin{aligned} & \text { C21-aerial } \\ & \text { (special services) } \end{aligned}$

NOTE: Make up a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads, and place near radio loop.
${ }^{6}$ For proper adjustment of the oscillator trimmer, fully open the tuning gang and insert a .006 -inch, nonmetallic shim between the heel of the rotor and the top of the stator plates. Close the tuning gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.

NOTE: Part numbers identified by an asterisk (${ }^{\circ}$) are general replacement items. These numbers rnay not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

SPECIFICATIONS

PHILCO TUBES A8 converter, 7B7 i-f amplifier, 7C6 2nd det., avc., 1 st audio, 50 C 5 output, 35W4 rectifier

TP1. 1839
Figure 1. Drive-Cord Installation Details

PR-2175

Figure 2. Base View, Showing Parts Placement and Alignment Points

ALIGNMENT PROCEDURE

DIAL POINTER-Turn tuning condenser to full-mesh position. Set dial pointer to index mark, located to the left of " 55 ".
RADIO CONTROLS-Set volume control to maximum; set broadcast-special services switch, and tuning controls as indicated in chart.
OUTPUT METER-Connect across voice-coil terminals.

SIGNAL GENERATOR-Connect signal-generator ground lead to $\mathrm{B}-$, and output lead as indicated in chart. Set frequency as indicated in chart. Use modulated output.

OUTPUT LEVEL-During alignment, attenuate signal-generator output to hold output-meter indication below 1.25 volts.

STEP	SIGNAL GENERATOR		RADIO		ADJUST TRIMMER
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Through a . 01- μ f. condenser to grid (pin 6) of 7A8 converter tube.	455 kc.	Gang fully open.	Set broadcast-special services switch to broadcast position. Adjust, in order given, for maximum output. TC1 and TC4 are located at top of transformers.	TC4-2nd i-f sec. TC3-2nd i-f pri. TC2-1st i-f sec. TC1-1st i-f pri.
2	Radiating loop (see note below).	1630 kc.	* 1630 kc.	Adjust for maximum.	C1B-osc.
3	Same as step 2.	1500 kc .	1500 kc.	Adjust for maximum.	C1A-aerial.
4	Same as step 2.	3200 kc.	3200 kc.	Set broadcast-special services switch to special service position. Adjust for maximum.	C14-special services
5	Repeat steps 3 and 4.			.	

RADIATING LOOP: Make up a $6-8$ turn, 8 -inch-diameter loop from insulated wire, connect to signal-generator leads, and place near radio loop.
*NOTE: For proper adjustment of the oscillator trimmer, fully open the tuning gang and insert a .006 -inch, non-metallic shim between the heel of the rotor and the top of the stator plates. Close the tuning gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.

PARTS LIST

Abstract

NOTE: Part numbers identified by an asterisk (${ }^{*}$) are general replacement items. These numbers may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part } \\ \text { No. }\end{gathered}$	Reference Symbol	Description	Service Part No.
C1	Condenser, tuning gang31-2751-10		sistor, volume con	
C1A	Condenser, trimmer, aerialPart of Cl	R7	Resistor, diode load,	
C2	Condenser, trimmer, oscillator Condenser, osc. grid,		2.2 megohms	66-5228340*
C2	d-c blocking, $47 \mu \mu$.60-00475417*	R8	Resistor, grid return, 10 megohms	
C3	Condenser, leakage, . $1 \mu \mathrm{f}$.45-3505-47	R9	Resistor	
C4	Condenser, temperature compensating, 7.5μ f.30-1224-65*		Resistor,	art of PC1
C5	Condenser, screen by-pass, $.1 \mu$ f. $\ldots .61-0113^{*}$	R10	esistor, grid ret	1
C6	Condenser, a-v-c by-pass, . $1 \mu \mathrm{f}$. ...61-0113**	R11	Resistor, cathode	
C_{C}	Condenser, cathode by-pass, 05 . μ f...61-0122*		150 ohms	$34 *$
C9	Condenser, B + by-pass, . 1μ f. . $45-3505-4{ }^{\text {c }}$	R12	Resistor, B plus filter,	
	. 01 ¢f.45-3505-58*		220 ohms, 2 w -	0^{*}
C10A	Condenser, audio coupling,		1200 ohms plus filter,	66-2128340*
C10B	Condense	R14	Resistor, surge limitin	
	(see schematic)Part of PC1	R15	Resistor, aerial loading,	
C10C	Condenser, grid by-pass (see schematic)Part of PC1	R16	470,00 ohms	66-4478340*
C11	Condenser, electrolytic,	R16	150,000 ohms	66-4158340*
		S1	Switch, off-on	Part of R6
CliA	Condenser, cathode by-pass, $25 \mu \mathrm{f}$.	SW1	Switch, d.p.d.t., band	42-1796-2
C11B	Condenser, filter, $40 \mu \mathrm{f}$. Part of C11	T1	Transformer, output	32-8384*
Cl1C	Condenser, filter, 40μ f.Part of C11	W	Line cord	
Clid	Condenser, filter, 40μ f.Part of C11		Transformer, 1st i-f	32-4160A
C 12	Condenser, tone compensation, $.022 \mu$ f.45-3505-43*		Transformer, 2nd i-f MISCELLANEO	32-4517A
C13	Condenser, line by-pass, . 04 mf. ..30-1226-17*			
C1	Condenser, aerial, adjustable trimmer, $3-30$ muf.	Cabine	mahogany	
C15	Condenser, series tracking,	Knob	mahogany (2 required)	-4774-9
	$743 \mu \mu \mathrm{f}$.60-10755311	Cabinet		10887-5
C16	Condenser, aerial coupling,	Knob,	ivory (2 required)	54-4774-10
	$5 \mu \mu \mathrm{f}$.30-1221-5	Knob	escutcheon (2 required)	54-4927
I1	Pilot lamp, type 4734-2068	Fasten	((5 required)	W2235-1FA9
L1	Coil, oscillator32-4263	Dial-back	plate assembly	76-7056
L2	Coil, oscillator shunt32-4562-3	Drive	cord, 25 -foot spool	45-8750
LA1	Loop antenna (Magnecor)32-4565-1	Dial scal		54-5128-2
LS1	Speaker, p-m36-1639-9	Lamp as	sembly, pilot	76-1472
PC1	Printed circuit30-6001	Pointer		56-5630-40
R1	Resistor, leakage, 150,000 ohms ..66-4158340*	Shaft,	uning	56-9272
R2	Resistor, grid return, 66.108340^{*}	Spring		56-2617
	100,000 ohms66-4108340**	Spring	hairpin	57-1468
R3	Resistor, dropping, 27,000 ohms . $66-3278340^{*}$	Mount, r	ubber (3 required)	27-4596
R4	Resistor, cathode bias, 180 ohms ..66-1188340**	Socket, L	oktal (3 required)	27-6207
R5	Resistor, i-f filter, 47,000 ohms ..66-3478340*	Socket, m	miniature (2 required)	27-6265

MODEL 53-658

SPECIFICATIONS

```
CABINET
    53-656 ...................................................................................ded plastic
    53-658
CIRCUIT
.........Covered, wooden
Five-tube superheterodyne (plus selenium rectifier)
FREQUENCY RANGES
Standard broadcast 550-1600 kc.
Special services 3 1700-3400 kc
AUDIO OUTPUT 160 milliwatts OPERATING VOLTAGES ........... 117 volts, a.c. or d.c.; or 9-volt "A" battery and 90-volt "B" battery
```

POWER CONSUMPTION
A-c or d-c operation \qquad 15 watts
\& Battery operation \qquad 55 ma . at 9 volts, and 15 ma. at 90 volts

AERIALMagnecor high-impedance loop; provision for connecting external aerial

INTERMEDIATE FREQUENCY 265 kc.

PHILCO TUBES 1 T4 r-f amplifier, IR5 converter, 144 i-f amplifier, $1 \mathrm{U5}$ det.-a.v.c.-1st audio 3V4 output

BATTERY TYPE
Philco P-274

TP2-1392
Figure 1. Drive-Cord Installation Details

ALIGNMENT PROCEDURE

POINTER-Set pointer to coincide with first index mark from left side of dial backplate (looking at front of dial backplate).
RADIO CONTROLS-Set volume control to maximum; set broadcast-special services switch, SW1, as indicated in chart.
OUTPUT METER-Connect across voice-coil terminals.
SIGNAL GENERATOR-Use modulated output.
OUTPUT LEVEL-During alignment, adjust signal-
generator output to maintain output-meter indication below .5 volt.

CRITICAL LEAD DRESS-To secure proper padding capacity, the green lead from pin 6 of the 1R5 tube to Z 1 must be dressed over the wiring panel, away from the chassis. The white lead which connects the low end of the aerial (LA1) to the broadcast-special services switch (SW1), must be dressed taut between the low-end tie lug and the retaining spring.

Figure 2. Top View, Showing Trimmer Locations

STEP	SIGNAL GENERATOR		RADIO		ADJUST TRIMMER
	CONNECTION TO RADIO	DIAL SETTING	DIAL SEITING	SPECIAL INSTRUCTIONS	
1	Through a.1- μ f. condenser to pin 6 of IR5 converter.	265 kc.	1630 kc . (gang fully open)	Set broadcast-special services switch to broadcast position. Adjust, in order given, for maximum output.	TC5-2nd i-f sec. TC4-2nd i-f pri. TC2-1st i-f pri. TC3-1st i-f sec.
2.	Radiating loop. See note below.	1630 kc.	$\begin{aligned} & \text { * } 1630 \text { kc. } \\ & \text { (gang } \\ & \text { fully } \\ & \text { open) } \end{aligned}$	Adjust for maximum output. If low-frequency dial tracking is far off, make adjustments in steps 3 and 4 before making this adjustment.	C1B-osc. shunt
3	Same as step 2.	580 kc .	580 kc .	Adjust for maximum output while rocking tuning control.	C12-osc. series
4	Same as step 2.	580 kc .	580 kc .	Adjust for maximum output. This adjustment should not be made unless dial racking is off, or sensitivity is low at lowfrequency end (580 kc .).	TC 1-r-f sec.
5	Same as step 2.	1500 kc .	1500 kc . (index mark at right)	Adjust, in order given, for maximum output.	$\begin{aligned} & \text { C1A-r-f } \\ & \text { C19A-BC aerial } \end{aligned}$
6	Repeat steps 3 and 5 until na further improvement is obtained.				
7	Same as step 2.	3000 kc.	3000 kc .	Set broadcast-special services switch to special services position. Adjust, in order given, for maximum output.	C19C-SS aerial C18-r-f
8	Same as step 2.	1900 kc.	1900 kc.	Adjust, in order given, for maximum outpuit.	C19B-SS aerial series iracker
9	Repeat steps 7 and 8, and then repeat step 5.				

NOTE: Make up a six-to-eight-turn, 6 -inch diameter loop using insulated wire; connect to signal-generator leads and place near radio loop.
*For proper adjustment of the oscillator trimmer, fully open the tuning gang and insert a . 006-inch, non-metallic shim between the heel of the rotor and the top of the stator plates. Close the tuning gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.

PAGE 23-50 PHILCO

Figure 4. Bottom View, Showing Symbolized Chassis

PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

SPECIFICATIONS

MODEL 53-563

TP2-1371
Figure 1. Dial-Cord Installation Details

ALIGNMENT PROCEDURE

RADIO CONTROLS-Set volume control to maximum. Set tuning control and band switch, SW1, as indicated in chart.
OUTPUT METER-Connect across voice-coil terminals.
SIGNAL GENERATOR-Connect generator and set frequency as indicated in chart. Use modulated output. OUTPUT LEVEL—During alignment, adjust signal-generator output to hold output-meter reading below 1.25 volts.

STEP	SIGNAL GENERATOR		RADIO			ADJUST
	CONNECTION TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	BAND SWITCH SETTING	SPECIAL INSTRUCTIONS	
1	Ground lead to B-; output lead through a . 1- μ f. condenser to grid• (pin 7) of 12BE6.	455 kc .	Tuning gang fully open	Broadcast	Adjust tuning cores, in order given, for maximum output.TC1 and TC3 are located at top of transformers.	TC4-2nd i-f sec. TC3-2nd i-f pri. TC2—1 st i-f sec. TC1—1 st i-f pri.
2	Radiating loop (See note below).	1620 kc.	* 1620 kc .	Broadcast ${ }^{\text {+ }}$	Adjust trimmer for maximum output.	Cl-B-osc.
3	Same as step 2.	1500 kc .	1500 kc .	Broadcast	Adjust trimmer for maximum output.	C1-A—aerial (broadcast)
4	Same as step 2.	3200 kc .	3200 kc .	Special Services	Adjust trimmer for maximum output.	C21-aerial (special services).

NOTE: Make up a 6-8 turn, 6 -inch-diameter loop from insulated wire, connect to signal-generator leads, and place near radio loop. The $1620-\mathrm{kc}$. index mark is located on the pointer rail, to the extreme right side as viewed from the front.
*For proper adjustment of the oscillator trimmer, fully open the tuning gang and insert a .006 -inch non-metallic shim between the heel of the rotor and the top of the stator plates. Close the tuning gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.

TP2-1372
Figure 2. Base View, Showing Symbolized Chassis

Figure 3. Philco Radio Model 53-563, Schematic Diagram

PAGE 23-54 PHILCO

MODEL 53-563

Figure 4. Top View, Showing Trimmer Locafions

PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$	Reference Symbol	Description	Service Part No.
Cl	Condenser, tuning gang 31-2751-14	R6	Resistor, grid return, 10 megohms	…-.........66-6108340*
C1A	Condenser, aerial trimmerPart of Cl	R7	Resistor, plate load, 500,000 ohms	\cdots - \times. ${ }^{\text {Part of } \mathrm{PCl}}$
C18	Condenser, oscillator trimmer Part of C1	R8	Resistor, grid return, 500,000 ohms	.-........ Part of PC1
C2	Condenser, antenna series tracker, $944 \mu \mu \mathrm{f}$. 30-1220-65	R 9	Resistor, cathode bias, 150 ohms	--3...66-1158340**
C3		R10	Resistor, B plus filter, 220 ohms 66-1224340**
C4	Condenser, a-v-c by-pass, $05 \mu \mathrm{f}$.45-3505-28*	R11	Resistor, B plus filter, 1000 ohms	\cdots
C5	Condenser, drift compensation, $7.5 \mu \mu \mathrm{f}$. 30-1224-83	R12	Resistor, tube saver, 100 ohms	-.33-1343-3
C6	Condenser, screen by-pass, . $05 \mu \mathrm{f}$. 45-3505-28*	S1	Switch, off-on Part of R4
C7	Condenser, i-f tuning ...Part of $\mathrm{Z1}$	SW1	Switch, broadcast-special services	\cdots …)....... 42-1796-2
C8	Condenser, i-f tuning .. Part of Z1	T1	Transformer, oscillator	-
C9	Condenser, i-f tuning Part of $\mathbf{Z 2}$	T2	Transformer, output	32-8384*
C10	Condenser, i-f tuning ... Part of $\mathbf{Z 2}$	W1	Line cord	L-2183*
C11	Condenser, detector filtering Part of $\mathbf{Z 2}$	Z1	Transformer, 1st i-f	32-4161A
C12	Condenser, dectector filtering Part of $\mathrm{Z2}$	Z2	Transformer, 2nd i-f	32-4240A
C13	Condenser, audio coupling, . $005 \mu \mathrm{f}$. 30-1238-1			
C14	Condenser, plate by-pass Part of PC1	MISCELLANEOUS		
C15	Condenser, audio coupling, . $005 \mu \mathrm{f}$.Part of PCl			
C16 C17	Condenser, compensating Part of PC1	Description		
C17	Condenser, tone compensation, . $022 \mu \mathrm{f}$. 45-3505-43*			Service Part No.
C18	Condenser, electrolytic, 3 -section30-2573			
C18A				
C18B	Condenser, filter, $25 \mu \mathrm{f.}$,150 v Part of C18			
Cl 18 C				
C19	Condenser, line by-pass, . $05 \mu \mathrm{f}$.45-3505-62*			
C20	Condenser, B minus to chassis, . $1 \mu \mathrm{f}45-3505-47^{*}$	Dial backpl	ate (plastic)	...54-4968
C21	Condenser, trimmer, special services 31-6473-29	Drive cord,	25 -foot spool	45-8750
11	Lamp, pilot ...34-2068	Knob, red		54-4527-38
11	Coil, oerial, special services 32-4561-3	Knob, ebony	y	54-4527-37
12	Coil, oscillator shunt 32-4562-2	Pointer, dia		56-8774-3
LA1	Loop, part of cabinet back $76-7764$	Pointer rail	, bracket-and-pulley assembly	76-7767
LS1	Speaker, p-m ...36-1627-5	Shaft, tuning		56-9807
R1	Resistor, oscillator grid, 22,000 ohms 66-3228340*	Socket asse	mbly, pilot lamp	27-6233-6*
R2	Resistor, i-f screen dropping, 4700 ohms 66-2748340*	Socket, 7-p	in miniature	27-6265*
R3	Resistor, a-v-c filter, 2.2 megohms 66-5228340*	Spring, ret	aining	28-8610*
R4	Resistor, volume control, . 5 megohm 33-5566-41	Spring		56-3167
R5	Resistor, diode load, 47,000 ohms 66-3478340*	Spring		28-8953

MODEL 53-562

SPECIFICATIONS
OPERATING VOLTAGE
\qquad 105 to 120 volts, a ac. or dec. POWER CONSUMPTION 30 watts AERIAL \qquad High-impedance loop
INTERMEDIATE FREQUENCY kc.
PHILCO TUBES 12BE6 converter, 12BA6 if amplifier, 12AV6 det.-a.v.c.-1st audio, 35C5 output, 35W4 rectifier
CABINET \qquad Molded plastic CIRCUITFour-tube superheterodyne (plus rectifier) FREQUENCY RANGE

Standard Broadcast \qquad 540 kc. to 1620 kc. Special Services 1700 kc. to 3400 kc. AUDIO OUTPUT watt

TP2-1405
Figure 1. Dial-Cord Installation Details

ALIGNMENT PROCEDURE

RADIO CONTROLS-Set volume control to maximum. Set tuning control and band switch, SW1, as indicated in chart.
OUTPUT METER-Connect across voice-coil terminals.
SIGNAL GENERATOR-Connect generator and set fre-
quency as indicated in chart. Use modulated output.
OUTPUT LEVEL-During alignment, adjust signal-generator output to hold output-meter reading below 1.25 volts.

TP2-1406

	SIGNAL GENERATOR		RADIO			
STEP	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	BAND SWITCH SETTING	SPECIAL INSTRUCTIONS	ADJUST
1	Ground lead to B-; output lead through a $.1-\mu \mathrm{f}$. condenser to grid (pin 7) of 12BE6.	455 kc.	Tuning gang fully open.	Broadcast	Adjust tuning cores, in order given, for maximum output. (TC1 and TC3 are located at top of transformers).	TC4-2nd i-f sec. TC3-2nd i-f pri. TC2-1st i-f sec. TC1-1st i-f pri.
2	Radiating loop (see NOTE below).	1620 kc. .	${ }^{*} 1620 \mathrm{kc}$.	Broadcast	Adjust trimmer for maximum output.	C1-B osc.
3	Same as step 2.	1500 kc .	1500 kc .	Broadcast	Adjust trimmer for maximum output.	C1-A aerial (broadcast).
4	Same as step 2.	3200 kc .	3200 kc .	Special services	Adjust trimmer for maximum output.	C-21-aerial (special services).

NOTE: Make up a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads and place near radio loop.
*For proper adjustment of the oscillator trimmer, fully open the tuning gang and insert a .006 -inch nonmetallic shim between the heel of the rotor and the top of the stator plates. Close the tuning gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.

PAGE 23-58 PHILCO
MODELS 53-561,
53-562, 53-564

Figure 4. Top View, Showing Trimmer Locations
PARTS LIST
NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

SPECIFICATIONS

CABINET MODEL.53-560
CIRCUIT
FREQUENCY RANGE
AUDIO OUTPUT
OPERATING VOLTAGE
POWER CONSUMPTION AERIAL
INTERMEDIATE FREQUENCY PHILCO TUBES

REQUEY

12

 12BA6 i-f amplifier, 12 AV a.v.c.-1st audio, 35 C 5 output, 35 W 4 rectifier

Figure 1. Base View, Showing Symbolized Chassis

Figure 2. Top View, Showing Trimmer Locations

ALIGNMENT PROCEDURE

RADIO CONTROLS-Set volume control to maximum. Set tuning control as indicated in chart. OUTPUT METER-Connect across voice-coil terminals.
SIGNAL GENERATOR-Connect signal generator
and set frequency as indicated in chart. Use modulated output.
OUTPUT LEVEL-During alignment, attenuate signal-generator output to hold output-meter reading below 1.25 volts.

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	DIAL SETTING	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	
1	Ground lead to B-; output lead through a . 1- μ. condenser to grid (pin 7) of 12BE6.	455 kc.	Tuning gang fully open.	Adjust tuming cores, in order given, for maximum output. (TC1 and TC3 are located at top of transformer.)	TC4-2nd i-f sec. TC3-2ndi-f pri. TC2-1st i-f sec. TC1-1st i-f pri.
2	Radiating loop (see note belów).	1620 kc.	* 1620 kc.	Adjust trimmer for maximum output.	ClB-osc.
3	Same as step 2.	1500 kc.	1500 kc.	Adjust trimmer for maximum output.	C1A-aerial

RADIATING LOOP: Make up a 6-8 turn, 6-inch-diameter loop from insulated wire, connect to signal-generator leads, and place near radio loop.
*NOTE: For proper adjustment of the oscillator trimmer, fully open the tuning gang and insert a .006-inch, non-metallic shim between the heel of the rotor and the top of the stator plates. Close the tuning gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.

NOTE：Part numbers identified by an asterisk（ ${ }^{*}$ ）are general replacement items． values indicated in the schematic diagram and parts list．The values sub－ stituted in any case are so chosen that the operation will be either un－ changed or improved．When ordering replacements，use only the＂Service

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No．}\end{gathered}$
R4	Resistor，volume control，． 5 megohms（with off－on switch ）．．33－5566－41
R5	Resistor，diode load，47，000 ohms， $1 / 2 \mathrm{w} .66-3478340 * ~$
R6	Resistor，grid return， 10 megohms，${ }_{1 / 2}^{2} \mathrm{w}$ ．．．．．．．．．．．．．．．．．．．．．．．．．．．．66－6108340
R7	Resistor，plate load， 500，000 ohms ．．．．．．．．．．．．．．．．．．．．．．．．．．．．Part of PC1
R8	Resistor，grid return， 500，00 ohms Part of PC1
R9	Resistor，cathode bias， $150 \mathrm{ohms}, 1 / 2 \mathrm{w}$ $66-1158340 *$
R10	Resistor，B plus filter， 220 ohms， 1 w ．66－1224340＊
R11	Resistor，B plus filter， 1000 ohms， $1 / 2 \mathrm{w}$ ．66－2108340＊
R12	Resistor，tube saver， 100 ohms ．．．．．33－1343－3
S1	Switch，off－on ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Part of R4
T1	Transformer，oscillator ．．．．．．．．．．．．．．．．．32－4453－6
T2	Transformer，output ．．．．．．．．．．．．．．．．．．．．．32－8384＊
W1	Line cord ．．L－2183＊
Z1	Transformer，1st i－f ．．．．．．．．．．．．．．．．．．．．．．32－4161A
Z2	Transformer，2nd i－f ．．．．．．．．．．．．．．．．．．．．32－4240A

Service Part No．

MISCELLANEOUS

Description

Cabinet，ebony
．．．．．．．．．．
 Knob，tuning Ebony
Ivory

Mahogany
Socket，7－pin miniature（ 5 required）

星芯 Part of C1
Part of C

45－3505－47
$.30-1230-4$ $45-3505-28^{*}$

88－もあZT－08 Condenser，i－f tuning Condenser，i－f tuning $7.5 \mu \mu \mathrm{f}$.
Condenser，
$.05 \mu \mathrm{f}$ ．
Condenser，
Condenser，
Condenser，
Condenser，
Condenser，
Condenser
...Part of Z2
．．．．30－1238－1
Part of PC1
Part of PC1
Condenser，tone compensation， $45-3505-43 *$
$.022 \mu \mathrm{f}$ ．
Condenser，electrolytic，3－section ．．．30－2573 Condenser，filter， $30 \mu \mathrm{f}$ ．， $150 \mathrm{v} \ldots$ ．．．Part of C18 Condenser，filter， $25 \mu \mathrm{f}$ ．， 150 v ．．．．Part of C18 Condenser，filter， 20 fine by－pass， $.047 . \mu \mathrm{f}$ ．．．45－3505－62＊ Speaker，p－m ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．36－1627－8 66－3228340＊
$.66-2748340^{*}$

 Printed circuit Resistor，oscillator grid， 22,000 ohms， $1 / 2 \mathrm{w}$ ．．．．．．．．．．．．．．．．．
Resistor，i－f screen dropping， Resistor，a－v－c filter， 2.2
 ® NOBオヨヨコ びひ C 19
LS 1 ぶひ ～ ๙ٌ

SPECIFICATIONS

Wood POWER CONSUMPTION 30 watts
 INTERMEDIATE FREQUENCY 455 kc . 12BA6, 12AV6, 35L6GT, 35Z5GT
MODEL 52-642

POWER CONSUMPTION
 CIRCUIT ...tube superheterodyne
 CABINET

A-c or d-c operation 11 -volts "B" Battery operation $\quad9 .5 \mathrm{ma}$. from battery; 250 ma . from 1.5 -volt " A " battery AERIALMagnecor high-impedance loop; provision for connecting external aerial
INTERMEDIATE FREQUENCY 455 kc PHILCO TUBES (4)1R5, 1U4, 1U5, and 3V4 TYPE D "A" P- battery
High-impedance loop; provision for connecting external aerial
 $7 \mathrm{AB}, 14 \mathrm{~B} 6,35 \mathrm{~L} 6 \mathrm{GT}, 35 \mathrm{Z5GT}$ 5-tube superheterodyne

OPERATING VOLTAGE ... 105-120 volts, a.c. or d.c.

CABINET

FREQUENCY RANGE
(plus selenium rectifier)
150 milliwatts
sұем!ा!! 9 SL

" SHOVLTOA ONILVYHdO

MODEL 52-939

POWER CONSUMPTION

 fier)$540-1630 \mathrm{kc}$.
OPERATING VOLTAGE-125-1...........1.2 watts, a.c. or d.c.
FREQUENCY RANGE
AUDIO OUTPUT
FREQUENCY RANGE

CABINET

MODEL 52-939
MODEL 52-642
MODEL 52-549

.

ALIGNMENT PROCEDURE

The alignment procedures for the receivers covered by this manual are given in the service manuals listed below.

Model 52-549		Model 52-541, Pgs. 1-4
Model 52-642	same as.	Model 52-640, Pgs. 17-20
Model 52-939	same as.	Model 52-940, Pgs. 25-28

SCHEMATIC DIAGRAMS

The schematic diagrams for the models in this manual are given in the service manuals listed above. Models 52-549 and 52-642 differ from the basic circuit only as described below.
MODEL 52-549 CIRCUIT
The circuit for this set differs from that of Model 52-541 only in the audio section. See figure 1 and Pg 1-4. These changes are as follows, and are in
addition to component part number changes given in the parts list in this service manual.

A condenser, C12, $220 \mu \mu$ f., Part No. 62-122001011, is connected between the high side and the center arm of the volume control, R8. Condenser C12 is used for high-frequency compensation.

The tone-compensation condenser, C8, was changed from $.05 \mu$ f. to . $03 \mu \mathrm{f}$., Part No. 30-4517.

Figure 1. Model 52-549, Second Detector and Audio Amplifier Circuits

MODEL 52-642 CIRCUIT

The circuit for this set differs from that of Model 52-640 in that it includes a Private Listening Unit receptacle. See figure 2 and $\operatorname{Pg} 17-20$.The Private

Listening Unit receptacle, J3, Part No. 42-1975-2, is wired into the circuit as shown in figure 2. A shunt resistor, R19, Part No. 66-0108340, reduces volume to the correct level for Private Listening. R19, a 10 -ohm resistor, is wired from J3 to chassis ground.

Figure 2. Model 52-642, Output Circuit Showing the Connections for a Private Listening Unit

MODEL 52-549			MISCELLANEOUS (Cont.)	
Reference	Description	Service	MO	
Symbol	Pi	$\begin{gathered} \text { Part No. } \\ .76-1179-7 \end{gathered}$	Description	Service
LA1	Loop aerial	32-4052-65	Cabinet	
LS1	Speaker, 6-inch, p.m.	36-1641-1	Teal green	10799-13
T2	Transformer, output	.32-8384-2	Maroon	10799-14
	MISCELLANEOUS		Swedish red	10799-15
	MODEL 52-549		Caribbean blue	10799-16
Description	MODEL 52-549	Service	Nile green	10799-17
		Service Part No. 10910	Arabian sand	10799-18
Cabinet,	mahogany	$\begin{array}{r} 10910 \\ 54-4774-9 \end{array}$	Knob (2) (all models)	
Knob Scale		$\begin{aligned} & .54-4774-9 \\ & . . .54-5141 \end{aligned}$	Kointer (all models) ...	²4-4773 $56-7973-1$
Cabinet, light (blond)		10910-1	Scale (all models)	.54-5087
Knob	(2)54-4774-10	MODEL 52-939	
Scale		.54-5141-1		
		10910-2	Cabinet, ebony	76-7541
Knob (2) ...		54-4774-18	Back	.318-3289
		.54-5141	Knob (2)	.54-4718-36
Back, cabinet (all models) Pointer (all models)		.54-8640	Pointer assembly	76-5341-4
		56-8774-2	Scale	54-5071-2

MODEL 53-804

SPECIFICATIONS

CABINET
-a. .
Molded plastic
CIRCUITFive-tube superheterodyne (plus rectifier) FREQUENCY RANGE

Broadcast 540 kc , to 1620 kc .
Special Services 1700 kc. to 3400 kc.
AUDIO OUTPUT 1 watt
OPERATING VOLTAGE 105-1 20 volts, a.c. POWER CONSUMPTION Bilt-in, high-impedance loop ANTENNABuilt-in, high-impedance loop INTERMEDIATE FREQUENCY 455 kc. PHILCO TUBES6BJ6 r-f ampl.; 12BE6 converter; 6BJ6 i-f ampl.; 6AQ5 detector, a.v.c., 1 st audio; 35C5 output; 35W4 rectifier

MODEL 53-804

Figure 1. Drive-Cord Installation Details

	SIGNAL GENERATOR		RADIO		
STEP	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	ADJUST
1	Ground lead to B-. Output lead through a $.01-\mu \mathrm{f}$. condenser to pin 7 (mixer grid) of 12BE6, converter.	455 kc .	Tuning gang fully open.	Adjust, in order given in next column, for maximum output.	TC5-2nd i-f sec. TC4-2nd i-f pri. TC3-1st i-f sec. TC2-1st i-f pri.
2	Radiating loop. See Note 1 below.	1620 kc .	1620 kc . See Note 2 below.	Adjust for maximum output.	ClC-osc. trimmer
3	Same as step 2.	1520 kc .	Tune radio to generator signal.	Adjust for maximum output. (High-frequency adjustment)	C1B-mixer-grid trimmer C1A-r-f trimmer
4	Same as step 2.	580 kc .	Same as step 3.	Adjust for maximum output. (Low-frequency adjustment)	TC1-r-f transformer
5	Repeat steps 3 and 4 until no further improvement is obtained.				
6	Same as step 2.	3200 kc .	Same as step 3.	Adjust for maximum output.	C5--special-services mixer-grid trimmer C2-special-services r-f trimmer
7	Same as step 2.	1800 kc .	Same as step 3.	Adjust for maximum output.	C3-special-services r-f padder

NOTE 1: Make up a 6-8 turn, 6-inch-diameter loop NOTE 2: To set the tuning gang to 1620 kc., place from insulated wire; 'connect to signal-generator leads a piece of 6 -mil flat shim stock beneath the heel of and place near radio loop antenna. The loop antenna the rotor, and turn the rotor until it holds the shim

must be connected to the radio.
DSS voice-con terminals.
man firmly in place. Then remove the shim.

PAGE 23-68 PHILCO

MODEL 53-804

Figure 2. Top View, Showing Tuning Adjustments

Figure 3. Base View, Showing Parts Placement

PARTS LIST

NOTE: Part numbers identified by an asterisk $\left({ }^{*}\right)$ are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

| Reference |
| :--- | :--- |
| Symbol |\quad Description \quad| Service |
| ---: |
| Part No. |

Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
R11	Volume control, 500,000 ohms33-5565-51
R12	Resistor, grid leak, 10 megohms66-6108340*
R13	Resistor, plate load, 500,000 ohmsPart of PC1
R14	Resistor, grid leak, 500,000 ohmsPart of PC1
R15	Resistor, cathode bias, 150 ohms, 1 watt ...66-1154340*
R16	Resistor, B + filter, 1200 ohms66-2128340*
R17	Resistor, B + filter, 220 ohms, I watt ...66-1224340*
R18	Resistor, tube saver, 100 ohms33-1343-3
S2	Switch, band, broadcast-special services ...42-1893-3ं
T1	Transformer, oscillator32-4453-2
T2	Transformer, output32-8310-3
W1	Line cord ...2-2183*
Z1	
Z2	Transformer, 1sst i-f32-4160A
Z3	Transformer, 2nd i-f32-4240A

MISCELLANEOUS

Description	
Bezel, radio $\ldots \ldots,{ }^{\text {Service }}$	
Part No.	

SPECIFICATIONS

CABINET.

\qquad Wood table model
CIRCUIT \qquad Six-fube superheterodyne plus selenium rectifier
frequency ranges
Broadcast. \qquad 540-1620 kc.
FM.
M............... \qquad 88-108 mc.
AUDIO OUTPUT. 1 watt

OPERATING VOLTAGE 105-125 volts, a.c./d.c.

POWER CONSUMPTION . 45 watts

ANTENNA. \qquad Built-in pancake loop for AM; line cord for FM
INTERMEDIATE FREQUENCY
AM.
455 kc.
FM.
. 9.1 mc .

PHILCO TUBES (6) \qquad 12BA6 r-f ampl., 12AT7 converter, 12BA6 1 st i-f ampl., 12AU6 2nd i-f ampl., 19 V 8 det.-a.v.c.-1st audio, 35C5 output

Figure 1. Drive-Cord Installation Details

AM ALIGNMENT PROCEDURE

GENERAL-Before starting the alignment, allow the radio and the signal generator to warm up for fifteen minutes. Make the alignment with the loop antenna connected to the radio. The AM alignment should be made before the FM alignment is made.

RADIO CONTROLS-Set the volume control to maximum. Set the band switch for broadcast reception. Set the tuning control as indicated in the AM alignment chart.
OUTPUT INDICATOR-Connect the output indicator (an oscilloscope or a 1,000 -ohms-per-volt voltmeter) across the voice-coil terminals.

SIGNAL GENERATOR-Use an AM r-f signal generator with modulated output. Connect the generator to the radio, and
set the frequency as indicated in the AM alignment chart.
OUTPUT LEVEL-During the alignment, the signal generator output should be attenuated to hold the output indication below 1 volt.

DIAL POINTER-Before the alignment is started, the dial pointer should be set to coincide with the index mark on the dial pointer rail assembly when the tuning gang is completely closed. See figure 3. (The pointer rail is the metal assembly upon which the pointer rides.)

CAUTION-One side of the a-c line is connected directly to the chassis. Therefore, an isolation transformer should be used when working with this chassis, to prevent injury to personnel or damage to test equipment.

AM ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		
	CONNECTION TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	ADJUST
1	Ground lead to chassis. Output lead through a . $1-\mu \mathrm{f}$. condenser to pin 7 (grid) of 12AT7.	455 kc . (modulated)	Set tuning gang so that dial pointer coincides with the $1630-\mathrm{kc}$. mark. See figure 3.	Adjust for maximum output, in order given in next column.	TC10-2nd AM i-f sec. TC9-2nd AM i-f pri. TC4-1st AM i-f sec. TC3-1st AM i-f pri.
2	Radiating loop. See note below.	$\begin{aligned} & 1630 \mathrm{kc} . \\ & \text { (modu- } \\ & \text { lated) } \end{aligned}$	Same as step 1.	Adjust for maximum output.	C1C-osc. trimmer
3	Same as step 2.	$\begin{aligned} & 1520 \mathrm{kc} . \\ & \text { (modu- } \\ & \text { lated) } \end{aligned}$	Set tuning gang so that dial pointer coincides with $1520-\mathrm{kc}$. . mark. See figure 3.	Adjust for maximum output, in order given in next column.	C1B-r-f trimmer ClA-antenna trimmer (high-frequency adjustment)
4	Same as step 2.	580 kc . (modulated)	Set tuning gang so that dial pointer coincides with 580-kc. mark. See figure 3.	Adjust for maximum output. Rock tuning gang while making this adjustment.	TC12-r-f transformer (low-frequency adjustment)
5	Repeat steps 3 and 4 until no further improvement is obtained.				

NOTE: Make up a six-to-eight turn, 6-inch-diameter loop from insulated wire; connect to generator terminals, and place near radio loop antenna. The radio loop antenna must be connected to the radio.

FM ALIGNMENT PROCEDURE
(Using FM Test Equipment)

GENERAL-Before starting the alignment procedure, allow the radio and the test equipment to warm up for fifteen minutes. The AM alignment should be made before the FM alignment is made.
RADIO CONTROLS-Set the volume control to maximum. Set the band switch for FM reception. Set the tuning controls as indicated in the FM alignment chart.
OUTPUT INDICATOR-The first two steps must be performed with the use of an oscilloscope. Connect the ground leads to the radio chassis. Connect the vertical input to the FM test jack, J2, and the horizontal input to the horizontal sweep output of the sweep signal generator. The remaining steps should be performed with the output indicator connected across the voice-coil terminals (either an oscilloscope or a 1000 -ohms-per-volt voltmeter).
SWEEP GENERATOR-Use an FM sweep signal generator. Connect the generator to the radio as indicated in the FM alignment chart. Set the frequency and sweep width as indicated in the chart.
DIAL POINTER-Before the alignment is started, the dial pointer should be set to coincide with the index mark on the dial pointer rail assembly when the tuning gang is fully closed. See figure 3.

CAUTION-One side of the a-c line is connected directly to the chassis. Therefore, an isolation transformer should be used when working with the chassis, to prevent injury to personnel or damage to test equipment.

TP1-2111
Figure 2. Characteristic Curve of FM Detector

FM ALIGNMENT CHART

	SIGNAL GENERATOR		RADIO		
STEP	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	ADJUST
1	Connect ground lead to chassis. Connect output lead through a $.01-\mu \mathrm{f}$. condenser to control grid (pin 1) of 12AU6 2nd i-f amplifier (test point A). See figure 5 .	9.1 mc . (75-kc. deviation)	88 mc . (gang fully meshed).	Adjust TC8 for balance and TC7 for maximum indication (maximum slope) on scope as shown in figure 2.	TC8-detector sec. TC7-detector pri.
2	Connect ground lead to chassis. Connect output lead through à $.01-\mu \mathrm{f}$. condenser to FM tuning gang stator lug, junction of Cl and pin 4 of L2 (test point B). See figure 5.	Same as step 1 .	Same as step 1.	Adjust in order given in next column, for maximum indication (maximum slope) on scope as shown in figure 2.	TC6-FM 2nd i-f sec. TC5-FM 2nd i-f pri. TC2-FM 1st i-f sec. TC1-FM 1st i-f pri.
3	Connect output lead to lug 2 of TB1, and ground side of generator to lug 1 of TB1 (test point C). See figure 4. See note 1 below.	108.5 mc .	Set tuning gang so that dial pointer coincides with $108.5-\mathrm{mc}$. mark. See figure 3.	Adjust for maximum indication on output indicator.	C18-FM osc. trimmer
4	Same as step 3.	92 mc .	Set tuning gang so that dial pointer coincides with 92-mc. mark. See figure 3.	Adjust for maximum indication on output indicator. See note 2 below.	L5-FM osc. coil
5	Same as step 3.	105 mc .	Set tuning gang so that dial pointer coincides with $105-\mathrm{mc}$. mark. See figure 3.	Adjust for maximum indication on output indicator. Rock tuning gang while making this adjustment.	ClD-FM mixer grid (high-frequency adjustment)
6	Same as step 3.	Same as step 5.	Same as step 5.	Adjust for maximum indication on output indicator.	C4-FM r-f grid (high-frequency adjustment)
7	Same as step 3.	92 mc .	Same as step 4 .	Adjust for maximum indication on output indicator. See note 3 below.	L2-FM mixer grid (low-frequency adjustment)
8	Same as step 3.	Same as step 7.	Same as step 4.	Adjust for maximum indication on output indicator.	$\begin{aligned} & \text { TCI1-FM } \\ & \text { r-f grid } \\ & \text { (low-frequency } \\ & \text { adjustment) } \end{aligned}$

NOTE 1: For accurate results, the signal-generator output impedance must be 300 ohms to match the input impedance of TB1. If the signal-generator output impedance is less than 300 ohms, a resistor of the proper value should be used in series with the output lead to make the impedance correct. For example, if the output impedance is 150 ohms, place a 150 -ohm resistor in series with the output lead.

NOTE 2: With the conditions given in step 4 (step 6 of alternate procedure), if the oscillator is not tuned for maximum output, it may be necessary to compress or spread the coil turns to give maximum output. (Do not disturb the setting of the tuning gang while making any necessary adjustment.) After the coil is adjusted, repeat steps 3 and 4 (steps 5 and 6 of alternate procedure) until no further improvement is obtained. Then proceed to the next step.

NOTE 3: With the conditions given in step 7 (step 8 of alternate procedure), if the mixer-grid circuit is not tuned for maximum output, it may be necessary to compress or spread the coil turns to give maximum output. (Do not disturb the setting of the tuning gang while making any necessary adjustment.) After the coil is adjusted, repeat steps 5 through 7 (steps 7 and 8 of alternate procedure) until no further improvement is obtained. Then proceed to the next step.

Figure 3. AM and FM Pointer Rails, Showing Alignment Marks

ALTERNATE FM ALIGNMENT PROCEDURE

This alternate procedure is designed to be used where only AM test equipment is available.
GENERAL-Before starting the alignment procedure, allow the radio and signal generator to warm up for fifteen minutes. The AM alignment should be made before the FM alignment is made.
RADIO CONTROLS-Set the volume control to maximum. Set the band switch for FM reception. Set the tuning control as indicated in the chart.
OUTPUT INDICATOR-Use a 20,000 -ohms-per-volt voltmeter. *
SIGNAL GENERATOR-Use an AM r-f signal generator. Connect the generator to the radio, and set the frequency as indicated in the chart.
DIAL POINTER-Before the alignment is started, the dial pointer should be set to coincide with the index mark on the dial pointer rail assembly when the tuning gang is fully closed. See figure 3.

CAUTION-Refer to the CAUTION given in the regular FM alignment procedure.

* In order to perform this alignment it is necessary to place two 100,000 -ohm resistors in series between the junction of R17 and C27 (pin 7 of 19 V 8) and ground. The output meter must be placed between the junction of these two resistors and the FM test jack, J2, for the first step of the alignment, and between the junction of these two resistors and ground for the remaining steps of the alignment with the negative meter lead at the junction of the two resistors. For the first step of the alignment, the meter needle should be set off zero to the first major scale mark by adjusting the meter zero adjust knob. After the first step has been completed, the needle can be set back to the zero mark. The purpose of this adjustment is to enable the serviceman to see a negative indication on the meter.
The output indication for all steps except the first one should be between 5 and 10 volts.

The two series resistors should be as nearly equal in value as possible (at least within 5% of each other).

Figure 4. Top View, Showing Trimmer Locations

STEP	SİNAL GENERATOR		RADIO		
	CONNECTION TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	ADJust
1	Connect ground lead to chassis. Connect output lead through a $.01-\mu \mathrm{f}$. condenser to pin 1 (grid) of 12AU6 2nd i-f amplifier (test point. A). See figure 5 .	$\begin{aligned} & 9.1 \mathrm{mc} . \\ & \text { (modu- } \\ & \text { lated) } \end{aligned}$	$\begin{aligned} & 88 \mathrm{mc} . \\ & \text { (gang fully } \\ & \text { meshed) } \end{aligned}$	Adjust for balance (zero indication on meter).	TC8-FM det. sec.
2	Same as step 1.	Same as step 1.	Same as step 1.	Adjust for maximum output.	TC7-FM det. pri.
3	Connect ground lead to chassis. Connect output lead through a $.01-\mu \mathrm{f}$. condenser to pin 1 (grid) of 12BA6 lst i-f amplifier (test point D). See figure 5 .	Same as step 1.	Same as step 1.	Adjust in order given in next column, for maximum output.	$\begin{aligned} & \text { TC6-2nd FM } \\ & \text { i-f sec. } \\ & \text { TC5-2nd FM } \\ & \text { i-f pri. } \end{aligned}$
4	Connect ground lead to chassis. Connect output lead through a $.01-\mu \mathrm{f}$. condenser to junction of C1 and pin 4 of L2 (test point B). See figure 5 .	Same as step 1 .	Same as step 1.	Adjust in order given in next column for maximum output.	$\begin{aligned} & \text { TC2-1st FM } \\ & \text { i-f sec. } \\ & \text { TC1-1st FM } \\ & \text { i-f pri. } \end{aligned}$
5	Connect ground lead to pin 1 of TB1. Connect output lead to pin 2 of TBI (test point C). See figure 4. See note 1 of regular FM alignment procedure.	108.5 mc .	Set tuning gang so that coincides with $108.5-\mathrm{mc}$ mark. See	Adjust for maximum output.	C18-ose. trimmer
6	Same as step 5.	92 mc .	Set tuning gang so that coincides with $92-\mathrm{mc}$ mark. See	Adjust for maximum output. See note 2 of regular FM alignment procedure.	L5-FM osc. coil
7	Same as step 5.	105 mc .	Set tuning gang so that coincides with $105-\mathrm{mc}$. mark. See figure 3.	Adjust in order given in next column, for maximum output.	C1D-FM mixer grid C4-FM r-f grid (high-frequency adjustments)
8	Same as step 5.	92 mc .	Same as step 6.	Adjust for maximum output. See note 3 of regular FM alignment procedure.	L2-FM mixer grid (low-frequency adjustment)
9	Same as step 5.	Same as step 6.	Same as step 6.	Adjust for maximum output.	TC11-FM rıf grid (low-frequency adjustment)

Figure 5. Base View, Showing Parts Placement

Figure 6. Philco Radio Model 53-958, Schematic Diagram

PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Reference Symbol	lescription $\quad \begin{aligned} & \text { Service } \\ & \text { Part No. }\end{aligned}$	Referenc Symbol	Description Part No.
C1	Condenser, tuning gang,		$100 \mu \mu \mathrm{f}$. ..62-110001021**
	5-section ..31-2762-2	C25	ondenser, cathode by-pass
C1A	Condenser, trimmer, BC antenna \qquad Part of $\mathbf{C l}$	C26	
C1B	Condenser, trimmer, BC r-fPart of C1		. $002 \mu \mathrm{f}$. ..30-4650-54*
C1C	Condenser, trimmer, BC oscillator \qquad Part of C1	C27	Condenser, diode load filter, $2 \mu \mathrm{f}$., 50 v \qquad 30-2417-7
CID	Condenser, trimmer, FM r-f.........Part of C1	C28	Condenser, i-f by-pass,
C2	Condenser, antenna isolating, $3.3 \mu \mu f$. ..-.-1224-49	C29	$150 \mu \mu \mathrm{f}$. \qquad 62-115001001* Condenser, i.f by-pass,
C3	Condenser, antenna isolating, $220 \mu \mu \mathrm{f}$. ..-122001001*	C30	$100 \mu \mu \mathrm{f}$. \qquad $62-110001021^{*}$ Condenser, d-c blocking,
C4	Condenser, FM antenna trimmer......45-3034		
C5	Condenser, cathode by-pass, 	C31	Condenser, de-emphasis, $.004 \mu \mathrm{f}$. \qquad 30-4650-56 ${ }^{\text {* }}$
C6	Condenser, d-c blocking, $220 \mu \mu$ f. ...62-122001001*	C32	Condenser, plate by-pass, $680 \mu \mu$ f. ..62-168001001*
C7	Condenser, screen by-pass, $.005 \mu f$. ...30-1238-1*	C33	Condenser, audio coupling, $.02 \mu \mathrm{f} .$
C8	Condenser, oscillator grid, $100 \mu \mu \mathrm{f}$. ...-72-110001021*	C34	Condenser, d-c blocking, $.006 \mu$ f. ...30-4650-57*
C9	Condenser, neutralizing, $1.5 \mu \mu \mathrm{f}$.30-1221-7	C35	Condenser, tone compensation, $.006 \mu$ f. ...30-4650-57*
C10	Condenser, cathode by-pass, $.01 \mu \mathrm{f}$. \qquad 30-4650-58* Condenser, neutralizing, $2.2 \mu \mu \mathrm{f}$.30-1221-4	C36	Condenser, plate decoupling, $220 \mu \mu \mathrm{f}$. . 62-122001001*
C12	Condenser, d-c blocking, $220 \mu \mu \mathrm{f}$. \qquad 30-1224-65	C37	Condenser, filament by-pass, $.005 \mu \mathrm{f}$. ...-30-1238-1*
C13	Condenser, fixed trimmer, $7.5 \mu \mu \mathrm{f}$. \qquad .30-1224-65	C38	Condenser, electrolytic, 4-section ..-30-2570-46
C14	Condenser, cathode by-pass, $220 \mu \mu \mathrm{f}$. \qquad Part of PC1	A	Condenser, cathode by-pass, $25 \mu \mathrm{f}$., 25 v \qquad Part of C38
C15	Condenser, r-f by-pass, $220 \mu \mu$. \qquad 62-122001001*	$\begin{aligned} & \text { C38B } \\ & \text { C38C } \end{aligned}$	Condenser, filter, $40 \mu \mathrm{f}$. , 150 v ...Part of C38 Condenser, filter, $70 \mu \mathrm{f} ., 150 \mathrm{v}$...Part of C38
C16	Condenser, plate decoupling, $.01 \mu \mathrm{f}$. \qquad $.30-4650-58^{*}$	$\begin{aligned} & \text { C38D } \\ & \text { C39 } \end{aligned}$	Condenser, filter, $40 \mu \mathrm{f}$., 150 v ...Part of $\mathbf{C} 38$ Condenser, filament by-pass,
C17	Condenser, r-f by-pass, $100 \mu \mu \mathrm{f}$. ..62-110009001*	C40	$100 \mu \mu \mathrm{f}$. \qquad 62-110001021 ${ }^{*}$ Condenser, filament by-pass,
C18	Condenser, trimmer, FM oscillator \qquad 31-6511-10	C41	$.005 \mu \mathrm{f}$. \qquad 30-1238-1 Condenser, line by-pass,
C17	Condenser, fixed trimmer, $3.3 \mu \mu \mathrm{f}$. ..-30-1224-30	C42	$100 \mu \mu \mathrm{f}$. \qquad $62-110001021^{\circ}$ Condenser, line by-pass,
C20	Condenser, a-v-c decoupling, $.01 \mu \mathrm{f}$. \qquad 30-4650-58*	C43	$.047 \mu \mathrm{f}$. \qquad ...30-4650-45* Condenser, line by-pass,
C21	Condenser, cathode by-pass, $220 \mu \mu$ f. ...-62-122001001*	C44	$100 \mu \mu \mathrm{f}$. \qquad $62-110001021^{\circ}$ Condenser, r-f by-pass,
C22	Condenser, screen by-pass, $.002 \mu \mathrm{f}$. \qquad 30-4650-54*	C45	$47 \mu \mu \mathrm{f}$. \qquad . 60-00475420 Condenser, d-c blocking,
C23	Condenser, neutralizing, $.006 \mu$ f. \qquad 30-4650-57 *	CR1	$220 \mu \mu$.62-122001001 Selenium rectifier, $100 \mathrm{ma} ., 117 \mathrm{v} . .34-8003-1$
C24	Condenser, i-f by-pass,	I1	Pilot lamp, BC34-2605

SPECIFICATIONS

Figure 1. Base View, Showing Parts Placement

PR-24 18

ALIGNMENT PROCEDURE

RADIO CONTROLS-Set volume control to maximum. Set tuning control and band switch as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.

SIGNAL GENERATOR-Connect generator and set frequency as indicated in chart. Use modulated output. OUTPUT LEVEL-During alignment, adjust signalgenerator output to hold output-meter reading below 1.25 volts.

Figure 2. Top View, Showing Trimmer Locations

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO			ADJUST
	CONNECTION TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	BAND SWITCH SETTING	SPECIAL INSTRUCTIONS	
1	Ground lead to B-; output lead through a . $1-\mu \mathrm{f}$. condenser to grid (pin 7) of 12BE6.	455 kc .	Tuning gang fully open	Broadcast	Adjust tuning cores, in order given, for maximum output. (TCl and TC3 are located at top of transformers.)	TC4-2nd i-f sec. TC3-2nd i-f pri. TC2-1st i-f sec. TC1-1st i-f pri.
2	Radiating loop (See note below).	1620 kc .	${ }^{\text {d }} 1620 \mathrm{kc}$.	Broadcast	Adjust trimmer for maximum output.	C1-B-osc.
3	Same as step 2.	1500 kc .	1500 kc .	Broadcast	Adjust trimmer for maximum output.	C1-A-aerial (broadcast)
4	Same as step 2.	3200 kc .	3200 kc .	Special Services	Adjust trimmer for maximum output.	C21-aerial (special services)

NOTE: Make up a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads, and place near radio loop.
${ }^{\circ}$ For proper adjustment of the oscillator trimmer, fully open the tuning gang and insert a .006 -inch, nonmetallic shim between the heel of the rotor and the top of the stator plates. Close the tuning gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.

PARTS LIST

NOTE: Part numbers identified by an asterisk (${ }^{\circ}$) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
CI	
C1A	Condenser, r-f trimmerPart of C1
C1B	Condenser, oscillator trimmer)..............Part of C1
C2	Condenser, aerial series tracker, $944 \mu \mu$ f.. ...30-1220-65
C3	Condenser, oscillator grid, $47 \mu \mu \mathrm{f}$. ..-......30-1230-4
C4	Condenser, a-v-c by-pass, . $05 \mu \mathrm{f}$.30-4650-45 ${ }^{\text {* }}$
C5	Condenser, drift compensation, $7.5 \mu \mu \mathrm{f}$. ..30-1224-83
C6	Condenser, screen by-pass, . $05 \mu \mathrm{f}$.30-4650-45 ${ }^{\text {* }}$
C7	
C8	Condenser, i-f tuningPart of $\mathbf{Z 1}$
C	Condenser, i-f tuningPart of Z2
C	
C	Condenser, detector filteringPart of Z2
C	Condenser, detector filteringPart of Z2
C13	Condenser, audio coupling, . $005 \mu \mathrm{f}$.30-1238-1 ${ }^{\text {* }}$
C	Condenser, plate by-pass Part of PC1
C15	Condenser, audio coupling, . $005 \mu \mathrm{f}$. Part of PC1
C16	Condenser, compensatingPart of PC1
C17	Condenser, tone compensation, $.022 \mu \mathrm{f}$. ..30-4650-43*
C18	
C18A	Condenser, filter, 30μ f., 150 v).
C18B	Condenser, filter, $25 \mu \mathrm{f} ., 150 \mathrm{v}$.Part of C18
C1	Condenser, filter, $20 \mu \mathrm{f}$., 150 vPart of C18
C19	Condenser, line by-pass, . $047 \mu \mathrm{f}$.30-4650-45 ${ }^{\text {* }}$
C20	Condenser, B minus to chassis, . 1μ f. ...30-4650-47*
$\begin{aligned} & \mathrm{C} 21 \\ & \mathrm{C} 22 \end{aligned}$	Condenser, trimmer, special services..........31-6473-29
	Condenser, a-v-c decoupling, $220 \mu \mu \mathrm{f}$. \qquad 62-122001001*
I1	
J1	
J2	Jack, appliance receptacle, a-c76-3931
L1	Coil, aerial, special services32-4561-3
L2	Coil, oscillator shunt32-4562-2
LA1	Loop, antennaPart of back-and-loop ass'y
LS1	
PC	
PL	Plug, clock assembly :
R1	Resistor, oscillator grid, 22,00 ohms ...66-3228340*
R2	Resistor, i-f screen dropping, 4700 ohms ..66-2478340*
R3	Resistor, a-v-c filter, 2.2 megohms66-5228340 ${ }^{\text {* }}$
R4	Resistor, volume control, . 5 megohm
	Model 707 ...33-5566-49
R5	Resistor, diode load, 47,000 ohms66-3478340*
R6	Resistor, grid return, 10 megohms66-6108340 ${ }^{\text {* }}$
R7	Resistor, plate load, 500,000 ohmsPart of PC1
R8	Resistor, grid return, 500;000 ohmsPart of PC1
R9	Resistor, cathode bias, 150 ohms66-1158340 ${ }^{\text {a }}$
R10	Resistor, B plus filter, 220 ohms, 1 watt...66-1224340 ${ }^{\text {* }}$
R11	Resistor, B plus filter, 1000 ohms............66-2108340**
R12	Resistor, tube saver, 100 ohms33-1343-3
S1	Switch, off-onPart of R4
SW1	Switch, broadcast-special services42-1796-2
T1	
T2	
W1	
Z1	
Z2	Transformer, 2nd i-f32-4240A

Reference Symbol	Description	Service Part No.
	MISCELLANEOUS	
	PARTS COMMON TO ALL MODELS	

MODEL 53-707	
Clock ... ${ }_{*}$	
Scale, radio	
Hook, door \qquad .56-10049	
Hook, door Hinge, door (2)	.56-10048

MODEL 53-956

AM ALIGNMENT PROCEDURE

Make alignment with loop aerial connected to radio. The AM alignment should be completed before the FM alignment is made.
DIAL POINTER-With tuning-condenser plates fully meshed, adjust pointer to coincide with index mark at low-frequency end of dial backplate.

RADIO CONTROLS-Set volume control to maximum, set band switch for broadcast reception, and set tuning control as indicated in chart.

OU'TPUT METER-Connect across voice-coil terminals.
SIGNAL GENERATOR-Use AM r-f signal generator, with modulated output. Connect generator and set frequency as indicated in chart.

OUTPUT LEVEL-During alignment, signal-generator output must be attenuated to hold output-meter reading below 1.25 volts.

AM ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	DIAL SETTING	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	
1	Ground lead to chassis. Output lead through a $.1-\mu f$. condenser to junction of LA1 and L8.	455 kc .	Gang fully open.	Adjust for maximum output, in order given.	TCl0-2nd AM i-f sec. TC9-2nd AM i-f pri. TC4-1st AM i-f sec. TC3-1st AM i-f pri.
2	Radiating loop (see note below).	1620 kc .	1620 kc . (2nd index mark from right).	Adjust for maximum output.	ClC-osc. trimmer.
3	Same as step 2.	1500 kc .	1500 kc .	Adjust for maximum output.	ClA-aerial trimmer.

RADIATING LOOP: Make up a six-to-eight turn, 6-inch-diameter loop from insulated wire; connect to generator terminals, and place near radio loop aerial. Radio loop aerial must be connected.

FM ALIGNMENT PROCEDURE

Make $\mathbf{A M}$ alignment first

RADIO CONTROLS-Set volume control to maximum, set band switch for FM reception, and set tuning control as indicated in chart.

OSCILLOSCOPE-Connect ground lead to chassis. Connect vertical input to FM TEST jack, J2; connect horizontal input to horizontal sweep output of sweep generator. (Oscilloscope is used for steps 1 and 2.)

SWEEP GENERATOR-Use FM r-f sweep signal generator. Connect output lead as given in chart. Set frequency and sweep width as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.
NOTE: Before starting FM alignment, allow radio and signal generator to warm up for 15 minutes.

Figure 2. Characteristic Curve of FM Detector

FM ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Ground lead to chassis. Output lead through a $.01-\mu \mathrm{f}$. condenser to control grid (pin 1) of 12AU6 2nd i-f amplifier.	9.1 mc . ${ }^{(75-}$ kc. deviation).	88 mc . (gang meshed).	Balance and adjust detector for maximum indication on scope, as shown in figure 2.	TC8-detector sec. TC7-detector pri.

TP2-2261
Figure 3. Top View, Showing Trimmer Locations

FM ALIGNMENT CHART (Cont.)

STEP	Signal generator		RADIO		ADJUST
	CONNECTION TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	
2	Ground lead to chassis. Output lead through a $.01-\mu \mathrm{f}$. condenser to FM tuning gang stator lug, junction of C1 and pin 4 of L2.	Same as step 1.	Same as step 1.	Adjust for maximum indication on scope, as shown in figure 2.	$\begin{array}{\|l\|} \hline \text { TC6-FM 2nd i-f } \\ \text { sec.-_FM 2nd i-f } \\ \text { TC5-FM } \\ \text { pri. } \\ \hline \text { TC2-FM 1st i-f } \\ \text { sec.- } \\ \text { TC1-FM 1st i-f } \\ \text { pri. } \\ \hline \end{array}$
3	Ground lead to lug 3 of TB1. Output lead to lug 2 of TB1. See note 1 below.	108.5 mc .	108.5 mc . (lst index mark from right).	Adjust for maximum indication on output meter.	C18-FM osc.
4	Same as step 3.	88 mc .	88 mc . (1st index mark from left).	Adiust for maximum indication on output meter. See note 2 below.	L5-FM osc.
5	Same as step 3.	105 mc .	105 mc . (3rd index mark from right).	Adjust for maximum indication on output meter while rocking tuning condenser.	C1B-FM r-f.
6	Same as step 3.	105 mc .	105 mc .	Adjust for maximum indication on output meter.	C4-FM aerial.
7	Same as step 3.	92 mc .	92 mc . (3rd index mark from left).	Adjust for maximum indication on output meter. See note 3 below.	L2-FM r-f coil.
It FM aerial coil, L1, is replaced, it should be adjusted as directed in step 8, below.					
8	Same as step 3.	92 mc .	92 mc .	Adjust for maximum indication on output meter.	TC11-FM aerial.

NOTE 1: For accurate results, the signal-generator output impedance must be 300 ohms , to match the input impedance of TB1. If the generator impedance is less than 300 ohms, a resistor of the proper value may be used in series with the output lead to make the impedance correct. For example, if the output impedance is 150 ohms, place a 150 -ohm resistor in series with the output lead.
NOTE 2: If oscillator does not tune as low as 88 mc ., compress the turns on the oscillator coil. If us illator tunes too low, spread the turns slightly. After coil is adjusted, repeat step 3.
NOTE 3: Check resonance of coil L2 by inserting end of a tuning wand, such as Philco Part No. 56-6100, in the coil. If output increases when iron end is placed in coil, compress turns slightly. If output increases when brass end is placed in coil, spread the turns. If output decreases when either end is placed in coil, no adjustment is necessary. After the coil is adjusted, readjust trimmer C1B and repeat steps 3 through 8 until no further improvement is obtained.

PARTS LIST

NOTE: Part numbers identified by. an asterisk (${ }^{\circ}$) are general replacement items. These numbers may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$	Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
C1	Condenser, tuning gang, 5-section31-2762-1	C38D	Condenser, filter, $40 \mu \mathrm{f}$., 150vPart of C38
C1A	Condenser, trimmer, BC aerialPart of C1	C39	Condenser, filament by-pass, . $005 \mu \mathrm{f}30-1238-1 *$
C1B	Condenser, trimmer, FM r-fPart of C1	C40	Condenser, line by-pass, $100 \mu \mu \mathrm{f}$...62-110001021*
C1C	Condenser, trimmer, BC oscillatorPart of C1	C41	Condenser, filament by-pass, . $005 \mu \mathrm{f}$...30-1238-1*
C2	Condenser, aerial isolating, $3.3 \mu \mu \mathrm{f}$.30-1221	C42	Condenser, line by-pass, . $047 \mu \mathrm{f}$............30-4650-45*
C3	Condenser, aerial isolating, 	CR1	Selenium rectifier, 100 ma., 117 v34-8003-1 Pilot lamp, frosted, $117 \mathrm{v}, 7$ watts \qquad 34-2605
C4	Condenser, FM aerial trimmer45-3034	J1	Jack, male, a-c ...7-6240-5
C5	Condenser, cathode by-pass, $22 \mu \mu \mathrm{f}$. \qquad 62-022009001	$\begin{aligned} & \text { J2 } \\ & \text { L1 } \end{aligned}$	Socket, FM test \qquad 27-6180 Coil, FM aerial, complete with
C6			grommet ...-4532A
C7	Condenser, screen by-pass, $220 \mu \mu \mathrm{f}$. ...-122001001*	$\begin{aligned} & \text { L2 } \\ & \text { L3 } \end{aligned}$	
C8	Condenser, oscillator grid, $100 \mu \mu \mathrm{f}$. ..-10001021*	L4	
C9	Condenser, d-c blocking, $220 \mu \mu \mathrm{f} . . .62$-122001001 ${ }^{\text {* }}$	L6	
C10	Condenser, cathode by-pass, $.01 \mu \mathrm{f}$. ..-7650-58*	L7 L8	Choke, filament, $2.2 \mu \mathrm{~h}$.32-4422-8 Choke, r-f, $4.1 \mu \mathrm{~h}$. \qquad 32-4061-3
C11	Condenser, neutralizing, $3.3 \mu \mu \mathrm{f}$.30-1224-49	LA1	AM loop and support assembly76-7836
C12	Condenser, d-c blocking $220 \mu \mu \mathrm{f}$...62-122001001*	LA2	Line-cord aerial, FMPart of W1
C13	Condenser, fixed trimmer, $7.5 \mu \mu \mathrm{f}$.30-1224-65	LSi	Speaker, 4" p-m, including output
C14	Condenser, cathode by-pass, $220 \mu \mu \mathrm{f}$. \qquad 62-122001001*	R1	transformer ...36-1625-14 Resistor, cathode bias, 120 ohms..........66-1128340*
C15	Condenser, r-f by-pass, $220 \mu \mu \mathrm{f}$......62-122001001 ${ }^{*}$	R2	Resistor, screen decoupling,
C16	Condenser, plate decoupling, . $01 \mu \mathrm{f}$...30-4650-58*		470 ohms ..66-1478340*
C17	Condenser, r-f by-pass, $100 \mu \mu \mathrm{f}$.62-110009001*	R3	Resistor, grid return, 15,000 ohms.........66-3158340*
C18	Condenser, trimmer, FM oscillator31-6511-10	R4	Resistor, grid return, 2.2 megohms66-5228340*
C19	Condenser, fixed trimmer, 7.5 $\mu \mu \mathrm{f}$.30-1224-8	R5	Resistor, parasitic suppressor,
C20	Condenser, a-v-c decoupling, . $01 \mu \mathrm{f}$...30-4650-58*		680 ohms ..66-1688340*
C21	Condenser, screen by-pass, . $002 \mu \mathrm{f}$.30-4650-54*	R6	Resistor, parasitic suppressor,
C22	Condenser, neutralizing, . 006μ.30-4650-57*		470 ohms ..66-1478340*
C23	Condenser, i-f by-pass, $100 \mu \mu \mathrm{f}$.62-110001021*	R7	Resistor, loading, 100 ohms66-1108340*
C24	Condenser, cathode by-pass, . $01 \mu \mathrm{f}$......30-4650-58*	R8	Resistor, plate dropping, AM,
C25	Condenser, screen by-pass, . $002 \mu \mathrm{f}$......30-4650-54*		47,000 ohms ..66-3478340*
C26	Condenser, electrolytic, diode-load filter, $2 \mu \mathrm{f}$., 50 v \qquad 30-2417-7	$\begin{aligned} & \text { R9 } \\ & \text { R10 } \end{aligned}$	Resistor, plate dropping, 4700 ohms...66-2478340* Resistor, cathode bias, 47 ohms66-0478340*
C27	Condenser, i-f by-pass, $150 \mu \mu \mathrm{f}$.62-115001011*	R11	Resistor, screen decoupling,
C28	Condenser, d-c blocking, . $006 \mu \mathrm{f}$.30-4650-57*		1000 ohms ..66-2108340*
C29	Condenser, i-f by-pass, $100 \mu \mu \mathrm{f}$.62-110001021*	R12	Resistor, plate decoupling,
C30	Condenser, de-emphasis, . $004 \mu \mathrm{f}$.30-4650-56*		2700 ohms ..66-2278340**
C31	Condenser, plate decoupling, $220 \mu \mu \mathrm{f}$. \qquad 62-122001001*	$\begin{aligned} & \text { R13 } \\ & \text { R14 } \end{aligned}$	Resistor, grid return, 1 megohm66-5108340* Resistor, cathode bias, 120 ohms66-1128340*
C32	Condenser, line by-pass, $100 \mu \mu \mathrm{f}$.......62-110001021 ${ }^{\text {* }}$	R15	Resistor, a-v-c filter, 2.2 megohms66-5228340*
C33	Condenser, plate by-pass, $680 \mu \mu \mathrm{f}$....62-168001001 ${ }^{\text {* }}$	R16	Resistor, decoupling, 470 ohms66-1478340*
C34	Condenser, d-c blocking, . $02 \mu \mathrm{f}$.30-4650-60*	R17	Resistor, FM diode load,
C35	Condenser, d-c blocking, . $006 \mu \mathrm{f}$.30-4650-57*		47,000 ohms ...66-3478340*
C36	Condenser, filament by-pass, $100 \mu \mu \mathrm{f}$. \qquad $.62-110001021^{*}$	$\begin{aligned} & \text { R18 } \\ & \text { R19 } \end{aligned}$	Resistor, de-emphasis, 47,000 ohms...66-3478340* Resistor, i-f filter, $47,000 \mathrm{ohms}66-3478340^{*}$
C37	Condenser, tone compensation,	$\begin{aligned} & \text { R20 } \\ & \text { R21 } \end{aligned}$	Resistor, a-v-c load, 3.3 megohms66-5338340* Volume control (with off-on switch)
C38	Condenser, electrolytic, 4-section30-4650-46		500,000 ohms ...33-5566-20
C38A	Condenser, cathode by-pass, 25μ f., 25v \qquad Part of C38	$\begin{aligned} & \text { R22 } \\ & \text { R23 } \end{aligned}$	Resistor, grid return, 10 megohms66-6108340* Resistor, plate load, 470,000 ohms......66-4478340*
C38B	Condenser, filter, $40 \cdot \mu \mathrm{f}$., $150 \mathrm{v} P a r t ~ o f ~ C 38 ~$	R24	Resistor, grid return, 470,000 ohms......66-4478340*
C38C	Condenser, filter, $70 \mu \mathrm{f} ., 150 \mathrm{v}$..............Part of C38		

Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
R25	Resistor, cathode bias, 150 ohms66-1158340*
R26	Resistor, filter, 470 ohms, 1 watt...........66-1474340*
R27	Resistor, filter, 150 ohms, 2 watts66-1155360*
R28	Resistor, current limiting, 22 ohms, 2 watts \qquad 66-0225360*
R29	Resistor, current limiting, 100 ohms......33-1343-3
R30	Resistor, grid return, 2.2 megohms......66-5228340*
S1	Switch, off-on ...Part of R21
T1	Transformer, AM oscillator32-4569-1
T2	Transformer, outputPart of LS1
W1	Line cord ...41-3865-3
W2	Cable, FM aerial, 72-ohm twin lead..........41-3987
WS	Switch, band, 2-wafer42-1924-1
Z1	Transformer, FM, 1st i-f32-4518A
Z2	Transformer, AM, 1st i-f32-4516A
Z3	Transformer, FM, 2nd i-f32-4518-1A
Z4	Transformer, FM, detector32-4310-4A
Z5	Transformer, AM, 2nd i-f32-4517A
	MISCELLANEOUS
	Description $\quad \begin{aligned} & \text { Service } \\ & \text { Part No. }\end{aligned}$
Cabinet	
Back, flange, and socket assembly76-7829	

MISCELLANEOUS (Cont.)

Description	Service Part No.
astener, back mtg. (4)W-2235-FA9	
Dial scale	54-4987
Knob, FM-AM	.54-4774-28
Knob, tuning	.54-4774-26
Knob, volume	54-4774-27
Clip, pilot lamp	56-3545-FA3
Drive cord, 25-foot spool	45-8750*
Shaft, drive ..66-7931FA11	
Spring, pointer drive	56-3167
Socket, 12AU6 (i-f ampl.)	27-6265
Socket, 12AU6 (r-f ampl.) ...27-6275-1	
Socket, 19V8 ..7-6203-6	
Socket, 35C5 ..7-6203-12	
Shield, tube (2)].	
Shield, tube base (2) ...56-5628-1FA3	
Socket, assembly, pilot lamp ...27-6233-21	

TP2-2263
Figure 5. Base View, Showing Parts Placement

Circuit
Standard Broadcasts: . 540 to 1.70 megacyales (555 to 176.5 meters)

Short Wave 1: 1.7 to 5.3 megacycles (176.5 to 56.5 meters)
Short Wave 2: 7.5 to 22.0 megacycles (40.0 to 13.62 meters)
Band Spread:
49-Meter Band: 5.2 to 7.6 megacycles (57.7 to 39.4 meters)
31-Meter Band: 9.4 to 9.9 megacycles (31.9 to 30.3 meters)
25-Meter Band: 11.4 to 12.0 megacycles (26.3 to 25 meters)
19-Meter Band: 14.8 to 15.6 megacycles (20.3 to 19.2 meters)
16-Meter Band: 17.3 to 18.2 megacyales (17.3 to 16.5 meters)
13-Meter Band: 20.8 to 21.9 megacycles (14.4 to 13.7 meters)

Number of tubes (excluding rectifier)
. .7
Number of rectifier tubes
Continuously vari.................................. Aerial
 oop aerial for Standard Broadcast whip aerial for Short Wave; provision for external derial Operating voltage
 115 volts, 60 cycles, a.c. Speaker 10-inch PM Undistorted power output ...7. w atts
Total power consumption 110 watts

Figure 1. Drive-Cord Installation Detalls

ALIGNMENT PROCEDURE

DIAL POINTER: With the tuning-condenser plates fully meshed, adjust the dial pointer to coincide with the index mark (the second mark below " 55 ") at the low-frequency end of the dial.
BAND-SPREAD TUNING CORES: With the tuning control at the extreme low-frequency setting, set oscillator core TC1C flush with the rear end of the oscillator coil form. Aerial core TC1A and r-f core TC1B should now extend approximately $1 / 16$ inch beyond their coil forms.
SIGNAL GENERATOR: Connect the ground lead to the chassis, and the output lead as indicated in the
chart. Set the signal-generator frequency as indicated in the chart, and use modulated output.
RADIO CONTROLS: Set the volume control to maximum, and the tone control fully clockwise. Set the band switch and tuning control as indicated in the chart.
OUTPUT METER: Connect between the voice-coil lug on the speaker and the chassis.
OUTPUT LEVEL: During alignment, the signalgenerator output must be attenuated to maintain an output-meter reading below 1.5 volts.

STEP	SIGNAL GENERATOR		RADIO			ADJUST
	CONNECTION TO RADIO	DIAL SETTING	$\begin{aligned} & \text { BAND } \\ & \text { SWITCH } \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	
1	Through a . $1-\mu \mathrm{f}$. condenser to stator of r-f (center) section of Cl .	455 kc .	BC	Tuning gang fully open.	Adjust, in order given, for maximum output; then repeat.	C28-2nd i-f sec. C27-2nd i-f pri. C30-1st i-f sec. C29-1st i-f pri.
2	Through a $25-\mu \mu \mathrm{f}$. condenser to aerial terminal of TBl.	580 kc .	BC	580 kc .	Adjust for maximum output while rocking tuning control.	C14A-BC osc. (series)
3	Same as step 2.	1500 kc .	BC	1500 kc .	Adjust, in order given, for maximum output.	$\begin{aligned} & \text { C13-BC osc. (shunt) } \\ & \text { C41-BC r-f. } \\ & \text { C52-BC aerial } \end{aligned}$
4	Through a $25-\mu \mu \mathrm{f}$. condenser to aerial terminal of TBl.	5.0 mc .	SW1	5.0 mc .	Adjust for maximum output.	C14B-SW1 osc.
5	Same as step 4.	7.5 mc .	BS 1	7.5 mc .	Adjust, in order given, for maximum output.	C14C-BS1 osc. C7D-BS1 r-f C2D-BS1 aerial
6					Preset approximately $1 / 2$ turn from tight position.	$\begin{aligned} & \text { C7I-SW2 osc. } \\ & \text { C7E-SW2 r-f } \\ & \text { C2E-SW2 aerial } \end{aligned}$
7	Same as step 4.	9.0 mc .	SW2	9.0 mc .	Adjust, in order given, for maximum output.	TC13-SW2 osc. TC9-SW2 r-f TC5-SW2 aerial
8	Same as step 4.	21.0 mc.	SW2	21.0 mc.	Adjust, in order given, for maximum output. Repeat steps 7 and 8 until maximum output is obtained.	C7I-SW2 osc. C7E-SW2 r-f C2E-SW2 aerial
9	Same as step 4.	15.2 mg .	BS4	15.2 mc .	Adjust, in order given, for maximum output.	C7F-BS4 osc. C7C--BS4 r-f C2C-BS4 aerial
10	Same as step 4.	9.7 mc .	BS2	9.7 mc .	Adjust for maximum output.	C7H-BS2 osc.
11	Same as step 4.	11.7 mc .	BS3	11.7 mc .	Adjust for maximum output.	C7G-BS3 osc.
12	Same as step 4.	17.8 mc .	BS5	17.8 mc.	Adjust, in order given, for maximum output.	C24B-BS5 osc. C7B-BS5.r-f C2B-BS5 aerial
13	Same as step 4.	21.5 mc .	BS6	21.5 mc .	Adjust, in order given, for maximum output.	$\begin{aligned} & \text { C24A-BS6 osc. } \\ & \text { C7A-BS6 r-f } \\ & \text { C2A--BS6 aerial } \end{aligned}$

Figure 2. Top View, Showing Trimmer Locations

Figure 3. Botfom View, Showing Symbolized Chassis

MODEL 53-960

PARTS LIST

parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved.

When ordering replacements, use only the "Service Part No."

Referenc Symbol	(Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
Cl	
C2	
C2A	
C2B	
C2C	
C2D	
C2E	
C3	Condenser, d-c biocking, $100 \mu \mu \mathrm{f}$. ...62-11.0009001*
C4	
C5	
C6	
C7	Condenser, trimmer, 9-section ...31-6507-4
C7	
C78	
C7C	
C7D	
C7E	Condenser, r-f trimmer, SW_{2}
C7F	
C7G	
${ }^{\text {C7\% }}$	Condenser, oscillator trimmer, 9.7 mc Part of C7
C71	Condenser, oscillator trimmer, SW2 .. Part of C7
C8	Condenser, bias filter, $220 \mu \mu \mathrm{f}$. ..62-122001001
C9	
C10	Condenser, tracking, BS1, $485 \mu \mu \mathrm{f}$. ..30-1220-23
C11	
C12	
C13	
C14	
C14A	Condenser, oscillator padder, BC .. Part of C14
C14	
14C	
C15	
C16	
C1	
C18	
C19	Condenser, oscillator divider, BS2, $330 \mu \mu \mathrm{f}$.60-10335317
C20	
C21	Condenser, tracking, BSI, $540 \mu \mu \mathrm{f}$. ..30-1220-61
C22	
C23	
C24	Condenser, trimmer, 2 -section ...31-6476-19
C24A	
C24B	
C25	
C	
C 27	
${ }^{C 28}$	Condenser, secondary trimmer, 2nd i-f ... Part of $\mathrm{Z2}$
C29	Condenser, primary trimmer, 1st i-f .. Part of $\mathrm{Z1}$
C30	
C31	
C32	
C33	
C34	
C35	
C36	
C37	
C38	
C39	
C40	
C41	
C42	
C43	Condenser, d-c blocking, $047 \mathrm{\mu f}$.e.
C44	
C45	
C4	
C47	Condenser, plate by-pass, $220 \mu \mu \mathrm{f}$. ..62-122001001
C48	
C48A	
C48B	
C48C	Condenser, filter, 10μ f., 450v .. Part of C48
C49	
C50	
C51	
C51A	Condenser, filter, 10μ f., 450v .. Part of C51
C51B	Condenser, filter, 20μ f., 450V ... Part of C51
C51C	
C52	
C53	
11	
J	
12	
tS1	Speaker, p-m, 10-inch ..-36-1610-17
R1	
R2	Resistor, grid return, 470,000 ohms ..66-4478340*
R3	
R4	Resistor, loading, 4700 ohms ..66-2478340**
R5	Resistor, plate load, 22,000 ohms, 2 watts .. $66-3225340^{*}$
R6	
R7	Resistor, a-v-c filter, 1.5 megohms ... 66.5158340^{*}
R8	Resistor, cathode bias, 22,000 ohms ..66-3228340*
R9	Resistor, grid return, 47,000 ohms ... $66-3478340^{*}$
R10	Resistor, parasitic suppressor, 68 ohms ... $66-0688350^{*}$

SPECIFICATIONS
Cabinet

Model 53-950
Model 53-952
Model 53-954
Circuit
Frequency Range Broadcast
Special Services
Phenolic, brown or ivory .Phenolic, brown Wood, mahogany or blond Five-tube superheterodyne (plus rectifier)
\qquad . $740-1620 \mathrm{kc}$. 1700-3400 kc.

Audio Output I watt
Operating Voltage105-120 volts, a.c. or d.c. Power Consumption Antenna Intermediate Frequency Built-in, high-impedance loop $\ldots . ~ 455 ~ k c . ~$ Philco Tubes6BJ6 r-f ampl.; 12BE6 converter; 6BJ6 i-f ampl.; 6AQ6 det., a.v.c., 1 st audio; 35C5 output; 35W4 rectifier

Figure 1. Drive-Cord Installation Details

[^21]
ALIGNMENT PROCEDURE

SIGNAL GENERATOR-Use an AM r-f generator, connected as indicated in the alignment chart.
OUTPUT LEVEL-During alignment, attenuate signal-generator output to maintain output indication below 1 volt.
DIAL POINTER-Before the alignment is started, the dial pointer should be set to coincide with the dial scale mark to the left of " 55 " when the tuning gang is fully meshed.

ALIGNMENT CHART

	SIGNAL GENERATOR		RADIO		
STEP	CONNECTION TO RADIO	DIAL SETTING	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	ADJUST
1	Ground lead to B-. Output lead through a $.01-\mu \mathrm{f}$. condenser to pin 7 (mixer grid) of 12BE6, converter.	455 kc.	'Tuning gang fully open.	Adjust, in order given in next column, for maximum output.	TC5-2nd i-f sec. TC4-2nd i-f pri. TC3-1st i-f sec. TC2-1st i-f pri.
2	Radiating loop. See Note 1 below.	1620 kc .	1620 kc . See Note 2 below.	Adjust for maximum output.	ClC-osc. trimmer
3	Same as step 2.	1520 kc .	Tune radio to generator signal.	Adjust for maximum output. (High-frequency adjustment)	C1B-mixer-grid trimmer C1A-r-f trimmer
4	Same as step 2.	580 kc .	Same as step 3.	Adjust for maximum output. (Low-frequency adjustment)	TC1-r-f transformer
5	Repeat steps 3 and 4 until no further improvement is obtained.				
6	Same as step 2.	3200 kc .	Same as step 3.	Adjust for maximum output.	C5-special-services mixer-grid trimmer C2-special-services r-f trimmer
7	Same as step 2.	1800 kc .	Same as step 3.	Adjust for maximum output.	C3-special-services r-f padder

NOTE 1: Make up a 6-8 turn, 6-inch-diameter loop NOTE 2: To set the tuning gang to 1620 kc., place from insulated wire; connect to signal-generator leads a piece of 6 -mil flat shim stock beneath the heel of the rotor, and turn the rotor until it holds the shim must be connected to the radio. firmly in place. Then remove the shim.

TVYGNAS

RADIO CONTROLS-Set volume control for maximum output and tuning control as given in the alignment chart. Set band switch to broadcast position for first 5 steps, and to special services position for steps 6 and 7 .
OUTPUT INDICATOR-Connect output indicator (either on oscilloscope or a 1000 -ohms-per-volt, a-c voltmeter) across voice-coil terminals.
(\square
0
*

ALIGNMENT PROCEDURE
GENERAL

RADIO CONTROLS-Set volume control for maxi- \quad| SIGNAL GENERATOR-Use an AM r-f generator, |
| :--- |
| connected as indicated in the alignment chart. | ortmeter) across voice-coil terminals.

$$
5
$$ from insulated wire; connect to signal-generator leads

and place near radio loop antenna. The loop antenna

Figure 2. Top View, Showing Tuning Adjustments

Figure 3. Base View, Model 53-950, Showing Parts Placement

Figure 4. Base View, Models 53-952 and 53-954, Showing Parts Placement
PARTS LIST
NOTE: Part numbers identified by an asterisk (${ }^{*}$) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

| Reference
 Symbol | Description | | Service
 Part No. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

PARTS LIST (Continued)

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
R5	Resistor, grid leak, 22,000 ohms \qquad 66-3228340
R6	Resistor, grid leak, 2.2 megohms \qquad 66-5228340*
R7	Resistor, a-v-c load, 2.2 megohms66-5228340*
R8	Resistor, cathode bias, 180 ohms \qquad 66-1188340*
R9	Resistor, screen dropping, 2200 ohms66-2228340*
R10	Resistor, i-f filter, 47,000 ohms ...66-3478340*
R11	Volume control, 500,000 ohms Models 53-950, 53-954 $\ldots33-5566-43 ~$
R12	Resistor, grid leak, 10 megohms66-6108340*
R13	Resistor, plate load, 500,000 ohms \qquad Part of PC1
R14	Resistor, grid leak, 500,000 ohms \qquad Part of PC1
R15	Resistor, cathode bias, 150 ohms, 1 watt \qquad 66-1154340*
R16	Resistor, B+ filter, 1200 ohms ...66-2128340*
R17	Resistor, B+ filter, 220 ohms, 1 watt \qquad
R18	Resistor, tube saver, 100 ohms ...33-1343-3
S1	Switch, off-onPart of R11
S2	
T1	Transformer, oscillator32-4453-2
T2	Transformer, output32-8310-3
W1	
Z1	Transformer, r-f32-4399-7A
Z2	Transformer, 1st i-f32-4160A
Z3	Transformer, 2nd i-f32-4240A
	MISCELLANEOUS
	PARTS COMMON TO ALL MODELS
Description	Service Part No.

Description	Service Part No.
	27-6203-14
Socket, tube (4)	27-6265
Speed nut (4) ..1W56920FE7,	
MODEL 53-950	
abinet, mahogany	8
Cabinet, ivory ..10938-2	
Cabinet back and loop assembly	.76-7881
Scale, mahogany ...44-5152	
Scale, ivory	54-5152-1
Knob (2) ..4-4718-39	
Knob, band switch	5-4998
Pointer ...-96-9898	
MODEL 53-952	
Pointer	..56-5630-51
Pointer rail assembly ...76-8067	
Scale, dial ...54-5163	
MODEL 53-954	
Cabinet, mahogany	10959
Cabinet, blond ...\|0959-1	
Back assembly, mahogany cabinet76-8063	
Back assembly, blond cabinet76-8063-10	
Loop assembly, antenna ..0034	
Knob (2), mahogany ..54-6019	
Knob (2), blond ..44-6019-1	
Knob, band switch ..44-4998	
Pointer ...6-5630-52	
Pointer rail assembly ..76-7981	

MODELS 53-950,
53-952, 53-954

MODEL 53-559

SPECIFICATIONS

CABINET Molded plastic CIRCUIT .Four-tube superheter..edyne (plus rectifier) FREQUENCY RANGE

Standard Broadcas
..540-1620 kc.
Special Services $1700-3400 \mathrm{kc}$. AUDIO OUTPUT \qquad 1 watt OPERATING VOLTAGE 105-120 volts, a.c. or d.c. POWER CONSUMPTION . 30 watts ANTENNA INTERMEDIATE FREQUENCY \qquad PHILCO TUBES FREQUENCY12BE6, converter; 12BA6, i-f amplifier; 12AV6, detector-a.v.c.-1st audio; 35 C 5 , output; 35 W 4 , rectifier
NOTE: The antenna is mounted on the cabinet back. When removing the cabinet back, use care to avoid breaking the antenna leads.

TP2-3228
Figure 1. Base View, Showing Parts Placement

MODEL 53-559

Figure 2. Top View, Showing Tuning Adjustments
ALIGNMENT PROCEDURE

RADIO CONTROLS-Set volume control to maximum. Set tuning control and band switch as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.

SIGNAL GENERATOR-Connect generator and set frequency as indicated in chart. Use modulated output.

OUTPUT LEVEL-During alignment, adjust signalgenerator output to hold output-meter reading below 1.25 volts.

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO			ADJUST
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	BANDSWITCH SETTING	SPECIAL INSTRUCTIONS	
1	Ground-lead to B-; output lead through a . $1-\mu$. condenser to grid (pin 7) of 12BE6.	455 kc .	Tuning gang fully open	Broadcast	Adjust tuning cores, in order given, for maximum output. (TCl and TC3 are located at top of transformers.)	TC4-2nd i-f sec. TC3-2nd i-f pri. TC2--lst i-f sec. TCl--lst i-f pri.
2	Radiating loop (see note below).	1620 kc .	1620 kc.**	Broadcast	Adjust trimmer for maximum output.	C1B-osc.
3	Same as step 2.	1500 kc .	$1500 \mathrm{kc} . \mp$	Broadcast	Adjust trimmer for maximum output.	ClA -antenna (broadcast)
4	Same as step 2.	3200 kc .	$3200 \mathrm{kc} . \dagger$	Special services	Adjust trimmer for maximum output.	C21-antenna (special services)

NOTE: Make up a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads, and place about 1 foot from radio loop. The position of the radio loop, with respect to the chassis, should be approximately the same as when both are mounted in the cabinet.

* To set the tuning gang to 1620 kc ., fully open the tuning gang and insert a .006 -inch nonmetalic shim between the heel of the rotor and the top of the stator plates. Close the tuning gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.
\dagger To set the radio to this frequency, place chassis in cabinet, attach knob, and tune until pointer indicates the correct frequency. Then remove knob and take chassis from cabinet without disturbing the setting of the gang.

PARTS LIST
NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not fer from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be either unchanged or improved. When ordering replacements, use

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
Cl	Condenser, tuning gang31-2751-13
Cla	Condenser, r-f trimmerPart of Cl
C1B	Condenser, oscillator trimmerPart of Cl
C2	Condenser, antenna series tráacker, $944 \mu \mu \mathrm{f}$. ...30-1220-65
C3	Condenser, oscillator grid, $47 \mu \mu \mathrm{f}$.30-1230-4
C4	Condenser, α-v-c by-pass, . $05 \mu \mathrm{f}$.30-4650-45*
C5	Condenser, drift compensation, $7.5 \mu \mu \mathrm{f}$. ...30-1224-83
C6	Condenser, screen by-pass, . $05 \mu \mathrm{f}$.30-4650-45*
C7	Condenser, i-f tuningPart of Z1
C8	Condenser, i-f tuningPart of Zl
C9	Condenser, i-f tuningPart of Z2
C10	Condenser, i-f tuningPart of Z2
C11	Condenser, detector filteringPart of Z2
Cl 2	Condenser, detector filteringPart of Z2
C13	Condenser, audio coupling, . $005 \mu \mathrm{f}$.30-1238-1
C14	Condenser, plate by-passPart of PCl
C15	Condenser, audio coupling, . $005 \mu \mathrm{f}$.Part of PCl
C16	Condenser, compensatingPart of PCl
C17	Condenser, tone compensation, . $022 \mu \mathrm{f}$. ...30-4650-43
C18	Condenser, electrolytic, 3-section30-2573
C18A	Condenser, filter, $30 \mu \mathrm{f}$., 150vPart of C18
C18B	Condenser, filter, 25μ f., 150vPart of C18
C18C	Condenser, filter, 20μ f., 150vPart of C18
C19	Condenser; line by-pass, . 047 رf.30-4650-45*
C20	Condenser, B- to chassis, . 2μ f.30-4650-49*
C21	Condenser, trimmer, special services31-6473-29
C22	Condenser, r-f by-pass, $220 \mu \mu \mathrm{f}$.60-10225417
L1	Coil, antenna, special services32-4561-3
L2	Coil, oscillator shunt32-4562-2
LAI	LoopPart of cabinet back
LS1	Speaker, p-m ..36-1627-8
PC1	Printed circuit ...30-6001
R1	Resistor, oscillatar grid, 22,000 ohms66-3228340*
R2	Resistor, i-f screen dropping, 4700 ohms ..66-2478340*

SPECIFICATIONS

Figure 1. Dial-Cord Stringing Arrangement

Figure 2. Top View, Showing Tuning Adjustments

ALIGNMENT PROCEDURE

GENERAL-Allow the set and the test equipment to warm up for fifteen minutes before starting the alignment procedure.
DIAL POINTER-Before proceeding with the alignment, the dial pointer should be set to coincide with the index mark to the extreme left of the dial backplate when the tuning-condenser plates are fully meshed. See figure 4.
OUTPUT INDICATOR-Connect the output indicator (a 1000 -ohm-per-volt, α-c voltmeter, or an oscilloscope) across the voice-coil terminals.
SIGNAL GENERATOR-Use an AM r-f signal gen-
erator. Connect the ground lead to $\mathrm{B}-$, and connect the output lead as indicated in the alignment chart. OUTPUT LEVEL—Attenuate the signal-generator output throughout the alignment so as to maintain the output level below .5 volt.
RADIO CONTROLS-Set the volume control to maximum. Set the tuning control as indicated in the alignment chart. During alignment of the radio, the batteries should be in the same position with respect to the chassis and the loop antenna as they normally are in the cabinet. It is recommended that a-c power be used when aligning the radio.

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Connect signal generator through a . $1-\mu \mathrm{f}$. condenser to pin 6 (converter grid) of lR5.	455 kc .	Tuning gang fully open.	Adjust for maximum output in order given.	TC4-2nd i-f sec. TC3-1st i-f sec. TC2-1st i-f pri.
2	Use radiating loop. (See NOTE 1 below.)	1620 kc .	1620 kc . (See NOTE 2 below.)	Adjust for maximum output.	CIB-osc. trimmer
3	Same as step 2.	1400 kc .	1400 kc . (See NOTE 2 below.)	Adjust for maximum output.	ClA-antenna trimmer
4	Same as step 2.	600 kc.	600 kc . (See NOTE 2 below.)	Adjust for maximum output. Rock tuning gang while making this adjustment.	TCl-osc. core
5	Repeat steps 2, 3, and 4 until no further improvement is obtained.				

NOTE 1. Use a 6 -to-8-turn, 6 -inch-diameter loop made up of insulated wire. Connect to generator terminals, and place about one foot from radio loop.
NOTE 2. The tuning condenser can be set to the proper frequency by turning it until the dial pointer coincides with the respective marks on the dial backplate. See figure 2.

Figure 3. Base View, Showing Parts Placement

[^22]

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will either be unchanged or improved. When ordering replacements, use only the "Service Part No."

Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
Cl	Condenser, tuning gang31-2735-4
C1A	Condenser, trimmer, antennaPart of Cl
CIB	Condenser, trimmer, oscillatorPart of Cl
C2	Condenser, i-f neutralizing, $1.5 \mu \mu \mathrm{f}$.30-1221-7
C3	Condenser, screen by-pass, . $004 \mu \mathrm{f}$.30-1239*
C4	Condenser, B- to chassis, . 1 f30-4650-47*
C5	Condenser, d-c blocking, $47 \mu \mu \mathrm{f}$.60-00475420*
C6	Condenser, grid by-pass, . $004 \mu \mathrm{f}$.30-1239*
C7	Condenser, temperature compensating, $7.5 \mu \mu$ f. ..30-1224-83
C8	Condenser, filament by-pass, . 25 ¢f.30-4656-1
C9	Condenser, neutralizing, 1.5 $\mu \mu \mathrm{f}$.30-1221-7
C10	Condenser, audio circuit30-1237
Cl0A	Condenser, audio coupling, $001 \mu \mathrm{f}$.Part of ClO
Cl0B	Condenser, screen by-pass, 01μ.Part of Cl0
Cl0C	Condenser, d-c blocking, . $002 \mu \mathrm{f}$.Part of C10
ClOD	Condenser, grid by-pass, $220 \mu \mu \mathrm{f}$.Part of C10
Cll	Condenser, tone compensation, . $004 \mu \mathrm{f}30-4650-56^{*}$
C12	Condenser, electrolytic, filament by-pass, 50μ. ..30-2417-12
Cl 3	Condenser, electrolytic, filter30-2568-39
C13A	Condenser, filter, $40 \mu \mathrm{f}$.Part of Cl 3
C13B	Condenser, filter, $10 \mu \mathrm{f}$.Part of Cl3
Cl3C	Condenser, filter, 50μ.Part of C13
C14	Condenser, line by-pass, . 047 ¢f.30-4650-45*
C15	Condenser, a-v-c by-pass, . 05 fi.30-4650-45*
CR1	Rectifier, selenium ..34-8003
J1	Private listening unit42-1975-2
LAl	Coil, antenna ..32-4455-9
LS1	Loudspeaker ..36-1637
R1.	Resistor, filament dropping, 820 ohms66-1828340*
R2	Resistor, grid leak, 68,000 ohms66-3688340*
R3	Resistor, cathode bias, 470 ohms66-1478340*
R4	Resistor, B- to chassis, 150,000 ohms66-4158340*
R5	Resistor, screen dropping, 15,000 ohms66-3158340*
R6	Resistor, grid leak, 3.3 megohms66-5338340*
R7	Resistor, α-v-c load, 2.2 megohms66-5228340*
R8	Volume control, 1 megohm33-5566-21
R9	Resistor, grid leak, 4.7 megohms66-5478340*
R10	Resistor, screen dropping, 4.7 megohms ..66-5478340*
R11	Resistor, plate load, 680,000 ohms66-4688340*
R12	Resistor, grid leak, 2.2 megohms66-5228340*
R13	Resistor, filament dropping, 2200 ohms ...66-2228340*
R14	Resistor, limiting, 2100 ohms33-3445
R15	Resistor, B+ filter, 820 ohms66-1828340*
R1. 6	Resistor, limiting, 120 ohms33-1334-14

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
R17	Resistor, filament dropping, 1500 ohms66-2158340*
R18	Resistor, battery economizer, 330 ohms66-1338340*
R19	Resistor, battery economizer, 560 ohms66-1568340**
R20	Resistor, private listening unit, 10 ohms....66-0108340*
S1	Switch, on-off ...Part of R8
S2	Switch, battery economizer42-1796-3
T1	Transformer, oscillator32-4453-1
T2	Transformer, output32-8434
W1	Line cord ..L 2183*
WS1	Switch, wafer, battery to line42-1925-1
Z1	Transformer, lst i-f32-4160-4A
Z2	Transformer, 2nd i-f32-4454-1A

MISCELLANEOUS

Description	Part No.
Cabinet, light beige .. 10954	
Back, cabinet, light beige \qquad .54-6010 Handle, cabinet, light beige \qquad 54-6012	
Cabinet, spruce green ...10954-2	
Back, cabinet, spruce .green54-6010-1	
Handle, cabinet, spruce	6012.1
Cable, battery ..41-3988-1	
Clip, cabinet back (2) ...56-9162	
Dial scale ..56-9986	
Backplate assembly, dial ...71Window, dial	
Drive cord, 25-ft. spool ...45-8750*	
Spring, gang drive \qquad .56-2617*	
Fastener, speaker baffle (2)W2235-7FA9	
Hinge, cabinet (2) ..56-5457	
Insulator, tuning-condenser mtg. ..27-9508	
Knobs, (2) light beige or spruce green54:6016	
Pointer assembly ..76-8071	
Ring, handle mtg. (2) ...56-9987	
Rubber mount, tuning-condenser mtg. (3)27-4099-3	
Shaft, tuning ..56-7906FA42	
Shield, tube base ...56-3978-1FA3	
Socket, tube (2) ..27-6203	
Socket, tube (2) ...27-6203-12	
Spring, hairpin, shaft mtg. ..28-8610	
Spring, retaining ...57-1868FAl1	

SPECIFICATIONS

MODEL 53-1754

Figure 1. Drive-Cord Installation Details
ALIGNMENT PROCEDURE
RADIO CONTROLS-Set volume control for maxi- SIGNAL GENERATOR-Use an AM r-f generator, mum output, and set tuning control as indicated in connected as indicated in the alignment chart. the alignment chart. Set band switch to broadcast signal-generator output to maintain output indication below 1 volt.
DIAL POINTER-Before the alignment is started, the dial pointer should be set to coincide with the dial scale mark to the left of " 55 " when the tuning gang is fully meshed.

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		
	CONNECTION TO RADIO	DIAL SETTING	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	ADJUST
1	Ground lead to chassis. Output lead through a $.01-\mu \mathrm{f}$. condenser to pin 7 (mixer grid) of 6BE6, converter.	455 kc .	Tuning gang fully open.	Adjust, in order given in next column, for maximum output.	TC6-2nd i-f sec. TC3-1st i-f pri. TC5-2nd i-f pri.
2	Radiating loop. See Note 1 below.	1620 kc.	1620 kc. See Note 2 below.	Adjust for maximum output.	C1C-osc. trimmer
3	Same as step 2.	1520 kc .	Tune radio to generator signal.	Adjust for maximum output. (High-frequency adjustment)	C1B-mixer-grid trimmer ClA-r-f trimmer
4	Same as step 2.	580 kc .	Same as step 3.	Adjust for maximum output. (Low-frequency adjustment)	TC2-r-f transformer
5	Repeat steps 3 and 4 until no further improvement is obtained.				
6	Same as step 2.	3200 kc .	Same as step 3.	Adjust for, maximum output.	C10-special services mixer-grid trimmer C4-special services r-f trimmer
7	Same as step 2.	1800 kc .	Same as step 3.	Adjust for maximum output.	C2-special services r-f padder

NOTE 1: Make up a 6-8 turn, 6 -inch-diameter loop from insulated wire; connect to signal-generator leads and place about 1 foot from radio loop antenna. The position of the radio loop with respect to the chassis should be approximately the same as when both are mounted in the cabinet.
NOTE 2: To set the tuning gang to 1620 kc ., place a piece of 6 -mil flat shim stock beneath the heel of the rotor, and turn the rotor until it holds the shim firmly in place. Then remove the shim.

PAGE 23-1 12 PHILCO
MODEL 53-1754

Figure 2. Top View, Showing Tuning Adjustments

Figure 3. Base View, Showing Parts Placement

MODEL 53-1754

PARTS LIST

NOTE: Part numbers identified by an asterisk (${ }^{*}$) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be unchanged. When ordering replacements, use only the "Service Part No."

Referenc Symbol	e Description	Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
C1	Condenser, tuning gang, 3-section31-2771-3	R10 R	Resistor, cathode bias, 270 ohms66-1275340*
CIA	Condenser, trimmer, antennaPart of C1	R11 R	Resistor, screen dropping, 68,000 ohms66-3688340*
C1B	Condenser, trimmer, r-f ... ${ }^{\text {Pr }}$ C1	R12 R	Resistor, plate dropping, 10,000 ohms66-3108340*
C1C	Condenser, trimmer, oscillatorart of C1	R13 R	Resistor, i-f filter, 47,000 ohms66-3478340*
C2	Condenser, padder, special services r-f Part of CA1	R14 R	Resistor, diode load, 330,000 ohms66-4338340*
C3	Condenser, d-c blocking, $100 \mu \mu \mathrm{f}$.62-110001001*	R15 R	Resistor, tone compensation (bass boost)66-3478340*
C4	Condenser, trimmer, special services r-f Part of CA1	R16 R	Resistor, tone control, 5 megohms33-5566-48
C5	Condenser, cathode by-pass, . $047 \mu \mathrm{f}$. 30-4650-45	R17 R	Resistor, volume control, 2 megohms33-5535-36
C6	Condenser, screen by-pass, . $047 \mathrm{\mu f}{ }_{-}$	R18 R	Resistor, grid leak, 10 megohms66.6108340*
C7	Condenser, r-f by-pass, $5 \mu \mu \mathrm{f}$.60-90505020	R19 R	Resistor, plate load, 220,000 ohms66-4228340*
C8		R20 R	Resistor, grid leak, 470,000 ohms66-4478340*
C9	Condenser, d-c blocking, $100 \mu \mu \mathrm{f}$.62-110001001*	R21 R	Resistor, cathode bias, 330 ohms, 1 watt66-1334340*
C10	Condenser, trimmer, special services mixer-grid.... Part of CAI	R22 R	Resistor, B+ filter, 1000 ohms66-2105340*
C11	Condenser, a-v-c by-pass, .047 $\mu \mathrm{f}$.30-4650-45*	R23 R	Resistor, B+ filter, 270 ohms66-1275340*
C12	Condenser, oscillator coupling, $47 \mu \mu \mathrm{f}$.60-00475417	R24 R	Resistor, plate load, preampl., 220,000 ohms 66-4228340*
C13	Condenser, i-f coupling, $220 \mu \mu \mathrm{f}$.62-122001001*	S1 S	Switch, off-on ...Part of R16
C14	Condenser, screen by-pass, . 047 رf.30-4650-45*	S2 S	Switch, nff-on, phono motor....... Part of M-24 Record Changer
C15	Condenser, plate by-pass, . $01 \mu \mathrm{f}$.30-1238-2*	T1 T	Transformer, power ...32-8610
C16	Condenser, audio coupling, .0068 $\mu \mathrm{f}$. 30-4650-57	T2 Tr	Transformer, output ...32-8242-13
C17	Condenser, tone compensation (bass boost),	T3 Tr	Transformer, oscillator ..32-4453-2
		W1 Li	Line cord ..L2183*
C18	Condenser, tone compensation, $47 \mu \mu \mathrm{f}$.60-00475417	WS1 S	Switch, band ..42-1997
C19	Condenser, tone compensation (high cut) . $01 . \mu \mathrm{f}$. 30-1238-2*	Z1 Tr	Transformer, r-f ... 32-4399-7A
C20		Z2 Tr	Transformer, 1st i-f ...32-4160A
C21	Condenser, d-c blocking, $007 \mu \mathrm{f}$. Part of PC1	Z3 Tr	Transformer, 2nd i-f ...32-4240A
C22	Condenser, r-f by-pass, $220 \mu \mu \mathrm{f}$. Part. of PC1		
C23	Condenser, tone compensation, . $0033 \mu \mathrm{f}$.30-4650-89*		
C24	Condenser, electrolytic filter \qquad 30-2584-32	Description	Service Part No.
C24C	Condenser, filter, $40 \mu \mathrm{f}$. \qquad Part of C24	Back	.54-8932
C24D	Condenser, filter, $10 \mu \mathrm{f}$. .. ${ }^{\text {art }}$ of 24	Dome (4)	45-6190
C25		Door pull (2)	
C26		Hinge, right	ht hand (2) ...-6-9922
C27	Condenser, audio coupling (phono), . $005 \mu \mathrm{f}30-1238-1$	Hinge, left	
C28	Condenser, fixed trimmer, $7.5 \mu \mu \mathrm{f}$.30-1224-65	Bullet cat	atch (2) ..-45-6002
CA1	Condenser assembly, trimmer31-6477-17	Strike pla	late (2) ..45-6003
11	Lamp assembly, pilot (2) .. 27-6233-4	Changer fra	frame ass'y. ...-76-6600-2
J1	Connector, phono input ...76-8262-1	Rail ass'y	y., r.h. (changer drawer) ..76-6597
J2	Connector, phono a-c ...76-8366	Rail ass'y.	y., l.h. (changer drawer) ..76-6258
11	Coil, antenna ...32-4413-2	Spring, ch	changer mtg. (3) ...6-7059FA9
12	Coil, special services r-f ..32-4561-5	Spring, ch	changer mtg. (3) ...76-7059-1FCP
L3	Coil, special services mixer grid32-4561-5	Sleeve, ch	changer mtg. (3) ...-7-7798
14	Coil, oscillator shunt ...-32-4562-1	Pull knob, c	changer drawer ..-76-8496
LA1	Loop antenna ...-32-4394-13	Frame ass'y	y. ...45-9790
LS1		Dial backpla	late ass'y. ..-76321
PC1		Dial scale	
R1	Resistor, r-f a-v-c, 1 megohm66-5108340*	Clip, scale	
R2	Resistor, cathode bias, 82 ohms66-0828340*	Knob (3)	54-4718-20
R3	Resistor, screen dropping, 22,000 ohms66-3225340*	Knob	54-4718-21
R4	Resistor, grid leak, 1 megohm 66-5108340	Spring, shaf	aft retaining ...-28-8610
R5	Resistor, cathode bias, 27,000 ohms66-3278340*	Pointer	56-5630-57
R6	Resistor, oscillator grid leak, 33,000 ohms 66-3338340*	Socket (5)	27-6275
R7	Resistor, load (phono), 1 megohm 66-5108340*	Socket (6AV	
R8	Resistor, a-v-c load, 2.2 megohms66-5228340*	Rubber moun	
R9	Resistor, grid leak, 470,000 ohms 66-4478340*	Tube shield	

CUITFour-tube superheterodyne (plus re

INTERMEDIATE FREQUENCY
.455 kc.
PHILCO TUBES12BE6, converter; 12BA6, i-f amplifier; 12AV6, det.-a.v.c.-lst audio; 35C5, output; 35W4, rectifier

NOTE: The antenna is mounted on the cabinet back. When removing the cabinet back, use care to avoid breaking the antenna leads.

Figure 1. Base View, Showing Parts Placement

ALIGNMENT PROCEDURE

RADIO CONTROLS-Set volume control to maximum. Set tuning control as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.

SIGNAL GENERATOR-Connect generator and set frequency as indicated in chart. Use modulated output.
OUTPUT LEVEL-During alignment, adjust signalgenerator output to hold output-meter reading below 1.25 volts.

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Ground lead to B-; output lead through a . $1-\mu$ f. condenser to grid ($\operatorname{pin} 7$) of 12BE6.	455 kc .	Tuning gang fully open.	Adjust tuning cores, in order given, for maximum output. (TCl and TC 3 are located at top of transformers.)	TC4-2nd i-f sec. TC3-2nd i-f pri. TC2-lst i-f sec. TCl—lst i-f pri.
2	Radiating loop (see note below).	1620 kc .	1620 kc.*	Adjust trimmer for maximum output.	C1B-osc.
3	Same as step 2.	1500 kc .	$1500 \mathrm{kc} . \dagger$	Adjust trimmer for maximum output.	ClA-antenna

NOTE: Make a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads, and place about 1 foot from radio loop. The position of the radio loop with respect to the chassis should be approximately the same as when both are mounted in the cabinet.

* To set the tuning gang to 1620 kc ., fully open the gang and insert a .006 -inch, nonmetallic shim between the heel of the rotor and the top of the stator plates. Close the gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.
+ To set the radio to 1500 kc ., place chassis in cabinet, attach knob to indicate previous setting of 1620 kc., and tune until pointer indicates 1500 kc . Then remove knob and take chassis from cabinet without disturbing gang setting.

Figure 2. Top View, Showing Tuning Adjustments

PARTS LIST
NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list: The values substituted in any case are so chosen that the operation will be either unchanged or improved. When ordering replacements, use
only the "Service Part No."

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
R3	Resistor, α-v-c filter, 2.2 megohms66-5228340*
R4	Resistor, volume control, . 5 megohm33-5566-41
R5	Resistor, diode load, 47,000 ohms66-3478340*
R6	Resistor, grid return, 10 megohms66-6108340
R7	Resistor, plate load; 500,000 ohmsPart of PCl
R8	Resistor, grid return, 500,000 ohmsPart of PCl
R9	Resistor, cathode bias, 150 ohms66-1158340*
R10	Resistor, B plus filter, 220 ohms, 1 watt ..66-1224340*
R11	Resistor, B plus filter, 1000 ohms66-2108340*
R12	Resistor, tube saver, 100 ohms33-1343-3
T1	Transformer, oscillator33-4453-6
T2	Transformer, output32-8384*
W1	Line cord ..L2183*
Z1	Transformer, lst i-f32-4161A
Z2	Transformer, 2nd i-f32-4240A
MISCELLANEOUS	
Description	Service Part No.
Cabinet ..10924-6	
Knobs	
Clock (4 required) ...54-4983	
Station selector ...4-4978	
Off-on ..54-4118	
Clock ...41-2041-1	
Back-and-loap assembly ..76-7757-3	
Shield, tube ..56-5629FA3	
Clip, pilot lamp ..W2563FA3	
Socket, miniature (5 required) ...27-6265*	
Socket assembly, pilot lamp ...27-6233-6	
Window, radio dial ...54-4977-2	

Referance Symbol	Description	Service Part No.

 Condenser, oscillator trimmerPart of Cl
Condenser, B- to chassis, . 2μ.30-4650-49 Condenser, oscillator grid, $47 \mu \mu$ f.30-1230-4 Condenser, α-v-c by-pass, . 05μ f.30-4650-45* Condenser, drift compensation, $7.5 \mu \mu \mathrm{f}$.30-1224-83
 Condenser, i-f tuning ... ${ }^{2}$ Z1 Condenser, i-f tuningPart of Z2 Condenser, i-f tuningart of Z2
 Condenser, audio coupling, . $005 \mu \mathrm{f}$.30-1238-1 Condenser, plate by-passPart of PCl Condenser, compensatingPart of PCl Condenser, tone compensation, $.022 \mu \mathrm{f}$. $30-4650-43^{*}$ Condenser, electrolytic, 3 -section30-2573

 Lamp, pilot ... ${ }^{34-2068}$ Jack, clock ...27-6273 Loop ...
 Printed circuit ...6001 Plug, clock assembly ..27-6273
 Symbol
む出

SPECIFICATIONS

MODEL 53-565

品
53-565

olded plastic	
CIRCUIT	our-tube superheterodyne (plus rectifier)
FREQUENCY RANGE	
OPERATING VOLTAGE 105 to 120 volts, a.c. or d.c. POWER CONSUMPTION \qquad 30 watts	
INTERMEDIATE FREQUENCY	
PHILCO TUBES \qquad 12BE6, converter; 12BA6, i-f amplifier; 12AV6, det.—a.v.c.-lst audio; 35C5, output; 35W4, rectifier	
: The antenna is moun use care to avoid br	back. When removing the cabinet leads.

Figure 1. Dial-Cord Installation Details

PR-2480

TP2-1407
Figure 2. Top View, Showing Tuning Adjustments

ALIGNMENT PROCEDURE

RADIO CONTROLS-Set volume control to maximum. Set tuning control and band switch, SW1, as indicated in chart.
OUTPUT METER-Connect across voice-coil terminals.

SIGNAL GENERATOR-Connect generator and set frequency as indicated in chart. Use modulated output.
OUTPUT LEVEL-During alignment, adjust signalgenerator output to hold output-meter reading below 1.25 volts.

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO			ADJUST
	CONNECTION TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	DIAL SETTING	BANDSWITCH setting	$\begin{gathered} \text { SPECIAL } \\ \text { INSTRUCTIONS } \end{gathered}$	
1	Ground lead to B-; output lead through a $.1-\mu \mathrm{f}$. condenser to grid (pin 7) of 12BE6.	455 kc .	Tuning gang fully open.	Broadcast	Adjust tuning cores, in order given, for maximum output. (TC1 and TC3 are located at top of transformers.)	TC4-2nd i-f sec TC3-2nd i-f pri. TC2-1st i-f sec. TC1-1st i-f pri.
2	Use radiating loop (see NOTE below).	1620 kc .	${ }^{*} 1620 \mathrm{kc}$.	Broadcast	Adjust trimmer for maximum output.	C1B-osc.
3	Same as step 2.	1500 kc .	$\dagger 1500 \mathrm{kc}$.	Broadcast	Adjust trimmer for maximum output.	$\begin{aligned} & \text { C1A-antenna } \\ & \text { (broadcast) } \end{aligned}$
4	Same as step 2.	3200 kc .	†3200 kc.	Special services	Adjust trimmer for maximum output.	C21-antenna (special services)

NOTE: Make up a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads and place about 1 foot from radio loop. The position of the radio loop with respect to the chassis should be approximately the same as when both are mounted in the cabinct.

- To set the tuning gang to 1620 kc ., fully open the gang and insert a .006 -inch nonmetallic shim between the heel of the rotor and the top of the stator plates. Close the gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.
\dagger To set the tuning gang to this frequency, put the chassis into the cabinet, tune the dial until it indicates the proper frequency on the dial scale, and then remove the chassis from the cabinet without disturbing the gang setting.

MODEL 565

Figure 4. Base View, Showing Parts Placement
PARTS LIST
NOTE: Part numbers identified by an asterisk $\left({ }^{\circ}\right)$ are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be unchanged. When ordering replacements, use only the "Service Part No."

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
Cl	Condenser, tuning gang ...31-2751-14
C1A	Condenser, antenna trimmer Part of C1
CIB	Condenser, osc. trimmer ..art of C1
C2	Condenser, antenna series tracker, $944 \mu \mu \mathrm{f}$.30-1220-65
C3	Condenser, oscillator grid, $47 \mu \mathrm{f}$.30-1230-4
C4	Condenser, a-v-c by-pass, $05 \mu \mathrm{f}$. 30-4650-45*
C5	Condenser, drift compensation, $7.5 \mu \mu \mathrm{f}$.30-1224-83
C6	Condenser, screen by-pass, . $05 \mu \mathrm{f}$.30-4650-45*
C7	Condenser, i-f tuning ... Part of Z1
C8	Condenser, i-f tuning ...Part of Z1
C9	Condenser, i-f tuning ...Part of $\mathbf{Z 2}$
C10.	Condenser, i-f tuning ...Part of $\mathbf{Z 2}$
C11	Condenser, detector filtering ...Part of Z2
C12	Condenser, detector filtering Part of $\mathbf{Z 2}$
C13	Condenser, audio coupling, $005 \mu \mathrm{f}$. 30-1238-1
C14	Condenser, plate by-pass Part of PC1
C15	
C16	Condenser, compensatingPart of PC1
C17	Condenser, tone compensation, . $022 \mu \mathrm{f}$. 30-4650-43*
C18	Condenser, electrolytic, 3-section30-2575-34
C18A	
C18B	Condenser, filter, $25 \mu \mathrm{f} .1515 \mathrm{v}$............................. Part of C 18
C18C	
C19	Condenser, line by-pass, . 05μ f.30-4650-45*
C20	Condenser, B- to chassis, . $1 \mu \mathrm{f}$.30-4650-47*
C21	Condenser, trimmer, special services 31-6473-29
11	Lamp, pilot ...34-2068
LAI	Loop, antenna .. Part of cabinet back
11	Coil, antenna, special services32-4561-3
12	
LSI	
PC1	
R1	Resistor, oscillator grid, 22,000 ohms)............. 66-3228340*
R2	Resistor, i-f screen dropping, 4700 ohms66-2478340*

$\left.$| Reference
 Symbol | Description |
| :--- | :--- | :--- | :--- |\quad| Service |
| ---: |
| Part No | \right\rvert\,

SPECIFICATIONS

MODEL 53-568

CABINET
CIRCUIT
FREQUENCY RANGE
Standard Broadcast
Special Services AUDIO OUTPUT
OPERATING VOLTAGE
POWER CONSUMPTION
ANTENNA \qquad
INTERMEDIATE FREQUENCY PHILCO TUBES \qquad .. 455 kc . .12BE6, converter; 12BA6, i-f amplifier; 12AV6, det.-a.v.c.-lst audio; 35C5, output; 35W4, rectifier
NOTE: The antenna is mounted on the cabinet back. When removing the cabinet back, use care to avoid breaking the antenna leads.

TP2-3193
Figure 1. Dial-Cord Installation Details

ALIGNMENT PROCEDURE

RADIO CONTROLS_Set volume control to maximum. Set tuning control and band switch, SWl, as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.

SIGNAL GENERATOR-Connect generator and set frequency as indicated in chart. Use modulated output.
OUTPUT LEVEL-During alignment, attenuate sig-nal-generator output to hold output-meter reading below 1.25 volts.

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO			ADJUST
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTINC	BANDSWITCH SETTING	SPECIAL INSTRUCTIONS	
1	Ground-lead to B-; output lead through a .l- $\mu \mathrm{f}$. condenser to grid (pin 7) of 12BE6.	455 kc .	Tuning gang fully open.	Broadcast	Adjust tuning cores, in order given, for maximum output. (TC1 and TC3 are located at top of transformers.)	TC4-2nd if sec. TC3--2nd i-f pri. TC2-1st i-f sec. TCl-lst i-f pri.
2	Radiating loop (see NOTE below).	1620 kc .	1620 kc.*	Broadcast	Adjust trimmer for maximum output.	Clp-osc.
3	Same as step 2.	1500 kc .	1500 kc .7	Broadcast	Adjust trimmer for maximum output.	ClA-antenna (broadcast)
4	Same as step 2.	3200 kc .	3200 kc .7	Special services	Ādjust trimmer for maximum output.	C21-antenna. (special services)

NOTE: Make up a 6-8 turn, 6-inch diameter loop from insulated wire: connect to signal-generator leads, and place 1 foot from radio loop. The position of the radio loop (LAl) with respect to the chassis, should be approximately the same as when both are mounted in the cabinet.

* To set the tuning gang to 1620 kc ., fully open the tuning gang and insert a .006 -inch nanmetallic shim between the heel : of the rotor and the top of the stator plates. Close the tuning gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting. Then proceed with the remainder of step 2.
, † Place radio chassis in cabinet and set pointer to proper frequency; then remove chassis and proceed with adjustment of designated trimmer.

TP2-3195
Figure 2. Base View. Showing Placement of Parts

Figure 4. Top View, Showing Trimmer Locations PARTS LIST
NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

SPECIFICATIONS	
CABINETMolded plastic, ebony or Swedish red	
FREQUENCY RANGEStandard Broadcast ... 540 kc. to 1620 kc.	
Special Services ... 1700 kc . to 3400 kc . AUDIO OUTPUT ... 1 watt	
OPERATING VOLTAGE 105 to 120 volts, a.c. or d.c. POWER CONSUMPTION ... 30 watts	
AERIAL	
INTERMEDIATE FREQUENCY .455 kc . PHILCO TUBES12BE6 converter, 12BA6 i-f amplifier, 12AV6 det.-a.v.c.-1st audio, 35C5 output, 35 W 4 rectifier	MODEL B574, CODE 122

Figure 1. Dial-Cord Installation Details

PR-2547

MODEL B574, Code 122

SERVICE HINTS

REMOVING THE CHASSIS FROM THE CABINET

To remove the chassis from the cabinet, first remove the station selector knob, volume control knob, and, at the bottom-center of the dial scale, remove the dial scale retaining screw. A flat object (knife blade) placed under the bottom edge will assist in prying the scale out of the cabinet. Pull to remove the pointer from the tuning gang shaft. Remove the screws from the cabinet back, and pull the back away from the back of the cabinet (use care to prevent breaking the leads from the loop aerial) far enough to reach in and remove the pilot lamp and socket from the retaining clip. Unsolder the output transformer leads from the speaker. Then remove the chassis mounting screws from beneath the cabinet, and remove the chassis.

REMOVING THE SUBBASE

After removing the chassis from the cabinet, remove the subbase, using the following procedure.

1. Remove the output transformer and dial light connections by pulling the jacks from the pins on the subbase.
2. Unsolder the volume control and a-c switch leads, and unsolder and remove the loop aerial.
3. Spring the Special Services switch bracket off the tuning shaft.
4. At the rear of the panel, bend the hold down tabs out flush with the subbase, and remove.

PARTS REPLACEMENT

Whenever possible, replace all components and leads from the top side of the chassis. In cases where this is not possible, the components must be unsoldered when removed from the bottom. Use only a lightweight low-wattage iron of approximately 22.5 to 25 watts, and always use a low-melting-point solder. Extreme caution must be used to prevent solder from dropping or splashing, and to avoid lifting of the printed wiring foil. Use only the tip of the soldering iron at the solder point whenever heat is being applied. Hold the subbase in one hand while applying heat to the solder point and throw the solder off, with a downward thrust, as soon as it starts to melt. When the solder is removed, the part to be repaired or replaced can be lifted from its location. Insert the new part and secure it with just a drop of solder at each point.

REPLACING TUBE SOCKETS AND I-F TRANSFORMERS

To replace tube sockets and i-f transformers, follow the procedure given above for removing solder. Then use a sharp knife to sever the remaining thin bond of solder at the connections. With the solder removed, the part can be backed out of the slots. Before inserting the repaired or new part, clean all connections at the unsoldered lugs. Use caution when reinserting parts through the subbase slots, so that the foil is not lifted. When soldering is complete apply an electrical varnish to all repaired areas.

ALIGNMENT PROCEDURE

RADIO CONTROLS—Set volume control to maximum. Set tuning control and band switch, SW1, as indicated in chart.
OUTPUT METER-Connect across voice-coil terminals.
SIGNAL GENERATOR-Connect generator and set frequency as indicated in chart. Use modulated output. OUTPUT LEVEL-During alignment, adjust signal-generator output to hold output-meter reading below 1.25 volts.

STEP	Signal generator		RADIO			ADJUST
	CONNECTION TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	DIAL SETTING	BAND SWITCH SETTING	SPECIAL INSTRUCTIONS	
1	Ground lead to B -; output lead through a . $1-\mu \mathrm{f}$. condenser to grid (pin 7) of 12BE6.	455 kc .	Tuning gang fully open	Broadcast	Adjust tuning cores, in order given, for maximum output. TC1 and TC3 are located at top of transformers.	TC4-2nd i-f sec. TC3-2nd i-f pri. TC2-1st i.f sec. TC1-lst i.f pri
2	Radiating loop (See note below).	1620 kc .	${ }^{*} 1620 \mathrm{kc}$.	Broadcast	Adjust trimmer for maximum output.	Cl-B-osc.
3	Same as step 2.	1500 kc .	1500 kc .	Broadcast	Adjust trimmer for maximum output.	C1-A-aerial (broadcast)
4	Same as step 2.	3200 kc .	3200 kc .	Special Services	Adjust trimmer for maximum output.	$\underset{\text { (special services) }}{\mathrm{C} 21-\mathrm{aerial}}$

NOTE: Make up a 6-8 turn, 6-inch-diameter loop from insulated wire, connect to signal-generator leads, and place near radio loop. The $1620-\mathrm{kc}$. index mark is located on the pointer rail, to the extreme right side as viewed from the front.

* For proper adjustment of the oscillator trimmer, fully open the tuning gang and insert a .006 -inch non-metallic shim between the heel of the rotor and the top of the stator plates. Close the tuning gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.

TP3. 679
Figure 2. Top View, Showing Trimmer Locations

Figure 3. Base View, Showing Printed Wiring Circuit

PAGE 23-130 PHILCO
MODEL B574, Code 122

Figure 5. Top View, Showing Parts Placement

Figure 6. Bottom View, Showing Parts Placement

MODEL B574, Code 122

PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be unchanged. When ordering replacements, use only the "Service Part No."

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
C1	Condenser, tuning gang31-2751-16
C1A	Condenser, aerial trimmerPart of C1
C1B	Condenser, oscillator trimmerPart of C1
C1C	Condenser, trimmer, Special Services31-6502-4
C2	Condenser, antenna series tracker, \qquad
C3	Condenser, drift compensation, $7.5 \mu \mu \mathrm{f}$. 30-1224-83
C4	Condenser, a-v-c by-pass, . $047 \mu \mathrm{f}$.30-4650-45
C5	Condenser, oscillator grid, . $01 \mu \mathrm{f}$.30-1238-2
C6	Condenser, screen by-pass, . $05 \mu \mathrm{f}$.30-4650-45
C7	Condenser, i-f tuningPart of Z1
C8	Condenser, i-f tuningPart of Z1
C9	Condenser, i-f tuningPart of Z2
C10	Condenser, i-f tuning .-...............................Part of Z2
C11	Condenser, detector filteringPart of Z2
C12	Condenser, detector filteringPart of $\mathbf{Z} 2$
C13	Condenser, audio coupling, . $005 \mu \mathrm{f}$.30-1238-1
C14	Condenser, plate by-passPart of PC1
C15	Condenser, audio coupling, . 005μ f.Part of PC1
C16	Condenser, compensatingPart of PC1
C17	Condenser, tone compensation, .022 μ f. 30-4650-43
C18	Condenser, electrolytic, 3 -section30-2583-1
C18A	
C18B	
C18C	Condenser, filter, $20 \mu \mathrm{f}$., 150 vPart of C18
C19	Condenser, line by-pass, . $05 \mu \mathrm{f}$.30-4650-47
C20	Condenser, B minus to chassis, $100 \mu \mu \mathrm{f}$. \qquad 62-110009001
I1	Lamp, pilot ...34-2068
L1	Coil, aerial, Special Services32-4561-3
L2	Coil, oscillator shunt32-4562-2
LA1	Loop, part of cabinet back76-8362
LS1	Speaker, p-m ..36-1627-21
R1	Resistor, oscillator grid, 22,000 ohms ...66-3228340*
R2	Resistor, i-f screen dropping, \qquad
R3	Resistor, a-v-c filter, 2.2 megohms66-5228340 ${ }^{\text {* }}$
R4	Resistor, volume control, . 5 megohm33-5566-41

$\left.$| Reference
 Symbol | Description |
| :--- | :--- |\quad| Service |
| ---: |
| Part No. | \right\rvert\,

SPECIFICATIONS

CABINET
Wood console, mahogany
CIRCUIT \qquad Five-tube superheterodyne (plus rectifier)
FREQUENCY RANGE
Broadeast 540 kc . to 1620 kc .
Special Services .. 17.
AUDIO OUTPUT 4.5 watts

OPERATING VOLTAGE $105-120$ volts, a.c.
POWER CONSUMPTION
80 watts
ANTENNA
Builtrin, low-impedance loop
INTERMEDIATE FREQUENCY 455 kc.
PHILCO TUBES
6BJ6 r-f ampl; 6BE6 converter, osc., phono preampl; 6BJ6 i-f ampl ; 6AV6 detector, a.v.c., lst audio; 6AQ5 output ; 6X4 rectifier

MODEL B1754

Figure 1. Drive-Cord Installation Details
ALIGNMENT PROCEDURE
RADIO CONTROLS-Set volume control for maxi- SIGNAL GENERATOR-Use an AM r-f generator, connected as indicated in the alignment chart. OUTPUT LEVEL-During alignment, attenuate sig-nal-generator output to maintain output indication below 1 volt.
DIAL POINTER-Before the alignment is started, the dial pointer should be set to "oincide with the dial scale mark to the left of " 55 " when the tuning gang is fully meshed.
ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Ground lead to chassis. Output lead through a $.01-\mu \mathrm{f}$. condenser to pin 7 (mixer grid) of 6BE6, converter.	455 kc .	Tuning gang fully open.	Adjust, in order given in next column, for maximum output.	TC6-2nd i-f sec. TC3-lst i-f pri. TC5-2nd i-f pri. TC4-1st i-f sec.
2	Radiating loop. See Note 1 below.	1620 kc .	1620 kc . See Note 2 below.	Adjust for maximum output.	C1C-osc. trimmer
3	Same as step 2.	1520 kc .	Tune radio to generator signal.	Adjust for maximum output. (High-fre. quency adjustment).	C1B-mixer-grid trimmer C1A-r-f trimmer
4	Same as step 2.	580 kc .	Same as step 3.	Adjust for maximum output. (Low-frequency adjustment).	TC-2—r-f transformer TC1—ant. transformer
5	Repeat steps 3 and 4 until no further improvement is obtained.				
6	Same as step 2.	3200 kc .	Same as step 3.	Adjust for maximum output.	C10-special services mixer-grid trimmer C4-special services r-f trimmer
7	Same as step 2.	1800 kc .	Same as step 3.	Adjust for maximum output.	C2-special services r-f padder

NOTE 1: Make up a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads and place about 1 foot from radio loop antenna. The position of the radio loop with respect to the chassis should be approximately the same as when both are mounted in the cabinet.
NOTE 2: To set the tuning gang to 1620 kc ., place a piece of 6 -mil flat shim stock beneath the heel of the rotor, and turn the rotor until it holds the shim firmly in place. Then remove the shim.

Figure 2. Top View, Showing Tuning Adjustments

Figure 3. Base View, Showing Parts Placement

PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be unchanged. When ordering replacements, use only the "Service Part No."

Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$	$\begin{gathered} \text { Refer } \\ \text { Sym } \end{gathered}$	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$		
C	Condenser, tuning gang, 3-section31-2771-3	R10	Resistor, cathode bias, 270 ohms66-1275340*		
C1A	Condenser, trimmer, antennaPart of C1	R11	Resistor, screen dropping, 68,000 ohms		
	Condenser, trimmer, r-fPart of C1				
C1C	Condenser, trimmer, oscillatorPart of C1	R12	Resistor, plate dropping, 10,000 ohms...66-3108340 ${ }^{\circ}$,		
	Condenser, padder, special services r-f...Part of CA1.	R13	Resistor, i-f filter, 47,000 ohms66-3478340 ${ }^{\text {\% }}$.		
		R1	Resistor, diode load, 330,000 ohms66-4338340 ${ }^{\text {* }}$		
	Condenser, trimmer, special services r-f...Part of CA1 ${ }^{*}$		Resistor, tone compensation (bass boost) ...66-3478340 ${ }^{\text {* }}$		
C6	Condenser, r-f by-pass, $220 \mu \mu \mathrm{f}$.62-122001001**	R16	esistor, tone control, 5 megohms :.............33-5566-48		
C7	Condenser, r-f by-pass, $5 \mu \mu \mathrm{f}$.60-90505020	R17	Resistor, volume control, 2 megohms.........33-5535-36		
C8	Condenser, fixed padder, 865	R1	Resistor, grid leak, 10 megohms66-6108340 ${ }^{\text {6 }}$		
C9	Condenser, harmonic suppression, $47 \mu \mu \mathrm{f}$. \qquad 60-00475417	R19			
		R20	Resistor, grid leak, 470,000 ohms66-4478340 ${ }^{*}$		
C10	Condenser, trimmer, special services mixer-grid	R21	Resistor, cathode bias, 330 ohms, 1 watt \qquad 66-1334340*		
C11	Condenser, a-v-c by-pass, . $047 \mu \mathrm{f}$.30-4650-45*	R22	Resistor, B+ filter, 1000 ohms66-2105340**		
	Condenser, oscillator coupling, $47 \mu \mu \mathrm{f}$....60-	R23	Resistor, B+ filter, 270 ohms66-1275840 ${ }^{\circ}$		
C13	Condenser, i-f coupling, $220{ }^{\prime \prime} \mathrm{f}^{\text {.62-122001001* }}$	R24	Resistor, diode load, 470,000 ohms66-4478340*		
C14	Condenser screen by-pass, 047 ff . $30-4650-45^{\circ}$	S1	Switch, off-on ...Part of R16		
C15	Condenser, plate by-pass, . $01 \mu \mathrm{f}$. 30	S2	Switch, off-on,		
C17	Condenser, audio coupling, . $0068 \mu \mathrm{f}$. 30		phono motorPart of M-24 Record Changer		
	Condenser, tone compensation	T2	Transformer, power ..32-8610		
	(bass boost), . $005 \mu \mathrm{f}$.30-1238-1*	T2			
C18	Condenser, tone compensation, 47. $\mu \mu \mathrm{f}$...60-00475417	T3	Transformer, oscillator		
C19	Condenser, tone compensation	W1			
	(high cut) . 01μ f.30-1238-2******)	WS1	Switch, band ...42-1997		
C20	Condenser, audio coupling, . $005 \mu \mathrm{f}$.30-1238-1**	Z1	Transformer, r-f		
C21	Condenser, d-c blocking, . $007 \mu \mathrm{f}$.Part of PC1 Condenser, r-f by-pass, $220 \mu \mu \mathrm{f}$. Part of PC1	Z2			
C 22		Z3	Transformer, 2nd i-f ..32-4240A		
C23	Condenser, tone compensation, 	MISCELLANEOUS			
C24	Condenser, electrolytic filter30-2584-32				
C	Condenser, filter, $20 \mu \mathrm{f}$.Part of C24.				
C24B	Condenser, filter, $20 \mu \mathrm{f}$.Part of C24	Description			
	Condenser, filter, $40 \mu \mathrm{f}$.Par		Cabinet, mahogany \qquad 10985		
	Condenser, line by-pass, . 0068 ¢f.30-4650-57				
C26	Condenser, audio coupling (phono),\qquad	Back Hinge, rig			
C27	Condenser, fixed trimmer, 7.5 $\mu \mu \mathrm{f}$.30-1224-65				
CA1	Condenser assembly, trimmer31-6477-17	Hinge			
I1	Lamp assembly, pilot (2)27-6233-4	Hinge			
J1					
J2					
L1		Bullet catch (2) ...45-6002			
L2	Coil, special services r-f.............................32-4561-5				
L3	Coil, special services mixer grid32-4561-5				
L4		Rail ass'y., l.h. (changer drawer) ..76-6258			
LA1					
LS1	Speaker ($10^{\prime \prime}$) ...36-1610-6	Spring, changer mtg. (3) ..66-7059FA9			
PC1		Sleeve, changer mtg. (3) ..54-7798			
R1	Resistor, r-f a-v-c, 1 megohm66-5108340*	Pull knob, changer drawer ..56-8496			
R2	Resistor, cathode bias, 82 ohms66-0828340*	Frame ass'y.],			
R3	Resistor, screen dropping, 22,000 ohms \qquad 66-3225340 *	Dial backplate ass'y. ...-76-8321			
R4	Resistor, plate load, preampl., 220,000 ohms \qquad 66-4228340				
R5	Resistor, cathode bias, 27,000 ohms66-3278340*********)	Knob \qquad 54-4718-21$28-8610$			
R6	Resistor, oscillator grid leak, 33,000 ohms \qquad 66-3338340*				
R7	Resistor, load (phono), 1 megohm66-5108340 ${ }^{\text {6 }}$	Socket (6AV6)			
R8	Resistor, a-v-c load, 2.2 megohms66-5228340* Resistor, grid leak, 470,000 ohms66-4478340*				
R9					

SPECIFICATIONS

P144 "B" battery
MODEL B652

Figure 1. Dial-Cord Stringing Arrangement

TP2-3168
Figure 2. Top View, Showing Tuning Adjustments

ALIGNMENT PROCEDURE

GENERAL-Allow the set and the test equipment to warm up for fifteen minutes before starting the alignment procedure.
DIAL POINTER-Before proceeding with the alignment, the dial pointer should be set to coincide with the index mark to the extreme left of the dial backplate when the tuning-condenser plates are fully meshed. See figure 4.
OUTPUT INDICATOR - Connect the output indicator (a 1000 -ohm-per-volt, a-c veltmeter, or an oscilloscope) across the voice-coil terminals.
SIGNAL GENERATOR-Use an AM r-f signal gen-
erator: Connect the ground lead to $B-$, and connect the output lead as indicated in the alignment chart. OUTPUT LEVEL - Attenuate the signal-generator output throughout the alignment so as to maintain the output level below .5 volt.
RADIO CONTROLS-Set the volume control to maximum. Set the tuning control as indicated in the alignment chart. During alignment of the radio, the batteries should be in the same position with respect to the chassis and the loop antenna as they normally are in the cabinet. It is recommended that a-c power be used when aligning the radio.

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTTING } \end{aligned}$	SPECIAL INSTRUCTIONS	
1	Connect signal generator through a . $1-\mu$ f. condenser to pin 6 (converter grid) of 1 R5.	455 kc .	Tuning gang fully open.	Adjust for maximum output in order given.	TC4-2nd i.f sec. TC2-lst i.f pri. TC3-l st i.f sec.
2	Use radiating loop. (See NOTE 1 below.)	1620 kc .	$\begin{aligned} & 1620 \mathrm{kc} . \\ & \text { (See NOTE } \\ & 2 \text { below.) } \end{aligned}$	Adjust for maximum output.	C1B-osc. trimmer
3	Same as step 2.	1400 kc .	1400 kc . (See NOTE 2 below.)	Adjust for maximum output.	$\begin{aligned} & \text { ClA-antenna } \\ & \text { trimmer } \end{aligned}$
4	Same as step 2.	600 kc .	600 kc . (See NOTE 2 below.)	Adjust for maximum output. Rock tuning gang while making this adjustment.	TC1-osc. core
5	Repeat steps 2, 3, and 4 until no further improvement is obtained.				

NOTE 1. Use a 6 -to-8-turn, 6 -inch-diameter loop made up of insulated wire. Connect to generator terminals, and place about one foot from radio loop.
NOTE 2. The tuning condenser can be set to the proper frequency by turning it until the dial pointer coincides with the respective marks on the dial backplate. See figure 2 .

Figure 3. Base View, Showing Parts Placement

Figure 4. Dial Backplate, Showing Alignment Marks

[^23]LESS THAN 1 OHM
ALL VOLTAGES SHOWN WERE MEASURED WITH A 20,000 OHMS-PER-VOLT METER FROM POINTS INDICATED TO B-

© John F. Rider

PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be unchanged. When ordering replacements, use only the "Service Part No."

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$	Reference Symbol	Description $\quad \begin{array}{r}\text { Service } \\ \text { Part No. }\end{array}$
C1	Condenser, tuning gang31-2735-4	S1	Switch, on-off ..Part of R8
C1A	Condenser, trimmer, antennaPart of C1	S2	Switch, battery economizer42-1796-3
C1B	Condenser, trimmer, oscillatorPart of C1	T1	Transformer, oscillator32-4453-1
C2	Condenser, i-f neutralizing, $1.5 \mu \mu \mathrm{f}30-1221-7 ~$	T2	Transformer, output ..32-8434
C3	Condenser, screen by-pass, . $004 \mu \mathrm{f}$.30-1239*	W1	Line cord ..-12183*
C4	Condenser, B- to chassis, . $1 \mu \mathrm{f}$.30-4650-47*	WS1	Switch, . wafer, battery to line42-1925-1
C5	Condenser, d-c blocking, $47 \mu \mu \mathrm{f}$.60-00475420*	Z1	Transformer, 1st i-f32-4160-4A
C6	Condenser, grid by-pass . $004 \mu \mathrm{f}$.30-1239*	Z2	Transformer, 2nd i-f32-4454-1A
C7	Condenser, temperature compensating, $7.5 \mu \mu \mathrm{f}$. ..30-1224-83		
C8	Condenser, filament by-pass, . $25 \mu \mathrm{f}$.30-4656-1		MISCELLANEOUS
C9	Condenser, neutralizing $3.3 \mu \mu \mathrm{f}$. .-...................30-1221		Service
C10	Condenser, audio circuit30-1237	Description	
C10B	Condenser, screen by-pass, . 01μ f. .-...........Part of C10	Cabinet,	ine green ..10954-10
C10C	Condenser, d-c blocking, . $002 \mu \mathrm{f}$.Part of $\mathbf{C 1 0}$	Back, pi	
C10D	Condenser, grid by-pass, $220 \mu \mu \mathrm{f}$.Part of C10	Handle	
C11	Condenser, tone compensation, . $004 \mu \mathrm{f}$. 30-4650-56*	Jack, co	ver ...4-4967-11
C12	Condenser, electrolytic, filament by-pass, $50 \quad \mu \mathrm{f}$. ...30-2417-12	Knob Cabinet,	$\cdots \cdot{ }_{r r y}$
C13	Condenser, electrolytic, filter30-2568-39	Back, ch	
C13A	Condenser, filter, $40 \mu \mathrm{f}$.	Handle,	
C13B	Condenser, filter, $10 \mu \mathrm{f}$.	Jack, co	
C13C	Condenser, filter, $50 \mu \mathrm{f}$.	Knob	54-6016-1
C14	Condenser, line by-pass, . 047 ¢f.30-4650-45*	Cabinet, sp	
$\mathrm{Cl5}$	Condenser, a-v-c by-pass, . $05 \mu \mathrm{f}$.30-4650-45*	Back, sp	
CR1	Rectifier, selenium ...34-8003	Handle	spruce green ...44-6012-8
J1	Private listening unit42-1975-2	Jack, co	ver ...44-4967-8
LA1	Coil, antenna ..32-4455-9	Knob (2)	.54-6016-3
LS1	Loudspeaker ...36-1637	Cabinet, p	earl grey ...10954-18
R1	Resistor, filament dropping, 820 ohms ...66-1828340*	Back, p	parl grey ..44-6010-9
R2	Resistor, grid leak, 68,000 ohms66-3688340*	Handle,	pearl grey ..54-6012-9
R3	Resistor, cathode bias, 470 ohms66-1478340*	Jack, cov	ver ..54-4967-12
R4	Resistor, B- to chassis, 150,000 ohms ...66-4158340*	Knob	54-6016-9
R5	Resistor, screen dropping, 15,000 ohms 66-3158340*	Cable, bat	tery ..41-3988-1
R6	Resistor, grid leak, 3.3 megohms66-5338340*	Clip, cabin	et back (2) ..6-9162
R7	Resistor, a-v-c load, 2.2 megohms66-5228340*	Dial scale	.56-9986
R8	Volume control, 1 megohm33-5566-21	Backplat	assembly, dial ..76-8177
R9	Resistor, grid leak, 4.7 megohms66-5478340 ${ }^{\text {* }}$	Window	dial ...44-6011
R10	Resistor, screen dropping, 4.7 megohms ...66-5478340*	Drive cord Spring,	$25-\mathrm{ft}$. spool \qquad 45-8750* gang drive \qquad 56-2617*
R11	Resistor, plate load, 680,000 ohms66-4688340*	Spring,	pointer drive ...*-*-8953
R12	Resistor, grid leak, 2.2 megohms66-5228340**	Fastener,	peaker baffle (2) ...W2235-7FA9
R13	Resistor, filament dropping, 2200 ohms 66-2228340*	Hinge, cab	inet (2) ...66-5457
R14	Resistor, limiting, 2100 ohms33-3445	Insulator,	uning-condenser mtg. ...-97-9508
R15	Resistor, B+ filter, 820 ohms66-1828340*	Pointer ass	
R16	Resistor, limiting, 120 ohms33-1334-14	Ring, hand	le mtg. (2) ...76-9987
R17	Resistor, filament dropping, 1500 ohms \qquad 66-2158340*	Rubber mo Shaft, tuni	unt, tuning-condenser mtg. (3)27-4099-3
R18	Resistor, battery economizer, 150 ohms ...66-1158340*	Shield, tub	
R19	Resistor, battery economizer, 430 ohms \qquad 66-1438340*	Socket, tub Socket, tub	e (2) \qquad 27-6203 (2) \qquad-6203-12
R20	Resistor, private listening unit, 10 ohms ..66-0108340*	Spring, ha Spring, re	arpin, shaft mtg. ..-7-8610

SPECIFICATIONS

CABINET	Molded plastic
CIRCUIT...Four-tube superheterodyne plus rectifi	
FREQUENCY RANGES... $540-1620 \mathrm{kc}$.Broadcast............................... $1700-3490 \mathrm{kc}$.	
AUDIO OUTPUT........................... 3 watts	
OPERATING VOLTAGE................105-120 volts, 60 cycles, a.c.	
POWER CONSUMPTION	
Radio.	
INTERMEDIATE FREQUENCY...... 455 kc .	
ANTENNA... Built-in high-impedan ${ }_{\text {for external antenna }}$	
PHILCO TUB	7A8 converter; 7B7 i-f amplifier; 7C6 detector-a.v.c.-1st audio; 35L6GT output; 50Y7GT rectifier
HONOGRAP	Philco Model M-24 All-Speed Automatic Record Changer

MODEL B1350

TP2-2587
Figure 1. Drive-Cord Installation Details

Figure 2. Base View, Showing Parts Placement and Alignment Points

ALIGNMENT PROCEDURE

GENERAL-In order to perform the alignment procedure it is necessary to remove the front of the cabinet from the back portion of the cabinet holding the record changer. This front part of the cabinet can be removed by loosening the front screws located on the bottom of the cabinet, and the screws located directly under the front of the changer lid.
DIAL POINTER-With the tuning-condenser plates fully meshed, set the dial pointer to coincide with the index mark located to the left of " 55 " on the dial scale. CONTROLS-Set the volume control to maximum and the tone control to the treble position. Set the radio-phono switch to the broadcast position for the
first three steps of the procedure, and to the special services position for the last step. Set the tuning control as indicated in the chart.

OUTPUT INDICATOR-Connect the output indicator (a 1000 -ohms-per-volt voltmeter or an oscilloscope) across the voice-coil terminals.
SIGNAL GENERATOR-Use an amplitude-modulated r-f generator. Connect the ground lead to $\mathbf{B -}$, and the output lead as indicated in the chart.
OUTPUT LEVEL-During the alignment, attenuate the signal-generator output to maintain the output indication below 1 volt.

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		ADJUST TRIMMER
	CONNECTION TO RADIO	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	SPECIAL INSTRUCTIONS	
1	Output lead throügh a $.01-\mu \mathrm{f}$. condenser to grid (pin 6) of 7A8 converter tube.	455 kc . (modulated)	Gang fully open.	Adjust, in order given in next column, for maximum output. TC2 and TC4 are located at top of transformers.	TC4-2nd i-f sec. TC3-2nd i-f pri. TC2-1st i-f sec. TCl-lst i-f pri.
2	Radiating loop (see note 1 below).	1620 kc.	1620 kc . (see note 2 below).	Adjust for maximum output.	CIB-oscillator trimmer
3	Same as step 2.	1500 kc .	1500 kc .	Adjust for maximum output.	C1A-antenna trimmer (broadcast)
4	Same as step 2.	3200 kc .	3200 kc .	Adjust for maximum output.	C2 - antenna trimmer (special services)

NOTE 1: Make up a 6-8 turn, 6 -inch-diameter loop from insulated wire; connect to signal-generator leads, and place near radio loop. NOTE 2: The tuning gang can be set to 1620 kc . by placing a piece of 6 -mil flat shim stock between the heel of the rotor and the top of the stator plates, and moving the rotor until is holds the shim in place. Remove the shim before proceeding with the alignment.

PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be unchanged. When ordering replacements, use only the "Service Part No."

Reference Symbol	DescriptionService Part No.
C1	Condenser, tuning gang31-2751-9
C1	Condenser, trimmer, antennaPart of C1
1 B	Condenser, trimmer, oscillatorPart of C1
C2	Condenser, trimmer, special services antenna ..31-6473-31
C3	Condenser, series tracker, $725 \mu \mu \mathrm{f}30-1220-69 ~$
C4	Condenser, d-c blocking, $47 \mu \mu \mathrm{f}$.60-00475420
C	Condenser, fixed trimmer, $7.5 \mu \mu \mathrm{f}$.30-1224-65
C	Condenser, a-v-c by-pass, . $1 \mu \mathrm{f}$. \ldots..............30-4650-47*
C7	Condenser, by-pass, . $1 \mathrm{ff}^{\text {.30-4650-47* }}$
C8	Condenser, cathode by-pass, . $05 \mu \mathrm{f}$.30-4650-45*
C9	Condenser, screen by-pass, . $1 \mu \mathrm{f}$.30-4650-47*
C10	Condenser, d-c blocking, . $005 \mu \mathrm{f}$.30-1238-1*
C	Condenser, d-c blocking, . $005 \mu \mathrm{f}$.30-1238-1*
C12	Condenser, high-frequency compensation, $47 \mu \mu \mathrm{f}$. \qquad 60-00475420
C13	Condenser, bass compensation,
C14	Condenser, tone, . $0047 \mu \mathrm{f}$.304650-56*
C15	Condenser, d-c blocking, . $005 \mu \mathrm{f}$.Part of PC1
C16	
C17	Condenser, electrolytic, 4 -section30-2575-32
C17A	Condenser, cathode by-pass, $25 \mu \mathrm{f}$., 50v...Part of C17
C17B	Condenser, filter, $40 \mu \mathrm{f}$. ., $150 \mathrm{v} . . . \mathrm{I}_{\cdots}$.............Part of C17
C17C	Condenser, filter, $40 \mu \mathrm{f}$. ., 250 vPart of C17
C17D	Condenser, filter, $40 \mu \mathrm{f} ., 250 \mathrm{v}$..................Part of C17
C18	Condenser, voltage doubling, 20μ., $200 \mathrm{v} .2568-22 ~$
C19	Condenser, line by-pass, . $04 \mu \mathrm{f}$.30-1226-17*
C2	Condenser, phono isolation, . $01 \mu \mathrm{f}$.30-4650-58*
C21	Condenser, a-v-c decoupling, $220 \mu \mu \mathrm{f}$. ...62-122001001*
C22	Condenser, aerial blocking, $5 \mu \mu \mathrm{f}$.30-1221-5
I1	Lamp, pilot ...34-2064*
L1	Coil, antenna, special services32-4561-5
L2	Coil, oscillator shunt32-4562-1
LA1	Loop assembly, antenna76-2127-16
LS	
PC1	Printed circuit, d-c blocking30-6001
R1	Resistor, grid return, 470,000 ohms66-4478340*
R2	Resistor, grid leak, 100,000 ohms66-4108340*
R3	Resistor, B- to chassis, 150,000 ohms...66-4158340*
R4	Resistor, cathode bias, 180 ohms66-1188340*
R5	Resistor, screen dropping, 27,000 ohms...66-3278340*
R6	Resistor, i-f filter, 47,000 ohms66-3478340*
R7	Resistor, diode return, 470,000 ohms...66-4478340*
R8	Resistor, diode load, 2.2 megohms66-5228340*
R9	Resistor, grid leak, 10 megohms66-6108340**
R10	Volume control, 2 megohms (with off-on switch and tone control) \qquad 33-5563-55
R11	Resistor, bass compensation, 68,000 ohms ...66-3688340*
R12	Tone control, 5 megohmsPart of R10
R13	Resistor, plate load, 500,000 ohms...........Part of PC1
R14	Resistor, grid leak, 500,000 ohmsPart of PC1

Reference Symbol	DescriptionService Part No.
R15	Resistor, cathode bias, 180 ohms, 1 watt ...66-1184340*
R16	Resistor, filter, 5000 ohms, 7 watts33-1335-95
R17	Resistor, filter, 270 ohms, 7 watts33-1335-91
R18	Resistor, tube saver, 100 ohms33-1343-3
R19	Resistor, aerial loading, 150,000 ohms...66-4158340*
S1	Switch, off-on ..Part of R10
T1	Transformer, oscillator32-4453-2
T2	Transformer, output32-8242-9
W1	
WS	Wafer switch, 2-section42-1989
Z1	Transformer, 1st i-f32-4160A
Z2	Transformer, 2nd i-f32-4240A
	MISCELLANEOUS
Descriptio	Service Part No.
Bottom cover ...44-8255-1	
Hinge (2) \qquad .56-6603	
Lid support ..66-6604	
Binder post \qquad 56-6296 Changer Mounting Hardware	
Sleeve, rubber (3) ..74-7798	
Speed nut (3) ..W-2554	
Dial scale	..54-5156
Foot, rub	er (4) ...44-4579
Gasket, speaker ...44-8089	
Knob, tone	
Lead asse	mbly, antenna ...76-1472
Mount, ru	
Clip, di	
Pilot-lamp socket assembly ..76-1179-7	
Fastener, pilot-lamp shield (2)W2235-1FA9	
Rail assembly, pointer ...76-7906	
Socket, octal (2) ...-7-6174*	
Spring, hairpin ..56-6552	
Tuning sh	aft ...66-8370-1

SPECIFICATIONS

Figure 1. Drive-Cord Installation Details

MODEL B956

AM ALIGNMENT PROCEDURE

Make alignment with loop aerial connected to radio. The AM alignment should be completed before the FM alignment is made.
DIAL POINTER-With tuning-condenser plates fully meshed, adjust pointer to coincide with index mark at low-frequency end of dial backplate.
RADIO CONTROLS-Set volume control to maximum, set band switch for broadcast reception, and set tuning control as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.
SIGNAL GENERATOR-Use AM r-f signal generator, with modulated output. Connect generator and set frequency as indicated in chart.

OUTPUT LEVEL-During alignment, signal-generator output must be attenuated to hold output-meter reading below 1.25 volts.

AM ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Ground lead to chassis. Output lead through a $.1-\mu \mathrm{f}$. condenser to junction of LA1 and L8.	455 kc .	Gang fully open.	Adjust for maximum output, in order given.	TC10-2nd AM i-f sec. TC9-2nd AM i-f pri. TC4-lst AM i-f sec. TC3-1st AM i-f pri.
2	Radiating loop (see note below).	1620 kc .	1620 kc . (2nd index mark from right).	Adjust for maximum output.	C1C-osc. trimmer.
3	Same as step 2.	1500 kc .	1500 kc .	Adjust for maximum output.	ClA-aerial trimmer.

RADIATING LOOP: Make up a six-to-eight turn, 6 -inch-diameter loop from insulated wire; connect to generator terminals, and place near radio loop aerial. Radio loop aerial must be connected.

FM ALIGNMENT PROCEDURE
 Make AM alignment first

RADIO CONTROLS-Set volume control to maximum, set band switch for $F M$ reception, and set tuning control as indicated in chart.

OSCILLOSCOPE-Connect ground lead to chassis. Connect vertical input to FM TEST jack, J2; connect horizontal input to horizontal sweep output of sweep generator. (Oscilloscope is used for steps 1 and 2.)

SWEEP GENERATOR-Use FM r-f sweep signal generator. Connect output lead as given in chart. Set frequency and sweep width as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.
NOTE: Before starting FM alignment, allow radio and signal generator to warm up for 15 minutes.

Figure 2. Characteristic Curve of FM Detector

FM ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Ground lead to chassis. Output lead through a $.01-\mu \mathrm{f}$. condenser to control grid (pin 1) of 12AU6 2nd i-f amplifier.	9.1 mc . $75-$ kc. deviation).	88 mc . (gang meshed).	Balance and adjust detector for maxmum indication on scope, as shown in figure 2.	TC8-detector sec. TC7-detector pri.

TP2-2261
Figure 3. Top View, Showing Trimmer Locations
FM ALIGNMENT CHART (Continued)

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	
2	Ground lead to chassis. Output lead through a $.01-\mu \mathrm{f}$. condenser to $F M$ tuning gang stator lug, junction of C1 and pin 4 of L2.	Same as stepl.	Same as stepl.	Adjust for maximum indication on scope, as shown in figure 2.	TC6-FM 2nd i-f sec. TC5-FM 2nd i-f pri. TC2-FM 1st i-f sec. TC1—FM 1st i-f pri.
3	Ground lead to lug 3 of TB1. Output lead to lug 2 of TB1. See note 1 below.	108.5 mc .	108.5 mc . (1st index mark from right).	Adjust for maximum indication on output meter.	C18-FM osc.
4	Same as step 3.	88 mc .	88 mc . (1st index mark from left).	Adjust for maximum indication on output meter. See note 2 below.	L5-FM osc.
5	Same as step 3.	105 mc .	105 mc . 3 rd index mark from right).	Adjust for maximum indication on output meter while rocking tuning condenser.	C1B-FM r-f.
6	Same as step 3.	105 mc .	105 mc .	Adjust for maximum indication on output meter.	C4-FM aerial.
7	Same as step 3.	92 mc .	92 mc . (3rd index mark from left).	Adjust for maximum indication on output meter. See note 3 below.	L2-FM r-f coil.
If FM aerial coil, L1, is replaced, it should be adjusted as directed in step 8, below.					
8	Same as step 3.	92 mc .	92 mc .	Adjust for maximum indication on output meter.	TC.11-FM aerial

NOTE 1: For accurate results, the signal-generator output impedance must be 300 ohms , to match the input impedance of TB1. If the generator impedance is less than 300 ohms , a resistor of the proper value may be used in series with the output lead to make the impedance correct. For example, if the output impedance is 150 ohms , place a $\mathbf{1 5 0 \cdot o h m}$ resistor in series with the output lead.
NOTE 2: If oscillator does not tune as low as 88 mc ., compress the turns on the oscillator coil. If oscillator tunes too low, spread the turns slightly. After coil is adjusted, repeat step 3.
NOTE 3: Check resonance of coil L2 by inserting end of a tuning wand, such as Philco Part No. 56-6100, in the coil. If output increases when iron end is placed in coil, compress turns slightly. If output increases when brass end is placed in coil, spread the turns. If output decreases when either end is placed in coil, no adjustment is necessary. After the coil is adjusted, readjust trimmer ClB and repeat steps 3 through 8 until no further improvement is obtained.

PAGE 23-150 PHILCO

PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be unchanged. When ordering replacements, use only the "Service Part No."

Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$	Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
C1	Condenser, tuning gang, 5-section31-2762-1	C38D	Condenser, filter, $40 \mu \mathrm{f}$., 150 vPart of C38
C1A	Condenser, trimmer, BC aerialPart of C1	C39	Condenser, filament by-pass, . 005μ f......30-1238-1 ${ }^{\text {* }}$
C1B	Condenser, trimmer, FM r-fPart of C1	C40	Condenser, line by-pass, $100 \mu \mu \mathrm{f} . . .62-110001021^{*}$
C1C	Condenser, trimmer, BC oscillatorPart of C1	C41	Condenser, filament by-pass, . $005 \mu \mathrm{f}$...30-1238-1 ${ }^{\text {* }}$
C2	Condenser, aerial isolating, $3.3 \mu \mu \mathrm{f}$.30-1221	C42	Condenser, line by-pass, . $047 \mu \mathrm{f}$...........30-4650-45 ${ }^{\circ}$
C3	Condenser, aerial isolating, $220 \mu \mu \mathrm{f}$. ...62-122001001*	CR1 Il	Selenium rectifier, 100 ma ., 117 v34-8003-1 Pilot lamp, frosted, 117v, 7 watts34-2605
C4	Condenser, FM aerial trimmer45-3034	J1	
C5	Condenser, cathode by-pass, $33 \mu \mu \mathrm{f}$. \qquad 62-033009001	$\begin{aligned} & \mathrm{J} 2 \\ & \mathrm{~L} 1 \end{aligned}$	Socket, FM test \qquad 27-6180 Coil, FM aerial, complete with
C6	Condenser, d-c blocking, $470 \mu \mu \mathrm{f}$. 62-147001021*		grommet ...32-4532A
C7	Condenser, screen by-pass, $220 \mu \mu \mathrm{f}$. \qquad 62-122001001 ${ }^{*}$	$\begin{aligned} & \text { L2 } \\ & \text { L3 } \end{aligned}$	
C8	Condenser, oscillator grid, $100 \mu \mu \mathrm{f}$.	L4	Choke, r-f, $3.3 \mu \mathrm{~h}$. \qquad 32-4422-10 Coil, FM oscillator \qquad 32-4414-5
C9	Condenser, d-c blocking, 220 m μ f...62-122001001 ${ }^{\circ}$	L6	Choke, filament, $2.2 \mu \mathrm{~h} .$.
C10	Condenser, cathode by-pass, $.01 \mu \mathrm{f}$. \qquad 30-4650-58*	$\begin{aligned} & \text { L7 } \\ & \text { L8 } \end{aligned}$	Choke, r-f, $4.1 \mu \mathrm{~h}$.
C11	Condenser, neutralizing, $3.3 \mu \mu \mathrm{f}$.30-1224-49	LA1	AM loop and support assembly76-7836
C12	Condenser, d-c blocking $220 \mu \mu \mathrm{f} . . .62-122001001{ }^{\circ}$	LA2	Line-cord aerial, FMPart of W1
C13	Condenser, fixed trimmer, $7.5 \mu \mu \mathrm{f}$.30-1224-65	LS1	Speaker, 4" $\mathrm{p}-\mathrm{m}$, including output
C14	Condenser, cathode by-pass, $220 \mu \mu \mathrm{f}$. \qquad 62-122001001*	R1	
C15	Condenser, r-f by-pass, $220 \mu \mu \mathrm{f}$......62-122001001*	R2	Resistor, screen decoupling,
C16	Condenser, plate decoupling, . $01 \mu \mathrm{f} . . .30-4650-58^{*}$		470 ohms ...66-1478340*
C17	Cóndenser, r-f by-pass, $100 \mu \mu \mathrm{f}$.62-110009001 ${ }^{\text {* }}$	R3	Resistor, grid return, 15,000 ohms........66-3158340*
C18	Condenser, trimmer, FM oscillator .-...31-6511-10	R4	Resistor, grid return, 2.2 megohms66-5228340*
C19	Condenser, fixed trimmer, 7.5 $\mu \mu \mathrm{f}$.30-1224-8	R5	Resistor, parasitic suppressor,
C20	Condenser, a-v-c decoupling, . $01 \mu \mathrm{f}$...30-4650-58 ${ }^{\circ}$		680 ohms ..66-1688340 ${ }^{\circ}$
C21	Condenser, screen by-pass, . $002 \mu \mathrm{f}$.30-4650-54*	R6	Resistor, parasitic suppressor,
C22	Condenser, neutralizing, . $006 \mu \mathrm{f}$. .-...... 30-4650-57*		470 ohms ..66-1478340******)
C23	Condenser, i-f by-pass, $100 \mu \mu \mathrm{f}$.62-110001021 ${ }^{\text {c }}$	R7	Resistor, loading, 100 ohms66-1108340 ${ }^{\circ}$
C24	Condenser, cathode by-pass, . $01 \mu \mathrm{f} . . . \mathrm{F} .30-4650-58^{\circ}$	R8	Resistor, plate dropping, AM,
C25	Condenser, screen by-pass, . $002 \mu \mathrm{f}$.....30-4650-54 ${ }^{\circ}$		47,000 ohms66-3478340 ${ }^{\circ}$
C26	Condenser, electrolytic, diode-load filter, 	$\begin{aligned} & \text { R9 } \\ & \text { R10 } \end{aligned}$	Resistor, plate dropping, 4700 ohms...66-2478340 ${ }^{\circ}$ Resistor, cathode bias, 47 ohms66-0478340 ${ }^{\circ}$
C27	Condenser, i-f by-pass, $150 \mu \mu \mathrm{f}$.62-115001011 ${ }^{\circ}$	R11	Resistor, screen decoupling,
C28	Condenser, d-c blocking, . 006μ f. .-....30-4650-57 ${ }^{\circ}$		1000 ohms ...66-2108340*
C29	Condenser, i-f by-pass, $100 \mu \mu \mathrm{f}$.62-110001021 ${ }^{\text {a }}$	R12	Resistor, plate decoupling,
C30	Condenser, de-emphasis, . 004μ f. 30-4650-56 ${ }^{*}$		
C31	Condenser, plate decoupling, $220 \mu \mu \mathrm{f}$. ..62-122001001*	$\begin{aligned} & \text { R13 } \\ & \text { R14 } \end{aligned}$	Resistor, grid return, 1 megohm ….....66-5108340 ${ }^{\circ}$ Resistor, cathode bias, 120 ohms66-1128340 ${ }^{\circ}$
C32	Condenser, line by-pass, $100 \mu \mu \mathrm{f}62-110001021^{\circ}$	R15	Resistor, a-v-c filter, 2.2 megohms66-5228340 ${ }^{\circ}$
C33	Condenser, plate by-pass, $680 \mu \mu \mathrm{f} . . .62-168001001{ }^{\text {a }}$	R16	Resistor, decoupling, 470 ohms66-1478340 ${ }^{\circ}$
C34	Condenser, d-c blocking, . $02 \mu \mathrm{f}$.30-4650-60 ${ }^{\text {a }}$	R17	Resistor, FM diode load,
C35	Condenser, d-c blocking, . $006 \mu \mathrm{f}$.30-4650-57 ${ }^{\circ}$		47,000 ohms ...66-3478340 ${ }^{\circ}$
C36	Condenser, filament by-pass, $100 \mu \mu \mathrm{f}$. \qquad 62-110001021 ${ }^{\circ}$	$\begin{aligned} & \text { R18 } \\ & \text { R19 } \end{aligned}$	Resistor, de-emphasis, 47,000 ohms...66-3478340 ${ }^{\circ}$ Resistor, i-f filter, 47,000 ohms $.66-3478340^{\circ}$
C37	Condenser, tone compensation, $.02 \mu \mathrm{f}$. \qquad .30-4650-60 ${ }^{\circ}$	$\begin{aligned} & \text { R20 } \\ & \text { R21 } \end{aligned}$	Resistor, a-v-c load, 3.3 megohms66-5338340 ${ }^{\circ}$ Volume control (with off-on switch)
C38	Condenser, electrolytic, 4-section30-4650-46		500,000 ohms33-5566-20
C38A	Condenser, cathode by-pass, $25 \mu \mathrm{f}$., 25v ... $\mathbf{C} 38$	$\begin{aligned} & \text { R22 } \\ & \text { R23 } \end{aligned}$	Resistor, grid return, 10 megohms66-6108340 ${ }^{\circ}$ Resistor, plate load, 470,000 ohms......66-4478340 ${ }^{\circ}$
C38B	Condenser, filter, $40 \mu \mathrm{f}$., 150vPart of C38	R24	Resistor, grid return, 470,000 ohms.....66-4478340 ${ }^{\circ}$
C38C	Condenser, filter, $70 \mu \mathrm{f} ., 150 \mathrm{v} \ldots \ldots \mathrm{Part}$ of C38		

MODEL B956

PARTS LIST (Cont.)

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
R25	Resistor, cathode bias, 150 ohms66-1158340*
R26	Resistor, filter, 470 ohms, 1 watt..........66-1474340*
R27	Resistor, filter, $150 \mathrm{ohms}, 2$ watts66-1155360 ${ }^{\circ}$.
R28	Resistor, current limiting, 22 ohms, 2 watts ...66-0225360*
R29	Resistor, current limiting, 100 ohms.....33-1343-3
R30	Resistor, grid return, 2.2 megohms......66-5228340 ${ }^{\circ}$
S1	Switch, off-on ..Part of R21
T1	Transformer, AM oscillator32-4569-1
T2	
W1	Line cord ..41-3865-3
W2	Cable, FM aerial, 72 -ohm twin lead..........41-3987
WS	Switch, band, 2-wafer42-1924-1
Z1	Transformer, FM, lst i-f32-4518A
Z2	Transformer, AM, 1st i-f32-4516A
Z3	Transformer, FM, 2nd i-f32-4518-1A
Z4	Transformer, FM, detector ...-*)
Z5	Transformer, AM, 2nd i-f32-4517A

MISCELLANEOUS

Description	Service Part No.
Cabinet	10941
Back, flange, and socket assembly76-7829	

Description	Service Part No
Fastener, back mtg. (4)	W-2235-FA9
Dial scale	.54-4987
Knob, FM-AM	54-4774-28
Knob, tuning	54-4774-26
Knob, volume-off-on	.54-4774-27
Clip, pilot lamp	...56-3545-FA3
Drive cord, 25 -foot spool ...	\cdots
Pointer	.56-9906
Shaft, drive	...56-7931FA11
Spring, gang drive	$\cdots56-2617 ~$
Spring, pointer drive	.56-3167
Rubber mount, speaker (2)	.54-4651-1
Socket, 12BA6 (i-f ampl.)	27-6265
Socket, 12AU6 (i-f ampl.)	27-6265
Socket, 12AU6 (r-f ampl.)	27-6275-1
Socket, 12AT7	27-6203-6
Socket, 19V8	27-6203-6
Socket, 35C5	27-6203-12
Shield, tube (2)	56-5629-3
Shield, tube base (1)	56-3978-1FA3
Shield, tube base (2)	.56-5628-1FA3
Socket, assembly, pilot lamp	$\cdots \times27-6233-21$
Spring, hairpin	28-8610

Figure 5. Base View, Showing Parts Placement

SPECIFICATIONS

CABINET Molded plasticCIRCUITFive-tube Superheterodyne (plus rectifier)FREQUENCY RANGESStandard BroadcastSpecial Services$1700-3400 \mathrm{kc}$
AUDIO OUTPUT
\qquadOPERATING VOLTAGE117 volts, a.c.POWER CONSUMPTION30 watts
AERIAL High-impedance loop
INTERMEDIATE FREQUENCY
.455 kc . PHILCO TUBES12BE6 converter, 12BA6 i-f amplifier, 12AV6 det.-a.v.c.-lst audio, 35C5 output, 35W4 rectifier
PHILCO TUBES12BE6 converter, 12BA6 i-f amplifier,
35C5 output, 35 W 4 rectifier

TP3.933
Figure 1. Drive-Cord Installation Details

ALIGNMENT PROCEDURE

RADIO CONTROLS-Set volume control to maximam. Set tuning control and band switch as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.

SIGNAL GENERATOR-Connect generator and set frequency as indicated in chart. Use modulated output.
OUTPUT LEVEL-During alignment, adjust signalgenerator output to hold output-meter reading below 1.25 volts.

Figure 2. Top View, Showing Trimmer Locations
ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO			ADJUST
	CONNECTION TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	BAND SWITCH SETTING	$\begin{aligned} & \text { SPECIAL } \\ & \text { INSTRUCTIONS } \end{aligned}$	
1	Ground lead to B-; output lead through a . $1-\mu \mathrm{f}$. condenser to grid (pin 7) of 12BE6.	455 kc .	Tuning gang fully open	Broadcast	Adjust tuning cores, in order given, for maximum output. (TC1 and TC3 are located at top of transformers.)	TC4-2nd i.f sec. TC3-2nd i.f pri. TC2-lst i.f sec. TC1-1 st i-f pri.
2	Radiating loop (See note below).	1620 kc .	${ }^{*} 1620 \mathrm{kc}$.	Broadcast	Adjust trimmer for maximum output.	C1-B-osc.
3	Same as step 2.	1500 kc .	1500 kc .	Broadcast	Adjust trimmer for maximum output.	C1-A-aerial (broadcast)
4	Same as step 2.	3200 kc .	3200 kc .	Special Services	Adjust trimmer for maximum output.	$\begin{aligned} & \hline \text { C21-aerial } \\ & \text { (special services) } \end{aligned}$

NOTE: Make up a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads, and place near radio loop.

* For proper adjustment of the oscillator trimmer, fully open the tuning gang and insert a $.006-\mathrm{inch}$, non-metallic shim between the heel of the rotor and the top of the stator plates. Close the tuning gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.

MODEL B714, Codes 121, 123

Figure 4. Base View, Showing Parts Placement PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be unchanged. When ordering replacements, use only the "Service Part No."

TP3-831-2
Figure 1. Dial-Cord Installation Details

ALIGNMENT PROCEDURE

RADIO CONTROLS-Set volume control to maximum. Set tuning control and band switch, SWl, as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.

SIGNAL GENERATOR-Connect generator and set frequency as indicated in chart. Use modulated output.
OUTPUT LEVEL-During alignment, adjust signalgenerator output to hold output-meter reading below 1.25 volts.

Figure 2. Top View, Showing Trimmer Locations
ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO			ADJUST
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	BAND SWITCH SETTING	SPECIAL INSTRUCTIONS	
1	Ground lead to B-; output lead through a $.1-\mu \mathrm{f}$. condenser to grid (pin 7) of 12BE6.	455 kc.	Tuning gang fully open.	Broadcast	Adjust tuning cores, in order given, for maximum output. (TCl and TC3 are located at top of transformers.)	TC4-2nd i-f sec. TC3-2nd i-f pri. TC2-lst i-f sec. TCl-lst i-f pri.
2	Radiating loop (see NOTE below).	1620 kc .	*1620 kc.	Broadcast	Adjust trimmer for maximum output.	Cl-B osc.
3	Same as step 2.	1500 kc .	1500 kc .	Broadcast	Adjust trimmer for maximum output.	C1-A aerial (broadcast).
4	Same as step 2.	3200 kc .	3200 kc .	Special services	Adjust trimmer for maximum output.	$\begin{aligned} & \text { C-21-aerial } \\ & \text { (special services). } \end{aligned}$

NOTE: Make up a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads and place near radio loop.

* For proper adjustment of the oscillator trimmer, fully open the tuning gang and insert a .006 -inch nonmetallic shim between the heel of the rotor and the top of the stator plates. Close the tuning gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.

John F. Rider

PAGE 23-160 PHILCO

MODEL B574, Code 121

Figure 4. Base View, Showing Symbolized Chassis

PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be unchanged. When ordering replacements, use only the "Service Part No."

Reference				
Symbol			\quad	Service
---:				
Part No.				

Reference Symbol	Description Service Part
R3	Resistor, a-v-c filter, 2.2 megohms66-5228340*
R4	Resistor, volume control33-5566-41
R5	Resistor, diode load, 47,000 ohms66-3478340 ${ }^{\circ}$
R6	Resistor, grid return, 10 megohms66-6108340*
R7	Resistor, plate load, 500,000 ohmsPart of PC1
R8	Resistor, grid return, 500,000 ohmsPart of PC1
R9	Resistor, cathode bias, 150 ohms66-1158340*
R10	Resistor, B plus filter, 220 ohms66-1224340*
R11	Resistor, B plus filter, 1000 ohms66-2108340*
R12	Resistor, tube saver, 100 ohms33-1343-3
S1	Switch, off-on ...
SW1	Switch, broadcast-special services42-1796-2
T1	Transformer, oscillator ...32-4453-6
T2	Transformer, output ..32-8384-4
W1	Line cord ..-...-...-183*
Z1	Transformer, 1st i-f ..-4161A
Z2	Transformer, 2nd i-f ..-4240A
MISCELLANEOUS	
Description	Service Part No.
Back-and-loop ass'y. ...76-8362-1	
Knob (2) ..-4-4773-3	
Drive cord, 25-foot spool ...-8750	
Pointer, dial ...	
Socket ass'y., pilot lamp \qquad 27-6233-80 Socket, 7 -pin miniature, 12AV6 27-6203-14	
Socket, 7-pin miniature, 12AV6 ..6203-14Socket, 7-pin miniature, 12BE6, 12BA6265	
Socket, 7 -pin miniature, 35C5, 35W4 \qquad 27-6265-2 Spring, retaining (3) 1W60980FE7	
Spring, drive cord ..66-2617	
Bracket, switch operating ..-9-9473FA3	
Bracket, switch mounting \qquad 28-9474FA3 Switch bracket and padder ass'y. \qquad 76-8477	

SPECIFICATIONS

CABINET Molded plastic
CIRCUIT

\qquad
Four-tube superheterodyne (plus rectifier)
FREQUENCY RANGE
Standard Broadcast 540 kc . to 1620 kc .1 watt
OPERATING VOLTAGE
\qquad 105 to 120 volts, a.c. or d.c.
POWER CONSUMPTION
AERIAL High-impedance loopINTERMEDIATE FREQUENCY455 kc.
PHILCO TUBES
\qquad 12BE6 converter, 12BA6 i-f amplifier, 12AV6 det.-a.v.c.-1st audio, 35C5 output, 35W4 rectifier

Figure 1. Dial-Cord Installation Details

ALIGNMENT PROCEDURE

RADIO CONTROLS-Set volume control to maximum. Set tuning control and band switch, SW1, as indicated in chart.
OUTPUT METER-Connect across voice-coil terminals.

SIGNAL GENERATOR-Connect generator and set frequency as indicated in chart. Use modulated output.
OUTPUT LEVEL-During alignment, adjust signalgenerator output to hold output-meter reading below 1.25 volts.

Figure 2. Top View, Showing Trimmer Locations

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO			ADJUST
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	BAND SWITCH SETTING	SPECIAL INSTRUCTIONS	
1	Ground lead to B-; output lead through a $.1-\mu \mathrm{f}$. condenser to grid (pin 7) of 12BE6.	455 kc 。	Tuning gang fully open.	Broadcast	Adjust tuning cores, in order given, for maximum output. (TC1 and TC3 are located at top of transformers).	TC-4-2nd i-f sec. TC3-2nd i-f pri. TC2-1st i.f sec. TCl-lst i-f pri.
2	$\begin{gathered} \text { Radiating loop } \\ \text { (see NOTE below). } \end{gathered}$	1620 kc .	*1620 kc.	Broadcast	Adjust trimmer for maximum output.	Cl-B osc.
3	Same as step 2.	1500 kc .	1500 kc .	Broadcast	Adjust trimmer for maximum output.	C1-A aerial (broadcast).

NOTE: Make up a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads and place near radio loop.

* For proper adjustment of the oscillator trimmer, fully open the tuning gang and insert a .006 -inch nonmetallic shim between the heel of the rotor and the top of the stator plates. Close the tuning gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.

TP3.835
Figure 4. Base View, Showing Symbolized Chassis

PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be unchanged. When ordering replacements, use only the "Service Part No."

SPECIFICATIONS

CABINET \qquad Molded phenolic
CIRCUIT ...Four-tube superheterodyne (plus rectifier) FREQUENCY RANGE 540-1620 kc. AUDIO OUTPUT .. 1 watt OPERATING VOLTAGE 117 volts, a.c. POWER CONSUMPTION 30 watts ANTENNA .High-impedance loop INTERMEDIATE FREQUENCY PHILCO TUBES....12BE6, converter; 12BA6, i-f amplifier; 12AV6, det.-a.v.c.-lst audio; 35C5, output; $35 W 4$, rectifier
NOTE: The antenna is mounted on the cabinet back. When removing the cabinet back, use care to avoid breaking the antenna leads.

MODEL B710

TP3-832
Figure 1. Base View, Showing Parts Placement

ALIGNMENT PROCEDURE

RADIO CONTROLS-Set volume control to maximum. Set tuning control as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.

SIGNAL GENERATOR-Connect generator and set frequency as indicated in chart. Use modulated output.
OUTPUT LEVEL-During alignment, adjust signalgenerator output to hold output-meter reading below 1.25 volts.

ALIGNMENT CHART

| sTEP | SIGNAL GENERATOR | | RADIO | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| | CONNECTION TO RADIO | DIAL
 SETTING | DIAL
 SETTING | SPICIAL INSTRUCTIONS | ADJUST

NOTE: make a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads, and place about 1 foot from radio loop. The position of the radio loop with respect to the chassis should be approximately the same as when both are mounted in the cabinet.

* To set the tuning gang to 1620 kc ., fully open the gang and insert a .006 -inch, nonmetallic shim between the heel of the rotor and the top of the stator plates. Close the gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.
\dagger To set the radio to 1500 kc ., place chassis in cabinet, attach knob to indicate previous setting of 1620 kc ., and tune until pointer indicates 1500 kc . Then remove knob and take chassis from cabinet without disturbing gang setting.

Figure 2. Top View, Showing Tuning Adjustments

MODEL B710

PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be unchanged. When ordering replacements, use only the "Service Part No."

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$	Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
C1	Condenser, tuning gang31-2751-13	R3	Resistor, a-v-c filter, 2.2 megohms66-5228340*
C1A	Condenser, r-f trimmerPart of C1	R4	Resistor, volume control, .5 megohm33-5565
C1B	Condenser, oscillator trimmerPart of C1	R5	Resistor, diode load, 47,000 ohms66-3478340 ${ }^{*}$
C2	Condenser, B- to chassis, . $2 \mu \mathrm{f}$.30-4650-49	R6	Resistor, grid return, 10 megohms66-6108340
C3	Condenser, oscillator grid, $47 \mu \mu \mathrm{f}$.30-1230-4	R7	Resistor, plate load, 500,000 ohmsPart of PC1
C4	Condenser, a-v-c by-pass, . $05 \mu \mathrm{f}$.30-4650-45*	R8	Resistor, grid return, 500,000 ohmsPart of PC1
C5	Condenser, drift compensation, $7.5 \mu \mu \mathrm{f}$. 30-1224-83	R9	Resistor, cathode bias, 150 ohms66-1158340*
C6	Condenser, screen by-pass, . $05 \mu \mathrm{f}$.30-4650-45*	R10	Resistor, B plus filter,
C7	Condenser, i-f tuningPart of $\mathbf{Z 1}$		220 ohms, 1 watt66-1224340*
C8	Condenser, i-f tuningPart of Z1	R11	Resistor, B plus filter, 1000 ohms66-2108340*
C9	Condenser, i-f tuningPart of Z2	R12	Resistor, tube saver, 100 ohms33-1343-3
C10	Condenser, i-f tuningPart of Z2	T1	Transformer, oscillator33-4453-6
C11	Condenser, detector filteringPart of Z2	T2	Transformer, outputPart of LS1
C12	Condenser, detector filteringPart of Z2	W1	
C13	Condenser, audio coupling, . $005 \mu \mathrm{f}$.30-1238-1	Z1	Transformer, 1st i-f ..32-4161A
C14	Condenser, plate by-passPart of PCI	Z2	Transformer, 2nd i-f32-4240A
C15	Condenser, audio coupling, . $005 \mu \mathrm{f}$.Part of PCI		
C16	Condenser, compensatingPart of PC1		MISCELLANEOUS
C17	Condenser, tone compensation, . $022 \mu \mathrm{f}$. 30-4650-43*		
	Condenser, electrolytic, 3-section45-3037	Description	Service Part No.
C18A	Condenser, filter, $30 \mu \mathrm{f}$., 150vPart of C18	Cabinet	.10924-11
C18B	Condenser, filter, $25 \mu \mathrm{f}$., $150 \mathrm{v} . P a r t ~ o f ~ C 18 ~$	Knobs	
C18C		Clock	
C19	Condenser, line by-pass, . $05 \mu \mathrm{f}$. .-.............30-4650-45*	Station	selector \qquad ..54-4978-5
	Jack clock ..77-6273	Off-on	54-4815-8
LA1	Loop ..Part of cabinet back		
	Speaker ass'y., p-m ..36-1627-23	Back-and-l	
PC1		Shield,	\qquad 56-5629FA3
PL1			d) \qquad 27-6265*
	Resistor, oscillator grid, 22,000 ohms......66-3228340**	Socket	re (12AV6)
R2	Resistor, i-f screen dropping, 4700 ohms ...66-2478340*	Window,	radio dial \qquad .54-4977-5

SPECIFICATIONS

MODEL B711

NOTE: The antenna is mounted on the cabinet back. When removing the cabinet back, use care to avoid breaking the antenna leads.

TP3-832-1
Figure 1. Base View, Showing Parts Placement

ALIGNMENT PROCEDURE

RADIO CONTROLS-Set volume control to maximum. Set tuning control as indicated in chart.
OUTPUT METER-Connect across voice-coil terminals.
SIGNAL GENERATOR-Connect generator and set
frequency as indicated in chart. Use modulated output.
OUTPUT LEVEL-During alignment, adjust signalgenerator output to hold output-meter reading below 1.25 volts.

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Ground lead to B-; output lead through a $.1-\mu \mathrm{f}$. condenser to grid (pin 7) of 12BE6.	455 kc .	Tuning gang fully open.	Adjust tuning cores, in order given, for maximum output. (TCl and TC3 are located at top of transformers.)	TC4-2nd i.f sec. TC3-2nd i.f pri. TC2-lst iof sec. TC1-1st i-f pri.
2	Radiating loop (see note below).	1620 kc .	1620 kc.*	Adjust trimmer for maximum output.	ClB-osc.
3	Same as step 2.	1500 kc .	$1500 \mathrm{kc} \cdot \dagger$	Adjust trimmer for maximum output.	ClA-antenna

NOTE: Make a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads, and place about 1 foot from radio loop. The position of the radio loop with respect to the chassis should be approximately the same as when both are mounted in the cabinet.

* To set the tuning gang to 1620 kc ., fully open the gang and insert a .006 -inch, nonmetallic shim between the heel of the rotor and the top of the stator plates. Close the gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.
\dagger To set the radio to 1500 kc ., place chassis in cabinet, attach knob to indicate previous setting of 1620 kc ., and tune until pointer indicates 1500 kc . Then remove knob and take chassis from cabinet without disturbing gang setting.

TP3-830-1
Figure 2. Top View, Showing Tuning Adjustments

PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be unchanged. When ordering replacements, use only the "Service Part No."

ALIGNMENT PROCEDURE
GENERAL—Allow the set and the test equipment to SIGNAL GENERATOR-Use an AM r-f signal generator. Connect the ground lead to the chassis, and connect the output lead as indicated in the alignment chart.

OUTPUT LEVEL - Attenuate the signal-generator output throughout the alignment so as to maintain the output level below .3 volt.

RADIO CONTROLS-Set the volume control to maximum. Set the tuning control as indicated in the alignment chart. Set the Battery Saver Switch to the HI position. warm up for fifteen minutes before starting the alignment procedure.

TUNING DIAL-Before proceeding with the alignment, set the index mark on the tuning dial to coincide with the index mark located on the chassis. See figure 1 . The plates of the tuning condensers will be fully meshed.

OUTPUT INDICATOR-Connect the output indicator (a 1000 -ohm-per-volt, a-c voltmeter, or an oscilloscope) across the voice-coil terminals.

ALIGNMENT CHART

STEP	Signal generator		RADIO		ADJUST
	CONNECTION TO RADIO	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	
1	Connect signal generator through a $.1-\mu \mathrm{f}$. condenser to pin 6 (converter grid) of 1 R5.	455 kc .	Tuning gang fully open.	Adjust for maximum output in order given.	TC3-2nd i.f sec. TC2-1st i.f sec. TCl-lst i-f pri.
2	Use radiating loop. (See NOTE 1 below.)	1620 kc .	$\begin{aligned} & 1620 \mathrm{kc} . \\ & \text { (See NOTE } \\ & \text { (Selow.) } \\ & \hline \end{aligned}$	Adjust for maximum output.	C1B-osc. trimmer
3	Same as step 2.	1400 kc .	$\begin{aligned} & 1400 \mathrm{kc} . \\ & \text { (See NOTE } \\ & 2 \text { below.) } \end{aligned}$	Adjust for maximum output.	$\begin{aligned} & \text { C1A—antenna } \\ & \text { trimmer } \end{aligned}$
4	Same as step 2.	600 kc .	$\begin{aligned} & 600 \mathrm{kc} \text {. } \\ & \text { (See NOTE } \\ & 2 \text { below.) } \end{aligned}$	Adjust for maximum output. Rock tuning gang while making this adjustment.	$\begin{aligned} & \text { L1-antenna } \\ & \text { adjusting winding } \end{aligned}$
5	Repeat steps 2, 3, and 4 until no further improvement is obtained.				

NOTE 1: Use a 6-to-8-turn, 6-inch-diameter loop made up of insulated wire. Connect to generator terminals, and place about one foot from radio loop.
NOTE 2: The tuning condenser can be set to the proper frequency by turning the tuning dial until the frequency setting indicated in the chart coincides with the index mark on the chassis. See figure 1.

Figure 1. View Showing Tuning Adjustments and Parts Placement

PARTS LIST NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list.
The values substituted in any case are so chosen that the operation will be unchanged. When ordering replacements, use only the "Service Part No."

[^24]

Figure 1. Drive-Cord Installation Details

PR-2564

ALIGNMENT PROCEDURE

POINTER-Set pointer to coincide with first index mark from left side of dial backplate (looking at front of dial hackplate),
RADIO CONTROLS-Set volume control to maximum; set broadeast-special services switeh, SW1, as indicated in chart.
OUTPUT METER - Connect across voice-coil terminals.
SIGNAL GENERATOR-Use modulated output.

OUTPUT LEVEL-During alignment, adjust signalgenerator output to maintain output-meter indication below .5 volt.
CRITICAL LEAD DRESS-To secure proper padding capacity, the green lead from pin 6 of the 1R5 tube to Z1 must be dressed over the wiring panel, away from the chassis. The white lead which connects the low end of the aerial (LA1) to the broadcast-special services switch (SW1), must be dressed taut between the low-end tie lug and the retaining spring.

Figure 2. Tep View, Showing Trimmer Locations

S76P	SICNAL GENERATOR		RADIO		ADJUST TRIMMER
	CONNICTION TO RADIO	DIAL SITTINC	$\begin{aligned} & \text { dIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	
1	Through a 1 yuf, condenser to pin 6 of 1R5 converter.	2655 kc .	1630 kc . (gang fully open)	Set broadcast-special services switch to broadcast position. Adjust, in order given, for maximum output.	TC5-2nd i-f sec. TC4-2nd i-f pri. TC2-1st i-f pri. TC3-1st i-f sec.
2	Radiating loop. See note below,	1630 ke .	```*1630 kc. (gang fully open)```	Adjust for maximum output. If low-frequency dial tracking is far off, make adjustments in steps 3 and 4 before making this adjustment.	C1B-osc. shunt
3	Same as step 2.	580 kc	580 kc .	Adjust for maximum output while rocking tuning control.	C12-osc. series
4	Same as step 2.	580 kc .	580 kc .	Adjust for maximum output. This adjustment should not be made unless dial tracking is off, or sensitiyity is low at lowfrequency end (580 kc .).	TC1-r-f sec.
5	Same as step 2.	1500 kc .	1500 kc . (index mark at right)	Adjust, in order given, for maximum output.	$\begin{aligned} & \text { C1A-r-f } \\ & \text { C19A-BC aerial } \end{aligned}$
6	Repeat stens 3 and 5 until no further improvement is obtained.				
7	Same as step 2.	3000 ke .	3000 kc .	Set broadcast-special services switch to special services position. Adjust, in order given, for maximum output.	C19C-SS aerial C18—r.f
3	Same as step 2.	1900 kc .	1900 kc .	Adjust, in order given, for maximum output.	C19B-SS aerial series tracker
9	Repeat steps 7 and 8, and then repeat step 5.				

[^25]

MODEL B656

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
C1	Condenser, tuning gang, 3 -section31-2748-5
C1A	Condenser, r-f trimmer ...Part of C1
C1B	Condenser, osc. trimmer ..Part of C1
C2	Condenser, d-c blocking, $100 \mu \mu \mathrm{f}$.62-110009001*
C3	Condenser, bias filter, . $05 \mu \mathrm{f}$. ${ }^{\text {...61-0122* }}$
C4	
C5	
C6	Condenser, screen by-pass, . $05 \mu \mathrm{f}$.61-0122*
C7	Condenser, neutralization, $1.5 \mu \mu \mathrm{f}$.30-1221-3
C8	Condenser, a-v-c filter, . $05 \mu \mathrm{f}$.61-0122 ${ }^{\circ}{ }^{\circ}$
C9	
C10	Condenser, filament by-pass, . $1 \mathrm{\mu}$.61-0113 ${ }^{\circ}$
C11	Condenser, d-c blocking, $47{ }^{\prime} \mu \mathrm{f}$.60-00475420
C12	Condenser, osc. series padder, 700 to $900 \mu \mu \mathrm{f}$.31-6473-28
C13	Condenser, tone compensation $.004 \mu \mathrm{f}$.61-0179
C14	Condenser, screen neutralizing . $003 \mu \mathrm{f}$.45-3505-61
C15	Condenser, line by-pass, . $04 \mu \mathrm{f}$.45-3500-2*
C16	Condenser, ceramic, 4 -section30-1237
C16A	Condenser, screen by-pass, $01 \mu \mathrm{f}$.Part of C16
C16B	
C16C	Condenser, d-c blocking, . $002 \mu \mathrm{f}$.Part of C16
C16D	Condenser, d-c blocking, . $001 \mu \mathrm{f}$.Part of C16
C17	Condenser, electrolytic, 4 -section30-2568-58
C17A	Condenser, filament by-pass, $60 \mu \mathrm{f}$.Part of C17
C17B	Condenser, filter, $60 \mu \mathrm{f} . .^{\text {...Part of C17 }}$
C17C	Condenser, filter, $10 \mu \mathrm{f}$.
C17D	Condenser, filter, $60 \mu \mathrm{f}$, ..Part of C17
C18	Condenser, SS hi-frequency r-f trimmer31-6476-27
C19	Condenser, aerial trimmer, 3 -section31-6477-16
C19A	Condenser, BC hi-frequencyPart of C19
C19B	Condenser, SS low-frequencyPart of C19
C19C	Condenser, SS hi-frequencyPart of C19
C20	
CR1	Selenium rectifier ...34-8003**********)
L2	Coil, oscillator shunt ..32-4562
LA1	Coil, aerial ...-32-4565
LS1	Speaker, 5-inch ...-36-1625
PL1	Plug-and-cable assembly, battery41-3712-5
R1	Resistor, grid return, 2.2 megohms66-5228340*
R2	Resistor, current limiting, 100 ohms66-1108340 ${ }^{\text {a }}$
R3	Resistor, grid return, 4.7 megohms66-5478340*
R4	Resistor, grid return, 100,000 ohms66-4108340 ${ }^{\text {a }}$
R5	Resistor, oscillator coupling, 1500 ohms66-2158340 ${ }^{\circ}$
R6	Resistor, dropping, 15,000 ohms66-3158340 ${ }^{\text {a }}$
R7	Resistor, grid return, 82 ohms66-0828340 ${ }^{\circ}$
R8	Resistor, grid return, 220 ohms66-1228340 ${ }^{\circ}$
R9	Resistor, a-v-c filter, 4.7 megohms66-5478340 ${ }^{\text {a }}$
R10	Resistor, neutralization, 2200 ohms66-2228340*
R11	Resistor, a-v-c filter, 4.7 megohms66-5478340 ${ }^{\text {a }}$
R12	Resistor, i-f filter, 100,000 ohms66-4108340 ${ }^{\text {a }}$
R13	Resistor, volume control, 1 megohm45-5001-21
R14	Resistor, leakage, 150,000 ohms66-4158340*
R15	Resistor, current limiting, 82 ohms66-0828340 ${ }^{\circ}$
R16	Resistor, grid return, 4.7 megohms66-5478340 ${ }^{\text {a }}$
R17	Resistor, plate load, 680,000 ohms66-4688340 ${ }^{\circ}$

Figure 1. Drive-Cord Installation Details

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Ground lead to BOutput lead through a $.01-\mu \mathrm{f}$. condenser to pin 7 (mixer grid) of 12BE6, converter.	455 kc .	Tuning gang fully open.	Adjust in order given in next column, for maximum output.	TC5-2nd i.f sec. TC4-2nd i-f pri. TC3-lst i.f sec. TC2-lst i.f pri
2	Radiating loop. See note 1 below.	1620 kc .	1620 kc See note 2 below.	Adjust for maximum output.	C1C-osc. trimmer
3	Same as step 2.	1520 kc .	Tune radio to generator signal.	Adjust for maximum output. (High-frequency adjustment)	$\begin{aligned} & \hline \text { C1B-mixer-grid } \\ & \text { trimmer } \\ & \text { C1A-r-f trimmer } \end{aligned}$
4	Same as step 2.	580 kc .	Same as step 3.	Adjust for maximum output. (Low.frequency adjustment)	TC1-r-f transformer
5	Repeat steps 3 and 4 until no further improvement is obtained.				
6	Same as step 2.	3200 kc .	Same as step 3.	Adjust for maximum output.	C5-special-services mixer-grid trimmer C2-special-services r.f trimmer
7	Same as step 2.	1800 kc .	Same as step 3.	Adjust for maximum output.	C3-special-services r-f padder

[^26]

Figure 2. Top View, Showing Tuning Adjustments

Figure 3. Base View, Showing Parts Placement

PAGE 23-184 PHILCO
MODEL B964

PARTS LIST

Abstract

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be unchanged. When ordering replacements, use only the "Service Part No."

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
	Condenser, tuning gang, 3 section31-2771-1
C1A	Condenser, trimmer, antennaPart of C1
C1B	Condenser, trimmer, r-fPart of C1
C1C	Condenser, trimmer, oscillatorPart of CI
C2	Condenser, trimmer, special services r-f Part of CAI
C3	Condenser, padder, special services r-f Part of CA1
C4	Condenser, r-f by-pass, . $01 \mu \mathrm{f}$.30-1238-2*
C5	Condenser, trimmer, special services mixer-grid \qquad Part of CA1
C	Condenser, a-v-c by-pass . $05 \mu \mathrm{f}$.30-4650-45*
C7	Cóndenser, fixed trimmer, $7.5 \mu \mu \mathrm{f}$.30-1224-65
C8	Condenser, d-c blocking, $47 \mu \mu \mathrm{f}$.60-00475420
C9	Condenser, screen by-pass, . $05 \mu \mathrm{f}$.30-4650-45*
C10	Condenser, special, B- to chassis, . $1 \mu \mathrm{f}$. ...30-4644-3
C11	Condenser, i-f coupling, $220 \mu \mu \mathrm{f}$.62-122001001*
C12	Condenser, screen by-pass, . $002 \mu \mathrm{f}$.30-1238-8*
C13	Condenser, audio coupling, . $005 \mu \mathrm{f}$.30-1238-1*
C14	Condenser, d-c blocking, . $005 \mu \mathrm{f}$.Part of PC1
5	Condenser, tone compensation, 0033μ f. 30-4650-55
C16	Condenser, electrolytic filter45-3037-3
C16A	
6 B	Condenser, filter, $30 \mu \mathrm{f.}$, , 150vPart of C16
C16C	Condenser, filter, $40 \mu \mathrm{f} ., 150 \mathrm{v}$................Part of C16
C17	Condenser, line by-pass, . $047 \mu \mathrm{f}$.30-4650-45*
C18	Condenser, fixed padder, $1030 \mu \mu \mathrm{f}30-1220-72$
C19	Condenser, bass . comp., . $01 \mu \mathrm{f}$.30-1238-2
C2	Condenser, phono coupling, . 005μ f.30-1238-1
C21	Condenser, high comp., $100 \mu \mu \mathrm{f}$.
C22	Condenser, tone comp., . $002 \mu \mathrm{f}$.30-1238-8
C23	Condenser, cathode by-pass,
CAI	Condenser assembly, trimmer31-6477-17
I1	Lamp, pilot ..34-2068
L1	Coil, special services r-f32-4561-5
L2	
L3	
PC1	
R1	Resistor, screen dropping, 10,000 ohms 66-3108340 ${ }^{\text {* }}$
R2	Resistor, a-v-c load, 4.7 megohms66-5478340*
R3	Resistor, a-v-c load, 2.2 megohms66-5228340*
R4	Resistor, B- to chassis, 150,000 ohms 66-4158340*
R5	Resistor, grid leak, 22,000 ohms66-3228340*
R6	Resistor, grid leak, 2.2 megohms66-5228340*
R7	Resistor, a-v-c load, 2.2 megohms66-5228340*
R8	Resistor, cathode bias, 180 ohms66-1188340*
R9	Resistor, screen dropping, 2200 ohms ...66-2228340*
R10	Resistor, i-f filter, 47,000 ohms.................66-3478340*
R11	Volume control, 500,000 ohms33-5563-64
R12	Resistor, grid leak, 10 megohms66-6108340*

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
R13	Resistor, plate load, 500,000 ohmsPart of PC1
R14	Resistor, grid leak, 500,000 ohmsPart of PC1
R15	Resistor, cathode bias, 150 ohms, 1 watt \qquad 66-1154340*
R16	Resistor, B+ filter, 1200 ohms66-2128340*
R17	Resistor, B+ filter, 220 ohms, 1 watt 66-1224340*
R18	Resistor, tube saver, 100 ohms33-1343-3
R19	Resistor, diode load, 470,000 ohms66-4478340
R20	Resistor, tone control, 5 megohmsPart of R11
R21	Resistor, tone compensation, 33,000 ohms .. 66-3338340
S1	Switch, off-on ..Part of R11
S2	Switch, broadcast-special services42-1893-5
T1	Transformer, oscillator32-4453-2
T2	Transformer, output32-8310-9
W1	Line cord ...2183**
Z1	Transformer, r-f ..32-4399-7A
Z2	Transformer, 1st i-f32-4160A
Z3	Transformer, 2nd i-f32-4240A

MISCELLANEOUS

PARTS COMMON TO ALL MODELS

Description	Service Part No.
Drive cord, $25-\mathrm{ft}$, spool...45-8750* \cdots^{*}	
Spring, drive cord	56-2617
Rubber mount, gang mtg.	27-4596
Shield, tube (2)	56-5629FA3
Socket assembly, pilot lamp	27-6233-6
Socket, tube (2)	27-6203-14
Socket, tube (4)	27-6265
Speed nut (4) ...1W56920FE7	
Knob, band switch ...44-4998	
Knob, off-on-volume ...44-4842-7	
Knob, tone ...76-6353-1	
Knob, tuning ..76-6354-1	
Panel, diffusing ..64-8819	
Pointer ..56-5630-51	
Pointer rail assembly ...76-8067 	
Shaft, tuning ...6-9807-6	
Spring, retaining	28-8610
Speaker	.36-1641-1

Figure 1. Drive-Cord Stringing Arrangement

Figure 2. Top View, Showing Tuning Adjustments

ALIGNMENT PROCEDURE

DIAL POINTER-With tuning-condenser plates fully meshed, set pointer to coincide with alignment index mark on bottom of chassis.

OUTPUT INDICATOR - Connect output indicator (oscilloscope or 1000 -ohms-per-volt a-c voltmeter) across voice-coil terminals.

SIGNAL GENERATOR-Use AM r-f signal generator. Connect output leads as indicated in alignment chart.

RADIO CONTROLS-Set volume control to maximum. Set tuning control as indicated in chart.
OUTPUT LEVEL - During alignment, attenuate
signal-generator output to maintain output level below .5 volt.
NOTE: While the radio is being aligned, the batteries should be in the same position with respect to chassis and loop as they are when in the cabinet.

Figure 3. Front View of Pointer Rail, Showing Alignment Marks

ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		AD.JUST
	CONNECTION TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	
1	Output lead through a . $1-\mu$ f. condenser to antenna section of tuning condenser or to pin 6 of converter (1R5). Ground lead to B-.	455 kc .	Tuning gang fully open.	Adjust, in order given for maximum output.	TC4-2nd if sec. TC2-l st i.f pri. TC3-lst i-f sec.
2	Radiating loop. See NOTE below.	1620 kc .	$1620 \mathrm{kc} . \dagger$	Adjust for maximum output.	C1B-osc. trimmer
3	Same as step 2.	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Between } \\ \text { and } \\ \text { and } \\ \hline \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Tune radio to } \\ \text { generator signal. } \end{array}$	Adjust for maximum output.	C1A-antenna trimmer
4	Same as step 2.	580 kc .	$580 \mathrm{kc} . \dagger$	Adjust for maximum output. Rock tuning gang while making this adjustment.	TCl-osc. core
5	Repeat steps 2, 3, and 4 until no further improvement is obtained.				

NOTE: Use a 6-8 turn, 6 -inch diameter loop made up of insulated wire. Connect to signal-generator leads, and place about 1 foot from radio loop antenna.
\dagger The radio can be set to this frequency by tuning it until the dial pointer coincides with the proper alignment mark on the bottom of the chassis. See figure 3.

MODEL B651

ALL RESISTOR VALUES IN OHMS AND ALL CONDENSER VALUES IN UUF UNLESS OTHERWISE MARKED. *LESS THAN 1 OHM
ALL VOLTAGES SHOWN WERE MEASURED WITH A 20,000-OHMS-PER-VOLT METER FROM POINTS INDICATED TO B-.

Figure 5. Base Vlew, Showing Parts Placement

MODEL B651
 PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be unchanged. When ordering replacements, use only the "Service Part No.".

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
R13	Resistor, bias, 2200 ohms66-2228340 ${ }^{\circ}$
R14	Resistor, flament dropping and filter, 2100 ohms (center-tapped) \qquad
R15	Resistor, filter, 820 ohms66-1828340 ${ }^{\circ}$
R16	Resistor, current limiting, 120 ohms33-1334-14
R17	Resistor, bias, 1500 ohms66-2158340*
R18	Resistor, bias, 330 ohms66-1338340 ${ }^{\circ}$
S1	Switch, off-on ...Part of R8
T1	Transformer, oscillator ...32-4453-1
T2	Transformer, output ..32-8434
W1	Line cord ..L2183
WS	Wafer switch, voltage change-over42-1925
Z1	Transformer, 1st i-f ..32-4160-4A
Z2	Transformer, 2nd i-f ..32-4454-1A

To Remove Hinges

Remove back from cabinet as described at right. Spread the hinge apart to remove it from the cabinet back.

Specifications

Tuning Range
540-1,600 kc
Intermediate Frequency
455 kc
Power Supply Rating
Power Line Operation
115 volts, d. c. or 50 to 60 cycles a. c. 15 watts
or
Battery Operated . using RCA VS 057 Battery (Average battery life - 100 hrs . intermittent service)
Battery current

$$
\text { "A" } 50 \text { ma., "B" } 13 \mathrm{ma} .
$$

Tube Complement

A selenium rectifier is used.

Weight (Approx.)
Without battery... 5 lb .10 oz . With battery... 9 lb .6 oz .
Power Output
Undistorted
.150 watt
Maximum
.325 watt
Loudspeaker
4 in. P.M.
Voice coil impedance
3.2 ohms at 400 cycles

Cabinet Dimensions
Height $8^{5 / 8} \mathrm{in}$. Width. $12^{3 / 4} \mathrm{in}$. Depth. . . . $55 / 8 \mathrm{in}$.

To Remove Chassis:

1. Puli out battery and disconnect battery plug.
2. Unsolder the two loop antenna leads.
3. Remove handle, remove the two large screws (under handle) in the top of the case.

To Remove Cabinet Back

With the back fully open, grip the cabinet as illustrated. Insert a screwdriver under one hinge and pry the center of the hinge out of the opening in the cabinet while maintaining pressure on the back with the fingers and on the cabinet with the thumb. Repeat this procedure with the other hinge. Pull the back straight to the rear using both hands.

Removal of Cabinet Back

Rear View Witb Back Removed

PAGE 23-2 RADIO CORPORATION OF AMERICA

MODEL PX600, Ch. RC-1110
 Alignment Procedure

Output Meter Alignment - If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.
Test Oscillator - For all alignment operations, connect the low side of the test oscillator to the receiver chassis and keep the oscillator output as lọw as possible to avoid AVC action.
Battery operation of the receiver is preferable during alignment; on AC operation an isolation transformer (117v./l17v.) may be necessary for the receiver if the test oscillator is also AC operated.
Dial Pointer Position - With the tuning condenser fully meshed the center of the dial pointer should be in line wit' the score mark on the chassis.

Step	Connect High Side of Sig. Gen. to -	Sig. Gen. Output	Dial Pointer Setting	Adjust for Max. Output
1	Disconnect loop-remove chassis-remove bottom plate.			
2	Pin $\# 6$ of 174 I.F. Amplifier thru 005 mf .	455 kc	Quiet point near 1600 kc	2nd I.F. Trans. T2 Top \& Bottom
3	Pin \#6 of 1R5 Converter thru .005 mf .			lst I.F. Trans. Tl Top \& Bottom
4	Replace bottom cover and install chassis in cabinet. Re-connect loop.			
5	Short wire placed near loop for radiated signal	1620 kc	$\begin{aligned} & \min . \\ & \text { cap. } \end{aligned}$	$\begin{gathered} 1600 \mathrm{kc} \text { osc. } \\ \text { trimmer Cl-3T } \end{gathered}$
6		1400 kc	1400 kc Signal	1400 kc r.t. \& ant. trimmers*
7		Connect a 22,000 ohm resistor in parallel with r.f. tuning cond. Cl-2		
8		600 kc	600 kc Signal	L4 osc. core* while rocking gang
9		Remove the 22,000 ohm resistor from r.f. tuning cond. Cl-2.		
10		500 kc	600 kc Signal	L3 r.f. core
11	Repeat Steps 5, 6, 7, 8, 9 and 10.			

*The position of the battery affects loop inductance. The battery should be in place during steps 5 to 11 .

Critical Lead Dress

1. Dress all filament leads next to chassis.

2: Keep the leads short on the end of the three components ($\mathrm{R} 1, \mathrm{R} 2, \mathrm{C} 2$), which connect to the grid terminal (\#6) of the r.f. socket.
3. Dress tuning condenser leads direct and avoid excess lead length.
4. Dress loop leads away from tuning drum and battery.
5. Dress r.f. plate lead against chassis base.
6. Dress a.v.c. lead against chassis base.
7. Dress $+B$ lead to output transformer against chassis base.
8. Dress lst a.f. plate resistor (R15) up and away from other wiring.
9. Dress all leads away from the ballast resistor. (R19).
10. Dress lst a.f. grid resistor (R12) close to chassis.
11. Dress capacitor C 3 in air between end apron and r.f. coil with foil end to tuning condenser frame.

CAUTION. -

Do not remove any tubes from the chassis with the set operating and the plug connected to the power line. Damage to tubes may result.

RADIO CORPORATION OF AMERICA PAGE 23-3 MODEL PX600, Ch. RC-1110

$\xrightarrow{\text { PoLARIED LINE CORD }}$

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION
		503327	
	CHASSIS ASSEMBLIES	504368	68,000 ohms, $\pm 20 \%$, 1/2 watt Rl0
	RC 1110	504410	100,000 ohms, $\pm 20 \%$, $1 / 2$ watt 5
		504422	220,000 ohms, $\pm 20 \%$, 1/2 watt R15
76660	Capacitor-Variable tuning capacitor complete with drive drumCl-1, Cl-2, Cl-3	504510	$1 \mathrm{megohm}, \pm 20 \%$, 1/2 wattRl6
73153	Capacitor-Ceramic, 4 mmf C21	503518	1.8 megohm, $\pm 10 \%$, 1/2 watt 2
39622	Capacitor-Mica, 56 mmf . C7	504547	4.7 megohm, $\pm 20 \%$, 1/2 wattRl3
71514	Capacitor-Ceramic, 82 mmf C2, Cl2	503556	5.6 megohm, $\pm 10 \%$, 1/2 watt R7
76659	Capacitor-Electrolytic, comprising l section of 50	503533	3.3 megohm, $\pm 10 \%$, 1/2 watt R8
	mfd., 150 voits, l section of 40 mfd ., 150 volts, l sec-	503568	6.8 megohm, $\pm 10 \%$, $1 / 2$ watt Rl
	25 volts Cl8A, Cl8B, Cl8C, Cl8D	504610	10 megohm, $\pm 20 \%$, $1 / 2$ watt ${ }^{\text {a }}$,
73595	Capacitor-Tubular, paper, 0022 mfd ., 600 volts . Cl 7	76658	Shaft-Tuning knob shaft
73795	Capacitor-Tubular, paper, 0033 mfd ., 600 volts . C C8	73117	Socket-Tube socket
73796	Capacitor-Tubular, paper, . 0039 mid , 600 volts . . Cl9	76368	Spring-Drive cord spring
73561	Capacitor-Tubular, paper, . 01 mfd ., 400 volts $\mathrm{Cl3}, \mathrm{Cl} 6$	71039	Switch—"Line-Battery" switch Sl
73562	Capacitor-Tubular, paper, . 022 mfd ., 400 volts .. . Cl 4	71047	Transformer-Output transformer T3
73558	Capacitor-Tubular, paper, $047 \mathrm{mfd} ., 200$ volts C4, C5	73129	Transformer-First I.F. transformer Tl
73553	Capacitor-Tubular, paper, $.047 \mathrm{mfd} ., 400$ volts C3, C6, C9, C10	75487	Transformer-Second I.F. transformer T2
75071	Capacitor—Tubular, moulded paper, . 047 mfd., 400 volts . 200	33726	Washer-"C" washer for tuning knob shaft
73551	Capacitor-Tubular, paper, $0.1 \mathrm{mfd} ., 400$ volts... Cll		SPEAKER ASSEMBLIES $971495-2$
73935	Clip-Mounting clip for I.F. transformers		
73114	Coil-Oscillator coil complete with adjustable core L4, L5	76402	Speaker-4" P.M. speaker complete with cone and voice coil (3.2 ohms)
74992	Coil-R.F. coil complete with adjustable core. L2, L3		MISCELLANEOUS
71041	Connector-5 contact male connector for battery cable		
74285	Control-Volume control and power switch....R9, S2	76664	Antenna-Antenna loop . Ll
+72953	Cord-Drive cord (approx. $47^{\prime \prime}$ overall length required)	76667	Back-Cabinet back complete with hinges
70022	Cord-Power cord and plug	76661	Board-Antenna loop lead terminal board com-lete with clip
74838	Grommet-Power cord strain relief (l set)	76670	Bracket-Carrying handle strap bracket
72283	Grommet-Rubber grommet to mount tuning capacitor (3 required)	76662	Bracket-Mounting bracket for handle (2 required)
18469	Plate-Bakelite mounting plate for electrolytic capacitor	76666	Cabinet-Cabinet complete with escutcheon, dial, "RCA Victor" emblem, grille, baffle and loop-less back and hinges
76656	Pointer-Station selector pointer Pulley-Drive cord pulley	74339	Catch-Cabinet back clip catch-fastens to cabinet front (2 required)
72	Pulley-Drive cord pulley		
74322	Rectifier-Selenium rectifier	74790	Hinge-Cabinet hinge (2 required)
74319	Resistor-Wire wound, 2650 ohms, 7 wattsR19	76663	Knob-Control knob
73237	Resistor-Wire wound, 33 ohms, fuse typeR21	76665	Retainer-Retainer for carrying handle strap (2.required)
504210	Resistors-Fixed, composition: 1000 ohms, $\pm 20 \%$; $1 / 2$ watt R4	74791	Screw-\#4 x 5/16" cross recessed pan head thread cutting screw for catch \#74339
503215	1500 ohms, $\pm 10 \%, 1 / 2$ watt 17	76671	Screw-\#6 x $1 / 2^{\prime \prime}$ cross recessed round head thread cutting screw for carrying handle
503218	1800 ohms, $\pm 10 \%$, 1/2 wattR6, R18		
503227	2700 ohms, $\pm 10 \%$, 1/2 watt 3 3		
513233	3300 ohms, $\pm 10 \%$, l watt R22	76669	Strap-Carrying handle strap
504315	15,000 ohms, $\pm 20 \%$, $1 / 2$ watt R20	76668	Support-Handle assembly support (polystyrene) (2 required)

Model 1R81" Livingston"

Specifications

Tuning Ranges

Standard Broadcast (AM) $540-1,600 \mathrm{kc}$.
Frequency Modulation (FM) 88-108 mc.
Intermediate Frequency. AM- 455 kc ., FM- 10.7 mc .
Tube Complement
(1) RCA 6AU6...Chassis RC-1102......R. F. Amp. RCA 6CB6... Chassis RC-1102A, RC-1102B,
\& RC-1102C F. Amp.
(2) RCA 6X8 \qquad Mixer and Oscillator
(3) RCA 6BA6......................... I. F. Amplifier
(4) RCA 6AU6 \qquad . Driver
(5) RCA 6AL5......................... Ratio Detector
(6) RCA 6AV6....... AM Det.-AVC-A. F. Amp.
(7) RCA 6V6GT AM Det.-A................ Output
(8) RCA 5Y3GT

Rectifier

Circuit Description

The receiver is provided with a tuned RF stage (V1 6AU6 or 6CB6) on both AM and FM bands.
The mixer section of the 6X8 tube (V2) operates as a pentode on AM reception and as a triode on FM reception. This provides best signal to noise ratio.
The range switch has five functions:

1. Selection of AM or FM tuning ranges.
2. Selection and distribution of AVC voltages. Full AVC is applied to V1, V2 and V3 in AM position. Delayed AVC is applied to V1 and V3 in FM position (V2 is not controlled).
3. Controls the application of $\mathrm{B}+$ voltages to the plate and screen circuits of V1 and V2 (disconnected in phono position).
4. Controls audio input to volume control.
5. Switches mixer section of V2 (6X8) from pentode operation on AM to triode operation in FM position.
The driver V4 (6AU6) and ratio detector V5 (6AL5) circuits are similar to those used in other RCA Victor AM-FM receivers.

The audio voltage controlled by the volume control is amplified by V6 (6AV6) and V7 (6 V 6 GT).

The rectifier (V8) is type 5Y3GT.
Power Supply Rating 115 volts, 60 cycles, 70 watts

Loudspeaker

Type..
8 in. P.M.
Voice coil impedance at 400 cycles
3.2 ohms

Tuning Drive Ratio .75/4:1 ($35 / 8$ turns of knob)
Dial Lamps (2) Type No. 44, 6-8 volts, 0.25 amp .
Power Output

Undistorted 2.5 watts
Cabinet Dimensions
Height. 10 in. Width.. $161 / 2$ in. Depth. 9 in.
Weight
$.191 / 2 \mathrm{lbs}$.

Antennas:

The receiver has a built-in Ferrite rod antenna for AM band and the FM antenna input is capacity coupled to power line.
Under average conditions the receiver does not require an external antenna. However, provision is made for the use of external antenna if desired-connect as indicated below:
AM antenna: Open the link (normally connects terminals \#1 and \#2). Connect a single wire antenna to terminal \#1.
FM antenna: Remove the built-in antenna lead from \#3 terminal. Connect the transmission line (300 ohm) from an external dipole antenna to terminals \#2 and \#3.
Ground: An external ground can be attached to terminal \#2 if desired. Under some conditions an external ground is detrimental to FM reception.

Note: For satisfactory reception on FM when using the built-in FM antenna the pozcer cord must be fully extended and must not be coiled or hanked up.

Transformer Substitution:

A few receivers were manufactured using a substitute I.F. transformer (T-3 2nd F.M.). The connections to this transformer differ from that shown in the schematic diagram as follows:
THE ORIGINAL TRANSFORMER IS STAMPED 971169-3.
IN TRANSFORMERS STAMPED 971169-2, CONNECTIONS
TO TERMINALS B AND D ARE INTERCHANGED. D IS CONNECTED TO CHASSIS. B IS CONNECTED TO NO. 3 TERMINAL OF T4.

MODEL 1R81, Ch. RC1102, A, B, C

ALIGNMENT PROCEDURE-LEAD DRESS

Alignment Procedure

Due to the use of separate I.F. transformers, there is little interaction between the 10.7 mc . and the 455 kc . adjustments.

There is a slight interaction of adjustments on the tuning condenser between AM and FM.
If a large amount of adjustment is required of any circuit, all others should be checked in the following order:

FM I.F.
AM I.F.
AM Osc., ant. and r.f. FM Osc., ant. and r.f.

Alignment Indicators:
For measuring the developed d-c voltage across C29 during FM alignment an RCA VoltOhmyst or an equivalent meter should be used. An output meter connected across the voice coil is also needed to indicate minimum audio output during FM Ratio Detector alignment.
The RCA VoltOhmyst can also be used to indicate audio output voltage across the voice coil or developed voltage on the AVC bus.

Signal Generator:

For alignment operations connect the low side of the signal generator to the receiver chassis. The output of the signal generator should always be controlled to prevent over-loading or excessive AVC action.

Oscilloscope Alignment:

It is preferable to use a sweep generator and oscilloscope for aligning I.F. and R.F. circuits to obtain a visual observation of curve shape during alignment.
With FM sweep generator connected between FM ant. (\#3). terminal and chassis and oscilloscope connected between the junction of R28-C30 and chassis the overall FM response may be observed. There should be a peak to peak separation of not less than 180 kc . with $50,000 \mathrm{mv}$. input.

CRITICAL LEAD DRESS

1. Dress diode lead from second I. F. away from filament lead going to 6 AV6 1 st aurlio tube socket.
2. Lead from lug terminal "B" of the 1 st FM transformer to rear switch wafer terminal \#10 should not be changed from the original, 3 inches long plus or mintus $1 / 4$ " of $\# 22$ copper vinylite covered.
3. A.C. leads from power switch on volume control should be dressed as far as possible from the audio-leads and audio coupling condensers near or connecting to the volume control terminals.
4. Ground straps between the R.F. shelf and the main chassis should not be relocated.
5. The connection point of capacitor C 10 is critical, therefore should not be altered. It must be connected to the function switch and not to the I.F. transformer.

6AU6 is used as R.F. Amp. in RC-1102
6CB6 is used as R.F. Amp. in RC-1102A, RC-1102B, RC-1102C

FM Coil Locations

AM Alignment
RANGE SWITCH IN AM POSITION

Steps	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak output
1	Pin 1 of V3 6BA6 in series with .01 mfd .	455 kc .	Quiet point at low freq. end.	T4 bottom core (pri.). T4 top core (sec.).
2	Pin 7 of V2 $6 \mathrm{X8}$ in series with .01 mfd.			T2 top core (sec.). T2 bottom core (pri.).
3	No. 1 terminal on ant. input strip	1620 kc .	High freq. end of dial (min. cap.)	C1-5T
4		1400 kc .	1400 kc . signal	$\begin{aligned} & \text { C1-2T ant. } \\ & \text { C1-3T r.f. } \end{aligned}$
5		Shunt a $\mathbf{1 0 , 0 0 0}$ ohm resistor across the r.f. section of the gang.		
6		600 kc.	600 kc . signal	L6 osc.* (Rock gang.)
7		Remove the $\mathbf{1 0 , 0 0 0}$ ohm resistor and peak L4 r.f.*		
8	Repeat 3, 4, 5, 6 and 7			

* The correct adjustment of the OSC. (L6) core is that peak obtained with core fartherest away from the coil mounting clips. R.F. (L4) core should be set to the peak obtained (2 peaks are seldom obtainable) with core closest to the mounting clips.

FM Alignment
RANGE SWITCH IN FM POSITION - VOLUME
CONTROL. MAXIMUM

Steps	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak output
1	Connect the d-c probe of a VoltOhmyst to the negative lead of the 2 mfd . capacitor C29 and the common lead to chassis.			
2	Pin 1 of V4 6AU6 in series with .01 mfd .	10.7 mc . modulated 30\% 400 cycles AM Adjust to provide 3 to 4 volts indication on VoltOhmyst during alignment.	Quiet point at low freq. end.	T5 top core for max. d-c voltage across C29. T5 bottom core for min. audio output.*
3	Pin 1 of V3 6BA6 in series with .01 mfd .			\dagger T3 top core (sec.). T3 bottom core (pri.).
4	Pin 7 of V2 $6 \mathrm{X8}$ in series with .01 mfd .			$\dagger \dagger$ T1 top core (sec.). T1 bottom core (pri.).
5	\#3 ant. term. in series with a 300 ohm resistor. (Remove ant. lead from \#3 term.)	90 mc .	90 mc .	L7 osc.**
6		106 mc .	$106 \mathrm{mc} .$ signal	$\begin{aligned} & \text { C1-1T ant. } \\ & \text { C1-4T r.f. } \end{aligned}$
7		90 mc .	90 mc . signal	$\begin{aligned} & \text { L1 ant. }{ }^{* *} \\ & \text { L2 r.f } \end{aligned}$
8	Repeat Steps 5, 6 and 7 until further adjustment does not improve calibration.			

* Two or more points may be found which lower the audio output. At the correct point the minimum audio output is approached rapidly At the correct point the minimum audio ou
$\dagger \dagger$ Alternate loading may be necessary to provide accurate observa tion of peaks.
Alternate loading involves the use of a 680 ohm resistor to load the plate winding while the grid winding of the SAME TRANS FORMER is being peaked. Then the grid winding is loaded with the resistor while the plate winding is peaked. Only one winding is loaded at any one time. Remove the 680 ohm resistor after T3 and T1 have been aligned.
Oscillator frequency is above signal frequency on both AM and FM. Extreme care should be used to avoid running the I.F. cores all the way through the winding and out the other end. Double peaks or serious overcoupling will result. The correct adjustment may be determined by tarting the core all the way out (threads extended). The first peak
** Note: FM ang mixer and
** Note: FM antenna, mixer and oscillator coils are adjustable by increasing or decreasing the spacing between turns. The location of the tap on the antenna coil is $5 / 8$ turn $\pm 1 / 8$ turn from the ground end

TUBE AND TRIMMER LOCATIONS－VOLTAGE DATA

Tube	Type	Elements	Pin No．	＂A＂	＂FM＂	Phono．
1	$\begin{gathered} \text { RF amp. } \\ \text { (RAU6 } \\ \text { (RC-1102) } \\ \\ \text { RF amp. } \\ \text { 6CB6 } \\ \text { (RC-1102A) } \end{gathered}$	Plate Screen Cathode Grid Plate Screen Cathode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & \mathbf{1} \\ & 5 \\ & \mathbf{5} \\ & 2 \\ & 1 \end{aligned}$	$\begin{array}{r} 195 \\ 100 \\ 0.2 \\ -1.0 \\ 195 \\ 84 \\ 0.4 \\ -0.4 \end{array}$	$\begin{array}{r} 178 \\ 80 \\ 0.3 \\ -0.6 \\ 151 \\ 64 \\ 0.45 \\ -.5 \end{array}$	二 二 二 $=$
2	$\begin{aligned} & \text { Mixer } \\ & \mathbf{6 \times 8} \\ & \\ & \text { Osc. } \\ & \mathbf{6 X X 8} \end{aligned}$	Plate Screen Grid Plate Grid	$\begin{aligned} & 9 \\ & 8 \\ & 7 \\ & 3 \\ & 2 \end{aligned}$	$\begin{array}{r} 64 \\ 64 \\ -3.1 \\ 83 \\ -5.3 \end{array}$	$\begin{array}{r} 65 \\ 65 \\ -2.2 \\ 77 \\ -1.1 \end{array}$	二
3	$\begin{gathered} \text { IF } \\ \text { amp } \\ \text { amp. } \end{gathered}$	$\begin{gathered} \text { Plate } \\ \text { Screen } \\ \text { Cathode } \\ \text { Grid } \end{gathered}$	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 200 \\ 122 \\ 0.7 \\ -1.4 \end{array}$	$\begin{array}{r} 200 \\ 110 \\ 0.9 \\ -0.4 \end{array}$	$\begin{array}{r} 210 \\ 124 \\ 0.9 \\ -0.7 \end{array}$
4	Driver 6AU6	Plate Screen Cathode	$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 199 \\ & 130 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 202 \\ & 138 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 220 \\ & 150 \\ & 1.6 \end{aligned}$
5	Ratio Det． 6AL5	－	\cdots	－	－	－
6	$\underset{6 A V 6}{\mathrm{AF} \operatorname{amp}_{2} .}$	Plate Grid	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 72 \\ -0.8 \end{array}$	$\begin{array}{r} 72 \\ -0.7 \end{array}$	$\begin{array}{r} 75 \\ -0.7 \end{array}$
7	Output 6V6GT	Plate Screen Cathode	$\begin{aligned} & 3 \\ & 4 \\ & 8 \end{aligned}$	$\begin{array}{r} 244 \\ 200 \\ 10 \\ \hline \end{array}$	$\begin{array}{r} 248 \\ 210 \\ 10.5 \end{array}$	$\begin{array}{r} 248 \\ 230 \\ 12 \end{array}$
8	Rectifier 5Y3GT	Fil．	8	260	262	265

The heater voltage of the mixer／oscillator tube（6X8）is approx． .4 volt lower than other tubes in the same circuit．This is due to the filament choke coils L10 and L11．

Voltages and currents measured with tuning condenser closed and no signal input should hold within $\pm 20 \%$ with rated line voltage．
RCA VoltOhmyst used for measuring all voltages．

Tube		Terminal	A．M．	F．M．	Phono
1	6AU6 （RC－1102） 6CB6 （RC－1102A）	7	2	5.9	4.0
2	6X8	6	4.6	4.6	-
3	6BA6	7	11.6	13.2	13.6
4	6AU6	7	10.4	10.2	11.2
5	6AL5	-	-	-	-
6	6AV6	2	0.3	0.3	0.36
7	6V6GT	8	34	33.4	37
8	5Y3GT	8	65	66	63

Dial Cord and Drive Assembly

PAGE 23-8 RADIO CORPORATION OF AMERICA
MODEL 1R81, Ch. RC1102, A, B, C

$*$ In Chassis No. RC-1102A the R.F.
amplifier is RCA
6CB6. Socket con$\underset{\text { RATIO }}{\text { VAL }}$ DET.

$$
6 V_{67}^{V 7}-G T
$$

RADIO CORPORATION OF AMERICA PAGE 23-13

© John F. Rider

PAGE 23-14 RADIO CORPORATION OF AMERICA

MODEL 1R81, Ch. RC1102, A, B, C

Stock No.	DESCRIPTION	Stock No.	DESCRIPTION
	CHASSIS ASSEMBLIES	503233	3,300 ohms, $\pm 10 \%, 1 / 2$ watt (R29)
	RC 1102, RC 1102A	5503282	8,200 ohms, $\pm 10 \%, 1 / 2$ watt (R4)
76343	Antenna-Ferrite rod antenna complete with coil less masonite support and grommets	503310 $\mathbf{5 0 3 3 1 5}$	10,000 ohms, $\pm 10 \%, 1 / 2$ watt (R38 in RC-1102B, RC-1102C) 15,000 ohms, $\pm 10 \%, 1 / 2$ watt (R28) (R35 in RC-1102, RC-
12717	Board-Antenna terminal board	503318	18,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R9) (R40, R41, in RC-1102B,
76325	Bracket-Drive cord pulley bracket with two (2) pulleys		RC-1102C) ${ }^{\text {c }}$
76333	Capacitor-Variable tuning capacitor (C1-1, C1-2, C1-3, C1-4, C1-5, C1-6)	$\begin{aligned} & 503322 \\ & 503327 \end{aligned}$	$22,000 \mathrm{ohms}, \pm 10 \%, 1 / 2$ watt (R17, R34) 27,000 ohms, $\pm 10 \%, 1 / 2$ watt (R38 in RC-1102, RC-1102A)
76677	Capacitor-Ceramic, 1.2 mmf . (C44)	513333	27,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R38 in RC-1102, RC-1102A) 33,000 ohms, $\pm 10 \%$, 1 watt (R10)
57090	Capacitor-Ceramic, 3 mmf . (C42)	503339	39,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R31 in RC-1102, RC-1102A)
76350	Capacitor-Ceramic, 10 mmf . (C10)	503347	47,000 ohms, $\pm 10 \%, 1 / 2$ watt (R35 in RC-1102B, RC-1102C)
76349	Capacitor-Ceramic, 12 mmf . (C11)	503410	
76348	Capacitor-Ceramic, 47 mmf . (C9)	503412	120,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R11)
75437 76347	Capacitor-Ceramic, 100 mmf . (C19)	$\begin{aligned} & 503433 \\ & 503439 \end{aligned}$	330,000 ohms, $\pm 10 \%, 1 / 2$ watt (R22) 390,000 ohms, $\pm 10 \%, 1 / 2$ watt (R13)
44202	Capacitor-Ceramic, 150 mmf . (C37 in RC-1102, RC-	504447	470,000 ohms, $\pm 20 \%$, $1 / 2$ watt (R25, R32)
	1102A)	503456	560,000 ohms, $\pm 10 \%, 1 / 2$ watt (R39 in RC-1102, RC-1102A)
39632	Capacitor-Mica, 150 mmf . (C41)	504522	2.2 megohm, $\pm 20 \%$, $1 / 2$ watt (R1, R5)
75611 39640	Capacitor-Ceramic, 220 mmf . (C2, C7)	503539	3.9 megohm, $\pm 10 \%$, $1 / 2$ watt (R8)
39640 39662	Capacitor-Mica, 330 mmf . (C24, C25) Capacitor-Mica, 2700 mmf . (C38)	504610	10 megohm, $\pm 20 \%$, $1 / 2$ watt (R15)
73473	Capacitor-Ceramic, 4700 mmf . (C3, C6, C8, C13, C14, C15,	576339	Shaft-Tuning knob shaft
	C17, C21) (C23 in RC-1102B, RC-1102C) (C26, C27, C28,	73584	Shield-Tube shield for V1, V6
	C36, C39, C40)	76331	Shield-Tube shield for V2
39668	Capacitor-Mica, 4700 mmf . (C12)	35787	Socket-Phono input socket (J1)
73747	Capacitor-Electrolytic, 2 mfd ., 50 volts (C29)	73117	Socket-Tube socket, 7 pin, miniature
76330	Capacitor-Electrolytic comprising 1 section of 30 mfd ., 350 volts, 1 section of 50 mfd ., 300 volts and 1 section of $20 \mathrm{mfd} ., 25$ volts (C35A, C35B, C35C)	$\begin{aligned} & 70827 \\ & 76336 \end{aligned}$	Socket-Tube socket, octal, wafer Socket-Tube socket, 9 pin, miniature, saddle mounted
75249	Capacitor-Tubular, paper, . 001 mf ., 600 V (C 16 in RC-	35574 76332	Socket-Dial lamp socket
	1102, RC-1102A)	76342	Support-Antenna support (masonite) only
73818	Capacitor-Tubular, paper, 0027 mf ., 1600V (C32 in RC-	76334	Switch-Function switch (S1-1, S1-2, S1-3)
	Capacitor-Tubular, paper, 0033 mf , 690 V (C 16 in	76326	Transformer-Power transformer 117 volt 60 cycle (T7)
73795	Capacitor-Tubular, paper, . 0033 mf ., 600 V (C16 in 1102B, RC-1102C)	$\begin{aligned} & \mathbf{7 6 3 2 7} \\ & \mathbf{7 3 7 4 3} \end{aligned}$	Transformer-Output transformer (T Transformer-Ratio detector transfor
73819	Capacitor-Tubular, paper, . 0033 mf . 1600V (C32 in RC-	76335	Transformer-First I.F. transformer-A.M. (T2)
	1102B, RC-1102C)	75559	Transformer-First I.F. transformer-F.M. (T1)
73920	Capacitor-Tubular, paper, .0047 mf ., 600V (C22 in RC- 1102B, RC-1102C) (C23 in RC-1102, RC-1102A) (C30, C33)	76328	Transformer-Second I.F. transformer-A.M. (T4)
73561	Capacitor-Tubular, paper, $.01 \mathrm{mfd} ., 400$ volts (C31)	76329 33726	Transformer-Second I.F. transformer-F.M. (T3)
73797	Capacitor-Tubular, paper, 015 mf ., 600 V (C43 in RC- $1102, \text { RC-1102A) }$	33726	Washer- "C" washer for tuning knob shaft or for station selector shaft and pulley
73562	Capacitor-Tubular, paper, . 022 mfd ., 400 volts (C20)		
73554	Capacitor-Tubular, paper, .027 mf ., 400 V (C22 in RC1102, RC-1102A).		Stamped 92586-6W, 92586-7W or 92586-8W
73558	Capacitor-Tubular, paper, .047 mf ., 200V (C5, C18) (C43 in RC-1102B, RC-1102C)	75023	Cap-Dust cap RMA 274
73784	Capacitor-Tubular, paper, $0.1 \mathbf{m f d}$., 200 volts (C34)	75024	Cone-Cone and voice coil assembly ($3.2 \mathrm{ohms} \mathrm{)}$
73935	Clip-Mounting clip for A.M.-I.F. transfor	76392	Speaker - 8" P.M. (92586-7W) speaker complete with cone
76337	Coil-Oscillator coil-A.M.-complete with adjustable core (L5, L6)	74664	and voice coil Speaker-8" P.M. speaker (92586-8W) complete with cone
76338	Coil-RF coil-A.M.-complete with adjustable core (L3, L4)		and voice coil
76352	Coil-Oscillator coil-F.M. (L7)		MISCELLANEOUS
76353	Coil-RF coil-F.M. (L2)	76359	Back-Cabinet back
76354	Coil-Antenna coil-F.M. (L1)	76355	Bezel-Decorative bezel-round-for front of cabinet
71942	Coil-Filament choke coil (L9)	Y2328	Cabinet-Plastic cabinet-maroon
76351	Coil-Filament choke coil (L10, L11)	76678	Clip-Spring clip for ca binet back
70342	Control-Volume control and power switch (R14, S2)	76363	Decal-Control function decal-early type (below knobs)
75538	Contro-Tone control (R24)	76767 76356	Decal-Control function decal-late type (above knobs)
+72953	Cord-Drive cord (approx. $51^{\prime \prime}$ overall length required)	74782	Emblem-"RCA Victor'" emblem
74839	Fastener-Push fastener for RF shelf mounting (4 req'd)	76360	Knob-Function switch knob-type \#1
74838	Grommet-Power cord strain relief (1 set)	73378	Knob-Function switch knob-type \#2
16058	Grommet-Rubber grommet for RF shelf (4 req'd)	75712	Knob-Function switch knob-type \#3
76344	Grommet-Rubber grommet for mounting ferrite rod antenna to masonite support (2 req'd)	76765 76361	Knob-Function switch knob-type \#4
76345	Insert-Hard rubber insert for antenna mounting grommets (2 req'd)	74711	Knob-tuning control, tone control or volume control and power switch knob-type \#1
76340	Pan-Speaker pan assembly complete less station selector		and power switch knob-type \#2
76341	Puiley-Station selector pointer shaft and pulley	75714	Knob-tuning control, tone control or volume control
76346	Resistor-Wire wound, 1200 ohms, 4 watts (R33) Resistors-Fixed, composition:	76766	Knob-tuning control, tone control or volume control and power switch knob-type \#4
503068	68 ohms, $\pm 10 \%$, $1 / 2$ watt (R2, R12)	11891	Lamp-Dial lamp-Mazda 44
503110	100 ohms, $\pm 10 \%$, $1 / 2$ watt (R27)	76425	Nameplate-"AM-FM'' nameplate (tenite)
503112	120 ohms, $\pm 10 \%$, $1 / 2$ watt (R16)	72765	Nut-Speed nut to fasten bezel assembly (4 req'd)
513133	330 ohms, $\pm 10 \%$, 1 watt (R26)	76362	Pointer-Station selector pointer
503139	390 ohms, $\pm 10 \%, 1 / 2$ watt (R6)	76357	Reflector-Dial scale reflector
503156 503168		76358	Screen-Grille screen
503168 $\mathbf{5 0 3 2 1 2}$	680 ohms, $\pm 10 \%, 1 / 2$ watt (R7, R18, R19) 1,200 ohms, $\pm 10 \%, 1 / 2$ watt (R30, R36)	$\begin{aligned} & 74734 \\ & 14270 \end{aligned}$	Spring-Retaining spring for knobs-types \#1, \#3, and \#4

Differing Types of Knobs-Model 1R81
Change in Parts List:

MISCELLANEOUS

CHASSIS ASSEMBLIES

Add:

77232
77233
Delete:
76347 Capacitor-Ceramic, 120 mmf (C4)
73784 Capacitor-Tubular, paper, $0.1 \mathrm{mf}, 200$ volts (C34)

76958 Capacitor-Ceramic, 120 mmf (C4) ${ }^{2} 551$ Capacitor—Tubular, paper, $0.1 \mathrm{mf}, 40$ volts

Knob-Function switch knob-type 5 Knob-Tuning control, tone control or volume control and power switch knob-type 5 (Type 5 knob is illustrated

SPECIFICATIONS

Top View

CRITICAL LEAD DRESS

1. Oscillator coil should be centered in space provided and have at least $1 / 4$ inch between winding and chassis.
2. The filament wiring should be dressed down on chassis and away from audio leads and audio coupling condensers.
3. The I.F. plate and grid leads, including the 2nd I.F. diode lead should be as short as practical.
4. The output plate by pass condenser should be dressed against the side of the chassis and away from the lst audio grid condenser and the diode filter resistor.
5. Output transformer primary leads should be dressed away from the selenium rectifier.
6. The loop antenna should be accurately centered in its position on the fishpaper cover. The ends must not project beyond the fishpaper.

ALIGNMENT PROCEDURE

Test-Oscillator-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.
On a.c. operation an isolation trơnsformer ($115 \mathrm{v} . / 115 \mathrm{v}$.) may be necessary for the receiver if the test oscillator is also a.c. operated.

Output Meter-Connect meter across speaker voice coil Turn volume control to maximum.

Step	Connect the high side of test-oscillator to-	$\begin{gathered} \text { Tune } \\ \text { test-osc. } \\ \text { to- } \end{gathered}$	Turn radio dial to-	Adjust the following for max. output
1	6BJ6 I-F grid through 01 mfd. capacitor	455 kc	Quiet- point 1600 kc end of dial	T2 (top and bottom) 2nd I-F. trans
2	Stator of ClA through .01 mfd .			Tl (top and bottom lst I-F trans.
3	Short wire placed near loop to radiate signal	1620 kc	Min. cap.	osc. trimmer ClB-T
4		1400 kc	1400 kc signal	ant. trimmer ClA-T
5		Repeat steps 3 and 4		

Note: In some receivers, R 2 is $22 \mathrm{ohm}, 1 / 2 \mathrm{w}$. composition
Schematic Diagram

$\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { NO. } \end{gathered}$	DESCRIPTION
	CHASSIS ASSEMBLIES	503547	4.7 megohm, $\pm 10 \%$, $1 / 2$ watt. 77
	RC 1119-2R51 RC 1119A-2R52	76723	Socket-Lamp socket
		75780	Socket-Tube socket, 7 pin, miniature saddle-mounted
77438	Antenna-Ferrite rod antenna complete with windings. ...Ll	77441	Transformer-Filament transformer 117 volts AC..........T4
77440	Capacitor-Variable tuning capacitor............ClA, ClB	74445	Transformer-Output transformer......................... T3
77471	Capacitor-Ceramic, 4.7 mmf............................ . $\mathrm{Cl3}$	77416	Transformer-lst I.F. transformer complete with adjustable
75609	Capacitor-Ceramic, 47 mmf C2		cores .. . 1
76347		77417	Transformer-2nd I.F. transformer complete with adjustable
75611			
77443	Capacitor-Electrolytic comprising l section of 50 mfd ., 150 volts and 1 section of $30 \mathrm{mfd} ., 150$ volts..........C5A, C5B	77420	Washer-Shoulder washer (nylon) for mounting variable tuning capacitor
77446	Capacitor-Tubular, paper, . 0022 mfd., 400 volts.......... C9		
77447	Capacitor-Tubular, paper, . $0033 \mathrm{mtd} ., 400$ volts........ . Cl 10		SPEAKER ASSEMBLIES
77424	Capacitor-Tubular, paper, $01 \mathrm{mfd} ., 200$ volts......... C 8		922258-7
77448	Capacitor-Tubular, paper, $027 \mathrm{mfd} ., 200$ volts Cll	77451	
77422	Capacitor-Tubular, paper, 047 mfd ., 400 volts...........C4 Capacitor-Tubular, moulded paper, .047 mfd ., 400 volts. .C3	7751	coil (3.2 ohms)
77423	Capacitor-Tubular, moulded paper, . $047 \mathrm{mfd} ., 400$ volts. .C3		
73935	Clip-Mounting clip for I.F. transformer		MISCELLANEOUS
77450	Coil-Oscillator coil 22 , L3	77457	Case-Polystyrene case--black \& beige-complete with
77442	Controi-Volume control and power switch...........R6, S.		speaker baffle and screen assemblies less bottom cover for Model 2R51
70392	Cord-Power cord and plug	77465	
77439	Cover-Insulating cover for chassis	77465	Case-Mle and screen assemblies less bottom cover for Model
74838	Grommet-Power cord strain relief (l set)		2R52
77405	Insulator-Bakelite insulator for variable tuning capacitor	77456	Clip-Spring clip to mount station selector pointer
77444	Nut-Speed nut for output transformer mounting screws	77458	Cover-Bottom cover-beige-for Model 2R51
28452	Plate-Bakelite mounting plate for electrolytic	77466	Cover-Bottom cover-ivory-for Model 2R52
77292	Rectifier-Selenium rectifier CR1	77453	Dial-Dial knob-black \& gold-for Model 2R51
77571	Resistor-Wire wound, fuse type, 22 ohms, 0.4 amps......R2	77464	Dial-Dial knob-tan \& gold-for Model 2R52
503110	Resistor-Fixed, composition:- 100 ohms, $\pm 10 \%$, $1 / 2 \mathrm{watt}. ~$ 11	77452	Knob-Volume control and power switch knob-black \& gold -for Model 2R51
503147	470 ohms, $\pm 10 \%$, $1 / 2$ watt. Rlo	77463	
523215	1500 ohms, $\pm 10 \%$, 2 watts . R3		for Model 2R52
503268	6800 ohms, $\pm 10 \%$, $1 / 2$ watt . R12	11765	Lamp-Pilot lamp-Mazda 51
503333	33,000 ohms, $\pm 10 \%$, $1 / 2$ watt............................. Rl	77455	Pointer-Station selector pointer
503347	47,000 ohms, $\pm 10 \%$, 11/2 watt. R 5	77454	Screw-\#8-32 x $3 / 8{ }^{\prime \prime}$ ' cross recessed truss head machine screw
503433	330,000 ohms, $\pm 10 \%$, 112 watt. R8		for fastening bottom cover
503482	820,000 ohms, $\pm 10 \%$, 1/2 watt . $\mathrm{R9}$	76783	Shield-Pilot lamp shield
503533	3.3 megohm, $\pm 10 \%$, $1 / 2$ watt. 4	74734	Spring-Spring clip for volume control knob or dial knob

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

John F. Rider

RADIO CORPORATION OF AMERICA PAGE 23-17 MODELS 1X591, Ch. RC1079K; 1X592, Ch. RC1079L
1X591
Maroon
1X592
Ivory

Specifications

Tuning Range \qquad 540-1600 kc
Intermediate Frequency \qquad 455 kc
Tube Complement
(1) RCA 12SA7

...

\qquad Converter
(2) RCA 12SK7 \qquad F Amplifier
(3) RCA 12SQ7 T \qquad Det.-A.V.C.-A-F Amp.
(4) RCA 50L6GT \qquad Output
(5) RCA 35Z5GT

Rectifier

Power Supply Rating

115 volts a.c., 50 to 60 cycles or d.c.
30 watts

Power Output
\qquad
Maximum .85 watts
ial Lamps (2) \qquad Mazda type $1490,3.2$ volts, 16 amp .
Loudspeaker

> Size and Type
\qquad 8 in. PM
Voice Coil Impedance \qquad 3.2 ohms at 400 cycles

Cabinet Dimensions
Height 91/2". Width 121/2" Depth 81/2"
Weight \qquad 9 lbs.
Tuning Drive Ratio \qquad 9 to 1 ($4^{1 / 2}$ turns of knob)

Procedure

Lead Dress

1. Dress all heater leads down to chassis and away from all audio grid and plate wiring.
2. Dress power cord against chassis base.
3. Dress capacitor C18 against back apron.
4. Dress capacitor Cl 3 down to base alongside of shielded lead.
5. Dress output transformer leads down to chassis.
6. Dress capacitors C 9 and C 15 as direct as possible.
7. Dress dial lamp leads on top of chassis between 12SQ7 and 50L6GT tubes; below chassis, as short as possible to rectifier socket.
8. Dress excess loop leads away from tubes and clear of tuning condenser.

Test-Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid $\alpha-v-c$ action.

On AC operation an isolation transformer (115 v./115 v.) may be necessary for the receiver if the test oscillator is also AC operated.

Dial Calibration

With the tuning condenser fully meshed, the dial pointer should be set to the first score mark at the left-hand end of the dial back plate. The four score marks represent: Max cap. 600 kc

1400 kc
$\min . c a p$.

Steps	Connect the high side of test-oscillator to-	Tune test-osc. to-	Turn radio dial to-	Adjust the following for max. output
1	12SK7 I-F grid through 0.1 mid. capacitor	455 kc	Quiet-point 1600 kc end of dial	T2 (top and bottom) 2nd I-F trans
2	Stator of Cl through 0.1 mfd .			${ }^{-T 1}$ (top and bottom) 1st I-F trans.
3	Short wire placed near loop to radiate signal	1620 kc	Min. cap.	C4 (osc.)
4		1400 kc	1400 kc signal	†C2 (ant.)
5		600 kc	600 kc signal	L3 (osc.) Rock gang
6		Repeat steps 3, 4 and 5.		

* Do not readjust T2 when test oscillator is connected to Cl . \dagger When adjusting C2 (ant. trimmer) it is necessary to have the speaker and loop in the same position and spacing as they will speaker and loop in the same position

POWER SUPPLY POLARITY.-For operation on d.c., the power plug must be inserted in the outlet for correct polarity. If the set does not function, reverse the plug. On a.c., reversal of the plug may reduce hum.

MODELS 1X591, Ch. RC1079K; 1X592, Ch. RC1079L

\dagger Stock No. 72953 is a reel containing 250 feet of cord.

Change in Resistor:

In late production of these receivers the fusa resistor R16 is changed from 15 ohms, $1 / 2$ watt to 33 ohms, 1 watt. The Stock No. of the 33 ohm resistor is 514033 .

Change in Parts List:

The Service Data for these models lists only one emblem. The listed emblem (Stock No. 76588) is correct for Model 1X591 only and is maroon color. The correct emblem for Model 1X592 is Stock No. 74782 and is gold finish.

Change in Control Knob:

Late production of these models use control knobs with a dimpled edge.
The stock Nos. of the dimpled knobs are as follows:
77234 Knob-Control knob-maroon-for Model 1×591
77235 Knob-Control knob-ivory-for Model lX592

RADIO CORPORATION OF AMERICA PAGE 23-19 MODELS 1X51, 1X52, 1X53, 1X54, 1X55, 1X56, 1X57, Ch. RC1104, A, B, -1, A-1, B-1, C, D, E

1 X51 SERIES:

Specifications

```
Tuning Range
Intermediate Frequency
\(.540-1600 \mathrm{kc}\)
Tube Complement
CHASSIS NO. RC 1104, RC 1104A, RC 1104B
(1) RCA 12SA7
.Converter
(2) RCA 12BA6 ..........................................................I.F. Amplifier
(3) RCA 12SQ7 .....................................Det.-A.V.C.-A.F Amp.
(4) RCA 50L6GT ...............................................................Output
(5) RCA 35Z5GT ................................................................Rectifier
```

CHASSIS NO. RC 1104-1, RC 1104A-1, RC 1104B-1
Same as above except rectifier is RCA 35W4 instead of RCA 35Z5GT.

CHASSIS NO. RC 1104C, RC 1104D, RC 1104E
(1) RCA 12BE6 \qquad Converter
(2) RCA 12BA6 ..I.F. Amplifier
(3) RCA 12AV6Det.-A.V.C.-A.F. Amp.
(4) RCA 50C5 ...Output
(5) RCA 35W4
.Rectifier
Dial Lamp \qquad Type 47, 6-8 volts, 0.15 amp .

Chassis Identification

Model No.	1X51	$\begin{aligned} & 1 \mathrm{X} 52 \\ & 1 \times 57 \end{aligned}$	$\begin{aligned} & \text { 1X53, 1X54 } \\ & \text { 1X55, 1X56 } \end{aligned}$
Chassis No.	RC 1104 RC 1104-1 RC 1104C	RC 1104A RC 1104A-1 RC 1104D	RC 1104B RC 1104B-1 RC 1104E

Power Supply Rating
115 volts, AC, 50 or 60 cycles, or DC 30 watts

Loudspeaker
Size and Type 4-inch PM
V.C. Impedance 3.2 ohms at 400 cycles

Power Output
Undistorted
1.1 watts

Maximum
.1.4 watts
Dimensions (Overall)
Height............75/8" Width............119/16" Depth............63/4"
Weight \qquad .6 lbs. net

Dial Centering

If the mounting of the tuning condenser has been disturbed, it may be necessary to adjust its position after replacing the chassis in the cabinet. This may be done in the following manner:

1. Replace tuning knob.
2. Install chassis and tighten the mounting screws.
3. Loosen the two screws which hold the tuning condenser mounting bracket to the chassis.
4. Adjust the position of the tuning condenser mounting bracket so that the tuning knob may be rotated without binding on the cabinet.
5. The two screws should then be tightened to maintain this position.

Power Supply Polarity

For operation on d-c, the power plug must be inserted in the. outlet for correct polarity. If the set does not function, reverse the plug. On a-c, reversal of the plug may reduce hum.

Replacement of Dial Lamp

To replace the dial lamp the back cover must be removed. It is secured to the cabinet with four spring clips. Use care to avoid breaking the lead wires from the back cover to the chassis. The dial lamp socket is lacated at the upper left corner of the speaker and may be removed by pulling. diagonally up and to the right.
If higher than normal line voltage causes repeated burning out of the dial light, it may be replaced with a type \#44 lamp instead of the specified type \#47. Type \#44 will. provide less illumination than type \#47, but it will last longer:

MODELS 1X51 Series, Ch. RC1104,

A, B, -1, A-1, B-1, C, D, E

Alignment Procedure

Critical Lead Dress

1. Dress all capacitors down against chassis. Connect outside foil of all capacitors as indicated in schematic diagram.
2. Locate C-10 in its mounting clip so that it butts against end of chassis.
3. Dress all circuit wiring against chassis.
4. Dress R-1l away from R-4.
5. Dress junction of R-2 and C-2 to prevent short circuits to chassis and dial back plate.

Tube and Trimmer Locations
Chassis No. RC 1104, RC 1104A, RC 1104B
For Chassis No. RC 1104-1, RC 1104A-1 and RC-1104B-1 the rectifier tube is type 35 W 4 instead of $35 Z 5 \mathrm{GT}$.

Test-Oscillator

For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid $\alpha-v-c$ action.

On AC operation an isolation transformer (ll5 v./l15 v.) may be necessary for the receiver if the test oscillator is also AC operated.

Steps	Connect the high side of test-oscillator to-	Tune test-osc. to-	Turn radio dial to-	Adjust the following for max. output
1	12BA6 I-F grid through . 01 mfd. capacitor	455 kc	Quiet-point 1600 kc . end of dial	*T2 (top and bottom) 2nd I-F trans.
2	Stator of Cl-2 through .01 mfd .			T1 (top and bottom) lst I-F trans.
3	Short wire placed near loop to radiate signal	1620 kc	Extreme clockwise (plates fully open)	osc. trimmer
4		1400 kc	1400 kc signal	tant. trimmer
5		600 kc	600 kc signal	L2 (osc.) Rock gang
6		Repeat steps 3, 4 and 5.		

* Do not readjust T 2 when test oscillator is connected to $\mathrm{Cl}-2$.
\dagger When adjusting ant. trimmer it is necessary to have the loop in the same position and spacing as it will have when assembled in the cabinet. This spacing is approximately $51 / 2^{\prime \prime}$ from dial back plate to loop.

Schematic Circuit Diagram
CHASSIS NO. RC 1104C, RC 1104D, RC 1104E

Production Changes

In early production RC 1104, RC 1104A and RC 1104B:
R3 was 3.3 megohm (now 2.2 meg.).
R6 was 10 megohm (now 4.7 meg.).
R13 was omitted (plate circuit of rectifier tube).
A few lst I.F. transformers (T1) were used which had an incorrect primary capacitor. To permit the use of these transformers, two 5 mmf . ceramic capacitors were added across the primary (Term. \#1 to Term. \#2).

In early production RC 1104-1, RC 1104A-1, and RC 1104B-1: R13 was omitted (plate circuit of rectifier tube).

Change in Power Cord Location:

To facilitate wiring, the power cord in late production of these receivers has been changed to enter the chassis at the outer lower corner instead of the corner close to the speaker.

Change in Volume Control Knob:

The original volume control knob had a smooth outer edge. The knob used in late production has a dimpled edge. The Stock Nos. of the new knobs are listed below.

77140 Knob-Volume control knob-maroon-Model 1X51
77235 Knob-Volume control knob-ivory -Model 1X52
77237 Knob-Volume control knob-green -Model 1X53
77238 Knob-Volume control knob-tan -Model 1X54
77239 Knob-Volume control knob-blue -Model 1X55
77240 Knob-Volume control knob-red -Model 1X56
77236 Knob-Volume control knob-white -Model 1 X57

Tabe and Trimmer Locations
Chassis No. RC 1104C, RC 1104D, RC 1104E

2 B 400 SERIES		
2 B 400	2 B 401	2 B 402
Grey	Black	Ivory
2 B 403	2 B 404	$2 B 405$
Green	Tan	Red

Specifications

Tuning Range

\qquad $.540-1600 \mathrm{kc}$

Intermediate Frequency

\qquad .455 kc

Tube Complement:

1. RCA IR5 \qquad .Converter
2. RCA 1 U 4
3. RCA IUS
\qquad I.F. Amplifier
4. $\mathrm{RCA} 3 \mathrm{~V}_{4}$ \qquad Output

Loudspeaker

Size and type \qquad ..2" x $3^{\prime \prime}$ P.M.
Voice coil impedance $113 / 4$ ohms at 1000 cycles
Weight (with batteries) .approx. $33 / 4 \mathrm{lbs}$.

Batteries Required:
Type of Battery
$\left.\begin{array}{l}\text { "A"-1.5 volt (two) } \\ \left.\begin{array}{l}\text { RCA VS } 236 \\ \text { "B"-67.5 volts } \\ \text { RCA VS } 216\end{array}\right\},{ }^{216}\end{array}\right\}$

Current Drain

Normal Pos.	Saver Pos.
0.25 cmp .	0.20 dmp .
8.45 ma .	5.45 ma .

Battery life is approximately 100 hrs . intermittent service with battery-saver, switch in "Normal" position. With switch in "Saver" position, battery life is increased approximately 30%.

Power Output:
Undistorted
.075 watt
Maximum 0.10 watt

Dimensions (over-all) .approx. $87 / 8^{\prime \prime} \times 57 / 8^{\prime \prime} \times 211 / 16^{\prime \prime}$

Case Back

To remove-insert small coin in the slot at top rear of case and pry open.

To replace-insert bottom edge into case and snap top edge in place.

CHfOn Indicator

A window in the case (just below edge of volume control knob) indicates whether set is turned ON or OFF. "ON" appears in window when set is turned $O N$ and disappears when set is turned OFF.

Battery-Life Saver Switch

Maximum power is obtained when the slider button is pushed toward left (outer edge of case). Extra battery life with slight effect on performance is obtained with the slider button pushed to the right (toward center of case).

Battery Life

The life of the " A " and " B " batteries is approximately equal. For best performance all batteries should be replaced at the same time.

PAGE 23-24 RADIO CORPORATION OF AMERICA
MODELS 2B400, 2B401, 2B402, 2B403, 2B404, 2B405, Ch. RC1114

Output Meter.-Connect meter to voice coil terminals. Turn volume control to maximum position.

Test-Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.
Note:-The ant. coil is supplied pre-adjusted and cemented to rod. This makes further adjustment unnecessary. However when replacing ant. assembly make certain that the coil end of the rod is fully entered in its rubber mounting grommet but does not extend through the grommet more than is required to permit the opposite end to fit inside the case.

Replacement of Component Parts

I. To Remove Back Cover
a. Depress top of case midway between the handle supports, until the top end of the back separates from the main case.
b. Pull the back cover back and up, thereby unhooking the retaining lugs in the bottom of the main case.
II. To Replace Batteries
a. Remove back cover.
b. Remove both " A " and " B " batteries. The " B " battery snap fasteners can best be removed by inserting a screwdriver under the snap fastener strip and prying upward.
c. The " A " batteries can easily be removed by pulling up on the spring wire clips.
Note: The " A " and " B " batteries have approximately equal life and therefore it is advisable to replace all batteries at one time.
III. To Remove Chassis
a. Remove dial knob by grasping with finger tips at two sides and pulling.
b. Remove back cover.
c. Remove batteries.
d. Remove " $\mathrm{A}+$ " coniacts by squeezing against case and sliding out of slots in case.
e. Remove the four screws "A."
f. Grasp the assembly by the speaker and pull the bottom end down and outward to clear the volume control knob.
IV. To Replace Chassis
a. Observe the position of the battery save button extension in relation to the "battery-save" switch. This extension must engage with the center of the battery save switch.
b. Replace in reverse order to that given for chassis removal.

v. To Remove Handle

a. Spread the square spring wire clips by pulling on one side of a clip.
b. Allow the clip to return to its original shape but resting on the outside of the case.
c. Pull the other side of the clip out of the case.
VI. To Replace Battery Save Switch Button
a. Remove chassis.
b. Spread the open end of the spring clip retainer no more than necessary to permit removal of clip.
c. Slide the clip clear of the slider button.
d. Turn slider button one-quarter turn and pull out of case.
e. Replace button in reverse order-do not use excessive force in replacing spring clip.

Steps	Connect high side of test osc. to-	Tune testosc. to-	Turn radio dial to-	Adjust the following for max. output-
1	High side of ant. coil (terminal lug on coil which is connected to Pin \#6 of lR5 tube)	455 kc	$\begin{gathered} \text { Quiet point } \\ \text { noar } \\ 1600 \mathrm{kc} \end{gathered}$	Trimmers of 2nd I-F trans
2				Trimmers of 1st I-F trans.
3		Repeat steps 1 and 2		
4	Short wire placed near ant. coil for radiated signal	1400 kc	14 Rock gang	Cl-1T (osc.)
5		600 kc	$\begin{gathered} 60 \\ \text { Rock gang } \end{gathered}$	12 (osc.)
6		Repeat steps 4 and 5		

Tube and Trimmer Locations

RADIO CORPORATION OF AMERICA PAGE 23-25 MODELS 2B400, 2B401, 2B402, 2B403, 2B404, 2B405, Ch. RC1114

Schematic Diagram

CRITICAL LEAD DRESS

1. Position Ferrite antenna rod as described above.
2. Dress all bus wires, pigtail leads and non-insulated components away from chassis base and away from each other.
3. Dress neutralizing capacitor C5 against front of chassis and with clearance under volume control knob. Utilize shielding effect of oscillator coil mounting bracket.
4. Dress all I-F transformer leads down to base.

Incorrect Tube Location Label:

A tew receivers were shipped with an incorrect tube location label in which the designation of 3V4 and 1U5 tubes were transposed. These may be readily identified by the label color. The incorrect label is BLUE, the correct label is YELLOW. The correct tube locations are illustrated below.

"A" Battery Lead:

A rubber band is used for the purpose of holding the " A " battery lead in a position where it will not be accidentally torn loose when replacing the battery. When servicing one of these receivers, make sure that this rubber band is around the i-f transformer shield can and holding the " A " battery lead against the chassis.

Correct Tonal Response:

For correct tonal response it is necessary that the holes in the case, where the metal grille is attached, be closed. This is done at the factory by covering the tabs, on the inside of the case, with tape. Absence of this tape will adversely affect the tonal response of these receivers.

Correction to Parts List:

The Stock No. of the GREY case assembly for Model 2B400 is incorrectly listed as 76860. The correct Stock No. is 76838.

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION
	CHASSIS ASSEMBLIES RC. 1114	$\begin{aligned} & 77163 \\ & 76859 \end{aligned}$	Back-Case back-RED-for Model 2B405 Button-Battery saver switch slider button-GREY-for Model 2B400
76847	Antenna-Ferrite rod antenna (Ll)	77164	Button-Battery saver switch slider button-BLACK-and
76846	Capacitor-Variable tuning capacitor (Cl-1, Cl-2)		spring clip for Model 2B401
57090	Capacitor-Ceramic, 3 mmf . (C5)	77165	Buttón-Battery saver switch slider button-IVORY-and
75784	Capacitor-Ceramic, 56 mmf . (C2, C7)		spring clip for Model 2B402
75785	Capacitor-Ceramic, 82 mmf . (C9, C10)	77166	Button-Battery saver switch slider button-GREEN-and
73960	Capacitor-Ceramic, $10,000 \mathrm{mmf}$. ${ }^{\text {Capactor-Electrolytic, }} 10$ mid., 70 volis (C15)	77167	
72792	Capacitor-Tubular, paper, $001 \mathrm{mfd} ., 200$ volts (Cl2)		spring clip for Model 2B404 slider button-RED-and
73750	Capacitor-Tubular, paper, . $002 \mathrm{mfd} ., 200$ volts (Cl1, Cla)	77168	Button--Battery saver switch slider button-RED-and
73961	Capacitor-Tubular, paper, $.003 \mathrm{mfd.}$,200 volts (C6)		spring slip for Model 2B405 Case-Case assembly-GREY-less handle, links and
71928	Capacitor-Tubular, paper, $.02 \mathrm{mfd} ., 200$ volts (C13) Capacitor-Tubular, paper, $.047 \mathrm{mfd} ., 200$ volts (C8)	76860	Case-Case assembly-GREY-less handle, links and back for Model 2B400
76852	Clip-"A" battery mounting clip (formed spring wire) (2 required)	77154 77155	Case-Case assembly-BLACK-less handle, links and back for Model 2B401
75010	Clip-"C' clip and screw to mount output transformer	77155	Case-Case assembly-IVORY-less handle, links back for Model 2B402
75774	Coil-Oscillator coil complete with adjustable core (L2, L3)	77156	Case-Case assembly-GREEN-less handle, links and back for Model 2B403
76854	Contact-" A " battery contact (2 required) Control-Volume control and power switch (R6, S1)	77157	Case-Case assembly-TAN-less handle, links and back
37396	Grommet-Rubber grommet for antenna rod (2 required)	77158	for Model 2B404 Case-Case assembly-RED-less handle, links and back
76853	Insulator-Bakelite insulator for ferrite rod antenna	77158	for Model 2B405
76851	Knob-Volume control and power switch knob-less set screw	76860	Clip-Retaining spring clip for battery saver switch slider button
76855	Lead-' $\mathrm{B}^{\prime \prime}$ battery lead complete with connector	76842	Dial-Polystyrene dial scale-GREY-for Model 2B400
	Resistor-Fixed, composition:-	77169	Dial-Polystyrene dial scale-BLACK-for Model 2B401
503139	390 ohms, $\pm 10 \%$, $1 / 2$ watt (R11, R13)	77170	Dial-Polystyrese dial scale-IVORY-for Model 2B402
504210	1000 ohms, $\pm 20 \%$, $1 / 2$ watt (R12)	77171	Dial-Polystyrene dial scale-GREEN-for Model 2B403
503315	15,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R2)	77172	Dial-Polystyrene dial scale-TAN-for Model 2B404
504347	47,000 ohms, $\pm 20 \%$, $1 / 2$ watt (R5)	77173	Dial-Polystyrene dial scale-RED-for Model 2B405
504410	100,000 ohms, $\pm 20 \%$, $1 / 2$ watt (R1)	75844	Emblem-"RCA Victor" emblem
504510	1 megohm, $\pm 20 \%$, $1 / 2$ watt (R9)	73843	Grille-Metal grille-perforated-GREY-for Model 2B400
504533	3.3 megohm, $\pm 20 \%$, $1 / 2$ watt (R4, R10)	77179	Grille-Metal grille-perforated-GOLD-for Models 2B401
504547	4.7 megohm, $\pm 20 \%$, $1 / 2$ watt (R3, R7)		and 2B402
504610	10 megohm, $\pm 20 \%$, $1 / 2$ watt (R8)	77180	Grille-Metal grille--perforated-GREEN-for Model 2B403
70527	Screw- $\# 6-32 . \times 3 / 16^{\prime \prime}$ socket head set screw for volume control knob	77181	Grille-Metal grille-perforated-TAN-for Model 2B404 Grille-Metal grille-perforated-RED-for Model 2B405
75780	Socket-Tube socket, 7 pin, miniature, saddle mounted	73839	Handle-Carrying handle-BLACK-for Models 2B400 and
76848	Switch--Battery waver switch (S2)		2B401
76849	Transformer-First I.F. transformer (T1)	77183	Handle-Carrying handle-BEIGE-for Model 2B402
76850	Transformer-Second I.F. transformer (T2)	77184	Handle-Carrying handle-GREEN-for Model 2B403
75777	Tansformer-Output transformer (T3)	77185 77186	Handle-Carrying handle-BROWN-for Model 2B404 Handle-Carrying handle-RED-for Model 2B405
	SPEAKER ASSEMBLY	75856	Knob-Tuning control knob-GREY-for Model 2B400
	92523-W	77174	Knob-Tuning control knob-BLACK-for Model 2B401
76373	Speaker-2" x 3" P.M. speaker complete with cone and	77175	Knob-Tuning control knb-IVORY- for Model 2B402 Knob-Tuning control knob-GREEN-for Model 2B403
	voice coil	77177	Knob--Tuning control knob-TAN-for Model 2B404
	MISCELLANEOUS	77178	Knob-Tuning control knob-RED-for Model 2B405
76841	Back-Case back-GREY-for Model 2B400	$7{ }^{7} 840$	Link-Carrying handle link (2 req'd)
77159	Back-Case back-BLACK-for Model 2B401	$7 \bigcirc 858$	Ring-Bearing ring for tuning knob
77160	Back--Case back-IVORY-for Model 2B402	$7 C 857$	Screw-\#4-40 \times I/3:3 ${ }^{\prime \prime}$ rross recessed binder head machine
77161	Back-Case back-GREEN-for Model 2B403		sciew for mounting chassis (4 reqd)
77162	Back-Case back-TAN-for Model 2B404	74734	Spring-Spring clip for tuning control knob

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

Model 2X61 Maroon Model 2X62 Ivory

SPECIFICATIONS

$\begin{gathered} \hline \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION
	HASSIS ASSEMBLIES	503112	$120 \mathrm{ohms}, \pm 10 \%$, $1 / 2$ watt, R4, Rll
77143		503118 503127	180 ohms, $\pm 10 \%, 1 / 2 \mathrm{watt}$, R1
	maroon-for Model 2X61	513212	1200 ohms, $\pm 10 \%$, 1 watt, $\mathrm{Rl2}$
77144	Antenna-Antenna ivory-for Model 2×00	503312 503322	
77143	Back-Cabinet back cover and antenna loop assembly	-503336	
77144	Back-Cabinet back cover and antenna loop assembly	503410 503422	
	ivory-for Model 2×62 and anerna loop assembly	503447	
77145		503522 503547	
39042	Capacitor-Ceramic, 47 mmit, ${ }^{\text {c }}$	74691	Shaft-Tuning knob' shaft
73501		74697 54414	Socket-Dial lamp socket
73473 74652	Capacitor-Ceramic, 4700 mmf ., C20	${ }_{7}^{76368}$	Spring-Drive cord spring
74662	Capacitor-Electrolytic comprising 1 section of 80 mfd , 150 volts and 1 section of 50 mfd., 150 volts, C19A, C19B	$\begin{aligned} & 336644 \\ & 73036 \end{aligned}$	Switch-"Radio-Phono" switch, S2 Transformer-First I.F. transformer complete with adjustable cores
73595	Capacitor-Tubular, paper, 0022 mfd . 600 volts, $\mathrm{Cl14}$	73037	Transformer-Second I.F. transformer complete with ad-
73562			Transformer-Output transformer ${ }^{\text {jusiab }}$
73553	Capacitor-Tubular, paper, 047 mid., 400 volts, C17, C18	35969	Washer-"C' washer for tuning knob shaft
73794			SPEAKER ASSEMBLIES
73935	Clip-Mounting clip for I.F. transformer		971495-3
74693	Coil-Oscillator coil complete with adjustable cores, L3, L. 4	763	Speaker-4"' P.M. speaker complete with cone and voice coil (3.2 ohms)
73677 35787	Coil-R.F. coil complete with adjustable cores, L1, L2 Connector-Phono input connector		MISCELLANEOUS
75474	Connector-Single contact, male connector for output	Y2445	Cabinet-Plastic cabinet-maroon-complete with dial
	Control-Volume control and power switch, R14, S1	446	Cabinet-Plastic cabinet-ivory - complete with
72935	Cord-Drive cord (approx. 50" overall)		escutcheon for M
${ }_{73693} 70392$	Cord-Power cord and plug	774241	Dial-Polystyr
72283	Grommet-Rubber grommet for mounting tuning capa-	74931	Knob-Control knob-maroon-for Model 2×61
	citor	72645	Knob-Control knob-ivory-for Model 2X62
77142	Prer ${ }^{\text {Pointer-Station selector }}$ Pointer	${ }_{74301}^{7116}$	Samp-Dial lampe, Mazda 1490
514033	Resistor-Fixed, $33 \mathrm{ohms}, \pm 20 \%$, 1 wpotit, R13	30900	Spring-Retaining spring for knobs

[^27]APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

PAGE 23-28 RADIO CORPORATION OF AMERICA

MODELS 2X61, 2X62, Ch. RC1080C, RC1080D

NOTE.-If reception is not obtained on d.c. operation, reverse plug in outlet receptacle. On a. c. operation this may reduce hum.
The position of the speaker is adjustable; the correct position is indicated on the illustration "Tube and Trimmer Locations."

ALIGNMENT PROCEDURE

Cathode Ray Alignment is the preferable method. Connections for the oscilloscope are shown on the schematic diagram.

Output Meter Alignment.-If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.

Test Oscillator.-Connect low side of test oscillator to common wiring in series with a .1 mf . capacitor. If the test oscillator is a.c. operated it may be necessary to use an isolation transformer for the receiver during alignment and the low side of the test oscillator connected directly to common wiring at the electrolytic capacitor. Keep the oscillator output low to prevent a-v-c action.

Step	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to	Adjust for peak output
1	Pin No. 4 of 12SK7 tube	455 kc	Quiet point near 600 kc	Top and bottom cores of T2
2	Pin No. 8 of 12SA7 tube			Top and bottom cores of Tl
3	"External Antenna' terminal through 100 mm . capacitor	1620 kc	1620 kc	C6 Osc. C5 R.F. C4 Ant.
4		Shunt C5 with 22,000 ohm resistor		
		600 kc	600 kc	L4 Osc. (Rock gang)
5		Remove 22,000 ohm resistor from C5		
		600 kc	600 kc	L2 R.F.
6		Repeat steps 3, 4 and 5		

The position of the loop antenna in relation to the chassis affects adjustment of C4. The correct position is indicated on the illustration "Tube and Trimmer Locations.'

Correction to Alignment Procedure:

The oscillator trimmer C6 should be adjusted at 1620 kc as stated in the Service Data, but the r.f. trimmer (C5) and the antenna trimmer (C4) should be adjusted for maximum when the receiver is tuned to $\alpha 1400 \mathrm{kc}$ signal.

Tube and Trimmer Locations

Specifications

Tuning Range Intermediate Frequency	$\begin{gathered} .540-1600 \mathrm{kc} \\455 \mathrm{kc} \end{gathered}$
Tube Complement:	
(1) RCA 12BE6	Converter
(2) RCA L2BA6	I.F. Amplifier
(3) RCA L2AV6	Det.-AVC-A.F. Amp.
(4) RCA 50 C 5	Output
(5) RCA 35W4	Rectifier
Power Supply Rating:	
115 volts a.c., 60 cycles	. 30 wat
	ON

Appliance Rating
115 volts, 15 a.

Loudspeaker:
Size and type
Voice Coil impedance3.2 ohms at 400 cycles
Power Output:
Undistorted ... 1.2 watts
Maximum ... 1.6 watts
Tuning Drive Ratio 10 to 1 (5 turns of knob)
Weight ... $5^{1 ⁄ 2}$ lbs.
Cabinet Dimensions:
Height...61/8" Width...113/4" Depth... $5^{\prime 1 / 2^{\prime \prime}}$

Operating Instructions

This instrument can be used in any one of several ways. It may be used as a clock with alarm alone, radio, phonograph amplifier, or clock-controlled radio or appliance outlet. Instructions for the various uses follow:

Clock-Plug instrument into a.c. outlet. The clock will start to operate immediately. Set the correct time with the "TIME-SET" knob on the back panel of the instrument. To set the alarm, pull out the "ALARM" knob and turn coun-ter-clockwise until the desired time is indicated by the alarm pointer. Leave knob out for alarm buzzer operation. Push knob in to turn off buzzer.

Radio-l. Push "RADIO" slide switch lever to the right, as viewed from the back. Turn "RADIO" knob on clock from "OFF" to "ON" position. Adjust volume and tuning knobs as required after 30 second warm-up. Turn clock "RADIO" knob to "OFF" position when finished listening.
2. To have radio turn itself off after a period of up to 60 minutes, set "SLEEP" knob to desired playing time. Turn clock "RADIO" knob "OFF,"
3. To have radio turn itself on, turn tuning and volume knobs to desired position, and then set the alarm as explained above. Turn clock "RADIO" knob to "AUTO" position.
4. To have the radio turn itself off during any time within a 60 minute period and then turn itself on, after an off period of up to twelve hours, set the "SLEEP" and "ALARM"
knobs, and volume and tuning controls as explained previously. Turn clock "RADIO" knob to "AU'TO" position.

Appliances-l. To use appliance outlet, plug appliance into rear receptacle, and turn clock "RADIO" knob to "ON" position. If operation of the radio is not desired at the same time, push radio slide-switch lever on the back panel to the off position (lever pushed to the left).
2. To start appliance automatically, proceed as above, except that the "ALARM" knob should be set to the desired starting time, and the clock "RADIO" knob set to the "AUTO" position. To turn off appliance, turn clock "RADIO" knob to "OFF" position, or remove appliance plug if radio operation is desired.
3. To operate appliance for any time within a 60 minute period, have appliance plugged in, with clock "RADIO" knob turned to "OFF" position. Set "SLEEP" knob for desired operating period. Appliance will be turned off automatically at the end of this period.

Phonograph-l. Make sure radio slide switch is on (lever pushed to the right). Plug phonograph attachment audio plug into jack provided. Turn clock "RADIO" knob to "ON" position. If a spare a.c. receptacle is not available for the record changer, the appliance outlet may be used to provide power.

CAUTION:-Keep clock "RADIO" knob "OFF" when instrument is not in use.

MODELS 2-C-521 Series,
 Ch. RC1120, A, B, C

Dial Cord Drive

RADIO CHASSIS AND CLOCK SERVICE

Tube Service-To make tubes accessible for testing, remove the hex head screw at the lower right hand corner and the hex head screw at the left side of the appliance outlet on the back panel. The loop antenna and anterna trimmer are located on this back panel.
Radio Chassis Service-Proceed as above, removing the volume and tuning control knobs by pulling off, and also removing the three hex head screws and washers on the underside of the cabinet. Do. Not remove the clock from the cabinet unless this is necessary for service. Lift off the shield on the underside of the chassis.
Clock Service-Proceed as above. Remove the three clock control knobs from the front of the cabinet by pulling off, taking care not to damage the clock control shafts. Using a small screwdriver or a small pry tool, remove the five sheet metal clips holding the clock to the cabinet. The clips will be found embedded in the plastic. The seal between the plastic and the metal teeth on the clips should be broken by lifting the metal edges till the teeth clear the plastic. To prevent scratching the plastic dial faces of the radio and clock, place the instrument face do,wn on a thick soft cloth. When removing the clock, take care not to damage the molded-in plastic rim for mounting the clock.
In remounting the clock, new sheet metal clips should be used. These should be heated until hot enough to soften the plastic slightly upon contact. Place the clock in its mounting rim and push the heated clips on tightly, using a pair of pliers or other holding tool.

Attachment of Record Player

The audio output cable of the record player should be terminated with a pin plug.
Plug the cable into the receptacle which is accessible from the back of the cabinet.
Insertion of the cable plug into the receptacle removes radio signal from the volume control. The record player cable must be removed from the receptacle to permit radio operation.

Cbassis RC-1120, RC-1120A
Tube and Trimmer Locations
Cbassis RC-1120B, RC-1120C

RADIO CORPORATION OF AMERICA PAGE 23-31 MODELS 2-C-521 Series, MODELS 2-C-521 Seri
Ch. RC1120, A, B, C

c.48453
$\cdot \cdots \cdot \forall-\dot{\prime} \cdot \forall-1 \exists a$
$9 \wedge \forall \Omega!$
$\varepsilon \wedge$

c.48453

$\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLIES		SPEAKER ASSEMBLIES
	RC-1120, RC-1120B-Model 2-C-521 RC-1120A, RC-1120C-Models 2-C-522, 2-C-527		B12A512 RL108E7
77357	Capacitor-Variable tuning capacitor complete with drive drumClA, ClA-ri, ClB	77226	Speaker-4" P.M. speaker complete with cone and voice coil (3.2 ohms)
77364	Capacitor-Ceramic, 6 mmf. Cl 3		ANEOUS
76348	Capacitor-Ceramic, $47 \mathrm{mmf}$. Cl. 1	77367	
77116	Capacitor-Ceramic, 56 mmfC3	77367	-maroon-for Model 2C521 (RC-1120, RC-1120A)
73520	Capacitor-Electrolytic comprising l section - of 80 mfd ., 150 volts and 1 section of 50 mfd. , 150 volts, C18A, C18B	77904	Includes C2 Antenna-Antenna loop complete with back cover -maroon-for Model 2C521 (RC-1120B; RC-1120C)
73561	Capacitor-Tubular, paper, .01 mfd ., 400 volts. . $\mathrm{Cl5}$ Capacitor-Tubular, paper, 027 mfd .400 volts $\mathrm{Cl0}$	77368	Antenna-Antenna loop complete with back cover
73553	$\begin{array}{\|l} \text { Capacitor-Tubular, paper, . } 047 \text { mfd., } \\ 400 \text { volts } . ~ C 14, ~ C l 7 ~ \end{array}$	77905	-ivory-for Models 2C522, and 2C527 RC-1120A) Includes C2 Antenna-Antenna loop complete with back cover
73551	Capacitor-Tubular, paper, $0.1 \mathrm{mfd} ., 400$ volts. . Cl 5		-ivory-for Models 2C522, 2C527 (RC-1120B,
73935	Clip-Mounting clip for I.F. transformer		RC-1120C)
77356	Coil--Oscillator coil L1, L2	77367	Back-Cabinet back-maroon-and antenna loop
75482	Connector-Phono input connectorJ1		for Model 2C521 (RC-1120, RC-1120A)
52131	Connector-2 contact female connector for applicance outlet (RC-1120, RC-1120A)	77904	Back-Cabinet back complete with antenna loop lop
77901	Connector-2 contact female connector for appliance outlet (RC-1120B, RC-1120C)	77368	maroon-for Model 2C521 (RC-1120B, RC-1120C) Back-Cabinet back-ivory-and antenna loop for
77359	Control-Volume controlR8		Models 2C522 and 2C527 (RC-1120, RC-1120A),
72953	Cord-250' Drive Cord Reel (approx. $26^{\prime \prime}$ required)		Bat ${ }^{\text {a }}$ Includes C2
70392	Cord-Power cord and plug	77905	Back-Cabinet back complete with antenna loop-
28451	Cover-Insulating cover for electrolytic		ivory-for Models 2C522, 2C527 (RC-1120B,
77360	Grommet-Rubber grommet for mounting tuning capacitor	X3304	RC-1120C) Baffle-Baffle board and grille cloth for Model
28452	Plate-Bakelite mounting plate for electrolytic		$\underset{\text { 2C521 }}{\text { 2-ffle-Bafle board }}$ and arille cloth for Models
77355	Plate-Dial back plate complete with pointed escutcheon (RC-1120, RC-1120A)	X3305.	Baffle-Baffle board and grille cloth for Models 2C522 and 2C527
$\begin{aligned} & 77900 \\ & 77354 \end{aligned}$	Plate-Dial back plate (RC-1120B, RC-1120C) Pointer-Station selector pointer	Y2463	Cabinet-Plastic cabinet-maroon-complete with crystals (2) for Model 2C521
773	Printed Circuit . PCl ($99 A, \mathrm{C9B}, \mathrm{C9C}, \mathrm{R4A}, \mathrm{R4B}$)	Y2464	Cabinet-Plastic cabinet-ivory-complete with
77363	Pulley-Drive cord idler pulley Resistor-Fixed, composition:-	Y2465	crystals for Model 2C522 Cabinet-Plastic cabinet-white-complete with
503033	33 ohms, $\pm 10 \%$, $1 / 2$ wattR11		crystals for Model 2C527
503110	180 ohms, $\pm 10 \%$, $1 / 2$ watt 2	77372	Clip-Spring clip for mounting timer assembly
503115	150 ohms, $\pm 10 \%$, $1 / 2$ watt 5		(5 req'd)
513212	1200 ohms, $\pm 10 \%$, 1 wattR6	77033	Emblem-"RCA Victor" emblem
503339	39,000 ohms, $\pm 10 \%$, 1/2 watt	77369	Knob-Timer control knob-maroon-for Model
503347	47,000 ohms, $\pm 10 \%$, $1 / 2$ wattR3		2C521
503422	220,000 ohms, $\pm 10 \%$, $1 / 2$ wattR10	77370	Knob-Timer control knob-ivory-for Model 2C522
503533	3.3 megohm, $\pm 10 \%$, $1 / 2$ wattR7	77371	Knob-Timer control knob-white-for Model 2C527
503610		77373	Knob-Tuning control or volume control knob-
77358	Shaft-Tuning knob shaft (RC-1120, RC-1120A)		maroon-for Model 2C521
77909	Shaft-Tuning knob shaft (RC-1120B, RC-1120C)	77374	Knob-Tuning control or volume control knob-
76870	Shield-Tube shield		ivory-for Model 2C522
77115	Socket-Tube socket, 7 pin, miniature, moulded	77375	Knob-Tuning control or volume control knob-
51955	Socket-Tube socket, 7 pin, miniature, moulded, saddle-mounted	77013	white-for Model 2C527 Nut-Speed nut to fasten "RCA Victor" emblem to
77361	Spring-Drive cord spring (RC-1120, RC-1120A)		cabinet
77902	Spring-Drive cord spring (RC-1120B, RC-1120C)	77491	Window-Polystyrene window for radio or timer
32875	Switch-Radio power switchSl		
75486	Transformer-First I.F. transformer, complete with adjustable coresT1, C4, C5		CLOCK ASSEMBLY
75487	Transformer-Second I.F. transfarmer, complete with adjustable coresT2, C6, C7, C8		Clock-If clock mechanism repair becomes necessary, remove the clock from the radio. The RCA
77362	Transformer-Output transformer (RC-1120, RC-1120A) ... T3		Victor Distributor in your area will advise you of the address of the nearest authorized service
77903	Transformer-Output transformer (RC-1120B, RC-1120C)		station for clock mechanisms. Repair facilities and replacement parts are available at these
33726	Washer-"C" washer for tuning knob shaft		authorized service stations.

RADIO CORPORATION OF AMERICA PAGE 23-33

 MODEL 36QP, Ch. RC1116, RC1116A

Specifications

Tuning Ranges

Standard Broadcast ("A" Band) 520-1605 kc. (576-186 m.)
Medium Wave ("B" Band)3-7 mc. (131-42.8 m.)
Short Wave ("C" Band) \qquad 7-22 mc. (42.8-13.7 m.)

Intermediate Frequency \qquad
Tube Complement
(1) RCA 1 T 4 \qquad ..R.F. Amplifier
(2) RCA LL6 \qquadConver

(3) RCA $1 T 4$
(4) RCA $1 U 5$

\qquadDet.-A.V.C.-A.F. Am
(5) RCA 3V4 ..Outpu

One selenium rectifier is used for $105 / 125 \mathrm{v}$. operation. Two selenium rectifiers are used for $210 / 250 \mathrm{v}$. operation.
Power Supply Ratings
Power Line Operation
Chassis RC-1116. \qquad $105 / 125$ v. d.c. or $50 / 60$ cycles a.c. Chassis RC-1116A105/125 v. or $210 / 250$ v. d.c. A three-position switch on chassis $\mathrm{RC}-1116 \mathrm{~A}$ must be in the correct position for the available power supply.

Power Consumption
117
234
23
v.

d.c.... \qquad 7 watts

Battery Pack Operation:

Battery pack \qquad
\qquad
\qquad RCA \#VS-057
Current consumption" A " (9 v.) 50 ma ; " B " (90 v .) 14 ma . Average battery life 100 hrs . intermittent service

Power Output.

Maximum 270 milliwatts........With 10% distortion-150 milliwatts
Loudspeaker
Size and type \qquad $4^{\prime \prime}$ (10.2 cm.) P.M. dynamic Voice coil impedance \qquad .3.2 ohms at 400 cycles
Dimensions (overall)
Height............... $8^{1 / 2 "} \quad$ Width.................123/4" Depth................ $5^{1 / 22^{\prime \prime}}$
Weight .. 7 lbs. less battery
$10^{3 / 4} \mathrm{lbs}$. with battery

Antennas

This receiver has a built-in loop antenna for " A " band reception and a telescoping rod antenna for " B " and " C " bands. The telescoping rod antenna should be extended to its full height for best short wave reception.
An external antenna and ground may be connected to the ANT and GND screws at the end of the chassis. This may improve reception on all bands.

Alignment Procedure

Cathode-Ray Alignment is the preferable method. Connections for the oscilloscope are shown in the Schematic Diagram.
Output Meter Alignment-If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.
Test-Oscillator-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output low to avoid $\alpha-v-c$ action.

NOTE-If the test-oscillator is also a.c. operated it may be necessary to use an isolation transformer for the receiver during alignment and to connect the low side of the test oscillator to common wiring-reversal of the plug may reduce hum.
Dial Indicator-With tuning condenser in full mesh, the indicator should be set to the position shown in the illustration "Dial Indicator and Drive Mechanism."

Oscillator tracks above signal on all bands. Use minimum capacity peak on oscillator trimmer adjustments and maximum capacity peak on ant. and R.F. trimmer adjustments.

Stop	Connect high side of test osc. to-	Tune test osc. to-	Range Switch	Turn radio dial to-	Adjust for maximum . output-
1	I. F amp. grid (pin \#6) in series with .01 mí.	455 kc .	A	quiet point near 600 kc .	$\begin{gathered} \text { T2 } \\ \text { top \& bottom } \end{gathered}$
2	Converter grid (pin'\#6) in series with .01 mf .				$\begin{gathered} \text { T1 } \\ \text { top } \& \text { botiom } \end{gathered}$
3	Rod ant. lead in series with dummy ant. (33 ohms in series with 18 mmf .)	17.75 mc .	C	17.75 mc .	CIC-T (ose.) C12 (R.F.)*
4		7.2 mc .		7.2 mc .	L13 (osc.) L7 (R.F.)* L4 (ant.)*
5		Repeat Steps 3 and 4.			
6		6.1 mc .	B	6.1 mc.	$\begin{gathered} \text { C23 (ose.) } \\ \text { C11 (R.F. })^{*} \end{gathered}$
7		2.5 mc.		2.5 mc .	Lll (osc.) L6 (R.F.)* L3 (ant.)*
8		Repeat Steps 6 and 7.			
9	Yellow loop lead in series with .01 mf .	1400 kc .	A	1400 kc.	$\begin{aligned} & \text { C22 (osc.) } \\ & \text { C10 (R.F.) } \end{aligned}$
10		600 kc .		600 kc .	$\begin{aligned} & \text { L9 (ose.) } \\ & \text { L5 (R.F.)* } \end{aligned}$
11		Repeat Steps 9 and 10.			
12	Assemble receiver, connect loop ant. leads. Connect rod ant. lead. Install and connect battery.				
13	Short wire placed near receiver for radiated signal	1400 kc .	A	1400 kc.	C4 (loop)
14		2.5 mc .	B	2.5 mc .	* +L 3 (ant.)
15		7.2 mc .	C	7.2 mc .	*+L4 (ant.)

[^28]
PAGE 23-34 RADIO CORPORATION OF AMERICA

MODEL 36QP, Ch.
RC1116, RC1116A
Tube and Trimmer Locations (Top View)

The left hand edge of indicator should coincide with the score marks on the dial back plate at the frequencies indicated.

To Remove Chassis

1. Pull out battery and disconnect battery plug.
2. Remove red wire from rod antenna.
3. Pull out on the two plastic loop supports to permit the loop antenna to be removed. When reinstalling, wedge the supports to the cabinet with two small pieces of wood (toothpick or equivalent).
4. Unsolder speaker voice coil leads.
5. Remove handle (see illustration above). Remove knobs (pull out).
6. Remove the two screws under link caps (visible when link caps are removed).

John F. Rider

RADIO CORPORATION OF AMERICA PAGE 23-35

Removal of Cabinet Back

CRITICAL LEAD DRESS

1. Dress all filament leads close to the chassis.
2. Dress 33 ohm fuse resistor ($\mathrm{R}-18$) up and away from all wiring.
3. Dress R-21 up and away from chassis.
4. Dress five section ceramic capacitor (C-27) close to chassis.
5. Keep "hot-side" lead of neutralizing capacior (C-18) as short as possible and dress capacitor away from IF tube socket.
6. Dress C-19 up and away from IF transformer.
7. Dress all leads away from " C " oscillator coil.
8. Dress C-25 away from " B " oscillator coil.
9. Keep leads on R-3 as short as possible and dress close to 1 L 6 socket.
10. Dress R-1 and R-2 close to chassis base.
11. Dress loop leads away from tuning drum.
12. Dress lead from oscillator grid of 1 L 6 (pin \#6) with $1 / 4^{\prime \prime}$ to $1 / 8^{\prime \prime}$ spacing from capacitor-resistor assembly C-14/R-6.

Power Line Operation

A power cord is stored alongside of the battery inside the case. Its plug is inserted in a socket on the chassis. For power line operation: remove the plug from its socket and insert it into a convenient power supply outlet.
Make sure that the power cord passes through the notch provided in the side of the back cover.

$\begin{aligned} & \text { sTock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLY	S-6587 S-5176 S-5177	$\begin{aligned} & 3.9 \text { megohm, } 1 / 2 \text { watt (R10) } \\ & 4.7 \text { megohm, } 1 / 2 \text { watt (R1, R2) } \\ & 5.6 \text { megohm, } 1 / 2 \text { watt (R7) } \end{aligned}$
561	-ANT-GND term	S-6588	10 megohm, $1 / 2$ watt (R14)
S-6562	Bracket-Dial cord pulley bracket complete with two pul-leys-(tuning drum end.)	$\begin{aligned} & 5.6589 \\ & \mathrm{~S} .6322 \end{aligned}$	Shaft-Tuning control drive shaft assembly Socket-Tube socket for V1 (1T4) or V2 (IL6)
S-6563	Capacitor-Trimmer capacitor, $4-20 \mathrm{mmf}$. (C11, C12, C23)	S-6590	Socket-Tube socket for V3 (1T4)
75189	Capacitor-Trimmer capacitor, $7-30 \mathrm{mmf}$. ($\mathrm{Cl0}, \mathrm{C} 22)$	S-6591	Socket-Tube socket for V4 (1U5) or V5 (3V4) tubes
S-5128	Capacitors-Fixed Ceramic, $4 \mathrm{mmf}$. (C18)	S-4511	Spacer-Metal spacer for mounting tuning condenser (3 req'd)
45233	Ceramic, 100 mmf . (C2)	S-4485	Spring-Drive cord tension spring
S-5131	Ceramic, 120 mmf ((C9, Cl3)	S-6592	Switch-Tuning range switch (S1-A, Sl-B, Sl-C)
S-6724	Mica, 430 mmi . (C25)	S-5186	Switch-Battery-line switch assembly (S3)
S-5136	Mica, 1800 mmf ((C26)	S-5229	Transformer-First I-F transformer (T1)
S.59	Mica, 4700 mmf ((C24)	S-5230	Transformer-Second I-F transformer (T2)
S-656	Ceramic, . 0022 mf . (C3)	S-6593	Transformer-Output transformer (T3)
S-4853	Molded paper, . $0033 \mathrm{mf}$. , 600V. (C17)		
S-9371	Ceramic, 0047 mf ((C21)		CHASSIS ASSEMBLIES
S-54	Molded paper, . $0047 \mathrm{mf} .{ }^{\text {a }}$ 600V. (C30).		RC1116A
S-6326	Ceramic, .01 mf . (Cl9) Ceramic, dual, two sectio		as RClll6 except for
S-6565	Ceramic, five sections, ($002 \mathrm{mf} . \mathrm{C} 27 \mathrm{~A}$) (150 mmf C27B) ($.005 \mathrm{mf} . \mathrm{C} 27 \mathrm{C}$) ($100 \mathrm{mmf} . \mathrm{C} 27 \mathrm{D}$) ($.005 \mathrm{mf} . \mathrm{C} 27 \mathrm{E}$)		234 V . converter
S-4	Molded paper, $047 \mathrm{mf}$. , 400V. (C6, C16, C31, C32, C33)	$\begin{aligned} & \text { S-6594 } \\ & \mathbf{7 4 3 2 2} \end{aligned}$	Converter- $117 \mathrm{~V} . / 234 \mathrm{~V}$. converter assembly complete Rectifier-Selenium rectifier (SR2)
S-514		S-6595	Resistor-Tapped wire wound resistor 700 and 950 ohms
S-5146	Electrolytic, comprising one section of 40 mf ., 25 V ., one section of 60 mf ., 150 V ., one section of 160 mf ., 25 V ., and one section of 20 mf .; 150V. (C28A, C28B, C28C, C28D)	S-6596	(R17A, R17B) Switch-l17V./234V. converter switch (S4) SPEAKER ASSEMBLY
S-4523	Capacitor and Resistor-Assembly comprising 56 mmf . capacitor and 33 ohm resistor (C14, R6)		STAMPED 970654-2
$\begin{array}{\|l\|l\|} \hline \text { S-4454 } \\ \text { S-6567 } \end{array}$	Clip-Clip for mounting I-F transformers (2 req'd) Coil-"A" band oscillator coil complete with adjustable core (L8, L9)		coil
S-6568	Coil-"B" band oscillator coil complete with adjustable core (L10, Lll)	S-6598	Antenna--'A" band loop antenna (L2
S-6569	Coil-"C"' band oscillator coil complete with adjustable	S-6599	Antenna-Telescoping rod antenna
	core (L12, L13)	S-6622	Back-Cabinet back-GREY
S-6571	Coil-"'B" band R-F coil complete with adjustable core	S-66	Capacitor-Trimmer capacitor and bracket assemb
		S-660	Case-Plastic case (front and back) GREY-less handle,
S-6572	Coil-'C"' band R-F coil complete with adjustable core (L7)	S-660	grille and loop antenna Case-Plastic case (front and back) RED-less handle,
S-6573	Coil-"B" band ant. coil (L3)		
S-655	Coil-"C" band ant. coil (L4)	S-6604	Catch-Metal catch (on case front) to hold cabinet back
S-6575	Condenser--Variable tuning condenser ($\mathrm{Cl}-\mathrm{A}, \mathrm{Cl}-\mathrm{B}, \mathrm{Cl}-\mathrm{C}$)		(2 req'd)
S-6557	Cover-Chassis bottom cover	S-66	Clip-Metal clip (on ca
S-6578	Cord-Tuning indicator drive cord (41 inches required)	S-6606	Grille-Perforated metal grille
S-5149	Cord-Power line attachment cord	4463	Grommet-Rubber grommet for speaker mounting
S-4464	Grommet-Rubber grommet to mount tuning condenser (3 req'd)	S-6607	($4 \mathrm{req}{ }^{\prime} \mathrm{d}$) Dial-Plastic dial scale
S-6579	Indicator-Tuning indicator pointer	S.6355	Emblem-"RCA Victor" emblem
S-658	Pin-Axle pin for drive cord pulleys (tuning control end)	7479	Hinge-Cabinet hinge (2 req 'd)
S-6581	Plate-Dial back plate	S-66	Handle-Carrying handle-less links
18469	Plate-Insulating plate to mount electrolytic capacitor	S.6609	Insulator-Insulating plate (under link caps)
S-5159	Plug-Five pin plug for battery cable	S-66	Knob-Tuning knob-GREY
S. 5123	Pulley-Drive cord pulley (tuning control end) (2 req'd)	S-6611	Knob-Tuning knob-RED
S-6582	Rectifier-Selenium rectifier (SR1)	S-6612	Knob--Range switch knob-GREY
S-6583	Resistor-Armored wire wound, 2300 ohms, 7 watt (R20)	S-66	Knob-Range switch knob-RED
	Resistors-Fixed Composition	S-6614	Knob-Volume control knob-GREY
S-6584	33 ohms, 1 watt (R18)	S-6615	Knob-Volume control knob-RED
S.6723	82 ohms, $1 / 2$ watt (R5)	S.6616	Link-Carrying handle link (2 req'd)
$\begin{aligned} & \text { S-5163 } \\ & \text { S-5164 } \end{aligned}$	1500 ohms, $1 / 2$ watt (R24) 1800 ohms, $1 / 2$ watt (R9, R21, R22, R25)	S-6617	Plate-Decorative plate for top of cabinet (under link caps) (2 req'd)
S-5167	2700 ohms, $1 / 2$ watt (R23)	S-6618	Screw-\#6-32 $\mathrm{X} 5 / \mathrm{l}^{\prime \prime}$ hex head machine screw for mount-
36714 S-6585	15,000 ohms, $1 / 2$ watt (R4) 15,000 ohms, 1 watt (R19)		ing speaker (4 req 'd)
S-6395	22,000 ohms, $11 / 2$ watt (H 8)	S-6619	Screw-\#4 self tapping screw to hold clip inet front (2 req'd)
S-6173	68,000 ohms, $1 / 2$ watt (R11)	S-6620	Screw-\#6 seli tapping oval head screw to hold dial to
S-6586	180,000 ohms, $1 / 2$ watt (R3) 220,000 ohms, $1 / 2$ watt (R15)		cabinet (2 req'd) or link caps to insulator plate (2
S-6240	1 megohm, $1 / 2$ watt (R16, R26) $^{\text {a }}$	S-6621	Spacer-Metal spacer for speaker mounting (4 req'd)
S-5175	3.3 megohm, $1 / 2$ watt (R12)	S-6086	Spring-Retaining spring for knobs

Model 3-RF-91 "Woodland"

Maroon

SPECIFICATIONS

TUNING RANGES

TUBE COMPLEMENT

(1) RCA 6CB6	R.F. Amplifier
(2) RCA 6X8	Mixer-Oscillator
(3) RCA GBA6	(AM-FM) I.F. Amplifier
(4) RCA 6AU6	2nd FM I.F. Stage
(5) RCA 6AU6	3rd FM I.F. Stage
(6) RCA 6AL5	F.M. Detector
(7) RCA 6AV6	AM Det.-AVC-Audio
(8) RCA 6V6-GT	Audio Output
(9) RCA 5Y3-GT	Rectifi

CIRCUIT DESCRIPTION

This instrument, a deluxe AM-FM table radio, has nine tubes, including rectifier. RF circuits, contained on a two tube sub-chassis, include RF amplification for both bands and a combination mixer-oscillator circuit. Special shielding and filtering have been incorporated to reduce oscillator radiation. The mixer is pentode connected for AM operation; triode connected for FM operation. AM IF circuits use an IF amplifier and conventional diode detector with AVC. FM IF circuits include three IF stages and a ratio detector. The two tube audio amplifier has an adjustable tone control circuit with combination bass and treble compensation. A hum-bucking circuit uses the tapped-winding output transformer. A ferrite core AM antenna, and line cord FM antenna, -allow reception without the use of external antennas. A phono jack at the instrument rear permits the use of α record player gttachment.

Radio Controls

POWER SUPPLY RATING

115 volts, 60 cycles..................................... . . . 80 watts
DIAL LAMPS. 2 No. 44, 6-8 volts, 0.25 amp .
LOUDSPEAKER
Size and Type . $8^{\prime \prime}$ P.M.
Voice Coil Impedance................................... . 3.2 ohms
AUDIO POWER OUTPUT
Undistorted . 2.5 watts
Maximum .. 3.5 watts
TUNING DRIVE RATIO $71 / 4: 1$ ($35 / 8$ turns of knob)
NET WEIGHT ... 19 lbs.
DIMENSIONS (Overall)
Height....... 10" Width........16½" Depth....... 9"

OPERATING INSTRUCTIONS

RADIO-Turn OFF-VOLUME control about half-way in a clockwise direction to turn receiver $O N$ and provide for medium VOLUME. Allow a short warm-up period. Set FUNCTION control at desired service-AM or FM. Rotate TUNING control to move the pointer to the desired AM or FM frequency. Adjust VOLUME and TONE controls as desired.
PHONOGRAPH--Connect attachment to PHONO jack at instrument rear. Switch the FUNCTION control to "PH" position. Turn on receiver and adjust VOLUME and TONE controls as desired.

ANTENNAS:

Under average conditions the receiver does not require an external antenna. However, provision is made for the use of external antenna if desired-connect as indicated below:
AM antenna: Open the link (normally connects terminals \#l and \#2). Connect a single wire antenna to terminal \#1.
FM antenna: Remove the built-in antenna lead from \#3 terminal. Connect the transmission line (300 ohm) from an external dipole antenna to terminals \#2 and \#3.
Ground: An external ground can be attached to terminal \#2 if desired. Under some conditions an external ground is detrimental to $F M$ reception.
Note: For satisfactory reception on FM when using the built-in FM antenna the power cord must be fully extended and must not be coiled or hanked up.

tUBE AND TRIMMER LOCATIONS-VOLTAGE DATA

Tube and Trimmer Locations

VOLTAGE CHART

Tube	Type	Elements	Pin No.	"AM"	'FM'	Phono.
1	$\mathrm{RF}_{6 \mathrm{CB} 6}^{\mathrm{amp}} .$	Plate Screen Grid	$\begin{aligned} & 5 \\ & 6 \\ & 2 \\ & 1 \end{aligned}$	$\begin{array}{r} 195 \\ 96 \\ 0.4 \\ -1.4 \end{array}$	$\begin{array}{r} 128 \\ 65 \\ 0.5 \\ -0.2 \end{array}$	三
2	$\begin{gathered} \text { Mixer } \\ 6 \times 8 \\ \\ \text { Osc. } \\ 6 \times 8 \end{gathered}$	Plate Screen Grid Plate Grid	$\begin{aligned} & 9 \\ & 8 \\ & 7 \\ & 3 \\ & 2 \end{aligned}$	$\begin{array}{r} 39 \\ 39 \\ -2.8 \\ 79 \\ -6.1 \end{array}$	$\begin{array}{r} 38 \\ 38 \\ -1.5 \\ 66 \\ -2.3 \end{array}$	$\begin{aligned} & \bar{Z} \\ & = \end{aligned}$
3	$\mathrm{IF}_{6 \mathrm{BA} \mathrm{~A} G}^{\mathrm{mmp}}$	Plate Screen Cathode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 7 \end{aligned}$	$\begin{array}{r} 195 \\ 122 \\ 0.8 \\ -1.6 \end{array}$	$\begin{aligned} & 187 \\ & 100 \\ & 0.9 \end{aligned}$	$\begin{array}{r} 218 \\ 130 \\ 0.9 \\ -1.2 \end{array}$
4	$\mathrm{IF}_{6 \mathrm{AU}}^{\mathrm{amp}}$	Plate Screen Cathode	$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{array}{r} 200 \\ 65 \\ 0.55 \end{array}$	$\begin{array}{r} 195 \\ 662 \\ 0.55 \end{array}$	$\begin{gathered} 222 \\ 69 \\ 0.65 \end{gathered}$
5	$\mathrm{IF}_{6 \mathrm{Amp}}^{\mathrm{Amp}} .$	Plate Screen Caihode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 52 \\ 49 \\ 0.36 \\ -0.34 \end{array}$	$\begin{array}{r} 50 \\ 47 \\ 0.35 \\ -0.34 \end{array}$	$\begin{array}{r} 56 \\ 53 \\ 0.4 \\ -0.3 \end{array}$
6	Ratio Det. 6AL5	-	-	-	-	-
7	$\underset{6 \mathrm{AV} 6}{\mathrm{AF}} \mathrm{amp}^{2}$	Plate Grid	7	$\begin{array}{r} 69 \\ -0.8 \end{array}$	$\begin{array}{r} 69 \\ -0.8 \end{array}$	$\begin{array}{r} 73 \\ -0.8 \end{array}$
8	Ouiput 6V6GT	Plate Screen Cathode	$\begin{aligned} & 3 \\ & 4 \\ & 8 \end{aligned}$	$\begin{gathered} 242 \\ 200 \\ 11.1 \end{gathered}$	$\begin{array}{r} 240 \\ 195 \\ 10.7 \end{array}$	$\begin{array}{r} 243 \\ \text { 12. } \\ 12.6 \end{array}$
9	$\begin{aligned} & \text { Rectifier } \\ & 5 Y 3 G T \end{aligned}$	Fil.	8	257	254	260

The heater voltage of the mixer/oscillator tube (6X8) is approx. 0.4 volt lower than other tubes in the same circuit. This is due to the filament choke coils L7 and L8.
Voltages and currents measured with tuning condenser closed and no signal input should hold within $\pm 20 \%$ with rated line voltage.
RCA VoltOhmyst used for measuring all voltages.

CATHODE CURRENTS (MA)

Tube		Terminal	"AM"	"FM"	Phono.
1	6 CB 6	2	6.2	7.9	-
2	6 X 8	6	5.2	5.2	-
3	6BA6	7	11.6	13.4	13.8
4	6 AU 6	7	5.0	4.7	5.4
5	6AU6	7	3.3	3.0	3.6
6	6AL5	-	-	-	-
7	6AV6	2	0.3	0.3	0.36
8	6V6GT	8	34	33	37
9	5Y3GT	8	67	69	62

Dial Cord and Drive Assembly

ALIGNMENT PROCEDURE

Due to the use of separate I.F. transformers, there is little interaction between the 10.7 mc . and the 455 kc . adjustments.

There is a slight interaction of adjustments on the tuning condenser between AM and FM.

If a large amount of adjustment is required of any circuit, all others should be checked in the following order:

> FM I.F.
> AM I.F.
> AM Osc., ant. and r.f.
> FM Osc., ant. and r.f.

Final adjustment of AM ant. trimmer should be made with chassis and antenna in cabinet.

Alignment Indicators:

For measuring the developed d-c voltage across C36 during FM alignment an RCA VoltOhmyst or an equivalent meter should be used. An output meter connected across the voice coil is also needed to indicate minimum audio output during FM Ratio Detector alignment.
The RCA VoltOhmyst can also be used to indicate audio output voltage across the voice coil or developed voltage on the AVC bus.

Signal Generator:

For alignment operations connect the low side of the signal generator to the receiver chassis. The output of the signal generator should always be controlled to prevent over-loading or excessive AVC action.

Oscilloscope Alignment:

It is preferable to use a sweep generator and oscilloscope for aligning I.F. and R.F. circuits to obtain α visual observation of curve shape during alignment.
With FM sweep generator connected between FM ant. (\#3) terminal and chassis, and oscilloscope connected between the junction of R39-C32 and chassis, the overall FM linearity may be observed. With 100% FM modulation there should be a peak-to-peak separation of 150 kc . with 50,000 microvolts input before noticeable distortion of the sine wave is present.

For FM alignment of the ratio detector, connect oscilloscope to junction of 56 K resistors as in alignment table, adjusting T6 top and bottom cores for 10.7 mc . crossover and balanced peaks. When aligning other FM tuned circuits, connect oscilloscope to TP1. Follow alignment table sequence, adjusting for maximum gain and symmetry.

AM Alignment
RANGE SWITCH IN AM POSItion

Steps	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak output
1	Pin 1 of V3 6BA6 in series with .01 mfd .	455 kc .	Quiet point at low freq. end	T4 bottom core (pri.) T4 top core (sec.)
2	Tap terminal T9 term. 4 in series with .01 mfd .			T2 top core (sec.) T2 bottom core (pri.)
3	No. 1 terminal on ant. input strip	1620 kc.	High freq. end of dial (min. cap.)	C1E-T
4		1400. kc.	1400 kc . signal	ClB-T ant. ClC-T r.f.
5		Shunt a 10,000 ohm resistor across the r.f. section of the gang.		
6		600 kc .	600 kc . signal	Tl0 osc.* (Rock gang.)
7		Remove the 10,000 ohm resistor and peak T9 r.f.*		
8	Repeat 3, 4, 5, 6 and 7			

[^29]
MODEL 3-RF-91, Ch. RC1129

CRITICAL LEAD DRESS

1. Lead from lug terminal " B " of the lst $F M$ transformer to rear switch wafer terminal \#l0 should not be changed from the original, 3 inches long plus or minus $1 / 4^{\prime \prime}$ of \#22 copper vinylite covered.
2. A.C. leads from power switch on volume control should be dressed as far as possible from the audio-leads and audio coupling condensers near or connecting to the volume control terminals.
3. Ground straps between the R.F. shelf and the main chassis should not be relocated.
4. The connection point of capacitor Cl 3 is critical, therefore should not be altered. It must be connected to the function switch and not to the I.F. transformer.

RANGE SWITCH FUNCTIONS

The range switch has five functions:

1. Selection of $A M$ or $F M$ tuning ranges.
2. Selection and distribution of AVC voltages. Full AVC is applied to V1, V2 and V3 in AM position. No AVC is used on FM operation, the grid circuits of V1, V2, V3 being grounded through SlA.
3. Controls the application of $B+$ voltages to the plate and screen circuits of V1 and V2 (disconnected in phono position).
4. Controls audio input to volume control.
5. Switches mixer section of V2 (6X8) from pentode operation on AM to triode operation in FM position, and selects proper I.F. transformer (AM or FM).

FM Alignment

It Alternate loading may be necessary to provide accurate observation of peaks.

Alternate loading involves the use of a 680 ohm resistor to load the plafe winding while the grid winding of the SAME TRANSFORMER is being peaked. Then the grid winding is loaded with the resistor while the plate winding is peaked. Only one winding is loaded at any one time. Remove the 680 ohm resistor after T 3 and Tl have been aligned.
Oscillator frequency is above signal frequency on both AM and FM.
Extreme care should be used to avoid running the I.F. cores all the way through the winding and out the other end.
** Note: FM antenna, mixer and oscillator coils are adjustable by increasing or decreasing the spacing between turns. The location of the tap on the antenna coil is $5 / 8$ turn to $3 / 4$ turn from the ground end.

RANGE SWITCH IN FM POSITION-
VOLUME CONTROL MAXIMUM-TONE CONTROL CENTER

Steps	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak output
1	Pin 1 of V5 6AU6 in series with .01 mfd .	10.7 mc . modulated 30% 400 cycles	Quiet point at low freq. end	
2	Connect VoltOhmyst across R41-39K resistor. Adjust Sig. gen. output to give 1 volt d-c on VoltOhmyst.			T6 top core for max. d-c voltage across C36
3	Shunt R41 with two $56 \mathrm{~K} \pm 1 \%$ resistors connected in series. Connect VoltOhmyst from center junction of 56 K resistors to junction of R39 and C32.			T6 bottom core for 0 volts d-c
4	Pin 1 of V3 6BA6 in series with .01 mfd .	10.7 mc . modulated 30\% 400 cycles	Quiet point at low freq. end	VoltOhmyst conn. to TP1. t+T'5 top core. T3 top \& bottom
5	Stator of ClD in series with .01 mfd .			サゆTl top and bottom cores
6	FM Ant. terminals 270 ohm resistor in series \#3 term.	90 mc .	90 mc .	Remove bottom shield. **Osc. coil L3
7		106 mc.	106 mc . signal	Replace bottom shield. ClA-T ant., ClD-T r.f.
8		90 mc .	90 mc .	$\begin{gathered} \text { **L1 ant. } \\ \text { L2 r.f. } \end{gathered}$
9	Repeat steps 6, 7, and 8 until further adjustment does not improve calibration.			

CORE PEAKING

Incorrect peaking can seriously affect gain and bandwidth. The correct peak is noted for the various coils and transformers.

1. The RF transformer core screw should be adjusted on the peak position furtherest removed from the coil mounting clip. An incorrect peak may sometimes be obtained with the core screw almost all the way into the clip.
2. The oscillator coil (AM) should be adjusted on the peak obtained with the core coming out the lug end of the coil. When adjusting from the top of the chassis, this is the peak with the core furtherest into the coil.
3. The position of the FM IF transformer screws should be noted after adjustment. These cores should be peaked with the core part way out of the coil toward the adjusting hole. It is possible to run the IF cores all the way through the FM windings and obtain a second $\mathrm{pt} i \mathrm{k}$. This will cause serious overcoupling and should be avoided by using a marked adjusting stick. The correct peak is always the first peak obtained when the core is started in from the "backed all the way out" position.

RADIO CORPORATION OF AMERICA PAGE 23-43 MODEL 3-RF-91, Ch. RC1129

RADIO CORPORATION OF AMERICA PAGE 23-45

$\begin{array}{\|c} \hline \text { STOCK } \\ \text { No. } \end{array}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLIES RC1129	$\begin{aligned} & 503168 \\ & 503212 \end{aligned}$	680 ohms, $\pm 10 \%$; $1 / 2$ watt (R8, R21, R27, R28) 1200 ohms, $\pm 10 \%, 1 / 2$ watt (R13, R42)
12717	Board-Antenna terminal board	503222	2200 ohms, $\pm 10 \%$, $1 / 2$ watt (R40)
76333	Capacitor-Variable tuning capacitor (ClA, ClB,	503233	3300 ohms, $\pm 10 \%$, $1 / 2$ watt (R6)
	ClC, ClD, ClE, ClF)	503310	10,000 ohms, $\pm 10 \%, 1 / 2$ watt (R5, Rl6)
73473	Capacitor-Fixed, cerarai	503318	18,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R11, R39)
	0%, 500 volts D.C., High " K " disc (C5, C9, C14, C15, C16, C22,'C23, C24, C25, C31, C35'	$\begin{aligned} & 503322 \\ & 503327 \\ & \hline \end{aligned}$	22,000 ohms, $\pm 10 \%, 1 / 2$ watt (R15) $27,000 \mathrm{ohms}, \pm 10 \%$, $1 / 2$ watt (R17)
	C45) ${ }^{\text {a }}$, C22, C23, C2, C25, C31,	503333	33,000 ohms, $\pm 10 \%$, 1/2 watt (R36)
73960	Capacitor-Fixed, ceramic, 10,00	513333	33,000 ohms, $\pm 10 \%$, 1 watt (R10, R37)
	$-0 \%, 500$ volts D.C., High " K " disc (C40; C41,	503339	39,000 ohms, $\pm 10 \%, 1 / 2$ watt (R41)
76552	C43, C44) Capacitor-Fixed, ceramic, insulated, 330 mmf .,	503368	68,000 ohms, $\pm 10 \%, 1 / 2$ watt (R4) 100,000 ohms, $+10 \%, 1 / 2$ watt (R22, R24, R26,
77277	+ $\pm 0 \%$, 500 volts D.C., High "K" disc (C 21)	503410	R ohms, $\pm 10 \%$, $1 / 2$ watt (R22, R24, R26, R34, R43)
77277	Capacitor-Fixed, ceramic, non-insulated, 3 mmf ., $\pm 1 \mathrm{mmf}$., 500 volts D.C., Temp. coef. $=0$ (C2)	503	120,000 ohms $\pm 10 \%$, $1 / 2$ watt (R12)
76350	Capacitor-Fixed, ceramic, non-insulated, 10	503422	220,000 ohms, $\pm 10 \%, 1 / 2$ watt (R33)
	mmf., $\pm 0.5 \mathrm{mmf} ., 500$ volts D.C. Temp coef. $=$	$\begin{aligned} & 503433 \\ & 503439 \end{aligned}$	330,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R23) 390,000 ohms $\pm 10 \%, 1 / 2$ watt (R20)
76349		503447	470,000 ohms, $\pm 10 \%, 1 / 2$ wott (R30)
	$\pm 10 \%, 500$ volts D.C. Temp coef. $=-330$ (C11)'	503522	2.2 megohm, $\pm 10 \%, 1 / 2$ watt (Rl, R3)
70596	Capacitor-Fixed, ceramic, non-insulated, 33 mmf .,	503539	3.9 megohm, $\pm 10 \%$, $1 / 2$ watt (R9)
	$\pm 10 \%, 500$ volts D.C. Temp coef. $=0$ (C 6)	503610	10 megohm, $\pm 10 \%$, $1 / 2$ watt (R19)
71920	Capacitor-Fixed ceramic, non-insulated, 220	76331	Shield-Tube shield for V1, V6
	mmf., $\pm 10 \%$, 5000 voils D.C. Temp. coef. $=-750$	35574	Socket-Dial lamp socket
	(C3,'C7) ${ }^{\text {a }}$ (${ }^{\text {a }}$	73117	Socket-Tube socket, 7 pin, miniature, wafer for
39	Capacitor-Fixed, mica: $150 \mathrm{mmm},. \pm 10 \%, 500$ volts	7793	Vl and V 7 Socket-Tube soc
7794	470 mmf ., $\pm 10 \%$, 300 volts D.C. ($333, \mathrm{C} 34$)		ocke, V4, V5, V6
39644	$470 \mathrm{mmf}$. , $\pm 20 \%$, 500 volts D.C. ($338, \mathrm{C} 39$)	70827	Socket-Tube socket, octal, wafer for V8, V9
3966	4700 mmf ., $\pm 20 \%, 500$ volts D.C. (C13)	76336	Socket-Tube socket, 9 pin, miniature; saddle
73747	Capacitor-Electrolytic, $2 \mathrm{mid} . ; 50$ volts (C36)		mounted for V2
76330	Capacitor-Electrolytic comprising 1 section of 30	76332	Spring-Drive cord spring
	volts, 1 section of 50 mfd. . 30	76	Switch-Function switch (S1)
	1 section of $20 \mathrm{mfd} ., 25$ volts (C29A, C29B, C29C)	76335	Transformer-First I.F. transformer-A.M. (T2)
	Capacitor-Fixed, tubular, paper:	75559	Transformer-First I.F. transformer-F.M. (T1)
77942	$0.0022 \mathrm{mfd} ., 200$ volts (C17)	76328	Transformer-Second I.F. transformer-A.M. (T4)
7392	0.0047 mfd., 600 volts (C28, C32)	7632	Transformer-Second I.F. transformer-F.M. (T3)
77424	0.01 mid., 200 volts (C20)	7939	Transformer-Third I.F. transformer-F.M.-com-
77943	0.015 mfd. ., 200 volts (C18)		
77989	0.039 mfd., 200 volts (Cl9)	77940	Transformer-Output transformer (T7)
73558	0.047 mfd , 200 volts (C4)	76326	Transformer-Power transformer, cycle (78)
73551	0.1 mfd ., 400 volts (C 26)	77938	
73851 73935	${ }_{\text {Clip }}^{0.0018 \text { mfd., }} 1600$ volts, oil impregnated (C30)	77938	with adjustable core (T6)
$\begin{aligned} & 73935 \\ & 76354 \end{aligned}$	Clip-Mounting clip for I.F. transformer Coil-Antenna coil-F.M. (Ll)	33726	Washer-"C" washer for station selector pointer
71942	Coil-Filament choke coil (L5, L6, L9)		pulley and for tuning knob shaft
76351	Coil-Filament choke coil (L7, L8)		SPEAKER ASSEMBLIES
76337	Coil-Oscillator coil-A.M.-complete with adjustable core (T10)	75024	Cone-Cone and voice coil (3.2 ohms)
77973	Coil-Oscillator coil-F.M. (L3)		Speaker-8" P.M. speaker complete with cone and voice coil (3.2 ohms)
76338	Coil-R.F. coil-A.M.-complete with adjustable core (Tg)		MISCELLANEOUS
76353	Coil-RF coil-F.M. (L2)	76343	Antenna-Ferrite rod antenna complete with coil less masonite support and grommets
35787	Connector-Phono input connector (Jl)	76359	Back-Cabinet back
76460	Contact-Test point contact (TP1)	77944	Bezel-Decorative bezel-round-for front of cab-
77936	Control-Tone control (R29)		inet
70342	Control-Volume control and power switch (R18, S2)	$\begin{aligned} & \text { Y2519 } \\ & 76678 \end{aligned}$	Cabinet-Plastic cabinet less decals Clip-Mounting clip for cabinet back (4 required)
72953	Cord-250' Drive cord reel-approx. $50^{\prime \prime}$ overall	76767	Decal-Control function decal
	required	76356	Dial-Polystyrene dial scale
70392	Cord-Power cord and plug	77033	Emblem-"RCA Victor" emblem
74839	Fastener-Push fastener for mounting RF shelf	77950	Grommet-Rubber grommet for mounting ferrite
74838	Grommet-Power cord strain relief (1 set)		rod antenna to masonite support (2 required)
16058	Grommet-Rubber grommet for RF shelf (4 required)	77951	Insert-Hard rubber insert for antenna mounting grommets (2 required)
11891	Lamp--Dial lamp-Mazda 44	77232	Knob-Function switch knob-maroon
76340	Pan-Speaker pan assembly complete less station selector pointer shaft and pulley	77233	Knob-Tuning control, tone control or volume control and power switch knob-maroon
76341	Pulley-Station selector pointer shaft and pulley	77947	Nameplate-"AM-FM" nameplate
52436	Resistor-Fixed, wire wound, 1500 ohms, 4 watts (R32)	72765	Nut-Speed nut to fasten bezel to cabinet (4 required)
	Resistor-Fixed, composition:		Nut-Speed nut to fasten "RCA Victor" or "AMFM" emblems to cabinet
50	68 ohms, $\pm 10 \%$, 1/2 watt (R2, R14)	77948	Pointer-Station selector pointer
503110	$100 \mathrm{ohms}, \pm 10 \%, 1 / 2$ watt (R38)	77945	Reflector-Dial scale reflector
503112	120 ohms, $\pm 10 \%$, 1/2 watt (R25, R35)	77946	Screen-Grille screen
503133	330 ohms, $\pm 10 \%, 1 / 2$ watt (R7)	74734	Spring-Spring clip for control knobs
513133	330 ohm, $\pm 10 \%, 1$ watt (R31)	77949	Support-Antenna support (masonite) only

$2 C 511$	2C512	2C513	2C514
Black E Gray	Ivory	Red	Two Tone Gray

SPECIFICATIONS

Tuning Range . $540-1600 \mathrm{kc}$
Intermediate Frequency 455 kc
Tube Complement:
(1) RCA 12 BE 6
Converter
(2) RCA 6BJ6
\qquad Amplifier
(3) RCA 12AV6AVC-A.F. Amp.
(4) RCA 6AK6 \ldots........................... Output RCA Stock No. 77292. Rectifier
Power Supply Rating:
115 volts a.c., 60 cycles. 20 watts

CAUTION: DO NOT OPERATE ON D.C.

OPERATING INSTRUCTIONS

This instrument contains a timer-type electric clock mechanism which may be used to automatically actuate the self-contained a.c. radio. The radio may also be operated independently of the clock mechanism.

Clock Radio Controls

CLOCK-l. Plug instrument into 115 v. a.c. outlet. The clock will start to operate immediately. Set the correct time by turning clockwise, the "TIME" knob located at the center of the instrument back. To set the alarm, turn the "ALARM" knob clockwise until the desired time is indicated by the alarm pointer extension on the hour hand. Pull knob out for alarm buzzer operation. To turn off buzzer, push knob in.

RADIO-1. To obtain radio operation independently of the clock, push the slide switch lever at the top of the cabinet to the left•"ON" position. Adjust volume and tuning control knobs as required after approximately 30 second warm-up. To increase volume turn knob clockwise as viewed from volume control side panel. Push slide switch lever to the center "OFF"' position when finished listening.
2. To automatically actuate the radio by the clock mechanism, make initial volume and station settings as described in section 1 above. Set the "ALARM" knob to the time desired. Push slide switch lever to the right "AUTO" position. If the alarm buzzer knob is pulled out, the alarm will sound approximately ten minutes after the radio starts operating. Push alarm knob in to turn off alarm. The radio will turn itself off after a period of approximately one hour if the slide switch remains in the "AUTO" position after start of playing.

CAUTION-Keep slide switch "ON-OFF-AUTO" lever in "OFF" position when instrument is not in use. Locate instrument so that "TIME" and "ALARM" knobs have free movement

ALIGNMENT PROCEDURE

Output Meter Alignment-If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.
Test-Oscillator-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid AVC action.

On a.c operation an isolation transformer ($115 \mathrm{v} . / 115 \mathrm{v}$.) may be necessary for the receiver if the test oscillator is also a.c. operated.

ALIGNMENT TABULATION

Step	Connect the high side of test-oscillator to-	Tune test-osc. to-	Turn radio dial to-	Adjust the following for max. output
1	6BJ6 I-F grid through . 01 mfd. capacitor	455 kc	Quietpoint 1600 kc end of dial	T2 (top and bottom) 2nd I-F trans.
2	Stator of Cl-A through .01 mfd .			Tl (top and bottom) lst I-F trans.
3	Short wire placed near loop to radiate signal	1620 kc	Min. cap.	$\begin{aligned} & \text { osc. trimmer } \\ & \text { ClB-T } \end{aligned}$
4		1400 kc	1400 kc signal	$\begin{gathered} \text { ant. trimmer } \\ \text { ClA-T } \\ \hline \end{gathered}$
5		600 kc	$\begin{aligned} & 600 \mathrm{kc} \\ & \text { (rock) } \end{aligned}$	(osc. coil) Slug L3
6		Repeat steps 3, 4, and 5		

RADIO CHASSIS AND CLOCK SERVICE

TOOL REQUIREMENTS—A small \#l size cross-head screwdriver is required for disassembly of the radio into its major cabinet and chassis components.
TUBE SERVICE-Disassembly-To make tubes accessible for testing, remove the volume and tuning control knobs by pulling off. Unscrew counterclockwise the alarm and time knobs from their shafts. Invert the cabinet and remove only the two cross-head screws along the back underside of the cabinet. Place the cabinet in its normal position. Using only firm hand pressure, press down alternately at front right and left sides of the cabinet top, midway between the "ON-OFF-AUTO" slide switch lever and the cabinet sides, forcing down and backward, to disengage the molded-in plastic catches. Then lift off the cabinet rear cover.
Assembly-To reassemble, proceed in the reverse order, sliding the cabinet rear cover into its track on the cabinet base. Lift the front corners up slightly to clear the two molded-in pads at each front corner of the cabinet base. Then press down and snap-in the upper front edge of the cabinet rear cover under the top rim of the cabinet base. Make sure the slide switch and switch lever are in corresponding center "OFF" positions. Reassemble clock and radio knobs, and the two screws securing the cabinet rear cover.
RADIO CHASSIS SERVICE-Disassembly-To service chassis, open case as described above. In addition, remove the single cross-head screw remaining at the front underside of the cabinet•and also the two cross-head screws located on the chassis near the tuning gang and the volume control. Lift out the chassis and remove the four selftapping cross-head screws holding the bottom cover to the chassis. Lift off the bottom cover.
Assembly-Reassemble in the reverse order. Secure the bottom cover to the chassis with the four self-tapping screws. Next, insert the single self-tapping screw holding the chassis to the bottom of the cabinet base. Center the chassis mounting holes so that they line up with the holes in the cabinet and replace the two cross-head machine screws. Tighten just sufficiently to hold the chassis firmly. Do not turn the screws to the possible limit of travel unless this is necessary to hold the chassis firmly. The average receiver may have a $1 / 32^{\prime \prime}$. clearancie between the chassis
metal panel and molded plastic boss. If any of the four foam rubber cushions on the bottom cover register in the clock face after assembly, push the excess length under the " Z " tabs of the bottom cover.
CLOCK SĖRVICE-Disassembly-To service clock, remove chassis and bottom cover as described above. In addition, remove the three screws holding the speaker to the speaker mounting bracket. Remove the two hex nuts holding the clock to the chassis pan recess. Lift the clock out. Unsolder the clock leads at the clock terminals.
Assembly-Proceed in the reverse order. Solder clock leads, and secure clock to chassis pan with two hex head nuts. Reassemble speaker to speaker mounting bracket.

CRITICAL LEAD DRESS

1. Filament leads should be dressed away from secondary output lead, terminal \#1, of 2nd I.F. Transformer and secondary output lead, terminal \#l, of 1st I.F. transformer.
2. Connect the outside foil of capacitors as shown on schematic.
3. Dress electrolytic capacitor leads and filament transformer leads away from selenium rectifier.
4. Plate and grid leads of 12BE6 and 6BJ6 tubes should be kept as short and direct as possible.

Tube and Trimmer Locations

$\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLIES	77414	Transformer-Output transformerT3
	RC 1118-Mode! 2C511 RC 1118A-Model 2C512	77416	Transformer-lst. I.F. transformer complete with adjustable cores
77410	RC 1118B-Model 2C513 RC 1118C-Model 2C514 Antenna-Ferrite rod antenna complete with	77417	Transformer-2nd. I.F. transformer complete with
77410	Antenna-Ferrite rod antenna complete with windings	77420	adjustable cores \qquad T2 Washer-Shoulder washer (nylon) for variable
77408	Capacitor-Variable tuning capacitor...ClA, ClB		tuning capacitor mounting (3 req'd)
77471	Capacitor-Ceramic, $4.7 \mathrm{mmf} . \ldots C l 1 ~$		- SPEAKER ASSEMBLIES
75609			971920-1
75198		77428	Speaker-3" P.M. speaker complete with cone and
77427	Capacitor--Electrolytic comprising 1 section of $50 \mathrm{mfd} ., 150$ volts and 1 section of 30		MISCELLANEOUS
	mid., 150 volts....................... C5A, C5B	77430	Back-Polystyrene cabinet back-gray tan-for
77425	Capacitor-Tubular, paper, $.0015 \mathrm{mfd} ., 200$ volts	77505	Model 2C511 Back-Polystyrene cabinet back-ivory-for Model
77488	Capacitor-Tubular, paper, 0056 mfd., 400 volts ... Clo	77507	2C512 Back-Polystyrene cabinet back-red-for Model
77424	Capacitor-Tubular, paper, . $01 \mathrm{mfd} ., 200$ volts .. . 88		
7422	Capacitor-Tubular, paper, . 047 mfd .400 volts . . C4	77509	Back-Polystyrene cabinet back-gray-for Model 2C514
75071	Capacitor-Túbular, moulded, $047 \mathrm{mfd} ., 400$ volts	77433	Button-Slide button for function switch less clip
77423	Capacitor-Tubular, paper, 0.1 mfd ., 400 volts. . . C6	77429	Case-Polystyrene case front-black-complete with window less back for Model 2C511
77421	Clip-"C" clip for mounting speaker	77504	Case-Polystyrene case front-ivory - complete
75010	Clip--"C" clip for mounting output transformer		with window less back for Model 2C512
7393	Clip-Mounting clip for I.F. transformer	77506	Case--Polystyrene case front-red-complete with
77411	Coil-Oscillator coil complete with adjustable core L2, L3	77508	window less back for Model 2C513 Case - Polystyrene case front - gray - complete
77409	Control-Volume controlR6		with window less back for Model 2C514
70392	Cord-Power cord and plug	77434	Clip-Spring clip for function switch slide button
77404	Cover-Chassis bottom cover	77431	Dial-Dial knob-gray tan-for Model 2C
77419	Cushion-Foam rubber cushion for speaker rim or bottom cover	77498	Dial-Dial knob-ivory-for Model 2C512 Dial-Dial knob-red-for Model 2C513
74838	Grommet-Power cord strain relief (l set)	77500	Dial-Dial knob-gray-for Model 2C514
77418	Grommet-Rubber grommet for mounting ferrite rod antenna	77432	Knob-Volume control knob-gray tan-for Model 2C511
77405	Insulator-Bakelite insulator for variable tuning capacitor	77501	Knob-Volume control knob-ivory-for Model 2C512
77406	Insulator-Ferrite rod antenna mounting insulator -L.H.	7750	Knob-Volume control knob-red-for Model 2C513
77407	Insulator-Ferrite rod antenna mounting insulator -R.H.	77503	Knob-Volume control knob-gray-for Model 2C514
77292	Rectifier-Selenium rectifierCR1	77412	Knob-Timer knob
503022	Resistor-Fixed, composition:- 22 ohms, $\pm 10 \%, 1 / 2$ watt. 2	77437	Screw-\# $6 \times 5 / 6^{\prime \prime}$ cross recessed truss head tapping screw for mounting chassis
503.110	100 ohms, $\pm 10 \%$, $1 / 2$ watt.ll	77436	Screw-\#6-32 $\times 3 / 16^{\prime \prime}$ cross recessed truss head
503139	390 ohms, $\pm 10 \%$, 1/2 watt. Rlo	77435	Screw- \#6-32 x 5/" cross recessed truss head
532215	1500 ohms, $\pm 10 \%$, 2 watts....................R3	77435	machine screw for fastening case assembly
503333	33,000 ohms, $\pm 10 \%$, $1 / 2$ watt.R1	74734	
503347	47,000 ohms, $\pm 10 \%$, $1 / 2$ watt.R5		knob
503433	330,000 ohms, $\pm 10 \%$, 1/2 watt.R8	77467	Washer-Knob Washer-felt
503482	820,000 ohms, $\pm 10 \%$, 1/2 watt..................R9		CLOCK ASSEMBLY
503533	3.3 megohm, $\pm 10 \%$, $1 / 2$ watt.R4		Clock-It clock mechanism repair becomes neces-
503547	4.7 megohm, $\pm 10 \%$, $1 / 2$ wattR7		sary, remove the clock from the radio. The RCA
75780	Socket-Tube socket, 7 pin. miniature, saddle mounted		Victor Distributor in your area will advise you of the address of the nearest authorized service
77415	Switch-Function switch Sl		station for clock mechanisms. Repair facilities
77413	Transformer-Filament transformer 117 volts A.C.		and replacement parts are available at these authorized service stations.

Specifications
Tuning Ranges
Standard Broadcast ("A" Band) $540-1600 \mathrm{kc}$Short Wave ("C" Band)5.8-18.0 mic
Intermediate Frequency 455 kc
Tube Complement
(1) RCA 12BA6 .R. F. Amplifier(2) RCA 12BE6.. Converter
(3) RCA 12BA6 I. F. Amplifier
(4) RCA 12 SQ 7 Det. - A.F. - A.V.C.
(5) RCA 35L6GT Output
(6) RCA 35 Z 5 Rectifier
Dial Lamp 2 Type 1490, 3.2 volts, 0.15 amp .
Power Supply Rating
115 volts, D.C. or 50 to 60 cycles, A.C. 35 watts
Loudspeaker
Type $971495-9 \mathrm{~W}$4 in. P.M.
V. C. Impedance 3.2 ohms at 400 cycles
Power Output
Undistorted 0.85 watts
Maximum 1.2 watts
Weight 8 lbs.
Cabinet Dimensions
Height...85/8 in. Width... $113 / 4 \mathrm{in}$. Depth... $71 / 2 \mathrm{in}$.Tuning Drive Ratio
\qquad 11:1 (51/2 turns of knob)

NOTE: If reception is not obtained on DC, reverse plug in outlet receptacle. This may also reduce hum on AC operation.

Operating Instructions

Radio-Turn power on with POWER-VOLUME control and set about half-way for volume. Set the FUNCTION Control for the type of program desired and allow 30 to 40 second warm-up period when the dial will be fully illuminated.
Tune in desired station with TUNING Control making slow and careful setting in conjunction with volume control for Short Wave reception. Make final setting of VOLUME control to suit requirements.

Loop Antenna Leads

Phonograph Operation-Plug in record changer attachment to phono socket on lower chassis apron. Set FUNCTION switch to "PH" (phono) position. Adjust VOLUME control for listening requirements.

MODEL 2-X-621, Ch. RC1085B

Tube and Trimmer Locations

Dial Indicator and Drive Mechanism

ALIGNMENT PROCEDURE

Steps	Connect the High Side of The Test Osc. to-	Tune Test Osc. to-	Range Switch to-	Turn Radio Dial	Adjust for maximum output
1	Pin No. 1 of 12BA6 I.F. amp! tube in series with 0.1 mfd .	455 kc .	" ${ }^{\text {" }}$	Quiet Point near 1600 kc .	Top and bottom T2 2nd I.F. Trans.
2	Pin No. 7 of 12BE6 Converter tube in series with 0.1 mfd .				*Top and bottom T1 1st I.F. Trans.
3	Pin No. 1 of 12BA6 R.F. tube in series with 0.1 mfd .				L2 wave trap for minimum output.
4	(Radiated signal) short piece of wire placed near ant.	1620 kc .	"A"	$\begin{gathered} 1620 \mathrm{kc.} \\ (\text { Cap. min. }) \\ \hline \end{gathered}$	C-13 "A" Osc.
5		1400 kc .		1400 kc .	C-2 "A" ant.
6		600 kc .		600 kc .	L6 "A" Osc. Rocking gang.
7	Repeat steps 4, 5 and 6.				
8	Center terminal on loop antenna Term. board through 47 mfd . Low side to loop primary terminal	18.2 mc .	"C"	$\begin{gathered} 18.2 \mathrm{mc} . \\ \left(\begin{array}{c} \text { Min. cap. } \end{array}\right. \end{gathered}$	**C-12 "C" Osc.
9		15.2 mc .		15.2 mc .	***+C-3 "C" Ant.
10		6.1 mc .		6.1 mc .	$\dagger \dagger \mathrm{L}-5$ "C" Osc. L-1 "C" Ant.
11	Repeat steps 8, 9, and 10 as necessary.				

*Use 18 K resistor across primary when aligning secondary, across secondary when aligning primary.
${ }^{* *}$ Two peaks should be found, use one having lowest capacity.
${ }^{* * *}$ Two peaks should be found, use one having highest capacity. Note: Check for image frequences.
\dagger Radio dial tuned to 15.2 mc . as in step 9, tune test osc. to 16.11 mc . where a weaker signal should be heard.
$\dagger \dagger$ Radio dial tuned to 6.1 mc . as in step 10 , tune test osc. to 7.01 mc . where a weaker signal should be heard.

Test Oscillator-Connect low side of test oscillator to common wiring in series with a .1 mf . capacitor. If the test oscillator is a. c. operated it may be necessary to use an isolation transformer for the receiver during alignment and the low side of the test oscillator connected directly to common wiring at the electrolytic capacitor. Keep the oscillator output low to prevent a-v-c action.

Output Meter Alignment-If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.

John F. Rider

$\begin{aligned} & \text { sTOCx } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
			Resistor-Fixed, composition:-
	SSIS ASSEMBLIES	514033	33 ohms, $\pm 20 \%$, 1 watt.R15
		503082	82 ohms, $\pm 10 \%$, $1 / 2$ watt. 12
		503112	120 ohms, $\pm 10 \%$, $1 / 2$ watt....................... R14
77217	Antenna-Antenna loop and back cover-maroon	503118	180 ohms, $\pm 10 \%$, $1 / 2$ watt. 7 7
77217	Back-Cabinet back cover and antenna loop assembly	503127	270 ohms, $\pm 10 \%$, $1 / 2$ watt. R20
		503156	560 ohms, $\pm 10 \%$, 1/2 watt. R 6
71042	Button-Plug button for trimmer adjustment hole	503210	1000 ohms, $\pm 10 \%$, $1 / 2$ watt. R2, R17
77216	Capacitor-Variable tuning capacitor complete with drive drum C1, C2, C4	513212	1200 ohms, $\pm 10 \%$, 1 watt.n.......R13
74924	Capacitor-Mica trimmer, dual 3-35 mmf. C3, Cl2	503333	33,000 ohms, $\pm 10 \%$, 1/2 watt. R4
74923	Capacitor-Mica trimmer, 4-70 mmf. Cl3	503356	56,000 ohms, $\pm 10 \%$, $1 / 2$ watt. R8
71924		503410	100,000 ohms, $\pm 10 \%$, $1 / 2$ watt...................R21
73501	Capacitor-Ceramic, $150 \mathrm{mmf} . \ldots C 10, ~ C 14, ~ C 23 ~$	503422	220,000 ohms, $\pm 10 \%$, $1 / 2$ watt.R3, R9, R16
38831		503447	470,000 ohms, $\pm 10 \%$, $1 / 2$ watt....................R10
39665	Capacitor-Mica, 3600 mmf. C5	504522	2.2 megohm, $\pm 20 \%$, 11/2 watt R5
73473	Capacitor-Ceramic, $4700 \mathrm{mmf}$. C21	504547	4.7 megohm, $\pm 20 \%$, $1 / 2$ watt.R1l
72312	Capacitor-Electrolytic comprising 1 section of $30 \mathrm{mfd} .$,	74922 74697	Shaft-Tuning knob shaft Socket-Dial lamp socket
	150 volts and 1 section of 80 mid., 150 volts C17A, C17B	73117	Socket-Tube socket, 7 pin, miniature for V1, V2, V3
73595	Capacitor-Tubular, paper, . $0022 \mathrm{mid} ., 600$ volts. . . Cl5	54414	Socket-Tube socket, octal, saddle-mounted for V4, V5,
73561	Capacitor-Tubular, paper, $01 \mathrm{mfd} ., 400$ volts.....C22		
73797	Capacitor-Tubular, paper, . 015 mid., 600 volts. . . . Cl6	76368	Spring-Drive cord spring
73562	Capacitor-Tubular, paper, . 022 mfd., 400 volts. . . . 220	74921	Stwitch-Selector switch Sl
73553	Capacitor-Tubular, paper, .047 mfd., 400 volts $\mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 19$	74918	Transformer-First I.F. transformer complete with adjustable cores
73551	Capacitor-Tubular, paper, $0.1 \mathrm{mid} ., 400$ volts. ... C18	73037	Transformer-Second I.F. transformer complete with adjustable cores
73794 73935	Capacitor-Tubular, paper, 0.22 mfd ., 400 volts....C24	73976	Transformer-Output transformer................. 3
73935 74927	Clip-Mounting clip for I.F. transformer Coil-Antenna coil-"C" band........................... Ll	35969	Washer-"C" washer for tuning knob shaft
74925	Coil-Oscillator coil-"A" band-complete with adjustable core		SPEAKER ASSEMBLIES $971495-9 \mathrm{~W}$
74926	Coil-Oscillator coil-"C" band-complete with adjustable core	77218	peaker-4" P.M. speaker complete with cone and
74930	Coil-Peaking coil ($12 \mathrm{muh}$.) L3, R1		voice coil (3.2 ohms)
72618	Coil-Peaking coil (20 muh.)L4, R18		
74928	Coil-Series wavetrap coil (455 KC) complete with adjustable coreL2		MISCELLANEOUS ${ }_{\text {cole }}$ Cabinet-Plastic cabinet-maroon-complete with dial
35787	Connector-Phono input connector................Jl	Y2	Cabinet-Plastic cabinet-maroon-complete with dial escutcheon
75474	Connector-Single contact male connector for output transformer leads (2 req'd.)	77220	Dial-Polystyrene dial scale
38410	Control-Volume control and power switch.... R19, S2	75761	
72953	Cord-250' Drive Cord Reel (approx. $50{ }^{\prime \prime}$ req'd.)		req'd.)
70392	Cord-Power cord and plug	77219	Knob-Selector switch knob-maroon
74838	Grommet-Power cord strain relief (1 set)	74931	Knob-Tuning control or volume co
33139	Grommet-Rubber grommet for chassis base		-
16058	Grommet-Rubber grommet for mounting tuning ca-	71116	Lamp-Dial lamp-Mazda 1490
70980	pacitor Lead-Antenna lead-"C" band	74301	Screw-\#8 $\times 3 / 8^{\prime \prime}$ cross recessed binder head screw for mounting dial
77142	Pointer-Station selector pointer	30900	Spring-Retaining spring for knobs

SPECIFICATIONS

Tuning Range$540-1600 \mathrm{kc}$.
Intermediate Frequency 455 kc.
Tube Complement

1. RCA 12BE6 Converter
2. RCA 12BA6

\qquad
Amplifier3. RCA 6AQ6 Detector-A.F. Amplifier4. RCA 6AQ6 ...RCA 35 C 5\}Push Pull Outpuit6. RCA 35C5\}Push Pull OutputA selenium rectifier Stock \#76871 is used.
Power Supply Rating115 volts A.C., 60 cycles45 watts
Dial Lamps (2) Mazda type 51, 6-8 volts, 0.2 amp.

Record Cbanger Controls

Loudspeaker
Size and type $8^{\prime \prime}$ P.M. Voice coil impedance
3.2 ohms at 400 cycles

Power Output

At 10% distortion.................................... 2.0 watts
Maximum
Cabinet Dimensions Height $321 / 4^{\prime \prime} \quad$ Width 281/2" Depth 191/8"
Tuning Drive Ratio 141/4:1 (71/8 turns of knob)
Record Changer (930409-5, or -10)
Turntable speed $33^{1 ⁄ 2} 2,45$ or 78 r.p.m. Record capacity up to fourteen 7 inch RCA type or twelve 10 inch or ten 12 inch or ten 10 in . and 12 in . intermixed. Pickup (Stock No. 75475) . .Crystal with replaceable styli. Weight 66 lbs . net

RECORD CHANGER CONTROLS

The record changer has a dual control on the motorboard and a stylus selector control on the pickup arm. The inner control (circular knob) is the OFF-ON-REJECT control. Turning this knob to the center position energizes the motor and starts the turntable, when turned to the right (clockwise) it starts the mechanism into complete automatic operation. The mechanism will shut off automatically after the last record has been played but can be shut off manually by turning this knob to the left (counter-clockwise).

The outer control (double ended lever) is the speed control. It has three normal positions, " 33 ", " 45 ", " 78 " to select the turntable speed desired and a neutral position (midway between " 45 " and " 78 "). The control should be turned to this neutral position if the changer is not expected to be in use for an extended period of time.
The stylus control has two normal positions (right and left) and one shipping position (lever pointing up). When playing. $331 / 3$ or 45 r.p.m. records the lever is turned so that " $33-45$ " is visible on the TOP of the lever; likewise for 78 r.p.m. records " 78 "' should be visible on the TOP.

The removable centerpost is for use with 45 r.p.m. records having the large centerhole. It must be placed over the center spindle with the "RCA" trademark monogram FACING to the FRONT. When not in use it is placed in a well at the front of the motorboard.
To load or remove records, the record stabilizer is lifted and turned off-side. After loading it is turned to the center where it rests on top of the stack of records.

Critical Lead Dress

1. Dress all leads away from R22.
2. Dress all filament leads down to chassis.
3. Dress output plate leads down to chassis.
4. Dress R12 close to chassis.

Dial Cord Layout

Alignment Procedure

Output Meter.-Connect meter across speaker voice coil. Turn volume control to maximum.
Test Oscillator.-Connect low side of test oscillator to common wiring in series with a .1 mf . capacitor. If the test oscillator is a.c. operated it may be necessary to use an isolation transformer for the receiver during alignment and the low side of the test oscillator connected directly to common wiring at the electrolytic capacitor. Keep the oscillator output low to prevent $\alpha-v-c$ action.

Steps	Connect the high side of test-oscillator to-	Tune test-osc. to-	$\begin{aligned} & \text { Turn } \\ & \text { radio dial } \\ & \text { to- } \end{aligned}$	Adjust the following for max. output
1	I.F. grid, in series with .1 mfd .	455 kc	Quiet point 1,600 kc end of dial	Pri. \& Sec. 2nd I.F. transformer
2	Converter grid in series with .1 mfd .			Pri. \& Sec. lst I.F. transformer
NOTE.-ANTENNA LOOP MUST BE IN CABINET FOR THE FOLLOWING				
3	Short wire placed near loop for radiated signal	1,620 kc	$\left\lvert\, \begin{gathered} \text { Extreme } \\ \text { R. H. end } \\ \text { (gang open) } \end{gathered}\right.$	C22 (osc.)
4		$1,400 \mathrm{kc}$	1,400 kc	C5 (ant.)
5		600 kc	600 kc Signal	$\stackrel{13}{\text { (Rock Gang) }}$
6	Repeat steps 3, 4\&5 if necessary			

Dial Pointer Adjustment.-Rotate tuning condenser fully counterclockwise (plates fully meshed). Adjust indicator pointer so that it is $315 / 16$ " from the left hand edge of the dial back plate.

Tube and Trimmer Locations

Specifications

230 volts d.c., or 25 to 60 cycles a.c. using RK-186 Converter Accessory

Tube Complement

(1) RCA 1U4	F. Amplitier
(2) RCA 116	Converter
(3) RCA IU4	I.F. Amplifier
(4) RCA IUS	Det-AVC-1st A.F.
(5) RCA 3 V 4	Output
RCA Stock No. 78101	Selenium Rectifier
Loudspeaker	
Size and Type	$51 / 4 \mathrm{in}$. P.M.
Voice coil impedance	hms at 400 cycles
Power Output	
Undistorted	0.22 watt
Maximum	0.42 watt
Tuning Drive Ratio	1
Weight (Approximate)	
Less Battery	16 lbs.
With Battery (RCA VS047)	23 lbs .
Dimensions (Overall)	
Height $111 / 2$ in. Width	Depth 8 in.

Operating Instructions

Rotate POWER-VOLUME knob to right until a click is heard, and advance for about half a turn. Rotate BAND SELECTOR knob until desired band marking on knob is directly beneath the red triangle. A white indicator will appear at right of desired band on dial. To obtain reception on any one of the six Short Wave bands, the telescopic rod antenna must be used. See instructions under "General Information." Rotate TUNING knob until dial pointer indicates desired frequency marking on the desired band. Rotate TREBLE and BASS tone control knobs as desired. Treble tone increases as TREBLE knob is rotated clockwise. BASS tone increases as BASS knob is rotated counterclockwise.
Headphones - \bar{A} "PHONES" receptacle, for connection of headphones, is located on the rear of the chassis. Should individual listening be desired, any standard headphone set with standard plug may be inserted, automatically disconnecting the speaker.

Ground Terminal - A terminal for ground connection is located on the rear of the chassis. To improve reception in
weak-signal areas, connect a.ground wire from this terminal ("GND") to a cold-water pipe, or other suitable ground. "GND" connéction is not necessary when operating on power line.

Operating Controls

Circuit Description

The seven band 3BX67l portable instrument is a sensitive three-way receiver designed to operate from an AC or DC power source, or from a self-contained battery pack. With the addition of an RK-186 converter, the receiver may be operated on $210-250$ volts AC or DC. A chassis jack is provided for this converter.
The receiver incorporates a 7 band tuner covering the broadcast band. "A band"; two short wave bands, $2-4 \mathrm{mc}$. and $4-8 \mathrm{mc}$. "B and C bands"; also four short wave spread bands, $31,25,19$, and 16 meters. The superheterodyne circuit is used with a tuned R.F. stage preceding the pentagrid converter on all bands; one I.F. stage; a combined AVC, detector, and A.F. stage; and a power amplifier stage. A selenium rectifier is used.
R.F. tuning is done by means of a ganged six section variable capacitor. Three large sections are used for the A, B, and C bands with series tracking capacitors. Also, three small 3 plate sections for electrical band spread are used on the four spread bands. The tuner, including the function switch, coil and trimmer assembly, R.F. and converter tubes and gang capacitor, is a completely detachable unit featuring high efficiency with small physical size. The special design permits access to the coil and trimmer adjustments from the rear.
A headphone jack is located on the chassis rear apron for individual listening. This jack automatically disconnects the speaker when the headphone plug is inserted. The slide rule type dial includes 7 separate scales on a slotted escutcheon to provide speaker openings. Continuously variable treble and bass tone controls are provided. This receiver features 3 separate antenna systems. A large flat loop built within the hinged lid includes a primary for external antenna connection, when desired. A Ferrite rod antenna with a long cable and provided with suction cups to permit mounting on a window or wall for improved pickup in shielded areas is supplied. The preceding antennas are used only on the standard broadcast band. A telescoping vertical rod antenna is provided for use on all short wave bands.
All tubes and the battery may be serviced by opening the hinged back cover. A terminal is provided on the back apron of the cover for an external ground connection, if desired. A line voltage compensator switch is mounted on the chassis rear apron under a caution label of instructions. The switch is to be used only in areas of substandard line voltage.

Alignment Fixture

To obtain maximum sensitivity when chassis is reinserted in case after alignment, the alignment fixture shown below should be secured to the tuner side of the chassis during alignment to simulate the effect of the case. The sheet metal clips and hardware on the dust cover base may temporarily be used to hold the fixture to the chassis.

CHASSIS REMOVAL

1. Turn tuning knob until gang is fully closed.
2. Open cabinet back, pull out battery, and disconnect battery plug.
3. Remove pull-off type volume, tụning, band selector, and tone control knobs.
4. Remove the four machine screws holding the chassis to the case.
5. Pull chassis out and simultaneously slightly downward, to enable dial pointer mechanism to clear top back edge of case.

Alignment Procedure

Output Meter Alignment - If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.
Test Oscillator - For' all alignment operations, connect the low side of the test oscillator to the receiver chassis and keep the oscillator output as low as possible to avoid AVC action.

Close gang and set dial pointer to mark on dial plate. Turn volume and treble tone controls to maximum clockwise position. Turn bass tone control to maximum counterclockwise position.				
STEP	CONNECT HIGH SIDE OF SIG. GEN. TO-	$\begin{aligned} & \text { SIGNAL } \\ & \text { GEN. } \\ & \text { OUTPUT } \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { POINTER } \\ & \text { SETTING } \end{aligned}$	ADJUST FOR MAXIMUM OUTPUT
1.	Pin \#6 of IU4 I.F. Amp. thru 0.01 mfd .		"A" Band Quiet	T3 top and bottom cores
2.	Pin \#6 of 1 L6 Conv. thru 0.01 mfd .	455 kc	$\begin{aligned} & \text { point } \\ & \text { near } \\ & 1600 \mathrm{kc} \end{aligned}$	T2 top and bottom cores
3.	Install bottom cover. Secure aluminum alignment fixture in place. Connect 24 mmfd . in series with 22 ohms between sig. generator lead and C39.			
4.	C39, term. 7 on SID thru dummy load indicated	$18.25 \mathrm{mc}$	$\begin{gathered} \text { 16M Band } \\ \text { Right } \\ \text { hand } \\ \text { stop } \\ \hline \end{gathered}$	*C40D-T top of gang
5.		17.5 mc		Tll Osc.
6.		17.8 mc	$\begin{gathered} 16 \mathrm{M} \mathrm{Band} \\ 17.8 \mathrm{mc} \\ \text { Signal } \\ \hline \end{gathered}$	Rock gang, -Peak Lll R.F. + L5 Ant.
7.		14.9 mc	$\begin{gathered} \text { 19M Band } \\ \text { Left } \\ \text { hand } \\ \text { stop } \end{gathered}$	Tl0 Osc.
8.		15.2 mc	$\begin{gathered} \text { 19M Band } \\ 15.2 \mathrm{mc} \\ \text { Signal } \end{gathered}$	$\begin{gathered} \text { Rock gang, }_{\text {Li }} \text {-Peak } \\ \text { L1 R.F. }+ \\ \text { L6 Ant. } \end{gathered}$
9.		11.55 mc	25M Band Left hand stop	T9 Osc.
10.		11.8 mc	$\begin{gathered} \hline 25 \mathrm{M} \text { Band } \\ 11.8 \mathrm{mc} \\ \text { Signal } \\ \hline \end{gathered}$	$\begin{gathered} \text { Rock gang, }- \text { Peak } \\ \text { Li3R.F. } \\ \text { L7 Ant. } \end{gathered}$
11.		9.45 mc	\qquad	T8 Osc.
12.		9.6 mc	$\begin{gathered} \hline 31 \mathrm{M} \text { Band } \\ 9.6 \mathrm{mc} \\ \text { Signal } \\ \hline \end{gathered}$	Rock gang, -Peak L14 R.F. + L8 Ant.
13.		8.1 mc	"C" Band Right hand stop	*C40C-T top of gang. Cl6 R.F. C7 Ant.
14.		3.9 mc	"C" Band Left hand stop	T7 Osc. L9 R.F. L4 Ant.
15.		Repeat steps 13 and 14 until maximum gain is obtained.		
16.		4.05 mc	"B" Band Right hand stop	C32 Osc. Cl8 R.F. C5 Ant.
17.		1.97 mc	"B" Band Left hand stop	T6 Osc. L10 R.F. L3 Ant.
18.		Repeat steps 16 and 17 until maximum gain is obtained. Remove alignment fixture and install chassis in cabinet. Plug in loop cable.		
19.	Short length of wire near receiver	1620 kc	"A" Band Right hand stop	C3l Osc.
20.		1400 kc	"A" Band 1400 kc Signal	$\begin{aligned} & \text { C20 R.F. } \\ & \text { C4 Ant. } \end{aligned}$
21.		600 kc	"A" Band 600 kc Signal	Rock gang, -Peak T5 Osc. trans., + Tl R.F.
22.		Repeat steps 19, 20 and 21 until maximum gain is obtained. Exchange loop antenna plug with external Ferrite Rod antenna plug. Extend cable to maximum.		
23.		1400 kc	"A" ${ }^{\text {Band }}$ 1400 kc Signal	C43 Ferrite Rod Ant.

*The tuning range and dial calibration of the succeeding bands depend upon the accuracy of this adjustment. Avoid aligning on image. The local oscillator is 455 kc higher in frequency than the RF on all bands.

Battery operation of the receiver is preferable during alignment; on AC operation, an isolation transformer (117v./117v.) may be necessary for the receiver if the test oscillator is also AC operated.

Critical Lead Dress

1. Dress all filament leads next to chassis.
2. Use short pigtail leads on all by-pass and coupling capacitors associated with R.F. circuits.
3. Dress gang condenser leads direct and short as possible to switch without strain.
4. Connect neutralizing capacitor C50, 0.51 MMFD across converter socket with short leads and away from other components.
5. Dress power line compensator resistor to clear surrounding components and bottom cover.
6. Dress coil pigtail leads away from each other and from coils.
7. Dress blue converter plate lead down to base.
8. Dress volume control leads down to base.

CAUTION -

Do not remove any tubes from the chassis with the set operating and the plug connected to the power line. Damage to tubes may result.

Tuner Adjustment Locations-Antenna

Tuner Adjustment Locations-Oscillator and R.F.

PAGE 23-62 RADIO CORPORATION OF AMERICA

General Information

AC-DC OPERATION

For 105 to 125 volts, $25-60$ cycles AC or 105 to 125 volts DC operation - Be sure that the power line used has the correct voltage and frequency before turning on the receiver. Open case back, remove power cord plug from chassis socket, and insert in outlet. Feed power cord through the notch on the lower right side of the case back. RK-186 VOLTAGE CONVERTER

For 210 to 250 volts, $25-60$ cycles AC or 210 to 250 volts DC operation - Pull open case back and remove Lshaped metal bracket held by single self-tapping screw located between headphone jack and power cord. Insert RK-186 Converter in socket protided with metal tab facing to the rear. Secure RK-186 Converter to chassis by replacing screw through tab hole.

BATTERY OPERATION

Installation of Battery Pack - Insert battery cable plug into battery socket, installing battery pack with plug side facing toward the front.

For Battery Operation - Insert polarized power cord plug all the way into the chassis socket. Store excess power cord neatly to the right side of the battery pack. Close case back securely.

CARE OF INSTRUMENT CASE

To best preserve the appearance and serviceability of the instrument case, keep it clean. For this purpose, any mild soap will do, if applied as a lather and the dirt removed with a dry, clean cloth. Abrasives, commercial cleaning fluids, nail polish remover and the like should not be used.

Should leather become dry from cleaning or aging, the natural oils should be replaced. For restoration purposes, α number of applications of 10 to 20 per cent of sulfonated castor, or neatsfoot, or cod oil may be made as required.

LINE VOLTAGE COMPENSATOR

Weak reception may result from sub-normal power line voltage. If determined as the cause (check voltage rating with power company), the Line Voltage Compensator is provided to improve reception by switching to "LOW LINE VOLTAGE" position. To use, break the caution label seal, and move the switch slot to the right. Use of this feature is not recommended unless the line voltage is 105 volts or less.

USE OF ANTENNAS

Built-In Loop - For Standard Broadcast
Contained in the hinged lid of the case, this antenna is in use as long as it remains plugged into the antenna socket. It is possible to improve reception by rotating the receiver.
Ferrite Rod-For Standard Broadcast - Low Signal/Noise Areas

To improve reception within steel buildings, automobiles, etc., the ferrite rod antenna may be used. Remove loop antenna plug from its socket. Remove ferrite rod antenna from spring clips inside back cover, unwind wire extension, and insert cable plug into antenna socket. The ferrite rod antenna may be secured on a window in a horizontal position, by pressing the suction cups firmly against the glass. Reception may be improved by changing the position of the antenna.
External - For Standard Broadcast - Weak Signal Areas
A terminal for outside antenna connection is located on the hinged lid of the case. Connect a wire to this terminal and suspend approximately 60 to 100 feet in space, at least 50 feet in a horizontal position.
Telescopic Rod - For Short Wave
Concealed within the case on the right, this antenna is used for reception on any one of the six Short Wave bands. To use, press release button on lower right side of case, and antenna top will appear above its opening. Grasp antenna top, and pull up antenna sections until a distinct snap or click results. For best reception, all sections should be fully extended.

NOTE: Short Wave reception is impossible unless bottom (Satin Finish) section of antenna is snapped into its elevated position.

Stock No.	DESCRIPTION	Stock No.	DESCRIPTION
	CHASSIS ASSEMBLIES RC 1125 Board-Baffle board and grille screen less speaker Board-' 'Gnd" board Bushing-Fibre bushing for chassis mounting shelf Capacitor-Variable tuning capacitor complete with drive drum (C40A, C40B, C40C, C40D, C40E, C40F, C40C-T, C40D-T) Capacitor-Capacitor (82 mmf .) and resistor (12 ohms) assembly (C25, R8) Capacitor-Adjustable, mica: - $4-20 \mathrm{mmf}$. (C4, C16, C18, C20) $4-20 \mathrm{mmf}$. (C31, C32) $20-50 \mathrm{mmf}$. (C5, C7) Capacitor-Fixed, ceramic, High " K " disc:- $10,000 \mathrm{mmf} .,+100 \%,-0 \%$; 500 volts (C, C12, C22, C24, C29, C34) Capacitor-Fixed, ceramic, non-insulated: 22 mmf ., $\pm 10 \%, 500$ volts Temp. coef. $=-750$ (C51, C554) $27 \mathrm{mmf} ., \pm 10 \%, 500$ volts Temp. coef. $=-750$ (C52) Capacitor-Fixed, ceramic, insulated, High " K ' type: $18 \mathrm{mmf} ., \pm 10 \%, 500$ volts (C8) $180 \mathrm{mmf} ., \pm 10 \%, 500$ volts (C17, C21, C47) Capacitor-Fixed, ceramic, non-insulated, High " K " type:- 27 mmf ., $\pm 10 \%, 500$ volts (Cl 4)	$\begin{aligned} & 78140 \\ & 78142 \end{aligned}$	
78135 78104		78137	
78104 78091		39644	Capacitor-Fixed, mica:- $470 \mathrm{mmf} .$, $\pm 5 \%$, 500 volts (C48)
78108		76932	470 mmi., $\pm 20 \%, 300$ volts (C39)
		74929 78143	
78146		39652	
		78144	$1100 \mathrm{mmf}, \underline{ \pm} \mathbf{\pm} \%$, 500 volts (C41)
$\begin{aligned} & 78130 \\ & 78131 \\ & 78132 \end{aligned}$		78095	apacitor-Electrolytic comprising:-- 1 section of $60 \mathrm{mfd}, 350$ volts, 1 section of
			150 volts, 1 section of 30 mfd ., 150 volts, 1 section
			of 150 mfd., 25 volts (C57A, C57B, C57C, C57D)
73960		78145	Capacitor-Fixed, electrolytic:10 mfd ., 150 volts (C56) Capacitor-Fixed paper moulded: -
		75643	. 001 mfd ., 1000 volts (C33, C36)
33101			.0018 mfd., 1600 volts (C38) $.0033 \mathrm{mfd}, 600$ volts (C27)
72570		73920	. 0047 mid ., 600 volts (C6)
		73561	.01 mfd., 400 volts (C49)
		58476 73552	. 018 mfd., 400 volts (C15)
78139		73558	. 047 mfd., 200 volts (C9, C10, C23, C28, C37)
		73553.	. 047 mfd., 400 volts (600 volts (C58) ${ }^{\text {c }}$ (19)
78141		73935	Clip-Mounting clip for I.F. transformer

Stock No.	DESCRIPTION	Stock No.	DESCRIPTION
78123	Coil-Antenna coil-" $B^{\prime \prime}$ " band (L3)	74918	
78124 78128	Coil-Antenna coil-"C'" band (L4) Coil-Antenna coil- 16 meter band (L5)		justable core (T2) Transformer-2nd IF transformer complete with ad
78127	Coil-Antenna coil-19 meter band (L6)	73037	Transformer-2nd I.F. transformer complete with adjustable core (T3)
78126	Coil-Antenna coil-25 meter band (L7)	78100 33726	Transformer- Output transformer (T4)
78129	Coil-Loading coil (L2) meter band (L8)	33726	Washer-"C" washer for tuning knob
78109	Coil-Oscillator coil-"A", band (T5)		SPEAKER ASSEMBLIES
78111		74378	Gasket-Rubber gasket ($3^{1 / 4}{ }^{\prime \prime}$) for spea
78115	Coil-Oscillator coil-16 meter band (T11)	78147	Speaker- $5^{1 / 4}{ }^{\prime \prime}$ P.M. speaker complete with cone and
78114	Coil-Oscillator coil- 19 meter band (T10) Coil-Oscillator coil- 25 meter band (T9)		voice coil (3.2 ohms)
78112	Coil-Ossillator coil-31 meter band (T8)		MISCELLANEOUS
78116	Coil-RF coil-"A"', band (Tl)	78196	Antenna-Ferrite rod antenna complete with winding
78117	Coil-RF coil-"B'", band (L10)	78187	Antenna-Lid and antenna loop assembly complete
78122	Coil-RF coil-16 meter band (L11)	78157	Antenna-Telescopic antenna
78121	Coil-RF coil-19 meter band (L12)	78184	Back-Case back complete
78120	Coil-RF coil-25 meter band (L13) Coil-RF coil-31 meter band (L14)	78158	Bearing-Bearing (enna tena
7903	Connector-Earphone jack (J4)	78189	
71040	Connector-2 contact female connector for 220 volt operation (J3)	78174	```# Bracket-"U" shape bracket (clevis) for carrying```
38904	Connector-2 contact female connector for AC line cord	$\begin{aligned} & 78166 \\ & 78165 \end{aligned}$	Button-Telescopic antenna push button
78133	Connector-3 contact female connector for antenna	75967	Capacitor-Adjustable, mica, $4-20 \mathrm{mmp}$. (C43)
30567	Connector-4 contact female connector for battery cable (P2)	78190 78153	Case-Case only for ferrite rod antenna Case-Case less sides, handle, links, feet front and back cover
7809	Control-Bass tone control (R23)	78170	Catch-Case catch
78093	Control-Treble tone control (R22) ${ }_{\text {Control-Volume control and power switch (R15, S3) }}$	78186	Catch-Case back catch-part of case back
70022	Cord-Power cord and plug	788181	Clip-Mounting clip for ferrite rod antenna
*72953	*Cord-Station selector pointer drive cord (approx. 15" overall)	78177	Connector-3 contact male connector for antenna loop and for ferrite rod antenna (PlA, P1B)
72953	Cord-Station selector pointer drive cord (approx. $22^{\prime \prime}$ overall)	78162	Contact-Bottom contact for telescopic antenna
72953	Cord-Station selector pointer or band indicator pointer drive cord (approx. 24" overall)	78164	antenna-upper Contact-Lower contact and push button catch
78242	Cushion-Rubber cushion for baffle board ($41 / 1 /{ }^{\prime}$,', long)	78195	Cover-Bottom cover for ferrite r ! antenna
78105	Cushion-Rubber cushion for baffle board ($10 \frac{1}{2} 2^{\prime \prime}$ long)	78191	Cup-Suction cup for ferrite rod antenna case
78097	Eyelet-Station selector pointer drive cords connecting eyelet	78159	Cushion-Adhesive cushion for bottom of antenna bearing
$\begin{aligned} & 74838 \\ & 16058 \end{aligned}$	Grommet-Power cord strain relief (l set) Grommet-Rubber grommet for mounting gang capac-	$\begin{aligned} & 75470 \\ & 78193 \end{aligned}$	Cushion-Rubber cushion for battery support Cushion-Rubber spacer cushion ($1 / 8^{\prime \prime} \times 13 / 16^{\prime \prime}$ dia.)
71851	Grommet-Rubber grommet for speaker mounting	7819	for ferrite rod antenna
78086	Guide-Station selector pointer guide rail and pulley assembly	78194 78181	(2/2 x . $328^{\prime \prime}$ I.D. x 13/16" O.D.) for ferrite rod antenna Dial-Dial scale less escutcheon
78099	Nut-Speed nut for tuner shield	77012	Emblem-'"RCA Victor' ${ }^{\text {emblem }}$
78098	Nut-Speed nut for baffle board mounting (4 req d)	78182	Escutcheon-Dial scale escutcheon less dial
78103	Nut-Speed nut (twin type) to fasten pointer bracket	78173	Foot-Rubber
18469	Plate-Bakelite mounting plate for electrolytic	78156	Hande--Carrying handle (${ }^{\text {Hinge }}$ (${ }^{\text {req }}$,)
78090	Pointer-Band indicator pointer	78167	Insulator-Nylon insulator for case lid
78087	Pointer-Station selector pointer	78171	Latch-Latch for back cover
78107	Pulley-Band indicator drive pulley and knob assembly	78187	Lid-Case lid and antenna loop assembly (Ll, Cl)
72602	Pulley-Drive cord pulley-part of pointer guide rail r for station selector pointer drive cord pulley	$\begin{array}{r} 78175 \\ 78149 \\ \hline \end{array}$	Link-Carrying handle link
78101	Rectifier-Selenium rectifier (SR1)	78151	Knob-Bass tone control knob
	Resistor-Wire wound: -	78150	Knob-Treble tone control knob
78136	comprising 1 section of 75 ohms, 5 watts and 1 section of 55 ohms, 5 watts (R33)	78148	Knob-Tuning control or volume control and power switch knob
78102	dual 950 ohms, $3^{1 / 2}$ watts (R31)	$\begin{aligned} & 78414 \\ & 73203 \end{aligned}$	Map-World map and time chart Nut-Speed nut to fasten "RCA Victor" emblem
503027		78192	Plate-Bakelite plate for ferrite rod antenna trimmer
503110	100 ohms, $\pm 10 \%$, $1 / 2 \mathrm{watt}$ (R34, R37)		capacitor
503112	120 ohms, $\pm 10 \%$, $1 / 2$ watt (R38)	78172	Plate-Mounting plate for carrying handle
503115	150 ohms, $\pm 10 \%$, 1/2 watt (R1)	78180 78183	Rack-Spare tube rack
503127 513156	270 ohms, $\pm 10 \%$, $1 / 2 \mathrm{watt}$ (R27)	78183	Screw-\#4-40 x $1 / 4^{\prime \prime}$ cross recessed flat head tapping screw to fasten dial to escutcheon
. 503210	1000 ohms, $\pm 10 \%$, 1/2 watt (R4, R13, R39)	77974	Side-Case side-L.H.-complete with leather belting
503233	3300 ohms, $\pm 10 \%$, 1/2 watt (R29)	77975	Side-Case side-R.H.-complete with leather belting
503315	15,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R3, R30, R35)	78188 78160	Spring-Case lid spring
503322	22,000 ohms, $\pm 10 \%, 1 / 2$ watt (R16)	74734	Spring-Push-up spring for telescopic antenna
503356 503368	56,000 ohms, $\pm 10 \%, 1 / 2$ watt (R28)	78154	Strap-Leather strap for L.H. case side
503410	100,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R5)	78155	Strap-Leather strap for R.H. case side
503447	470,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R25)	78413 78168	Strap-Strap for holding ferrite rod antenna lead Support-Battery support (wood)
503510 503522	1 megohm, $\pm 10 \%$, $1 / 2$ watt (R2, R6, R17, R24, R26)	78161	Support-Telescopic antenna bearing support-at top
503539	3.9 megohm, $\pm 10 \%$, $1 / 2$ watt (R21)		of antenna
503547	$4.7 \mathrm{megohm}, \pm 10 \%$, 1/2 watt (R11)	77467 78152	Washer-Felt washer for knob
503556 503610		78178	Washer-Insulating washer for case lid pivot
78088	Shaft-Tuning knob shaft	78179	Washer-Vellutex washer for dial and bezel mounting
78089	Shield-Bakelite shield for tuner unit	78412	Washer-Vellutex washer for case catch clip
73584	Shield-Tube shield		RK 186 CONVERTER
78134 73117	Socket-Tube socket, miniature, 7 pin, floating	78303	Connector-2 contact male
74305	Spring-Band indicator pointer drive cord spring	77958	Rectifier-Selenium rectifier (SR2)
76332	Spring-Station selector pointer drive cord spring	78	Resistor-Wire wound, comprising:- 1 and 1 section of
71039 78095	Switch-Battery switch (S2) ${ }_{\text {S }}^{\text {Switch-Weak signal area switch (S5) }}$		1 section of 620 ohms, 10 watts, and 1 section of 1050 ohms, 5 watts (R36)
78106	Switch-Range switch (S1)	78304	Switch-Voltage change switch (S4)

*Note: - 72953 is a spool containing 250 ft . of cord.

SPECIFICATIONS

Tuning Range
540-1600 kc.
Intermediate Frequency
455 kc.
Tube Complement

Power Supply Rating

1. 115 volts A.C., 60 cycles (uses $930409-5$ or -10 Changer) 45 watts
2. 115 volts A.C., 50 cycles (uses 930409-11 Changer) \qquad 45 watts

Dial Lamps (2) Mazda type 51, 6-8 volts, 0.2 amp.

Record Cbanger Controls

Loudspeaker

Size and type $.5^{\prime \prime} \times 7$ " P.M. Voice coil impedance
\qquad 3.2 ohms at 400 cycles

Power Output

Undistorted . 2.0 watts
Maximum . 2.4 watts
Cabinet Dimensions
Height 10"
Width $163 / 4^{\prime \prime}$
Depth 203/4"
Tuning Drive Ratio 141/4:1 (71/8 turns of knob)
Record Changer (930409-5, -10 or -11)
Turntable speed

$.331 / 3,45$ or 78 r.p.m.
Record capacity up to fourteen 7 inch RCA type or twelve 10 inch
or ten 12 inch
or ten 10 in . and 12 in . intermixed.
Pickup (Stock No. 75475) . .Crystal with replaceable styli.
Weight
26 lbs. net

RECORD CHANGER CONTROLS

The record changer has a dual control on the motorboard and a stylus selector control on the pickup arm. The inner control (circular knob) is the OFF-ON-REJECT control. Turning this knob to the center position energizes the motor and starts the turntable, when turned to the right (clockwise) it starts the mechanism into complete automatic operation. The mechanism will shut off automatically after the last record has been played but can be shut off manually by turning this knob to the left (counter-clockwise).

The outer control (double ended lever) is the speed control. It has three normal positions; " 33 ", " 45 ", " 78 " to select the turntable speed desired and a neutral position (midway between " 45 " and " 78 "). The control should be turned to this neutral position if the changer is not expected to be in use for an extended period of time.
The stylus control has two normal positions (right and left) and one shipping position (lever pointing up). When playing $331 / 3$ or 45 r.p.m. records the lever is turned so that " $33-45$ " is visible on the TOP of the lever; likewise for 78 r.p.m. records " 78 " should be visible on the TOP.

The removable centerpost is for use with 45 r.p.m. records having the large centerhole. It must be placed over the center spindle with the "RCA" trademark monogram FACING to the FRONT. When not in use it is placed in a well at the front of the motorboard.

To load or remove records, the record stabilizer is lifted and turned off-side. After loading it is turned to the center where it rests on top of the stack of records.

MODEL 2US7, Ch. RC1117A, C

Radio Controls

Service Hints

All tubes, except the 12BE6, are accessible for testing by lifting up one side of the cabinet and removing the tubes from the rear chassis apron. To service the 12BE6 tube and the pilot lights, remove the four wood screws holding the sloping panel at the front of the record changer compartment. This panel also holds the loop antenna.
To remove the radio chassis for service, first remove the push-on type knobs. Secure the record changer pickup arm to the center post and rest the cabinet on its side. Remove loop antenna connections, and pickup arm audio plug. Hook-on connectors are used to connect a.c. power from the radio chassis to the phono motor. These connectors are covered by taped-over black insulating sleeves located in one corner of the cabinet. Push back sleeves and unhook. Remove the four flat-head wood screws holding the chassis mounting board to the bottom of the cabinet. Slide chassis out of cabinet, then remove the three $1 / 4$ inch hex head self-tapping screws holding the chassis to the panel.

Dial Cord Layout

Alignment Procedure

Output Meter.-Connect meter across speaker voice coil. Turn volume control to maximum.
Test Oscillator.-Connect low side of test oscillator to common wiring in series with a .1 mf . capacitor. If the test oscillator is a.c. operated it may be necessary to use an isolation transformer for the receiver during alignment and the low side of the test oscillator connected directly to common wiring at the electrolytic capacitor. Keep the oscillator output low to prevent a-v-c action.

Steps	Connect the high side of test-oscillator to-	Tune test-osc. to-	$\begin{aligned} & \text { Turn } \\ & \text { radio dial } \\ & \text { to- } \end{aligned}$	Adjust the following for max. output
1	I.F. grid, in series with .1 mfd .	455 kc	Quiet point $1,600 \mathrm{kc}$ end of dial	Pri. \& Sec. 2nd I.F. transformer
2	Converter grid in series with .1 mfd .			Pri. \& Sec. lst I.F. transformer
NOTE.-ANTENNA LOOP AND RECORD CHANGER MUST BE IN CABINET FOR THE FOLLOWING				
3	Short wire placed near loop for radiated signal	$1,620 \mathrm{kc}$		ClB-T (osc.)
4		1,400 kc	1,400 kc	C5 (ant.)
5		600 kc	600 kc Signal	$\begin{gathered} \text { L3 } \\ \text { (Rock Gang) } \end{gathered}$
6	Repeat steps 3, 4 \& 5 if necessary			

Critical Lead Dress

. Dress Cl5 (. 022 mfd . at grid of phase inverter) over tube socket away from filament leads.
2. Keep all filament leads close to chassis.
3. Keep leads of R26 (270 ohms at I-F amplifier cathode) short as possible.
4. Connect outside foil of all capacitors as indicated in schematic diagram.
5. Dress output plate bypasses, C19 and C20, as near chassis as possible.

Dial Pointer Adjustment.-Rotate tuning condenser fully counterclockwise (plates fully meshed). Adjust indicator pointer so that it is $315 / 16^{\prime \prime}$ from the left hand edge of the dial back plate.

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLIES RCll17A, RCl117C	503356 503412	56,000 ohms, $\pm 10 \%, 1 / 2$ watt, R10 120,000 ohms, $+10 \%, 1 / 2$ watt R7
76867	Capacitor-Variable tuning capacitor complete with drive drum, $\mathrm{ClA}, \mathrm{ClB}$	504422	220,000 ohms, $\pm 20 \%$, $1 / 2$ watt, R1, R13, R14
		503433	330,000 ohms, $\pm 10 \%$, $1 / 2$ watt, R3
93603	Capacitor-Ceramic, $56 \mathrm{mmf} ., \mathrm{C} 9$.	503439	390,000 ohms, $\pm 10 \%, 1 / 2$ watt, R8
77116	Capacitor-Ceramic, 56 mmf ., C4	503447	470,000 ohms, $\pm 10 \%$, $1 / 2$ watt, R16
76347	Capacitor-Ceramic, 120 mmf ., Cl 3	504447	470,000 ohms, $\pm 20 \%$, $1 / 2 \mathrm{watt}$, Rl8
76872	Capacitor-Adjustable trimmer, $2.5-30 \mathrm{mmf}$., C5	503515	1.5 megohm, $\pm 10 \%$, $1 / 2$ watt, R9
73013	Capacitor-Electrolytic comprising 1 section of 80 mfd., 150 volts, 1 section of 30 mfd., 150 volts $\underset{\mathrm{Cl} 7 \mathrm{C}}{\mathrm{an}} 1$ section of $10 \mathrm{mfd} ., 150$ volts, C17A, C17B,	504533.	3.3 megohm, $\pm 20 \%, 1 / 2$. watt, R5
		504610	10 megohm, $\pm 20 \%, 1 / 2$ watt, R12, RI5
		76869	Shaft-Tuning knob shaft
73851	Capacitor-Tubular, paper, .0018 mid., 1600 volts, C8. C21 (RC1117C only)	76870 74697	Shield-Tube shield for V1, V2, V3 Socket-Dial lamp socket
73595	Capacitor-Tubular, paper, . 0022 mfd., 600 volts, $\mathrm{C7}$	51955	Socket-Tube socket, 7 pin, miniature, moulded,
73795	Capacitor-Tubular, paper, . 0033 mfd., 400 volts, Cl2	77115	saddle-mounted Socket-Tube socket, 7 pin, miniature, moutded
73920	Capacitor-Tubular, paper, 0047 mfd ., 600 volts,	76368	Spring-Drive cord spring
		76873	Switch-Function switch less volume control, S1
73788	Capacitor-Tubular, paper, .0056 mfd., 400 volts, Cl4	77113	Terminal-Phono lead assembly terminal (knife) disconnect type)
73561	Capacitor-Tubular, paper, $.01 \mathrm{mfd} ., 400$ volts, Cl 6, C19, C20	74918	Transformer-First I.F. transformer complete with adjustable cores, Tl
73562	Capacitor-Tubular, paper, 022 mfd., 400 volts, Cl1, Cl5	73037	Transformer--Second I.F. transformer complete with adjustable cores, T2
	Capacitor-Tubular, paper, 047 mfd., 400 volts, C2, C3, C6	$\begin{aligned} & 77122 \\ & 33726 \end{aligned}$	Transformer-Output transformer, T3 Washer-"C"' washer for tuning knob shaft (2 req'd)
75071	Capacitor-Tubular, moulded paper, $.047 \mathrm{mfd} ., 400$ volts; Cl 8		SPEAKER ASSEMBLIES
73935	Clip-Mounting clip for I.F. transformer Coil-Oscillator coil, L2, L3	76875	Speaker--5" x 7" P.M. speaker complete with cone and voice coil (3.2 ohms)
7686			
36422	Connector-3 contact female connector for phono cable, Jl		
74192	Connector-3 contact male connector for shielded pickup cable, Pl	76876	Back-Cabinet back and antenna loop assembly (Ll)
77114	Connector-Single contact male connector for loop lead	77350	Cable-Cable and Capacitor assembly (includes C21) (For RCl117A only)
76874	Control-Volume control, R1I	74273	Decal-"Victrola" decal
72953	Cord-250' Drive Cord Reel (approx. 54" required)	76877	Dial-Polystyrene dial scale
70392	Cord-Power cord and plug	76588	Emblem-"RCA Victor" emblem
74838	Grommet-Power cord strain relief (l set)	74225	Escutcheon-Dial escutcheon less dial
72283	Grommet-Rubber grommet to mount variable tuning capacitor (3 req'd)	$\begin{aligned} & 76878 \\ & 76879 \end{aligned}$	Escutcheon-Function switch escutcheon Escutcheon-Tuning control escutcheon
11765	Lamp-Dial lamp-Mazda 51	76895	Foot-Rubber foot (4 req'd)
28452	Plate-Bakelite mounting plate for electrolytic	72692	Hinge-Cabinet lid hinge
76865	Plate-Dial back plate complete with three (3) pulleys less dial	$\begin{aligned} & 76882 \\ & 76881 \end{aligned}$	Knob-Function switch knob-light gray Knob-Tuning control knob-(inner) light gray
76868	Pointer-Station selector pointer	76883	Knob-Tuning control knob (outer)-light gray
76871	Rectifier-Selenium rectifier, SR1	76880	Knob-Volume control knob-light gray
73038	Resistor-Wire wound, 66 ohms, 5 watts, R22	71095	Nut-Speed nut to fasten dial escutcheon
73072503082	Resistor-Normal value, 95 ohms, $@ \quad 38^{\circ} \mathrm{C}$ negative temperature coefficient ${ }_{\mathrm{R} 23}$	72765	Nut-Speed nut to fasten function switch or tuning control escutcheon
	Resistor-Fixed, composition: 82 ohms, $\pm 10 \%, 1 / 2$ watt, Rl9	76894	Nut-\#10-32 spring nut for mounting stud
503127	270 ohms, $\pm 10 \%$, $1 / 2$ watt, R6	30330	Spring-Retaining spring for volume control knob
513212	1200 ohms, $\pm 10 \%$, 1 watt, R21	14270	Spring-Retaining spring for tuning control or function switch knobs
5032	1800 ohms, $\pm 10 \%, 1 / 2$ watt, R20	76893	Stud-\#10-32 $\times 1{ }^{3 / 4}{ }^{\prime \prime}$, special stud to mount changer
503312	12,000 ohms, $\pm 10 \%$, 1/2 watt, Rl7		in cabinet (2 req'd)
503339	39,000 ohms, $\pm 10 \%$, $1 / 2$ watt, R2	71824	Stud--Stud and screw (1 set) for cabinet lid hinge
503347	47,000 ohms, $\pm 10 \%$, 1/2 watt, R4	77221	Support-Lid Support

Specifications

A selenium rectifier is used.

To Remove Hinges

Remove back from cabinet as described at right. Spread the hinge apart to remove it from the cabinet back.

Weight (Approx.)
Without battery . 4 lb . 10 oz. With battery .. 7 lb .12 oz .
Power Output
Undistorted
170 watt
Maximum 320 watt
Loudspeaker ... 4 in. P.M
Voice Coil impedance
Cabinet Dimensions
Height 8 in. Width $12^{1 ⁄ 2}$ in. Depth $5 \frac{5}{6}$ in.

To Remove Chassis:

1. Pull out battery ond disconnect battery plug.
2. Unsolder the two loop antenna leads.
3. Remove the two large screws (under handle) in the top of the case.

To Remove Cabinet Back

With the back fully open, grip the cabinet as illustrated. Insert a screwdriver under one hinge and pry the center of the hinge out of the opening in the cabinet while maintaining pressure on the back with the fingers and on the cabinet with the thumb. Repeat this procedure with the other hinge. Pull the back straight to the rear using both hands.

Rear View With Back Removed

PAGE 23-70 RADIO CORPORATION OF AMERICA

MODEL 2BX63, Ch. RC-1115

Alignment Procedure

Output Meter Alignment - If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.
Test Oscillator - For all alignment operations, connect the low side of the test oscillator to the receiver chassis and keep the oscillator output as low as possible to avoid AVC action.
Battery operation of the receiver is preferable during alignment; on AC operation on isolation transformer (117v./117v.) may be necessary for the receiver if the test oscillator is also AC operated.
Dial Pointer Position - With the tuning condenser fully meshed the center of the dial pointer should be in line with the score mark on the chassis.

Step	Connect High Side of Sig. Gen. to -	Sig. Gen. Output	$\begin{array}{c\|} \hline \text { Dial } \\ \text { Pointer } \\ \text { Setting } \end{array}$	Adjust for Max. Output
1	Disconnect loop-remove chassis-remove bottom plate.			
2	Pin \#6 of 1T4 I.F. Amplifier thru .005 mf .	455 kc	Quiet point 1600 kc	2nd I.F. Trans. T2 Top \& Bottom
3	Pin \#6 of lR5 Converter thru .005 mf .			1st I.F. Troms. Tl Top \& Bottom
4	Replace bottom cover and install chassis in cabinet. Re-connect loop.			
5	Short wire placed near loop for radiated signal	1620 kc	min. cap.	$\begin{gathered} 1600 \mathrm{kc} \text { osc. } \\ \text { trimmer Cl-3T } \end{gathered}$
6		1400 kc	1400 kc Signal	1400 kc r.f. \& ant. trimmers*
7		Connect a 22,000 ohm resistor in parallel' with r.f. tuning cond. Cl-2		
8		600 kc	600 kc Signal	L4 osc. core* while rocking gang
9		Remove the 22,000 ohm resistor from r.f. tuning cond. $\mathrm{Cl}-2$.		
10		600 kc	600 kc Signal	L3 r.f. core
11	Repeat Steps 5, 6, 7, 8, 9 and 10.			

* The position of the battery affects loop inductance. The battery should be in place during steps 5 to 11.

MODEL 2BX63,

Ch. RC-1115

Specifications

Tuning Ranges

Standard Broadcast ("A" Band). . 520-1605 kc. (576-186 m.)
Medium Wave ("B" Band). $2.3-7 \mathrm{mc}$. ($131-42.8 \mathrm{~m}$.)
Short Wave ("C" Band)
7.0-22 mc. (42.8-13.7 m.)

Intermediate Frequency . 455 kc.
Tube Complement
(1) RCA-12BE6

Converter
(2) RCA-6BJ6. I. F. Amplifier
(3) RCA-12AVG

(4) RCA-50L6GT
............... Output
(5) RCA-35W 4

Rectifier

Power Supply

1. 105-125 v. 60 cycles A.C......................... . . . 50 watts
2. $210-250$ v. 60 cycles A.C. 55 watts
3. 105-125 v. 25 cycles A.C........ 55 watts

Note: Instruments having power supply \#l or \#2 may be converted to 50 cycle operation by the addition of a conversion spring sleeve to the record changer motor shaft.
Instruments having power supply \#2 employ a step-down transformer but the power cord which extends from the chassis may be connected direct to a 117 v. A.C. power supply.

Record Changer

930409-6.
for 60 or 50 cycle operation

930409-4
Turntable speed
Turntable speed................................3, to fourteen 7 inch RCA type for 25 cycle operation or twelve 10 inch, or ten 12 inch, or ten 10 in . and 12 in . intermixed.
Pickup (Stock No. 162A001). .Ceramic with replaceable styli
Tuning Drive Ratio
14:1 (7 turns of knob)
Cabinet Dimensions (overall)

Power Output
Undistorted 1.0 watt

Maximum. 1.8 watt

Alignment Procedure

Test-Oscillator-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output low to avoid a-v-c action.

Note: If the test-oscillator is a-c operated, it may be necessary to use an isolation transformer ($117 \mathrm{v} . / 117 \mathrm{v}$.) for the receiver during alignment and connect the Iow side of the test-oscillator to common wiring-reversal of the plug may teduce hum.

Calibration Scale on Indicator-Drive-Cord Drum-The tuning dial is fastened in the cabinet and cannot be used for reference during align ment, therefore a calibration scale is attached to the indicator-drive-cord drum which is mounted on the shaft of the gang condenser. The setting of the gang condenser is read on this scale, which is calibrated in degrees.
As the first step in r-f alignment, check the position of the drum. The ' $180^{\circ \prime \prime}$ mark on the drum scale must be vertical and directly over the center of the gang-condenser shaft when the plates are fully meshed.

Pointer for Calibration Scale-Improvise a pointer for the calibration scale by fastening a piece of wire to the gang-condenser frame, and bend the wire so that it points to the " $180^{\circ "}$ mark on the calibration scale when the plates are fully meshed. The correct setting of the gang in degrees, for each alignment frequency, is given in the alignment table.

Dial-Indicator Adjustment-After fastening the chassis in the cabinet, attach the dial indicator to the drive cable with indicator at the end calibration mark, and gang condenser fully meshed. The indicator has a clip for attachment to the cable.

Step	Connect high side of test osc. to-	Tune test osc. to-	Range switch	Turn radio dial to-	Adjust for max.output
1	6BJ6 grid (Pin No. 1) in series with .01 mf	455 kc	A	Quiet point near 600 kc	T-2 top and bottom
2	12BE6 grid (in No. 7) Pin series with .01 mf				$\mathrm{T}-\mathbf{1}^{*}$ top and bottom
3	Antenna lead in series with 220 mmf	1400 kc	A	$\begin{gathered} 1400 \mathrm{kc} \\ 30^{\circ} \end{gathered}$	$\begin{aligned} & \text { C10 osc. } \\ & \text { C6-B ant. } \end{aligned}$
4		600 kc		$\begin{gathered} 600 \mathrm{kc} \\ 145^{\circ} \\ \hline \end{gathered}$	L7 osc. (rock gang)
5		Repeat steps 3 and 4			
6	Antenna lead in series with 300 ohms	6.1 mc	B	$6.1 \mathrm{mc}$ 30.3°	C9 osc. \dagger C4 ant.
7		18.2 mc	C	$18.2 \mathrm{mc}$	$\begin{aligned} & \text { C8 osc. } \dagger \\ & \text { C3 ant. } \dagger \end{aligned}$

* Do not readjust T-2.
\dagger If two peaks are found-adjust at minimum capacity peak.
\ddagger Rock gang while adjusting-use maximum capacity peak.
NOTE: Oscillator tracks above signal on all bands.

Tube and Trimmer Locations

Critical Lead Dress

1. Dress C 2 away from antenna coil windings.
2. Keep body of Cl 5 away from chassis base.
3. All wires from the antenna and oscillator coils to the band switch are critical for length and should not be changed.
4. Dress any slack in lead from oscillator coil (C band secondary terminal) toward end of chassis.
5. Dress (Cl4-R3) away from chassis base.
6. Dress output plate lead next to chassis keeping it under $-B$ and $+B$ leads.
7. Dress phono cable under C29
8. Dress R20 next to rear chassis apron.
$\begin{array}{lllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

$550600 \quad 700 \quad 800 \quad 1000120014001600$

$\begin{array}{lllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
 DS-935697

Reduced Reproduction of Receiver Dial Scale and Corresponding 0-180 Calibration Scales
The corresponding position of the dial indicator for any setting of the calibration scale can be determined by drawing a line from this point on the bottom The corresponding position of the dial indicator for any setting of the calibration scale can be determined the same point on the top calibration scale. For example: 145° on the calibration scale corresponds to approximately 600 kc on " A " band, etc. Read instructions under "Alignment Procedures."

PAGE 23-76 RADIO CORPORATION OF AMERICA

MODEL 35QU,

Ch. RC-1054K

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLY	S-4624	390,000 ohms, $1 / 2$ watt (R6)
	RC-1054K	S-4476	470,000 ohms, $1 / 2$ watt (R4, R18)
		S-6479	470,000 ohms, $1 / 2$ watt (R13)
S-6032	Bracket-Dial cord pulley bracket complete with one large pulley (left)	S-4478	4.7 megohm, $1 / 2$ watt (R5)
S-6033	Bracket-Dial cord pulley bracket complete with one large	S-5517	10 megohm, $1 / 2$ watt (R16)
S-6033	pulley (right)	S-6651	Sleeve-Tuning control sleeve
	Fixed Capacitors:	S-4483	Socket-Tube socket-octal-for 50L6GT tube Socket-Tube socket-miniature for 12BE6 tube
S-6634	Ceramic, 56 mmf (C24)	S-6652	Socket-Tube socket-miniature for 6BJ6, 12AV6 and
S-6635	Ceramic, 100 mmf (C30)	S-6652	35W4 tubes
S-6636	Ceramic, 150 mmf (C19)	S-6037	Socket-Dial lamp socket and lead assembly
S-6637	Ceramic, 220 mmf (C16)	S-5710	Spacer-Metal spacer for tuning condenser mounting
S-6300	Mica, 510 mmf (Cl1)		(3 req'd)
S-4441	Mica, 3300 mmf (Cl2)	S-4485	Spring-Tension spring for tuning drive cord
S-4442	Mica, 6000 mmf (C15)	S-6653	Switch-Tuning range switch (Sl-A, Sl-B)
S-6638	Molded paper, . 001 mf , 600v. (C21)	S-4487	Transformer-First I-F transformer (Tl)
S-4607	Molded paper, . $0022 \mathrm{mf}, 600 \mathrm{v}$. (C28)	S-4488	Transformer-Second I-F transformer (T2)
S-4443	Molded paper, . 0047 mf , 600v. (C26, C31)	S-6654	Transformer-Output transformer (T3)
S-5469	Molded paper, 0047 mf , 600v. (C27)	S-6179	Washer-' ${ }^{\text {C' }}$ ' washer to retain tuning control sleeve
S-6326	Ceramic, 01 mf . (C2)		
S-4609	Molded paper, $.01 \mathrm{mf}, 600 \mathrm{v}$. (C32)		SPEAKER ASSEMBLY
S-4732	Molded paper, $.022 \mathrm{mf}, 400 \mathrm{v}$. (C29)		(STAMPED 970657-7, 8 or 9)
S-6639	Molded paper, $033 \mathrm{mf}, 1000 \mathrm{v}$. (C33)	S-6046	Cone-Cone and voice coil assembly
S-4448	Molded paper, 047 mf , 200v. (Cl7)	S-6662	Speaker-61/2 inch P.M. speaker complete with cone and
S-4449	Molded paper, 056 mf , 400v. (C1, C18)		voice coil
S-4634	Molded paper, . 1 mf , 400v. (C20)		MISCELLANEOUS
S-4452	Electrolytic, 30 mf and 40 mf at 150 v . and 20 mf at 25 v . (C25A, C25B, C25C)	S-6655	Capacitor-Molded paper, 0022 mf, 1000v. (C34)
S-4450	Capacitor-Trimmer capacitor, two sections of 1.6$18 \mathrm{mmf}(\mathrm{C} 3, \mathrm{C} 4)$	$\begin{aligned} & \text { S-5734 } \\ & \text { S-6656 } \end{aligned}$	Decal-"Victrola" decal Decal-Control function decal for front of cabinet (l set)
S-4516	Capacitor-Trimmer capacitor, three sections of 3-35 mmf (C8, C9, C10)	$\begin{aligned} & \text { S-6657 } \\ & \text { S-6665 } \end{aligned}$	Dial-Plastic dial scale Emblem-'RCA Victor' emblem
S. 6640	Capacitor-Variable tuning capacitor (C6-A, C6-B)	S-5735	Foot-Rubber foot for cabinet (4 req'd)
S-4453	Capacitor and Resistor-Assembly comprising 39 mmf capacitor and 10 ohm resistor (C14, R3)	S-4502	Grommet-Rubber grommet for chassis mounting (4 req'd)
S-4454 S-6641	Clip-Mounting clip for I-F transformers	S-6043	Grommet-Rubber grommet for speaker mounting (4 req'd)
S-6641 S-6642	Coil-"A-B-C" bands oscillator coil (L5, L6, L7)	S-6658	Hinge-Cabinet lid hinge (2 req 'd)
S-4457	Coil and Resistor-Assembly comprising 250 microhenry	S-6044	Indicator-Station indicating pointer
S-6643	coil and 560 ohm resistor (L8, R2) Control-Volume control and tone switch (R15, S2-A)	S-6511	Knob-Radio-Phono switch control knob for walnut finish instruments
S-4458	Cord-Tuning drive cord (approx. 49 inches required)	S-6512	Knob-Radio-Phono switch control knob for oak finish
S-5463	Cord-Power line attachmont cord	74963	Knob-Volume control and on-off switch knob for walnut
S-6311	Core-Adjustable core for oscillator coil		finish instruments
S-4464	Grommet-Rubber grommet for tuning capacitor mounting (3 req'd)	S-9206	Knob-Volume control and on-off switch knob for oak finish instruments
S-4466	Insulation-Insulating plate for mounting olectrolytic capacitor	$\begin{gathered} 74959 \\ \text { S-9204 } \end{gathered}$	Knob-Tuning control knob for walnut finish instruments Knob-Tuning control knob for oak finish instruments
S-6316	Nut-Speed nut for mounting of oscillator adjustable core. Resistors-Fixed, composition:	S-6513	Knob-Range switch control knob for walnut finish instruments
S-6644	22 ohms, 1 watt (R22)	S-6514	Knob-Range switch control knob for oak finish
S-6645	33 ohms, 1 watt (R21)		instruments
S-6646	120 ohms, $1 / 2$ watt (R19)	S-4508	Lamp-Dial lamp-Mazda type \#1490 (2 req'd)
S-6647	1000 ohms, 1 watt (R20)	S-6659	Spacer-Metal spacer for chassis mounting (4 req'd)
S-6648	33,000 ohms, $1 / 2$ watt (R1)	S-6530	Spacer-Metal spacer for speaker mounting (4 req'd)
S-6392	47,000 ohms, $1 / 2$ watt (R7)	S-5744	Stud-Internal thread stud for mounting lid hinge (8 req'd)
S-6649	56,000 ohms, $1 / 2$ watt (R14)	S-4659	Support-Cabinet lid support
S-6396 S-6650	120,000 ohms, $1 / 2$ watt (R8) 220,000 ohms, $1 / 2$ watt (R17)	S-6661	Transformer-234/117v. 50-60 cycle step-down transformer

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

Radio Controls

© John F. Rider

Model 2-XF-91 "Forbes"
 Maroon

SPECIFICATIONS

tUNING RANGE

Standard Broadcast (AM). 540-1600 kc
Frequency Modulation (FM). 88-108 mc
Intermediate Frequency (AM). 455 kc
Intermediate Frequency (FM). 10.7 mc
TUBE COMPLEMENT
(1) RCA 6BJ6 .. Amplifier
(2) RCA 19X8 . Mixer-Oscillator
(3) RCA 12BA6 I.F. Amplifièr
(4) RCA 12AU6 . FM I.F. Amplifier
(5) RCA 12AU6 ... I.F. Amplifier
(6) RCA 12AL5 D. Detector
(7) RCA 12AV6 AM Det.-AVC-Audio
(8) RCA 35C5 ... Audio Output

RCA Stock No. 77519. Selenium Rectifier

CIRCUIT DESCRIPTION

This instrument, an AM-FM table radio, has eight tubes, plus selenium rectifier. Individual dials are provided for $A M$ and $F M$ bands. RF circuits, contained on a two tube sub-chassis، include RF amplification for both bands and a combination mixeroscillator circuit. The input circuit to the FM RF stage is broadbanded, and is tuned to the approximate FM band center at 100 mc . The mixer is pentode connected for AM operation; triode connected for FM operation. AM IF circuits use an IF amplifier and conventional diode detector with AVC. FM IF circuits include three IF amplifier stages and a discriminator detector. The two tube audio amplifier has an adjustable tone control circuit with combination bass and treble compensation. A hum-bucking circuit uses the tapped-winding output transformer. An inbuilt AM loop antenna, and line cord FM antenna, allow reception without the use of external antennas. A phono jack at the instrument rear permits the use of a record player attachment.

FUNCTION

Radio Controls

POWER SUPPLY RATING

115 volts, 50-60 cycles, or 115 volts d.c. 35 watts
LOUDSPEAKER
Size and Type. $5^{1 / 1 / 4^{\prime \prime}}$ P.M.
Voice Coil Impedance.
.3 .2 ohms

AUDIO POWER OUTPUT

Undistorted . 1.0 watt
Maximum .. 1.3 watts
TUNING DRIVE RATIO....................... $9: 1$ (41/2 turns of knob)
\qquad
DIMENSIONS (Overall)
Height. 81/8" Width. 139/16" Depth. 73/4"

OPERATING INSTRUCTIONS

RADIO - Turn OFF-VOLUME control about half-way in a clockwise direction to turn receiver ON and provide for medium VOLUME. Allow a short warm-up period. Set FUNCTION control at desired service - AM or FM. Rotate TUNING control to move the pointers to the desired AM or FM frequency. Do not touch the pointers themselves. Adjust VOLUME and TONE controls as desired.

PHONOGRAPH - Connect attachment to PHONO jack at instrument rear. Switch the FUNCTION control to "PH" position: Turn on receiver and adjust VOLUME and TONE controls as desired.

MODEL 2-XF-91,

Ch. RC1121

Dial and Drive Cord Drive

ALIGNMENT PROCEDURE

ALIGNMENT INDICATORS:

An RCA VoltOhmyst or equivalent meter is necessary for measuring developed d-c voltage during FM alignment. Connections are specified in the alignment tabulation. An output meter is also necessary to indicate maximum audio output during AM alignment. Connect the output meter across the speaker voice coil. The RCA VoltOhmyst can also be used as an AM alignment indicator, either to measure audio output or to measure AVC voltage. When audio output is being measured, the volume control should be turned to maximum. Adjust tone control to mid-position.

SIGNAL GENERATOR:

For all alignment operations, connect the low side of the signal generator to the receiver chassis. If output measurement is used for AM alignment, the output of the signal generator should be kept as low as possible to avoid AVC action.

If an FM sweep generator is used for FM alignment, adjust for $10.7 \mathrm{mc}, 0.4 \mathrm{mc}$ sweep. Connect oscilloscope across C26, adjusting discriminator T 6 top core for 10.7 mc crossover, and T6 bottom core for balanced peaks. Peak separation should be approximately 330 kc . When aligning the other FM tuned circuits, connect oscilloscope lead through a 220 K resistor to pin 1 of V5. Follow alignment table sequence, adjusting for maximum gain and symmetrical curves.

Tube Socket Voltages

Tube Type and Function	Tube Element	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	AM	FM	Phono
V1 6BJ6 R.F. Amp.	Plate Screen Cathode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 2 \\ & 1 \end{aligned}$	$\begin{array}{r} 94 \\ 94 \\ 0.7 \\ -0.5 \end{array}$	$\begin{array}{r} 92 \\ 92 \\ 0.9 \\ 0 \end{array}$	$\begin{array}{r} 92 \\ 92 \\ 0.5 \\ -0.6 \end{array}$
V2 19X8 Mixer Osc.	Plate Screen Cathode Grid Plate Grid Cathode	$\begin{aligned} & 9 \\ & 1 \\ & 6 \\ & 7 \\ & 3 \\ & 2 \\ & 6 \end{aligned}$	$\begin{array}{r} 75 \\ 75 \\ 0 \\ -1.6 \\ 85 \\ -3.3 \\ \hline \end{array}$	$\begin{array}{r} 80 \\ 80 \\ 0 \\ -2.3 \\ 85.6 \\ -3 \end{array}$	$\begin{array}{r} 80 \\ 80 \\ 0 \\ -2.3 \\ 74 \\ -0.3 \\ \hline \end{array}$
V3 12BA6 I.F. Amp.	Plate Screen Cathode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 94 \\ 94 \\ 0.8 \\ -0.4 \end{array}$	$\begin{array}{r} 92 \\ 92.3 \\ 0.9 \\ -0.2 \end{array}$	$\begin{array}{r} 90 \\ 90 \\ 0.8 \\ -0.2 \end{array}$
$\begin{aligned} & \text { V4 12AU6 } \\ & \text { 2nd I.F. } \\ & \text { Amp. (F.M.) } \end{aligned}$	Plate Screen Cathode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 95 \\ 95 \\ 0.8 \\ 0 \end{array}$	$\begin{array}{r} 93.5 \\ 94.1 \\ 0.8 \\ 0 \end{array}$	$\begin{array}{r} 92 \\ 92 \\ 0.8 \\ 0 \end{array}$
```V5 12AU6 3rd I.F. Amp. (F.M.)```	Plate   Screen Cathode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 74 \\ 74 \\ 0.3 \\ -0.2 \end{array}$	$\begin{array}{r} 73 \\ 73 \\ 0.3 \\ -0.4 \end{array}$	$\begin{array}{r} 72 \\ 72 \\ 0.4 \\ -0.2 \end{array}$
V6 12AL5   F.M. Det.	Plate Cathode Plate Cathode	2 5 7 1	二	-	二
V7 12AV6 A.M. Det. Āudio Āmp.	Plate   Grid   Plate   (Diode)	$\begin{aligned} & 7 \\ & 1 \\ & 5 \end{aligned}$	$\begin{array}{r} 58 \\ -0.8 \\ -0.5 \end{array}$	$\begin{array}{r} 57 \\ -0.8 \\ -0.3 \end{array}$	$\begin{array}{r} 57 \\ -0.8 \\ -0.3 \end{array}$
V8 35C5 Audio Output	Plate Screen Cathode Grid	$\begin{gathered} 7 \\ 6 \\ 1 \\ 2-5 \end{gathered}$	$\begin{array}{r} 130 \\ 96 \\ 5.1 \\ \hline \end{array}$	$\begin{array}{r} 130 \\ 94.5 \\ 5.0 \end{array}$	$\begin{array}{r} 130 \\ 94.5 \\ 5.0 \end{array}$

Rectifier output should be approximately 139 volts, 70 ma .


Tube and Trimmer Locations
AM Alignment
FUNCTION SWITCH IN AM POSITION

Steps	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak output
1	$\begin{gathered} \text { Pin No. } 1 \\ \text { of V3 } \\ \text { in series } \\ \text { with } .01 \mathrm{mfd} . \end{gathered}$	455 kc. (mod.)	Quiet point at high freq. end	T4 bottom core (sec.) T4 top core (pri.)
2	Tap lug 4 on $A M$ RF coil			T2 bottom core (sec.) T2 top core (pri.)
3	Short wire placed near loop for radiated signal	1620 kc . (mod.)	1620 kc.	ClA-T (osc.)
4		1400 kc . (mod.)	1400 kc.	$\begin{aligned} & \text { C37 (ant.) } \\ & \text { C1C-T (ri.) } \end{aligned}$
5		600 kc . (mod.)	600 kc .	L6 (osc.) with 10,000 ohm resistor from ClC RF stator to gnd. (rocking gang)
6				L4 (RF)   with the 10,000   ohms removed
7	Repeat steps 4, 5 and 6 until maximum gain is obtained			

FM Alignment
FUNCTION SWITCH IN FM POSITION-VOLUME CONTROL MINIMUM-TONE CONTROL CENTER
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Steps } & \begin{array}{c}\text { Connect high } \\ \text { side of sig. } \\ \text { gen. to-- }\end{array} & \begin{array}{c}\text { Sig. gen. } \\ \text { output }\end{array} & \begin{array}{c}\text { Turn radio } \\ \text { dial to- }\end{array} & \begin{array}{c}\text { Adjust for } \\ \text { max. output }\end{array} \\ \hline 1 & \begin{array}{c}\text { Pin No. 1 of } \\ \text { V5-12AU6 }\end{array} & & & \begin{array}{c}\text { T6 top core } \\ \text { (for zero d.c. } \\ \text { (across C26) } \\ \text { T6 bottom core } \\ \text { for maximum d.c. } \\ \text { (junction of }\end{array} \\ \text { R24 and R25) }\end{array}\right]$
*If necessary for accuraie peaking, the winding in the same transformer not being pealed should be loaded with a 680 ohm resistor. former not being peased should be loaded with a 580 K ohm resistor. fistornect wolth $1 / 4$ inch maximum exposed lead at grid terminal end. Sistor with $1 / 4$ inch maximum exposed $\operatorname{lol}$ mat at grid terminal end. input circuits.
Oscillator frequency is above signal frequency on both AM and FM


PAGE 23-80 RADIO CORPORATION OF AMERICA
MODEL 2-XF-91,
Ch. RC-1121


John F. Rider
CRITICAL LEAD DRESS
13. Filament chokes L10 and L11 should be raised a minimum
14. Use varnished tubing only on choke and coupling cond. 15. Condenser C 2 should have lead on antenna terminal end not more than $3 / 16^{\prime \prime}$ long to prevent possible contact of lead or body to "Hot" chassis.
Condensers C3 and C35 should use varnished tubing, not 17. Oscillator grid condenser C17 should have short leads and 18. Leads from loop terminal to chassis terminal board should 1. have a minimum of three twists.
Dress C28 down on chassis and against terminal board.
Run filament lead between V5 and V6 on side of V6 socket 9. Alll ceramic button 4700 uuf condensers should have leads 10. Green lead from AM oscillator stator gang terminal to AM oscillator coil should be dressed against front of shield box
and up above filament choke. 11. RF plate choke L1, should be dressed at least $1 / \mathrm{B}^{\prime \prime}$ away 12. Mixer grid condenser C7 should be dressed away from FM oscillator gang stator terminal and away from leads con-
necting to terminals 8 and 9 of V 2 socket.

 C26 leads should be kept as short as possible.
C32 leads should be kept as short as possible.
R24 and R25 leads should be kept as short as possible on
T6 terminal 6 side. C27 should ground in hole near terminal 5 of V6 with short IM oscillator coil should not be tilted over toward function Keep leads V5 pin 5, to T6 term 1, as short as possible and low near chassis.



## MODEL 2-XF-91, Ch. RC1121

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	PART DESCRIPTION	STOCK No.	$\begin{gathered} \text { PART } \\ \text { DESCRIPTION } \end{gathered}$
	CHASSIS ASSEMBLIES	77519	Rectifier-Selenium rectifier, 100 MA (C)
	RCl121	76346	Resistor-Wire wound, 1200 ohms, 4 watts (R13)
77520	Bushing-Laminated bushing ( $5 / 8^{\prime \prime}$ long with shoul-	503022	Resistor-Fixed, composition: 22 ohms, $\pm 10 \%, 1 / 2$ watt (R27)
	ation selector pointer pulley and shaft	503068	68 ohms, $\pm 10 \%, 1 / 2 \mathrm{watt}$ (R16, R30)
	assembly.	503112	120 ohms, $\pm 10 \%$, $1 / 2$ watt (R19, R21)
77522	Capacitor-Variable tuning capacitor (ClA, ClB, ClC, ClD, ClE, ClA-T, ClC-T, ClD-T)	503115 503122	150 ohms, $\pm 10 \%$, $1 / 2$ watt (R12)
70997	Capacitor-Fixed, ceramic, non-insulated, 5.6 mmf .,	503227	2700 ohms, $\pm 10 \%, 1 / 2$ watt (R4)
	$\pm 1 \mathrm{mmf}$., 500 volts D.C. Temp. coel. $=0$ ( ${ }^{\text {c }}$ )	503282	8200 ohms, $\pm 10 \%$, $1 / 2$ watt (R31)
77530	Capacitor--Fixed, ceramic, non-insulated, 7 mmf ., $\pm .5 \mathrm{mmf}$., 500 volts D.C. Temp. coef. $=80$ (Cl5)	503310	10,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R6, R14, R23)
33380	Capacitor-Fixed, ceramic, non-insulated, 12 mmf ., $\pm 5 \%, 500$ volts D.C. Temp. coef. $=0$ (C6)	503347 502410	47,000 ohms, $\pm 10 \%, 1 / 2$ watt (R18) 100,000 ohms, $\pm 5 \%, 1 / 2$ watt (R24, R25)
77531	Capacitor-Fixed, ceramic, non-insulated, 47 mmf ., $\pm 10 \%, 500$ volts D.C. Temp. coef. $=0$ (Cl7)	503410   503422	$\begin{aligned} & 100,000 \text { ohms, } \pm 5 \%, 1 / 2 \text { watt (R24, R25) } \\ & 100,000 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R15, R22, R26) } \end{aligned}$
77532	Capacitor-Fixed, ceramic, non-insulated, 130 mmf ., $\pm 21 / 2 \%, 500$ volts D.C. Temp. coef. $=-750$ (C18)	503447 503522	470,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R11)
39636	Capacitor-Fixed, mica, 220 mmf , 500 volts D.C. (C7)	503539	3.9 megohm, $\pm 10 \%$, $1 / 2$ watt (R2)
75792	Capacitor-Fixed, ceramic, insulated, 330 mmf ., $\pm 20 \%, 500$ volts D.C. High K (C9)	503547 77527	4.7 megohm, $\pm 10 \%$, $1 / 2$ watt (R8) Shaft-Tuning knob shaft
76992	Capacitor-Fixed, mica, 470 mmf ., 300 volts D.C. (C26, C31)	75192	Shield-Tube shield for V1
39644	Capacitor-Fixed, mica, 470 mmf ., 500 volts D.C. (C3)	76331	Shield-Tube shield for V2   Socket-Tube socket, 7 pin, miniature, moulded,
73473	Capacitor-Fixed, ceramic, $4700 \mathrm{mmf} .,+100 \%$, $-0 \%, 500$ volts D.C. High K disc (C5, C8, C19, C21, C22, C23, C24, C25, C29, C30, C36, C38, C39)	76336	saddle mounted for V1   Socket-Tube socket, 9 pin, miniature, moulded, saddle mounted for V2
73520	Capacitor-Electrolytic comprising 1 section of 80 mfd., 150 volts and 1 section of 50 mfd., 150 volts (C33A, C33B)	73117 31970	Socket-Tube socket, 7 pin, miniature, wafer for V3, V4, V5, V6, V7, V8
77533	Capacitor-Fixed, miniature, tubular, paper, . 001	31418	Spring-Drive cord spring
	mfd., 200 volts D.C. (C27)	77524	Switch-Function switch (S1)
73920	Capacitor-Fixed, tubular, paper, . 0047 mfd., 600 volts (Cl2, Cl3, C28)	77517	Transformer-Ouiput iransformer (T7)
73561	Capacitor-Fixed, tubular, paper, $01 \mathrm{mfd} ., 400$ volts (Cl0)	775	Transformer-Ratio detector transformer - complete with adjustable cores (T6)   Transformer-First I.F. transformer-A.M.-complete
73594	Capacitor-Fixed, tubular, paper, $.01 \mathrm{mfd} ., 600$ volts (C14)	77514	with adjustable cores (T2)
73562	Capacitor-Fixed, tubular, paper, .022 mfd., 400 volts (Cll)	76328	with adjustable cores (Tl)   Transformer-Second I.F. transformer-A.M.-com-
73558	Capacitor-Fixed, tubular; paper, . $047 \mathrm{mfd} ., 200$ volts (C4)		plete with adjustable cores (T4)
75071	Capacitor-Fixed, tubular, moulded, . 047 mfd ., 400 volts (C32).	77513 77512	plete with adjustable cores (T3)
73551	Capacitor-Fixed, tubular, paper, 0.1 mfd., 400 volts (C35)	33726	with adjustable cores (T5)   Washer-"C" washer for station selector pointer
73935	Clip-Mounting clip for I.F. transformers		pulley and shaft or tuning k
77538	Coil-Antenna coil-F.M. (L5)	34373	Washer-" $C$ " washer to fasten idler pulleys
77534	Coil-Choke coil (Ll)		
77535	Coil-Choke coil (L9, Ll0, Lll)		SPEAKER ASSEMBLIES
77526	Coil-Oscillator coil-A.M.-complete with adjustable core (L6, L7)		971933-1
77537	Coil--Oscillator coil-F.M. (L8)	77539	Speaker-51/4" P.M. speaker complete with cone
77525	Coil-RF coil-A.M.-complete with adjustable core (L3, L4)		and voice coil (3.2 ohms)
77536	Coil-RF coil-F.M. (L2)		MISCELLANEOUS
77528	Connector-Combination phono input connector and antenna terminal board (II)	77543	Antenna-Antenna loop and back assembly complete with power cord (includes C37)
75474	Connector-Single contact male connector for speaker lead	77543	Back-Cabinet back complete with loop, capacitor and power cord (includes C37)
77529	Connector-Two (2) contact male connector for power cord	Y2467	Cabinet-Maroon plastic cabinet less "RCA Victor" emblem and function decal
77516	Control-Tone control (R9)	77544	Capacitor-Adjustable, mica trimmer, 3-30 mmf.
77515	Control-Volume control and power switch (R7, S2)		(C37)
72953	250' Dial Cord Reel-Dial cord (approx. 49" overall required)	$\begin{aligned} & 77545 \\ & 77542 \end{aligned}$	Cord-Power cord and plugs Decal-Control function decal
	Drive cord (approx. $11{ }^{\prime \prime}$ overall required)	77033	Emblem-'"RCA Victor" emblem
77523	Drum-Variable tuning capacitor drive drum and hub	77548	Knob-Function switch knob   Knob-Tuning control, tone control or volume con-
16058	Grommet-Rubber grommet for mounting RF shelf (4 required)	73203	trol and power switch knob   Nut-Speednut to fasten "RCA Victor" emblem to
77521	Nut-Speednut for station selector pointer pulley and shaft bushing	77541	cabinet.   Pointer-Station selector pointer-A.M.
72602	Pulley-Idler pulley for indicator cord (2 required)	77540	Pointer-Station selector pointer-F.M.
77510	Pulley-Pulley and shaft (split) for station selector pointers	$73992$	Retainer-Knob retainer (knob to cabinet) Spring-Retaining spring for knobs (knob to shaft)



SPECIFICATIONS

## TUNING RANGE

Standard Broadcast (AM). . .. . . . . . . . . . . . . . . . . . . . . . 540-1600 kc
Frequency Modulation (FM). . . . . . . . . . . . . . . . . . . . . . . . 88-108 mc
Intermediate Frequency (AM). . . . . . . . . . . . . . . . . . . . . . . . . . 455 kc
Intermediate Frequency (FM). . . . . . . . . . . . . . . . . . . . . . . . 10.7 mc
TUBE COMPLEMENT
(1) RCA 6BJ6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .R.F. Amplifier
(2) RCA 19X8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mixer-Oscillator
(3) RCA 12BA6 ............................................ I.F. Amplifier
(4) RCA 12AU6 . . . . . . . . . . . . . . . . . . . . . . . . . . FM I.F. Amplifier
(5) RCA 12AU6 . . . . . . . . . . . . . . . . . . . . . . . . . . . FM I.F. Amplifier
(6) RCA 12AL5 ............................................... D. Detector
(7) RCA 12AV6 ..... . . . . . . . . . . . . . . . . . . AM Det.-AVC-Audio
(8) RCA 35C5 ........................................ Audio Output

RCA Stock No. 77519......................... . . Selenium Rectifier

## CIRCUIT DESCRIPTION

This instrument, an AM-FM table radio, has eight tubes, plus selenium rectifier. Individual dials are provided for AM and FM bands. RF circuits, contained on a two tube sub-chassis, include RF amplification for both bands and a combination mixeroscillator circuit. The input circuit to the FM RF stage is broadbanded, and is tuned to the approximate FM band center at 100 mc . The mixer is pentode connected for AM operation; triode connected for FM operation. AM IF circuits use an IF amplifier and conventional diode detector with AVC. FM IF circuits include three IF amplifier stages and a discriminator detector. The two tube audio amplifier has an adjustable tone control circuit with combination bass and treble compensation. A hum-bucking circuit uses the tapped-winding output transformer. An inbuilt AM loop antenna, and line cord FM antenna, allow reception without the use of external antennas. A phono jack at the instrument rear permits the use of a record player attachment.

OFF-VOLUME



Radio Controls

FUNCTION


TUNING


## MODELS 2-XF-931

Series, Ch. RC1121A



## Dial and Drive Cord Drive

## ALIGNMENT PROCEDURE

## ALIGNMENT INDICATORS:

An RCA VoltOhmyst or equivalent meter is necessary for measuring developed d-c voltage during FM alignment. Connections are specified in the alignment tabulation. An output meter is also necessary to indicate maximum audio output during AM alignment. Connect the output meter across the speaker voice coil. The RCA VoltOhmyst can also be used as an AM alignment indicator, either to measure audio output or to measure AVC voltage. When audio output is being measured, the volume control should be turned to maximum. Adjust tone control to mid-position.

## SIGNAL GENERATOR:

For all alignment operations, connect the low side of the signal generator to the receiver chassis. If output measurement is used for AM alignment, the output of the signal generator should be kept as low as possible to avoid AVC action.

If an FM sweep generator is used for FM alignment, adjust for $10.7 \mathrm{mc}, 0.4 \mathrm{mc}$ sweep. Connect oscilloscope across C26, adjusting discriminator T6 top core for 10.7 mc crossover, and T6 bottom core for balanced peaks. Peak separation should be approximately 330 kc . When aligning the other FM tuned circuits, connect oscilloscope lead through a 220 K resistor to pin 1 of V5. Follow alignment table sequence, adjusting for maximum gain and symmetrical curves.

Tube Socket Voltages

$\begin{aligned} & \text { Tube Type } \\ & \text { and } \\ & \text { Function } \end{aligned}$	Tube Element	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	AM	FM	Phono
V1 6BJ6   R.F. Amp.	Plate Screen Cathode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 2 \\ & 1 \end{aligned}$	$\begin{array}{r} 94 \\ 94 \\ 0.7 \\ -0.5 \end{array}$	$\begin{array}{r} 92 \\ 92 \\ 0.9 \\ 0 \end{array}$	$\begin{array}{r} 92 \\ 92 \\ 0.5 \\ -0.6 \end{array}$
V2 19X8   Mixer   Osc.	Plate   Screen   Cathode   Grid   Plate   Grid   Cathode	$\begin{aligned} & 9 \\ & 1 \\ & 6 \\ & 7 \\ & 3 \\ & 2 \\ & 6 \end{aligned}$	$\begin{array}{r} 75 \\ 75 \\ 0 \\ -1.6 \\ 85 \\ -3.3 \end{array}$	$\begin{array}{r} 80 \\ 80 \\ 0 \\ -2.3 \\ 85.6 \\ -3 \end{array}$	$\begin{array}{r} 80 \\ 80 \\ 0 \\ -2.3 \\ 74 \\ -0.3 \\ \hline \end{array}$
V3 12BA6   I.F. Amp.	Plate Screen Cathode Grid	$\begin{aligned} & \hline 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 94 \\ 94 \\ 0.8 \\ -0.4 \end{array}$	$\begin{array}{r} 92 \\ 92.3 \\ 0.9 \\ -0.2 \end{array}$	$\begin{array}{r} 90 \\ 90 \\ 0.8 \\ -0.2 \end{array}$
V4 12AU6   2nd I.F.   Amp. (F.M.)	Plate Screen Cathode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$	$\begin{gathered} 95 \\ 95 \\ 0.8 \\ 0 \end{gathered}$	$\begin{array}{r} 93.5 \\ 94.1 \\ 0.8 \\ 0 \end{array}$	$\begin{gathered} 92 \\ 92 \\ 0.8 \\ 0 \end{gathered}$
V5 12AU6   3rd I.F.   Amp. (F.M.)	Plate Screen Cathode Grid	$\begin{aligned} & \hline 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 74 \\ 74 \\ 0.3 \\ -0.2 \end{array}$	$\begin{array}{r} 73 \\ 73 \\ 0.3 \\ -0.4 \end{array}$	$\begin{array}{r} 72 \\ 72 \\ 0.4 \\ -0.2 \end{array}$
V6 12AL5 F.M. Det.	Plate Cathode Plate Cathode	2 5 7 1	二	二	
V7 12AV6 A.M. Det. Audio Amp.	Plate Grid Plate (Diode)	$\begin{aligned} & \hline 7 \\ & 1 \\ & 5 \end{aligned}$	$\begin{array}{r} 58 \\ -0.8 \\ -0.5 \end{array}$	$\begin{array}{r} 57 \\ -0.8 \\ -0.3 \end{array}$	$\begin{array}{r} 57 \\ -0.8 \\ -0.3 \end{array}$
V8 35C5 Audio Output	Plate Screen Cathode Grid	$\begin{gathered} 7 \\ 6 \\ 1 \\ 2-5 \end{gathered}$	$\begin{array}{r} 130 \\ 96 \\ 5.1 \end{array}$	$\begin{array}{r} 130 \\ 94.5 \\ 5.0 \end{array}$	$\begin{array}{r} 130 \\ 94.5 \\ 5.0 \end{array}$

Rectifier output should be approximately 139 volts, 70 ma .


## Tube and Trimmer Locations <br> AM Alignment

FUNCTION SWITCH IN AM POSITION

Stèps	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak output
1	$\begin{gathered} \text { Pin No. } 1 \\ \text { of V3 } \\ \text { in series } \\ \text { with } .01 \mathrm{mfd} . \end{gathered}$	455 kc . (mod.)	Quiet point at high. freq. end	T4 bottom core (sec.) T4 top core (pri.)
2	Tap lug 4 on AM RF coil			T2 bottom core (sec.) T2 top core (pri.)
3	Short wire placed near loop for radiated signal	1620 kc . (mod.)	1620 kc .	CIA-T (0 : . )
4		1400 kc . (mod.)	1403 kc.	$\begin{aligned} & \text { C37 (ant.) } \\ & \text { ClC-T (rf.) } \end{aligned}$
5		600 kc . (mod.)	600 kc .	L6 (osc.) with   10,000 ohm   resistor from C1C   RF stator to gnd.   (rocking gang)
6				$\begin{gathered} \text { L4 (RF) } \\ \text { with the 10,000 } \\ \text { ohms removed } \end{gathered}$
7	Repeat steps 4, 5 and 6 until maximum gain is obtained			

FM Alignment
FUNCTION SWITCH IN FM POSITION-VOLUME CONTROL MINIMUM-TONE CONTROL CENTER

Steps	Connect high side of sig. gen. to	Sig. gen. output	Turn radio dial to	Adjust for max. output
1	$\begin{aligned} & \text { Pin No. } 1 \text { of } \\ & \text { V5-12AU6 } \end{aligned}$	10.7 mc .	Quiet point at low frequency end	T6 top core for zero d.c. (across C26) T6 bottom core for maximum d.c.   (junction of R24 and R25)
2	$\begin{aligned} & \text { Pin No. } 1 \text { of } \\ & \text { V4-12AU6 } \end{aligned}$			$\dagger$ T5 top core
3	$\begin{aligned} & \text { Pin No. } 1 \text { of } \\ & \text { V3-12BA } 6 \end{aligned}$			$\begin{aligned} & \text { T3 top core } \\ & \dagger * \text { T3 bottom } \\ & \text { core } \end{aligned}$
4	$\underset{\text { Stator }}{\text { CID }}$			$\begin{aligned} & \text { T1 top core } \\ & \dagger^{*} \text { T1 bottom } \\ & \text { core } \end{aligned}$
5	FM Ant. terminals thru 270 ohm resistor	90 mc .	90 mc .	$\dagger$ FM osc. L8
6		106 mc.	106 mc.	$\dagger$ FM R.F. ClD-T
7		90 mc .	90 mc .	$\begin{gathered} \text { †FM R.F. } \\ \text { L2 } \end{gathered}$
8		Hepeat steps 6 and 7 until maximum gain is obtained		
9		100 mc .	100 mc .	$\dagger$ FM Ant. coil L5

[^30]RADIO CORPORATION OF AMERICA PAGE 23-85



RADIO CORPORATION OF AMERICA PAGE 23-87
MODELS 2-XF-931 Series, Ch. RC1121A


PAGE 23-88 RADIO CORPORATION OF AMERICA
MODELS 2-XF-931 Series, Ch. RC1121A



## Specifications

Tuning Range
Standard Broadcast (AM). ....................... . . . $540-1600 \mathrm{kc}$.
Frequency Modulation (FM) 88-108 mc.
Intermediate Frequency (AM) 455 kc .
Intermediate Frequency (FM). .10 .7 mc .
Tube Complement
Tube Used Function

## Radio Chassis RC1111

(1) RCA 6CB6
.......................
R-F Amplifier
(2) RCA 6J6. .Mixer and Oscillator
(3) RCA 6BA6..................................... . . . . Amplifier
(4) RCA 6AU6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . F-M Driver
(5) RCA 6AL5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ratio Detector
(6) RCA 6AV6. . . . . . . . . . . . . . AM Det.-AVC-A-F Amplifier Audio Chassis RS141
(1) RCA 6C4.
(2) RCA 6V6GT

Phase Inverter
(3) RCA 6V6GT.

Audio Output
(4) RCA 5Y3GT

Audio Output

Lamps

Jewel (1).

Power Supply Rating....... 115 volts, 60 cycles, 100 watts
Audio Power Output Rating
Radio...................ndistorted 8 watts, maximum 9 watts Phonograph.......... indistorted 10 watts, maximum 12 watts

Loudspeaker (92569-12W)
Size and Type.
12 inch P.M.
Voice Coil Impedance
3.2 ohms at 400 cycles

Tuning Drive Ratio.
9:1 ( $41 / 2$ turns of knob)
Net Weight.
96 lbs.
Dimensions (overall)
Height.... $351 / 2 \mathrm{in}$. Width.... 35 in . Depth.... 23 in.
Record Changer (930409-5, or -10)
Turntable Speed. .... $331 / 3,45$ or 78 r.p.m.
Record Capacity. .... Up to fourteen 7 inch RCA type or twelve 10 inch or ten 12 inch or ten 10 inch and 12 inch intermixed
Pickup (Stock No. 75475) . . . . Crystal with replaceable styli

## General Description

This instrument is a Victrola combination having nine tubes, plus one rectifier. It has a modern style cabinet in either walnut, mahogany, or limed oak finish. The entire receiver (with the exception of the power supply and speaker) is built as a unit with the automatic record changer for "pull-out" operation. The three speed record changer is nested over the radio chassis on a plastic case. Record-storage space is provided for both large and small diameter records.
For standard broadcast reception, a loop antenna is mounted on the roll-out unit back. A folded dipole is mounted inside the cabinet for use on the FM band. Provision is made for connecting an external antenna for either the broadcast or FM bands.
By rotating the function switch, the 2 S 10 can be operated as:

1. Phonograph sound channel for the three speed record changer.
2. Standard broadcast " $A$ " band receiver ( $540-1600 \mathrm{kc}$ ).
3. Broadcast " FM " band receiver ( $88-108 \mathrm{mc}$ ).

The function switch controls the internal connections for:
A. RF-IF stage AVC voltages from AM or FM detector.
B. Audio amplifier input from any one of three channels.
C. B+ voltage application to RF-IF circuits.
D. Audio output tube bias voltage. In phonograph operation, R2 is disconnected from R107, increasing available power output for phonograph operation.
E. Selection of tuned circuits for AM or FM operation.

A horizontal tilted slide rule type dial is located along the top front face of the plastic roll-out case. The dial is edge-lighted at both ends by dial lamps. An amber jewel lamp, visible at the bottom front, glows whenever the set is in operation.

## MODEL 2-S-10, Ch. RC1111 Record Changer



## Controls

## Record Changer Controls

The record changer has a dual control on the motorboard and a stylus selector control on the pickup arm. The inner control (circular knob) is the OFF-ON-REJECT control. Turning this knob to the center position energizes the motor and starts the turntable, when turned to the right (clockwise) it starts the mechanism into complete automatic operation. The mechanism will shut off automatically after the last record has been played but can be shut off manually by turning this knob to the left (counter-clockwise).

The outer control (double ended lever) is the speed control. It has three normal positions, " $33^{\prime \prime}$ " " 45 ", " 78 " to select the turntable speed desired and a neutral position (midway between " 45 "' and " 78 '). The control should be turned to this neutral position if the changer is not expected to be in use for an extended period of time.

The stylus control has two normal positions (right and left) and one shipping position (lever pointing up). When playing $331 / 3$ or $45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. records the lever is turned so that " $33-45$ " is visible on the TOP of the lever; likewise for 78 r.p.m. records " 78 " should be visible on the TOP.

The removable centerpost is for use with 45 r.p.m. records
having the large centerhole. It must be placed over the center spindle with the "RCA" trademark monogram FACING to the FRONT. When not in use it is placed in a well at the front of the motorboard.

To load or remove records, the record stabilizer is lifted and turned off-side. After loading it is turned to the center where it rests on top of the stack of records.

## Record Changer Adjustments

## Landing Adjustment

Only one landing adjustment is necessary. The landing position of the stylus is adjusted by means of the eccentric stud (20A), mounted on the pickup arm support bracket. When adjusted for correct landing on one side of record, the landing position for other sizes of records is automatically corrected:

## Pickup Arm Height Adjustment

The pickup arm height during cycle is adjusted by means of the hex head screw (17), located in the pickup arm.
Turn control knob to "REJ" and rotate turntable by hand until arm has risen to its maximum height. Adjust screw so that stylus is $13 / 8^{\prime \prime}$ above turntable.

## Stylus Force Adjustment

Stylus force should be $71 / 2$ to $91 / 2$ grams. Loosen screw (14), and move slide until the correct force is obtained.


Adjustments

## Tripping

The tripping method used in this mechanism is a velocity method. Velocity tripping is effective between $43 / 4^{\prime \prime \prime}$ and $31 / 4^{\prime \prime}$ diameters, when the stylus moves inward $1 / 8^{\prime \prime}$ or more per revolution of the turntable. No adjustment is required.

## Radio

## Operating Instructions

RADIO-Turn extreme right hand FUNCTION knob to "AM" or "FM" radio position as desired. Turn OFF-VOLUME Knob "ON" and advance to mid-position for medium volume. Allow approximately 20 seconds for tube warm-up. With TUNING knob, select desired station indicated by dial pointer. Set tone controls for most pleasing reception. Turn BASS control counter-clockwise and TREBLE control clockwise for full tone. Adjust volume level as desired.

PHONOGRAPH-Turn extreme right hand FUNCTION knob to " PH " position. Turn OFF-VOLUME knob "ON" and advance to mid-position for medium volume. Set tone controls as indicated above for best tone. Refer to RECORD CHANGER section for operational information.


## Roll-Out Mechanism

## Record Cbanger Mounting

The record-changer is mounted in a roll-out carriage. The changer mechanism is mounted on springs and should be free floating.

## Roll-out Carriage Removal

Roll-out carriage has two stop pins, (one at the back end of each slide) held in place by retaining spring. To remove roll-out carriage, it is first necessary to pull the retaining springs out of the slides with a pair of long nose pliers, the stop pins are then easily removed. The roll-out carriage may then be removed from the front of the cabinet after disconnecting its connecting cables.

## Roll-out Carriage Travel

The roll-out carriage has a normal movement limitation of approximately 10 inches. If it does not have this amount of movement, it may be due to an obstruction or from slippage or creeping of the balls of the slide mechanism. Travel restriction due to slippage or creeping of balls in the slide mechanism can be corrected by exerting slightly greater pull until the normal travel limitation is reached. The carriage should then operate to its full travel with normal pull.

$\dagger$ Two or more points may be found which lower the audio output. At the
correct point the minimum audio output is approached rapidly and is much
lower than at any incorrect point. of the same trans. is being peaked. Then the grid winding is loaded with the 680 ohm resistor while the plate winding is being peaked. When windings L8, L1 and L2 are adjustable by increasing or decreasing the spacing
between turns. Oscillator signal tracks above signal frequency. The proper adjustment of the I.F. cores can be determined by starting the
core all the way out. The first peak obtained is the correct one.



Alignment Indicators: measuring developed d-c voltage during FMM alignment. Con-

 across the speaker voice coll.
The RCA Volto hmyst can also be used as an AM align-a-v. C voltage. When audio output is being measured the volume control
should be turned to maximum. Adjust tone controls for maximum highs and lows during alignment. signal Generator:

For all alignment operations connect the low side of the adjusted to provide accurate resonance indication at all times.
If outut masurement is sued for AM alignment the output of
the signal generator should be kept as low as possible to
avoid a-v-c action.
AM Alignment

NOILISOd WY NI HOLIMS GDNYY (i)

perform fm aligiment berore proceeding


-





Oscillato trequenco is abovesignal frequency on both $A M$ and $F M M$,
©

PAGE 23-92 RADIO CORPORATION OF AMERICA
MODEL 2-S-10,

## Ch. RC1111



RC1111 Chassis-Tube and Trimmer Locations

## Dial Cord Drive

$\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$	PART DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$	PART DESCRIPTION
	CHASSIS ASSEMBLIES RC 1111	$\begin{aligned} & 77315 \\ & 77305 \end{aligned}$	Coil-Oscillator coil-FM (L8)   Coil-R.F. coil-AM-complete with adjustable core (L6, L7)
77308	Capacitor-Variable tuning capacitor (Cl-A, Cl-B, $\mathrm{Cl}-\mathrm{C}, \mathrm{Cl}-\mathrm{D}, \mathrm{Cl}-\mathrm{E}, \mathrm{Cl}-\mathrm{F})$	$\begin{aligned} & 77314 \\ & 75543 \end{aligned}$	Coil-R.F. coil-FM (L2)   Connector-2 contact female connector for phono
75613	Capacitor-Ceramic, 5 mmf ( (Cl2, C41)		power cable (Pl)
	Capacitor-Ceramic, 6.8 mmf . (C16)	74879	Connector-2 contact female connector for an-
76348	Capacitor-Ceramic, 47 mmf . (Cl0)	7506	Connector-9 contact male connector for power
75612	Capacitor-Ceramic, 68 mmf . ( $\mathrm{Cl5}$, C17)		input (Jl) Connector-Single contact female connector for
39396 75614	Capacitor-Ceramic, 100 mmf . (C5) C )	35787	Connector-Single contact female connector for audio cable (J2)
75611	Capacitor-Ceramic, 220 mmf . (C3)	33742	Connector-Single contact female connector for
39640	Capacitor-Mica, 330 mmf ( ( $366, \mathrm{C} 37$ )		phono cable (J3)
39644	Capacitor-Mica, 470 mmf ( (C6)	75562	Control-Tone control-H.F. (R29)
73473	Capacitor-Ceramic, 4700 mmf ( $\mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 7, \mathrm{C} 9$, C11, C18, C20, C23, C24, C27, C32, C34, C35, C40)	$\begin{aligned} & 75561 \\ & 75537 \end{aligned}$	Control-Tone control-L.H. (R16)   Control-Volume control and power switch (R19, S2)
73747	Capacitor-Electrolytic 2 mfd., 50 volts (C39)	72953	Cord-250' Drive Cord Reel (approx. 57" overall
77468	Capacitor-Tubular, paper, .0018 mfd ., 600 volts (C8)	75564	req'd)
73795	Capacitor-Tubular, paper, .0038 mfd., 600 volts (C25)	74839	extension shaft   Fastener-Push fastener to fasten RF shelf ( 4 req'd)
73920	Capacitor-Tubular, paper, .0047 mfd., 600 volts (C30)	16058	Grommet-Rubber grommet for mounting RF shelf (4 req'd)
72490	Capacitor-Tubular, paper, $.005 \mathrm{mfd} ., 200$ volts (C33, C38)	75548	Grommet-Rubber grommet for mounting slides (4 req'd)
73561	Capacitor-Tubular, paper, $01 \mathrm{mfd} ., 400$ volts (C29)	$\begin{aligned} & 11765 \\ & \mathbf{7 7 3 1 1} \end{aligned}$	Lamp-Dial lamp-Mazda 51   Latch-Bottom cover latch
73797	Capacitor-Tubular, paper, $.015 \mathrm{mfd} ., 600$ volts (C22)	$\begin{aligned} & 77486 \\ & 76421 \end{aligned}$	Nut-Speed nut for latch adjustment screw Pin-Slide mechanism stop pin
77469	Capacitor-Tubular, paper, .018 mfd., 200 volts (C21)	$\begin{aligned} & 72602 \\ & 35641 \end{aligned}$	Pulley-Drive cord pulley   Pulley-Drive cord pulley- $13 / 8^{\prime \prime}$ dia.
73562	Capacitor-Tubular, paper, $.022 \mathrm{mfd} ., 400$ volts (C26)	503039	Resistor-Fixed, composition:39 ohms, $\pm 10 \%, 1 / 2$ watt (R3)
73558	Capacitor-Tubular, paper, 047 mfd., 200 volts (C19)	$\begin{aligned} & 503068 \\ & 503110 \end{aligned}$	68 ohms, $\pm 10 \%, 1 / 2$ watt (R21) 100 ohms, $\pm 10 \%, 1 / 2$ watt (R14, R34)
73935	Clip-Mounting clip for I.F. transformer for 75558 \& 76328	$\begin{aligned} & 503112 \\ & 503139 \end{aligned}$	$\begin{aligned} & 120 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R30) } \\ & 390 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R12) } \end{aligned}$
77313	Coil-Antenna coil-FM (LI)	503168	680 ohms, $\pm 10 \%$, $1 / 2$ watt (R6, R25, R32)
71942	Coil-Filament choke coil (L9, L10)	503210	1000 ohms, $\pm 10 \%$, $1 / 2$ watt (R2)
75569	Coil-Oscillator coil-AM-complete with adjustable core (L3, L4, L5)	$\begin{aligned} & 502212 \\ & 502233 \end{aligned}$	1200 ohms, $\pm 5 \%, 1 / 2$ watt (R36) 3300 ohms, $\pm 5 \%, 1 / 2$ watt (R35)


$\begin{aligned} & \text { sTOCK } \\ & \text { NO. } \end{aligned}$	PART DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$	PART DESCRIPTION
50			
50331	000 ohms, $\pm 10 \%$, $1 / 2$ watt (R33)	748	Grommet-Power cord strain relief
503318	18,000 ohms, $\pm 10 \%$, 1/2 watt (R13, R17)	72776	Pin-Contact pin for speaker lead
503322	22,000 ohms, $\pm 10 \%$, 1/2 watt (R22, R31)	73637	Resistor-Wire wound, 2200 ohms, 5 watts (R10
503327	27,000 ohms, $\pm 10 \%, 1 / 2$ watt (R9, R18)		Resistor-Fixed, compositio
503339	39,000 ohms, $\pm 10 \%, 1 / 2$ watt (R37)	503110	100 ohms, $\pm 10 \%$, $1 / 2$ watt (R108)
50335	56,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R26)	522127	270 ohms, $\pm 5 \%$, 2 watts (R107)
503412	120,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R11, R15)	502233	3300 ohms, $\pm 5 \%$, $1 / 2$ watt (R102)
503415	150,000 ohms, $\pm 10 \%, 1 / 2$ watt (R4, R24)	503368	68,000 ohms, $\pm 10 \%, 1 / 2$ watt (R105)
503422	220,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R23)	50338	82,000 ohms, $\pm 10 \%, 1 / 2$ watt (R103)
503427	270,000 ohms, $\pm 10 \%, 1 / 2$ watt (R28)	503447	470,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R104, R106)
503447	470,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R38)	3136	Socket-Pilot lamp socket
503510	1 megohm, $\pm 10 \%$, $1 / 2$ watt (R39)	31251	Socket-Tube socket, octal, wafer
503515	1.5 megohm, $\pm 10 \%, 1 / 2$ watt (R10)	73117	Socket-Tube socket, 7 pin, miniatur
503522	2.2 megohm, $\pm 10 \%$, $1 / 2$ watt (R1, R7, R8)	77323	Transformer-Output transformer
503610	10 megohm, $\pm 10 \%, 1 / 2$ watt (R20)	75566	Transformer-Power transformer, 117 volt, 60 cycle (T101)
504622	22 megohm, $\pm 20 \%$, $1 / 2$ watt (R27)		
77303	Shaft-Extension shaft for function swi		
75540	Shaft-Tuning knob		SPEAKER ASSEMBLIES
7358	Shield-Tube shield for V1		92569-12W
75192	Shield-Tube shield for V2		
31364	Slide-S		RMA-274
74179	Socket-Tube socket, 7 contact, miniature, wafer for V1, V3, V4, V5	$\begin{aligned} & 75682 \\ & 76093 \end{aligned}$	Cone-Cone and voice coil ( 3.2 ohms)   Speaker-12" P.M. speaker complete with cone and voice coil ( 3.2 ohms )   NOTE: If stamping on speaker in instruments does not agree with above speaker number, order replacement parts by referring to model number of instrument, number stamped on speaker and full description of part required.
73117	Socket-Tube socket, 7 contact, miniature, wafer for V6		
77306	Socket-Tube socket, 7 pin, moulded, saddlemounted for V2		
77312	Spring-Actuating spring for bottom cover latch		
76332	Spring-Drive cord spring		
75563	Spring-Retaining spring tension shaft		MISCELLANEOUS
76422	Spring-Retaining spring for slide mechanism		Antenna-Antenna loop-less cableAntenna-F.M. antenna
77304			
	coil complete with mounting brack	77327	Back-Back-light brown-for chassis and changer rollout assembly for blonde mahogany instru-
77307 75559			
7555	Transformer-l st. I.F. transformer-FM-complete with adjustable cores (T1)	77326	ments   Back-Back-maroon-for chassis and changer rollout assembly for mahogany or walnut instruments
75558	Transformer-l st. I.F. transformer-AM-complete with adjustable cores (T2)		
76328	Transformer-2nd. I.F.		Back-Cabinet back   Board-Antenna terminal board
	plete	15707	
75560	Transformer-2nd. I.F. transforn		Bracket-Pilot lamp bracket Cable-Shielded pickup cable complete with pin
	plete with adjustable core	72437	
7374	Transformer-Ratio detector transforme with adjustable core (T5)	13103	plug   Cap-Pilot lamp cap (Jewel)
33726	Washer-"'C' washer for tuning		Catch-Bullet catch and strike for cabinet doors Cloth-Grille cloth for blonde mahogany instruments
	W Washer	X322	
	ROLLOUT MECH	X3130	Cloth-Grille cloth for mahogany or walnut instruments
77319	Bracket-Dia		
77318	Bracket-Dial lamp socket bracket-R.H.	3087	Connector-2 contact male connector for record
77320	Dial-Polystyrene dial scale		Connector-2 contact male connector for antenna loop cable   Connector-2 contact male connector for antenna lead
77321 77317	Escutcheon-Dial scale escutcheon less dial	74882	
	Frame-Plastic mounting frame-light brown-for chassis and record changer for blonde mahogany instruments	74752	
77316	Frame-Plastic mounting frame-maroon-for chassis and record changer for mahogany or walnut instruments		Decal-"RCA Victor" decal   Decal-"Victrola" decal   Grommet-Rubber grommet for speaker mounting
77322	-	74	Hinge-Cabinet door hinge (l set)   Knob-Function switch knob-maroon   Knob-Function switch knob-tan   Knob-Tuning control, tone control or volume con-
		77330	
	AMPLIFIER ASSEMBLIES	77331	
	- RS 141	77328	
77324	Capacitor-Electrolytic comprising 1 section of 30 mfd., 450 volts, 1 section of 30 mfd ., 350 volts and 1 section of 40 mfd ., 25 volts (Cl01A, C101B, C101C)	77329	Knob-Tuning control, tone control or volume control and power switch knob-tan   Lamp--Pilot lamp-Mazda 51
		73634	Nut-Speed nut for speaker mounting screws
75643	Capacitor-Tubular, paper, oil impregnated, . 001 mfd., 1000 volts (Cl03, Cl04)	$\begin{aligned} & 77335 \\ & 77334 \end{aligned}$	Plate-Back plate for lower door pull ( 2 req'd) Pull-Cabinet door pull-lower (2 req'd)
73789	Capacitor-Tubular, paper, $.0068 \mathrm{mfd} ., 400$ volts (Cl05)	7733	
		75623	
735	Capacitor-Tubular, paper, 022 mfd ., 400 volts (Cl02)	74113	Screw-\#8-32 $\times 1^{\prime \prime}$ trimit head screw for lower
72583	Cable-Shielded audio cable complete with pin plug (Includes P102)		${ }_{\text {door }}^{\text {doull }}$ Spring-Spring clip for
75064	Connector-9 contact female connector for power input cable (P101)	7593026	Spring-Suspension spring for main cable Stop-Cabinet door stop

PAGE 23-94 RADIO CORPORATION OF AMERICA
MODEL 2-S-10,
Ch. RC1111


RADIO CORPORATION OF AMERICA PAGE 23-95


Simplified Schematic Diagram-"AM" Position


Simplified Schematic Diagram-"FM" Position

## ELECTRICAL SPECIFICATIONS

TUBE COMPLEMENT: II tubes plus rectifier-6CB6 RF amp. I2AT7 mixer, I2AT7 osc, and AFC., (2) 6CB6 IF amp., (2) 6AU6 limiters, 6AL5 FM det., 6AV6 AM det. and audio amp. 12AX7 audio amp., 12AX7 phono pre-amp., 6X5GT rectifier.
CONTROLS: Bass, Off-On-Volume, FM-AM-PH-TV selector, Tuning, Treble.
ANTENNA: FM-300 ohm or 72 ohm input.. AM-high or low impedance transformer input. Lownoise loop also provided for $A M$ and $F M$
SENSITIVITY: FM-5 microvolts for 30 db . quieting. $A M-5$ microvolts for 0.5 volts output at either detector or audio amplifier.
FM DRIFT: Negligible with Automatic Frequency Control. Without $A F C, \pm 20 \mathrm{kc}$. after 10 sec . warmup.
OUTPUT: Capability up to 2 volts at less than $1 / 2 \%$ distortion from cathode follower. For use with either high or low gain amplifiers with input impedance of 10,000 ohms or higher. Cathode follower connection direct from detector also provided.


AM INTERSTATION WHISTLE FILTER: 25 db . rejection at 10 kc., I db. at 7 kc .
POWER CONSUMPTION: 105125 volts, 60 cps ., 50 watts. SHIPPING WEIGHT: 16 lbs . DIMENSIONS: $131 / 2^{\prime \prime} \times 91 / 2^{\prime \prime} \times 7^{\prime \prime}$ high.
BANDWIDTH: FM-190 kc.; AM
-8.5 kc .

TONE COMPENSATION: Bass variable up to 16 db . boost or 14 db . cut at 60 cps . Treble variable up to 15 db . boost or 15 db . cut at $10,000 \mathrm{cps}$.
PHONO PRE-AMPLIFIER: 31 db . gain plus 22 db . bass compensation.
INTERMEDIATE FREQUENCIES: FM- 10.7 mc .; AM-455 kc.

r'ig. 1. FM Limiting Characteristir.


Fig. 2. Audio Characteristic

## PAGE 23-2 RADIO CRAFTSMEN

## MODEL 10, AM-FM Tuner



Fig. 3. Phono Pre-amplifier Characteristic

## UNPACKING

These instructions cover the operation and installation of the Craftsmen 10 FM-AM Tuner. The entire manual should be read before installing the unit, since much general information is included that will be of value in making any custom-built installation.

As soon as the tuner has been unpacked, examine it for any apparent damage which might have occured in shipment. Should any sign of damage be found, file a claim immediately with the carrier stating the extent of tr, damage.

Included with the C10 tuner chassis should be the ${ }^{(10)}$.

1 3B023 Brass escutcheon
1 TX403 AM low-impedance antenna
1 7A604A Shielded audio cable

GENERAL - Considerable thought should be given in respect to the installation of the chassis in order to obtain maximum benefit from the operating ease the chassis offers. The dial and controls should be positioned for easy access and reading which, in many cases, can be improved with a sloping front panel. If the mounting board cannot be readily tilted, wooden spacers can be inserted under the front mounting holes to provide the necessary inclination. Position the knobs sufficiently above any front projection to provide ample finger clearance for adjusting the knobs.

The types and orientation of the tubes used in the tuner permit satisfactory operation regardless of mounting position.

Other considerations in layout are accessibility to the rear for interconnections, sufficient clearance from any metal for the AM loop to insure good pickup, and ample air space above the tubes to prevent any deterioration to a finished wooden cabinet top from tube heat. Where the spacing is necessarily close, this effect may be alleviated


Dial Cord Drive. with a thin sheet of bright metal tacked beneath the vulnerable surface.

ALIGNMENT PROCEDURE - To set pointer, completely mesh tuning capacitor and align pointer with last reference mark at low frequency end of dial. Volume control should be in maximum clockwise position. Output of signal generator should be no

TUBE	FUNCTION	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9
6CB6	RF AMP.	0	2.4	0	$6.3^{*}$	145	145	2.4	-	--
12AT7	MIXER	154	0	2.1	0	0	-0.9	-0.9	0	$6.3^{*}$
12AT7	OSC-AFC	150	1.8	0	0	0	182	-0.7	1.8	$6.3^{*}$
6CB6	1St IF	-0.3	1.7	$6.3^{*}$	0	150	150	0	--	--
6CB6	2nd IF	0	2.1	$6.3^{*}$	0	150	150	0	-	--
6AU6	1St LIMITER	-0.3	0	$6.3^{*}$	0	39	39	0	-	--
6AU6	2nd LIMITER	-0.8	0	$6.3^{*}$	0	48	48	0	--	--
6AL5	FM DET.	0	-5.8	$6.3^{*}$	0	-0.8	0	-4	--	--
6AV6	AM DET. \& AUDIO AMP.	0	0.9	57	57	0.6	-0.6	106	--	--
12AX7	CATHODE-FOLLOWER	200	19	35	57	57	200	19	35	57
12AX7	PHONO PRE-AMP	81	0	1	57	57	59	0	0.9	57
6X5-GT	RECTIFIER	--	58	$196^{*}$	--	$196^{*}$	--	58	228	--





Fig. 6. Antenna Arrangements
na
Fig. 6. Antenna Arrangements
 is internally switched to the FM input. the flexible ribbon lead (furnished) around the cabinet interior and connect to terminals marked "S"and "G". Finaly connect the shorting link between the blank terminal and G". This ribbon lead forms a low-noise, low-impedance or two turn loop practical in the available cabinet space. This loop also provides FM reception since terminal "S"

Installations remote from stations might require outside antennas of a more elaborate nature. Connect exterior FM antennas to terminals "FM" and "G", or if to be used as an AM aerial as well, then connect to "S"and "G". Long-line AM aerials can be connected directly to the encountered.
 and AM signals as well. This can be done by coupling lightly ( through a 1000 -ohm resister) from terminal "S" to one side of the TV antenna terminals.

TELEVISION - Complete suggested interconnections for installations including television are shown in Figure 7. In general, it is desirable not to operate a television unit while attempting either FM or AM reception because of the various types of interference that may be -
.


MODEL 10,
AM-FM Tuner


VENTILATION - Considerable ventilation must be
provided to carry off the heat dissipated by the receiver. A chimney effect"can be utilized advantageously in wall or bookcase installations by providing ports near the bottom and top of the enclosure to effect a flow of air past the
chassis. ASSEMBLY - The front panel cutouts should be
made first by using the full-scale template provided. Note that this template is laid out symmetrically about the center knob and above the bottom mounting surface of the rubber shock mounts. Locate and drill the mounting holes

## Electrical CONNECTIONS

 operated from this output. The audio amplifier power line cord should be plugged into the AC outlet on the rear of the chassis so that FM-AM tuner.

AUDIO SYSTEM - A cathode-follower Amplifier
Output jack, furnishing up to 2 volts at less than $1 / 2 \%$
distortion from 20 to 20,000 cps., ( refer to Figure 2) and the associated shielded audio cable have been provided to connect the C10 into new or existing audio systems. Any audio amplifier, such as the Craftsmen 2 or 500 Amplifier,

RADIO CRAFTSMEN PAGE 23-7 MODEL 10, AM-FM Tuner


## MODEL 10,

AM-FM Tuner

## PARTS LIST




Front Cabinet View


Dial Stringing Diagram

## SERVICE DATA

Power Supply............. 115 volts, 60 cycles AC only, 24 watts.
Frequency Range........ 540 to 1600 Kc.
Intermediate Freq....... 455 Kc.
Selectivity.
Sensitivity
Power Output
Loud Speaker..............4" PM., v.c. impedance, 3.2 ohms.
Tube Complement
12BE6, Converter, 12AV6, or 12ATb, 12BA6, IF Amplifier 50C5, Audio output


Chassis View
ALIGNMENT PROCEDURE

- Loop must be connected and volume set to maximum.

SIGNAL GENERATOR				TUNER SETTING	
Frequency	Coupling Capacitor	Connection to Radio	Ground Connection		ADJUST FOR MAXIMUM OUTPUT
455 kc.	. 1 mf.	128E6, Pin 7	$\begin{aligned} & \tilde{0} \\ & 0 \\ & 0 \\ & 0 \\ & \tilde{U} \end{aligned}$	(Capacitor fully open) (plates out of mesh)	Top and bottom Cores in output and input I.F. cans
1620 kc.	. 1 mf.	12BE6, Pin 7		(Capacitor fully open) (plates out of mesh)	Oscillator trimmer C1-D on gang
535 kc.	. 1 mf.	12BE6, Pin 7	$\begin{aligned} & \text { Ju } \\ & \tilde{\jmath} 0 \end{aligned}$	Capacitor fully closed	Check for adequate range
1400 kc.	-	Lay Generator lead near back of cabinet		Tune in 1400 kc. signal	Antenna trimmer C1-C on gang

PAGE 23-2 RAYTHEON
MODELS CR-41A, -42A,
-43A, Ch. 4D16A


SCHEMATIC DIAGRAM
PARTS LIST
Please specify part number and chassis model number when ordering replacements.
Use only Genuine Factory Replacement Parts.



Dial Stringing Diagram

## SERVICE DATA

Power Supply.......... 115 volts, DC or 50-60 cycle, AC, 24 watts.
Frequency Range..... 540 to 1600 Kc .
Intermediate Freq... 455 Kc.
Selectivity $\qquad$ At 1000 Kc., 60 Kc. ,at 1000 x signal
Sensitivity................. 150 u. v. per meter
Power Output.......... 0.8 watts undistorted, 1.0 watt maximum
Loud Speaker..........4" PM., v.c. impedance, 3.2-ohms Tube Complement... 12BE6, Converter 12BA6, IF Amplifier 12AV6, or 12ATb, Detector, AVC, Audio

50C5, Audio output 35W4, Rectifier


Top Chassis View

ALIGNMENT PROCEDURE

- Loop must be connected and set volume to maximum.

SIGNAL GENERATOR				TUNER SETTING	ADJUST FOR MAXIMUM OUTPUT	INPUT FOR50-MILILWATTOUTPUT
Frequency	Coupling Capacitor	Connection to Radio	Ground Connection			
455 kc.	. 1 mf	12BE6, Pin 7		Capacitor fully open   (plates out of mesh)	Top and bottom Cores in output and input I.F. cans	65 microvolts
1620 kc.	. 1 mf	12BE6, Pin 7		Capacitor fully open (plates out of mesh)	Oscillator trimmer C1-D on gang	70 microvolts
535 kc.	. 1 mf.	12BE6, Pin 7		Capacitor fully closed	Check for adequate range	70 microvolts
1400 kc.	.	Lay generator lead near back of cabinet		Tune in 1400 Kc. signal	Antenna trimmer $\mathrm{C}-1 \mathrm{C}$ on gang	200 to 400 microvolts
400 cycles	. 1 mf.	12ATb, Pin 1			-	. 06 volts

PAGE 23-4 RAYTHEON
MODELS R-51A, -52A, Ch. 5D157-A


SCHEMATIC DIAGRAM

## LIST DF PARTS

Please specify part number and chassis model number when ordering replacements.
Use only Genuine Factory Replacement Parts



## GENERAL DESCRIPTION

This model is a 3-way portable radio with 4 tubes plus a selenium rectifier and uses a built-in antenna. The receiver will operate on 115 volts, 50 to 60 cycles AC, or 115 volts DC, or on the self-contained batteries. When using the radio on $A C$, reversing the plug may reduce hum. If the radio does not operate in one minute on direct current (DC), reverse the plug. When bat-
tery operation is desired, the line cord plug is inserted into a socket switch on the chassis (see bottom cabinet view), the insertion automatically moves the switch contacts for battery operation. When the line cord plug is out of the chassis switch, the batteries are automatically disconnected.

## SPECIFICATIONS

Power Supply
.115 volts, DC or 50-60 cycles AC, 25 watts.

A Battery- 7.5 volts 50 milliamperes.
B Battery-90 volts, 14 milliamperes
Frequency Range.... 540 to 1600 kc .
Intermediate Freq... 455 kc .
Selectivity. $\qquad$ At 1000 kc., 60 kc. at 1000 x signal

Sensitivity................. 500 microvolts per meter
Power Output. $\qquad$ 150 milliwatts, undistorted 250 milliwatts, maximum

Loud Speaker .5" PM, v.c. impedance 3.2 ohms Tube Complement..
1R5, Converter, 1U4, I.F. amplifier, 1U5, detector, AVC, audio amp. Rectifier. $\qquad$ 3V4, output amplifier, Selenium type.


## MODEL PR-51A,

Ch. 4P12A

Mfgr.	A	B
RCA	VS-065	VS-090
General	31	132
Ray-O-Vac	P-751	4390
Eveready	717	490
Burgess	C5	N60

## BATTERY REPLACEMENT

Since the receiver is small and compact, not every A or B Battery will fit in the space provided. Listed to the left are the five most common manufactured types to be used for replacements.

CAUTIDN:
When battery operation is desired, the excess line cord length must be rolled up and placed in the position shown in the bottom chassis view above.


Dial Cord Stringing

## ALIGNMENT PROCEIDURE

The Alignment Procedure below includes the sensitivities at the input of various stage. All measurements are based on an output of 50 milliwatts. This may be measured by disconecting the speaker voice coil and substituting a 3.2 ohm, 5 watt resistor across the secondary winding of the output transformer. A reading of .4 volts $A C$ across this resistor will be equivalent to a

50 milliwatt output with speaker connected. The volume control must be set to maximum.

The signal source must be an accurately calibrated signal generator capable of supplying the frequencies designated, modulated $30 \%$ with a 400 -cycle audio signal. A 400 -cycle audio signal is required for the audio measurement. Variations in sensitivities of plus or minus $25 \%$ are usually permissible.

FREQUENCY	COUPLING CAPACITOR	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	CONNECTION TO RADIO	GROUND CONNECTION	ADJUST	INPUT FOR 50 MILLIWATTS OUTPUT
455 kc .	. 1 mfd .	1000 kc.	Pin No. 6 of 1R5	B- shell of lytic)	I.F. slugs	100 microvolts
1620 kc.	. 1 mfd.	1600 kc.	Pin No. 6 of 1 R5	(shell of lytic)	C1-B Osc. Trim. on gang	$\square$
1400 kc.	Radiation Loop	1400 kc.	Radiation loop	None	C-2 Antenna Trim. on gang	250 microvolts
400 cycles	. 05 mfd .		Pin No. 6 of 1U5	(shell of lytic)		. 040 volts
400 cycles	. 05 mfd .	-	Pin No. 6 of 3V4	(shell of lytic)	-	3 volts

## PARTS LIST

When ordering parts, specify part number and complete model number


PAGE 23-8 RAYTHEON
MODEL PR-51A,
Ch. 4P12A


## SPECIFICATIONS

FREQUENCY RANGES:
AM-540 to 1700 Kc .
FM - 88 to 108 Mc .
TUNING CAPACITOR:
6 section gang (3-AM-and 3-FM); entire R.F. tuning assembly is rubber mounted.
I.F. FREQUENCY:

AM-455 Kc.
FM-10.7 Mc.

POWER SUPPLY:
117 volts A.C.
Radio - 85 watts
Phono- 115 watts
POWER OUTPUT:
Undistorted-2.8 watts
Maximum - 5.4 watt
SPEAKER:
12 inch P.M. Dynamic
Voice coil impedance- $\mathbf{3 . 2}$ ohms

MODELS 69, Ch. 100. 201;
1066, Ch. 100. 202

## ANTENNAS:

AM-Low impedance loop
FM-Single ended half wave dipole

## WEIGHT

Packed-117 lbs.
DIMENSIONS:
Length- $351 / 2^{\prime \prime}$
Height-34"
Depth - $173 /{ }^{\prime \prime}$
1.066, utilizes Radio Chassis 100.202 . The chassis is the same as Radio. chassis 100. 201. The only difference consists of a change in cabinet styling. BROADCAST BAND-"AM"-ALIGNMENT PROCEDURE

1. Disconnect leads from FM-AM antenna terminat strip (labeled FM-FM-AM-AM) at back of chassis; also disconnect speaker leads and phono plugs. Remove chassis and speaker from cabinet. If desired, allow speaker to remain in cabinet and connect to receiver by extension leads.
2. Loop antenna leads (on cabinet) do not have to be connected to terminal strip on chassis while I.F. stages are being aligned. Before starting alignment of Ant., R.F., and Osc. stages, reconnect AM loop antenna leads to AM antenna terminal strip-do not attempt to use extension leads; place chassis as close as required to cabinet so that connections may be made direct to antenna terminal strip at back.
3. With the gang condenser fully meshed, dial pointer should be in the position indicated by the last division below 55 on the diai If it is set incorrectly, hold tuning shaft steady and reposition pointer.
4. Connect an output mefer across speaker voice coil, or from plate of 6V6GT tube to chassis through a 0.1 Mfd . condenser.
5. Connect ground lead of signal generator to the receiver chassis.
6. Set volume control to maximum volume position and use a weak signal from the signal generator.
7. Set band switch to the "AM" (middle) position.

DUMMY ANT.   IN SERIES   WITH SIGNAL   GENERATOR	CONNECT HIGH SIDE OF SIGNAL GENERATOR TO	SIGNAL GENERATOR FREQUENCY	RECEIVER   DIAL SETTING	TRIMMER OR SLUG NUMBER	TRIMMER DESCRIPTION	TYPE OF ADJUSTMENT
. 1 MFD. Condenser	Lug on trimmer No. 6 at top of gang (see figure below for location of trimmer).			1-2	2nd I.F.	Adiust for maximum output. Then repeat adjustment.
		455 KC	it does not affect the signal.	3-4	1st I.F.	
260 MMFD. Mica Condenser	External Antenna Clip	1500 KC	1500 KC	5	Broadcast Oscillator	Adiust for maximum output.
$\begin{aligned} & 260 \text { MMFD. } \\ & \text { Mica } \\ & \text { Condenser } \end{aligned}$	External Antenna Clip	1500 KC	Tune to 1500 Kc : generator signal.	6	Broadcast R.F.	Adjust for maximum output.
				7	Broadcast Antenna	Adjust for maximum output.
260 MMFD.   Condenser	External Antonnc Clip	600 KC	Tune to 600 Kc . generator signal.	8	Adjustable core of Broadeast R.F. Coil.	Adjust for maximum output.
				9	Adiustable core of Broadeast Antenna Coil.	Adjust for maximum output.
Repeat adiustment of trimmers 6 \& 7 and slugs 8 \& 9 until one no longer detunes the other.						



FIG. 1
Top View of Chassis


FIG. 2 Bottom View of Chassis

MODELS 69, Ch.100.201;
1066, Ch. 100. 202
FREQUENCY MODULATION—"FM"-ALIGNMENT PROCEDURE

1. If alignment of both $A M$ and $F M$ channels is required it is necessary to align the $A M$ channel first, then align the $F M$ channel as instructed in chart below (AM alignment procedure is given on the preceding page).
2. Disconnect all leads from antenna terminal strip (labeled FM-FM$A M-A M$ ) at back of chassis; also disconnect speaker leads and phono plugs. Remove chassis and speaker from cabinet. If desired, allow speaker to remain in cabinet and connect to receiver by extension leads.
3. With the gang condenser fully meshed, dial pointer should be in the
position indicated by the last division below 88 on the dial. : If it is set incorrectly, hold tuning shaft steady and reposition pointer.
4. Set volume control at maximum volume position and use a weak signal from the signal generator.
5. Dress FM circuit leads as short and straight as possible, particularly those in the oscillator circuit: I.F. plate and grid leads should also be kept short and straight.
6. Set band switch to the FM (extreme counter-clockwise) position.


FREQUENCY MODULATION_"FM'-ALIGNMENT PROCEDURE (Continued)

STANDARD SIGNAL GENERATOR		SWEEP GENERATOR		VTVM OR OUTPUT METER CONNECTIONS	OSCILLOSCOPE CONNECTIONS	RECEIVER DIAL SETTING	TRIMMER OR SLUG NUMBER	TYPE OF ADJUSTMENT AND OUTPUT INDICATION
CONNECTIONS	FREQUENCY	CONNECTIONS	FREQ.					
Connect generator "high", side in series with a 270 ohm carbon resistor to marked "FM" on strip at back of chassis. ground lead must connect to next terminal marked "GND."	$\begin{gathered} 108 \mathrm{MC} \\ \text { with } \\ 400 \text { cycle } \\ \text { AM } \\ \text { Modulation. } \end{gathered}$	Not used.	-	Connect VTVM as shown in Fig. 5.	Not used.	108 MC.	$\underset{\substack{\text { FM } \\ \text { Oscillator }}}{\# 16}$	Set trimmer \#16 to receive 108 Mc . signal as indicated by maximum meter reading.
Same as above.	106 MC. with 400 cycle AM Modulation.	Not used.	-	Same as above.	Not used.	Tune to 106 Mc. generato signal.	$\frac{\underset{\text { FM RF }}{\# 13}}{\underset{\text { FM ANT. }}{\# 18}}$	Adiust trimmer for maximum meter reading.

Check calibration and tracking of receiver with input signals of 88,98 and 106 MC . If difference between dial pointer setting and these frequencies does not exceed $\pm 0.3 \mathrm{MC}$. and R.F. circuit is tracking properly, then alignment may be considered satisfactory and no further adjustment is necessary. Where the calibration error is greater than $\pm 0.3 \mathrm{MC}$., it is advisable to make the following adjustments:

Tune receiver to an 88 MC . signal and note whether dial pointer is above or below correct calibration point. Then tune receiver so that dial pointer is at the 88 MC . position. If generator signal was previously received at a setting above 88 MC ., it will be necessary to slightly spread the windings of the FM oscillator coil so that signal will now be received at the correct dial setting. On the other hand, if generator signal was received at a
dial setting below 88 MC ., then slightly compress the windings of the oscillator coil until the signal comes in at the correct calibration point.
Check calibration at 108 MC. and if it is in error by more than $\pm 0.3$ MC., readjust setting of trimmer \#16. Then repeat adjustments of trimmers \#17 and 18 at 106 MC. Repeat calibration adjustment at 88, 106 and 108 MC. until desired accuracy is obtained.

Observe dial calibration at 106 MC . If it is found to be incorrect by an appreciable amount, then make a very slight adjustment in the spacing of the gang condenser plates to receive the 106 MC . signal at the correct dial setting. Then check adjustment of R.F. trimmer \#17 and ANT. trimmer \#18 to obtain maximum output indication at 106 MC.


SOCKET VOLTAGES
the voltage shown in this chart were measured UNDER THE FOLLOWING CONDITIONS

1. Power Supply-117 volts 60 cycles A.C.
2. All voltages are measured between socket terminals and chassis unless otherwise indicated on the chart.
3. All measurements made with a voltmeter having a sensitivity of 1000 ohms per volt except where indicated by (*). The (*) symbol designates a vacuum tube voltmeter measurement.
4. Where a particular voltage is dependent upon band switch position, the value shown on the chart carries a letter suffix which is interpreted as follows (no suffix letter indicates that voltage is the same for any of the three suiteh positions).
" A " indicates band switch set to " $A M^{\prime \prime}$ (center) position.
" F " indicates band switch set to "FM" (counter-clockwise) position.
" P " indicates band switch set to " PHO " (clockwise) position.
5. When measuring FM voltages, receiver should be tuned to 88 Mc .
6. When measuring $A M$ voltages, receiver should be tuned to 540 Kc .
7. All terminals on strip labeled "FM-FM-AM-AM" at rear of chassis are shorted together by using a jumper wire.
8. Volume control set to maximum position with no signal.
9. Tone control set to maximum clockwise position.


REAR OF CHASSIS
NOTE X: Grounding of center stud on tube socket is necessary to reduce capacity coupling between other pins. Oscillation may result if this ground is omitted.


## PAGE 23-6 SEARS, ROEBUCK

## MODELS 69, Ch. 100. 201 HOW TO ORDER PARTS 1066, Ch. 100. 202

1. Use Correct Order Form.
2. On the Purchase Order always give the following information:
(a) PART NUMBER (number printed on the part if different from that shown in this list) and DESCRIPTION for each part ordered. When no part number is assigned, order by description and rating. Also give PRICE of part (indicate if no selling).
(b) The CHASSIS NUMBER, which is 100.201 , will be found on a metal plate at the rear of the chassis.
3. in all correspondence relating to cabinets, always mention the source code letter stamped into the upper rear rail of consoles or the bottom of table models, and the CATALOG NUMBER shown on the sticker on the back, bottom or inside of cabinet.

PARTS LIST FOR CHASSIS
Notice: Some parts listed below have special characteristics. Do not use substitutes for replacement purposes.

*-This part is not supplied as a Service replacement item.

SEARS, ROEBUCK PAGE 23-7


W508217 $\begin{gathered}\text { Bracket for mounting OFF-ON indicator lite } \\ \text { at base of cabinet ................................ } 10\end{gathered}$
W508487 Bracket-retains dial plate .............................. . 10
W506757 Bracket-slide; retains radio compartment...... . 50
W508991 Bracket-tie for record changer pull-out mechanism ........................................................... . 12
W117131 Bull's-eye for OFF,ON indicator lite at base $\quad .50$,
W508880 Cabinet ...........................................................1165.00
W508499 Catch for record storage compartment.............. . 65
W508996 $\begin{gathered}\text { Door and radio tilt compartment assembly } \\ \text { (less hardware) }\end{gathered}$.............................. 26.50
W508995 Door for record changer compartment (less 16.60 hardware)

W508493 Escutcheon-dial ................................................ 2.80
W506380 Fastener for loop antenna ................................. . 02
W508497 Handle for radio or record changer door........ 1.80
W508998 Handle for record storage compartment door 1.80
W506640 Hinge-for record storage compartment;
W509046 Knob-"PHO. AM FM" ............................................................................ 40
W509044 Knob-'TTONE" ................................................. . 30
W509045 Knob-_"TUNE" ................................................ . 40
W509043 Knob-'VOLUME-ON"
W170188 $\begin{gathered}\text { Nut-Wing \#10-24; for tension adiustment of } \\ \text { radio compartment tilt mechanism ........... } 10\end{gathered}$
W507809 Nut-wing \#10-32; for tension adiustment on record changer pull-out mechanism................ . 15
W508397 Pivot bolt for radio tilt compartment................. . 10
W508981 Pull-out mechanism for record changer compartment (left side) ..................................... 6.50
W508982 Pull-out mechanism for record changer com-ull-out mechanism for record changer com-
partment (right side)
*-This part is not supplied as a Service replacement item

PART NO.	DESCRIPTION	SELLING PRICE
W520145	Cabinet	\$150.00
W520163	Door and radio tilt compartment (less hardware)	10.00
W520162	Door for record changer compartment (less hardware)	10.00
W520164	Door for record storage compartment (less hardware)	14.00
W520165	Handle for radio or record changer door.	1.50
W520166	Handle for record storage compartment door.	. 45

## MODEL 4,

Ch. 478. 233


## ELECTRICAL SPECIFICATIONS

Power Supply
105-125 Volts D.C. or 105-125 Volts, 50-60 Cycles A.C., 30 Watts

Frequency Range.... 532.5 to 1620 kc . Intermediate Freq. 455 kc .

Tuning
Speaker
Two gang capacitor
4 inch PM 3.2 ohm voice coil impedance
Power Oułpuł......... 1 watt undistorted 1.5 watt maximum

Sensitivity
Selectivity

800 Microvolts at 50 milliwatts Output
120 kc broad at 1000 times signal at 1000 kc.

## ALIGNMENT PROCEDURE

PRELIMINARY:
Output meter connection
Across 3.2 ohm speaker voice voil
Output meter reading to indicate 0.05 watt across speaker voice coil $\qquad$
Generator Modulation $30 \%, 400$ cycles
Position of volume control ............................................................................... maximum (fully clockwise)
Position of pointer with Rotor full open (Plates out of mesh) ........................................... slightly beneath the 1620 kc calibration mark on the dial (pointer horizontal to right)

Position of Tuner	SİGNAL GENERATOR				Trimmer Adjustments (In order shown)
	Frequency	$\underset{\text { Factor }}{\text { Coupling }}$	Connection to Receiver		
Rotor Full Open (Plates out of mesh)	455 kc .	. 1 mfd	Grid of 12BE6 (Pin 7)	Chassis	Input and Output   Trimmers on I.F Can T3 and T4
Rotor Full Open (Plates out of mesh)	1620 kc.	. 1 mfd	Grid of 12BE6 (Pin 7)	Chassis	Oscillator Trimmer T2
1400 kc .	1400 kc .	75 mmf	Antenna Hank	Chassis	Antenna Trimmer T1
600 kc.	600	75 mmf	Antenna Hank	Chassis	(Check Point)*

*With a generator frequency of 600 k c, tune the set to the point where maximum output is obtained, which should be approximately 600 Kc on the dial.
Align for maximum output. Reduce input as needed to keep output near 0.4 volts.
The alignment procedure should be done in the order given for greatest accuracy.
Always keep the output from the generator at its lowest possible value to prevent the AVC of the receiver from interfering with accurate alignment.

## ANTENNA SYSTEM

This radio unit is equipped with a hank of antenna wire attached to the antenna coil. For normal reception, unhank the antenna wire and stretch it around the room or permit it to hang outside the window.

In areas where reception is poor due to weak signal strength, an additional external antenna can be connected to the antenna wire.


## HOW TO ORDER PARTS

1. Use Correct Order Form.
2. On the Purchase Order always give the following information:
(1) PART NUMBER (number printed on the part if different from that shown on this list) and DESCRIPTION for each part ordered. When no part is assigned, order by description and rating. Also give PRICE of part (indicate if no selling).
(2) The CHASSIS NUMBER, is this found on a metal plate at the rear of the Chassis.

In all correspondence relating to cabinets, always mention the source code letter stamped into the upper rear rail of consoles or the bottom of table models, and the CATALOG NUMBER shown on the sticker on the back bottom or inside of cabinet.

## REPAIR PARTS LIST

PART NUMBER	SCHEMATIC LOCATION	DESCRIPTION	SELLING PRICE
RESISTORS			
RC 180-1	R 9	18 Ohms 1/2 Watt $20 \%$	\$ . 14
RC 390-5	R 10	39 Ohms 1/2 Watt 10\%	. 31
RC 222-5	R 11	2,200 Ohms 1 Watt $10 \%$	. 31
RC 183-2	R 1,2	18,000 Ohms 1/2 Watt $10 \%$	. 14
RC 224-1	R 7,8	220,000 Ohms 1/2 Watt 20\%	. 14
RC 334-1	R 6	330,000 Ohms 1/2 Watt 20\%	. 14
RC 475-1	R 4	. 4.7 meg ohms $1 / 2$ Watt $20 \%$	. 14
RC 106-1	R 5	10 meg ohms $1 / 2$ Watt $20 \%$	. 14
VC 11	R 3	2 meg ohms Volume Control, 100K Stop	1.48
CONDENSERS			
CM 100-1	C 1	10 mmf 500 Volts Mica (part of LA 8)	
CM 151-1	C 6	150 mmf 500 Volts Mica	. 28
CM 501-1	C 3	500 mmf 500 Volts Mica	. 22
CP 202-2	C 9	.002 mfd 400 Volts Paper	. 27
CP 502-2	C 7	.005 mfd 400 Volts Paper	. 27
CP 203-1	C 8	. 02 mfd 400 Volts Paper	. 27
CPM 203-1	C 10	. 022 mfd 400 Volts Molded	. 41
CP 503-1	C 4,5	.05 mfd 400 Volts Paper	. 27
CE 15	C 11A,11B	$2 \times 40 \mathrm{mfd} 150$ Volts Electrolytic	1.62
COILS AND TRANSFORMERS			
LA 8		Antenna Coil	1.23
LC 10A		Oscillator Coil	1.05
LF 24		I. F. Transformer	2.11
CB 106-SE		Cabinet, Ebony	2.53
KN 20-2		Knob, Ivory	. 11
KN 37		Large Knob, Ebony	.17
MP 9-D		Decorative Pistol	. 20
MP 10-D		Cowboy and Horse	. 44
BK 39		Cabinet Back	. 14
HK 22		Antenna Wire Hank	. 34
LD 65		Line Cord	. 77
SO 17		Miniature Wafer Socket, 1 inch Mounting	. 21
So 11		Wafer Socket, $15 / 16$ inch Mounting	. 21
SP 47-10A		4"' P. M. Speaker with Output Transformer	3.49



CATALOGS 1058 - MAHOGANY
1059 - BLOND OAK


CATALOGS 1062 - WALNUT 1063 - MAHOGANY

## GENERAL DESCRIPTION

The 101.860 chassis is an 8 tube, 2 band, A C type, AM-FM receiver. 1058 (Mahogany) and 1059 (Blonde Oak) have a $10^{\prime \prime}$ electromagnet speaker. 1062 (Walnut) and 1063 (Mahogany) have a $12^{\prime \prime}$ electromagnet speaker.

## SPECIFICATIONS

## POWER SUPPLY

All models 117 volts AC, 60 cycle unless otherwise specified. Power Consumption 105 watts.

## FREQUENCY RANGE

Standard Broadcast
Frequency Modulation (FM)
540-1600 KC.
88-108 MC.

## ANTENNA EQUIPMENT

These models have a Silvertone built-in antenna system which will provide excellent

INTERMEDIATE FREQUENCIES
AMIF Carrier
455 KC .
FM IF Carrier
10.7 MC.

POWER OUTPUT
Undistorted
2. 75 Watts

Maximum
4. 50 Watts
local reception on both the AM and FM bands. For locations where an outside antenna is necessary a special Silvertone AM-FM Antenna Kit Catalog No. 6710 is available.

## ALIGNMENT PROCEDURE

WARNING: No attempt should be made to adjust the alignment of this receiver without using the following equipment: Signal Generator, FM.Sweep Generator, Cathode Ray Oscilloscope, Output Meter, Insulated Screw Driver.

## AM ALIGNMENT

Output meter connection
Across speaker voice coil
Generator ground lead connection Receiver chassis
Generator modulation $30 \% 400$ cycles
Position of volume control Fully on
Position of tone control
$\qquad$ Fully counterclockwise
Position of FM-AM-PHO Switch AM

MODELS 1058, 1059, 1062, 1063, Ch. 101, 860

TUNER POSITION	GENERATOR FREQUENCY	DUMMY ANTENNA	GENERATOR CONNECTION	  TRIMMER   ADJUSTMENTS (IN ORDER SHOWN)	CORE OR TRIMMER FUNCTION
Open	455 KC .	0.1 Mfd.	Transl-Grid	T4-A, T4-B	I. F.
				T2-A, T2-B	
1650 KC .	1650 KC.	50 Mmfd .	Ext. Ant.	C11	Osc.
1400 KC .	1400 KC.	50 Mmfd .	Ext. Ant.	C 5	Ant.

## FM IF ALIGNMENT

Sweep generator frequency
10. 7 MC .

Sweep generator deviation 300 KC .
Dummy antenna 0.1 Mfd.

Sweep generator ground lead connection Receiver chassis
Position of tuner $\qquad$ Open
Position of volume control Fully on
Position of tone control $\qquad$ Fully counterclockwise
Position of FM-AM-PHO switch FM

Make shielded probe shown in Figure 1 for use with Oscilloscope where indicated below.

GENERATOR CONNECTION	OSCILLOSCOPE CONNECTION	CORE   ADJUSTMENTS	ADJUST FOR CURVE IN	$\begin{gathered} \text { CORE } \\ \text { FUNCTION } \end{gathered}$
FM - First IF grid	$\begin{aligned} & \text { Probe - across } \\ & \text { T5 - Primary } \end{aligned}$	T3-A, T3-B	Figure 2	IF
Trans-Grid	$\begin{aligned} & \text { Probe - across } \\ & \text { T5 - Primary } \end{aligned}$	T1-A, T1-B	Figure 2	L IF
FM - Second IF grid	Across C35	T5-A, T5-B	Figure 3	Disc.

## FM RF ALIGNMENT

Output meter connection Across speaker voice coil
Sweep generator deviation $\qquad$ 22.5 KC .

Dummy antenna


Sweep generator connection Two 120 ohm resistors

Position of volume control $\qquad$ FM antenna board

Position of tone control Fully on

Position of FM-AM-PHO switch Fully counterclockwise FM

## POSITION

 OF TUNER Open 108 MC . Closed 88 MC.GENERATOR FREQUENCY
108.5 MC .
108.0 MC .
88.5 MC.
88.0 MC.

TRIMMER \& COIL ADJUSTMENT

C10
C 9
L 4
L. 3

TRIMMER OR COIL FUNCTION

Osc.
Transl.
Osc. Transl.


FIG. 1 - SHIELDED PROBE FOR FM I.F. ALIGNMENT


FIG. 2 - FM I. F. RESPONSE


FIG. 3 - FM DISCRIMINATOR OUTPUT


FIG. 4 - STRING AND POINTER HOOKUP


FIG. 5 - RADIO CHASSIS LAYOUT - TOP VIEW

MODELS 1058, 1059, 1062,
1063, Ch. 101.860

SCHEMATIC DIAGRAM FOR 101. 860 RADIO CHASSIS


FIG. 6 - RADIO CHASSIS LA YOUT - BOTTOM VIEW HOW TO ORDER PARTS

1. Use Correct Order Form.
2. On the Purchase Order always give the following information:
(1) PART NUMBER (number printed on the part if different from that shown in this list) and DESCRIPTION for each part ordered. When no part number is assigned, order by description and rating. Also give PRICE of part (indicate if no selling).
(2) The CHASSIS NUMBER, which is 101.860. This number is found on a metal plate at the rear of the chassis.

In all correspondence relating to cabinets, always mention the source code letter stamped into the upper rear rail of consoles or on the bottom of table models, and the Catalog Number shown on the sticker on the back, bottom or inside of the cabinet.

## SCHEMATIC LOCATION

	R85-61164-1
	R81-66167-1
	R74-74742-1
	R73-74597-1
	R71-66224-1
	R86-74751-1
	R71-65538-1
	R45-641032-1
C38	
C14, C15	R43-74592-2
C43	R43-74592-3
C25	R43-602710-20
C18, C34	R43-604710-20
C33	R43-602020-36
C35	R43-603329-33
C16, C28, C29,	R43-704726-62
C31, C41, C42	
C19, C20, C21,	R43-701036-63
C26, C32	

## REPAIR PARTS LIST

## PART NUMBER

## DESCRIPTION

Adapter - Record
Arm - Stop Assembly $(1062,1063)$
Background - Dial
Board - Antenna - FM

## SELLING PRICE EA.

MODELS 1058, 1059, 1062.
1063, Ch. 101. 860

## REPAIR PARTS LIST (cont'd)

SCHEMATIC LOCATION	PART NUMBER	DESCRIPTION	SELLING   PRICE EA
C4	R44-452202-20	Capacitor - 22 Mmfd - Mica	. 17
C13, C27	R44-454701-20	Capacitor - 47 Mmfd . - Mica	. 17
C23, C24, C30	R44-351012-20	Capacitor - 100 Mmfd - Mica	. 17
C1, C2, C12, C17	R44-454712-20	Capacitor - 470 Mmfd. - Mica	. 23
C22	R44-353921-30	Capacitor - . 0039 Mfd. - Mica	63
C36	R41-69193-1	$\begin{aligned} & \text { Capacitor - Electrolytic } \\ & 4 \text { Mfd. - } 50 \mathrm{~V} . \end{aligned}$	83
	R41-74576-1	Capacitor - Electrolytic	2.85
C39		60 Mfd . - 250 V .	
C40		60 Mfd . - 250 V .	
C37		25 Mfd . - 25 V .	
C3	R42-61629-1	Capacitor - Trimmer - Loop	. 26
	R42-74596-1	Capacitor - Variable - 4 Gang	3.75
	R71-67326-1	Clip - Transformer Mounting	. 01
	R71-17319-1	Clip - Tuning Shaft Retaining	. 02
L6	R50-74626-1	Coil - AM Antenna	. 11
L5	R50-66184-1	Coil - AM Oscillator	1.05
L1	R50-74586-1	Coil - FM Antenna	. 09
L4	R50-74588-1	Coil - FM Oscillator	\$ . 06
L7	R50-74589-1	Coil - FM Oscillator - Cathode Choke	. 11
L2	R50-74626-1	Coil - FM RF - Plate Choke	. 11
L3	R50-74591-1	Coil Assembly - FM RF Grid	. 23
	R37-74577-1	Control - Dual	2.17
R13		Volume \& On-Off	
R15		Tone	
	R19-74593-1	Cord - Line	. 71
	R74-74746-1	Dial - Station - Lucite	. 83
	R74-74555-1	Escutcheon	2.85
	R71-47266-1	Grommet	. 03
	R74-74753-1	Knob - Function	. 17
	R74-74752-1	Knob-ON-OFF \& Volume	. 17
	R74-67965-2	Knob - Outer	. 23
	R30-20963-1	Lamp - Mazda \#47	. 15
	R05-72417-1	Leaflet - Instruction	. 14
	R27-74729-1	Loop - Antenna - AM	2. 17
	R74-74802-1	Nameplate	. 2 C
	R73-67023-1	Plug - 2 Prong - Female	. 26
	R74-74557-1	Pointer - Dial	. 14
	R80-67187-1	Pulley	. 03
R23	R36-67223-1	Resistor - 4.3 Ohm - 1/2 W.	. 06
R9	R35-336801-1	Resistor - 68 Ohm - 1/2 W.	. 15
R4, R16	R35-331011-1	Resistor - 100 Ohm - 1/2 W.	. 15
R1	R35-331211-1	Resistor - 120 Ohm - 1/2 W.	. 15
R2, R7, R19	R35-331811-1	Resistor - 180 Ohm - 1/2 W.	. 15
R6, R10	R35-332721-1	Resistor - 2, 700 Ohm - 1/2 W.	. 15
R21	R35-331531-1	Resistor - 15, 000 Ohm - 1/2 W.	. 15
R3, R20	R35-332231-1	Resistor - 22, 000 Ohm - 1/2 W.	. 15
R11, R14	R35-334731-1	Resistor - 47, 000 Ohm - 1/2 W.	. 15
R12, R18, R24	R35-334741-1	Resistor - 470, 000 Ohm - 1/2 W.	. 15
R5	R35-331051-1	Resistor - 1 Megohm - 1/2 W.	. 15
R8	R35-332251-1	Resistor - 2.2 Megohm - 1/2 W.	. 15
R17	R35-331061-1	Resistor - $10 \mathrm{Megohm} \mathrm{-} 1 / 2 \mathrm{~W}$.	. 15
R22	R35-431811-1	Resistor - 180 Ohm - 1 W.	. 21
	R71-66225-1	Retainer - Line Cord	. 06
	R81-74553-1	Shaft - Tuning	. 40
	R81-67091-1	Shield - Tube - Miniature	. 09
	R73-44897-1	Socket - 1 Prong	. 08

## REPAIR PARTS LIST (cont'd)

SCHEMATIC   LOCATION	PART NUMBER	DESCRIPTION	SELLING   PRICE EA.
	R73-74598-1	Socket - 8 Prong	23
	R72-73227-1	Socket - Tube - 7 Prong - Miniature	. 17
	R72-73227-2	Socket - Tube - 7 Prong - Miniature	. 17
	R72-74694-1	Socket - Pilot Lamp	. 31
	R72-61013-1	Socket - Tube - 8 Prong - Lock-in - Molded	. 20
	R72-41542-1	Socket - Tube - 8 Prong - Octal	. 13
	R12-74757-1	Speaker - 10' EM $(1058,1059)$	8. 77
	R73-64567-1	Plug - 8 Prong	. 14
	R12-74762-1	Speaker - 12" EM (1062, 1063)	8.31
	R73-64567-1	Plug - 8 Prong	. 14
	R77-41699-1	Spring - Drive String Tension	. 06
	R77-66164-1	Spring - Tension - Stop Arm Actuating   $(1062,1063)$	. 23
	R86-66173-1	Stop - Rubber ( 1062,1063$)$	. 01
	R96-41471-1	String - Drive (35')	. 02
	R71-74763-1	Stud - Stop Arm Mounting ( 1062,1063$)$	. 17
	R33-74578-1	Switch - FM, AM, PHO	1. 45
T2	R57-74580-1	Transformer - IF \#1-AM	1. 97
T4	R57-74582-1	Transformer - IF \#2-AM	2.08
T1	R57-74579-1	Transformer - IF \#1-FM	1.57
T3	R57-74581-1	Transformer - IF \#2-FM	1. 57
T5	R57-74583-1	Transformer - Discriminator - FM	1.68
T6	R56-74584-1	Transformer - Output	2.25
T7	R55-74585-1	Transformer - Power	5.00

## SUPPLEMENT NO.I

Chassis 456. 860-1 is the same as chassis 101.860 except that permanent magnet type speakers are used instead of electromagnetic types and the output circuit is revised accordingly.

Except for the Repair Parts listed below and the schematic diagram refer to 101.860 for all Service Information, Repair Parts, and Ordering Instructions.

SCHEMATIC	PART		SELLING	MU
LOCATION	NUMBER		DESCRIPTION	PRICE EACH

MODELS 1058, 1059, 1062,
1063, Ch. 456. 860-1

SCHEMATIC DIAGRAM FOR 456.860-1 RADIO CHASSIS
MODELS 2063, 2064,
Ch. 101. 860-1


PAGE 23-20 SEARS, ROEBUCK


## SPECIFICATIONS

## Power Supply

117 Volts D.C., or 117 Volts, 50-60 Cycles A.C. Frequency Range 532.5 to 1620 kc . Intermediate Frequency 455 kc. Tuning $\qquad$ Two gang capacitor Speaker ... 4 inch PM, 3.2 ohm voice coil impedance Power Consumption 30 Watts Power Output lwatt undistorted, 1.5 watt maximum Sensitivity $200 \mathrm{uv} / \mathrm{m}$ at 50 milliwatts output Selectivity 45 kc . broad at 1000 times signal at 1000 kc .

TUBE COMPLEMENT

12BE6	Mixer and Oscillator
12 BA 6	I.F. Amplifier
12AT6	Detector, A.V.C. and 1st Audio
50 C 5	Audio Output
35W4	Power Rectifier



35W4 Power Rectifier

## ALIGNMENT PROCEDURE

PRELIMINARY:
Output meter connection across 3.2 ohm speaker voice coil
Output meter reading to indicate 50 MW across speaker voice coil $\qquad$ 0.4 volts

Generator modulation
$\qquad$ rol $\qquad$ maximum (fully clockwise)
Position of pointer with rotor full open (plates out of mesh). . . slightly below 160 Kc calibration mark on the cabinet dial (pointer horizontal to right)

	Position of Variable	SIGNAL GENERATOR				Trimmer Adjustments (in order shown) for maximum output
		Frequency	Dummy   Antenna	Connection to Receiver	Ground Connection	
IF	Rofor full open (plates out of mesh)	455 Kc	. 05 Mfd .	Grid of 12BE6 ( $\operatorname{pin}^{\prime} 7$ )	Chassis	Input \& output trimmers on IF cans A3 A4 A5 A6
RF	Rotor full open (plates out of mesh) $\begin{array}{r} 1400 \mathrm{Kc} \\ 600 \mathrm{Kc} \end{array}$	1620 Kc   1400 Ke   600 Kc		*'Test Loop   *Test Loop   *'Test Loop	*'Test Loop   ${ }^{*}$ Test Loop   *Test Loop	Oscillator Trimmer A2   Antenna Trimmer A1 (Check Point) **

*Connect generator lead to Hazeltine Test Loop, Model 1150, placed two feet from the set loop, or three turns of wire about six inches in diameter, placed about one foot from the set loop.
**With a generator signal of 600 Kc , turn the set to the point where maximum output is obtained, which should be approximately 600 Kc on the dial. Adjust antenna section plates of variable for maximum
output.
The alignment procedure should be done in the order given for greatest accuracy. Align for maximum output. Reduce input to keep output near 0.4 volts.
Always keep the. output from the generator at its lowest possible value to prevent the AVC of the receiver from interfering with accurate alignment.



TOP VIEW OF CHASSIS

PAGE 23-22 SEARS, ROEBUCK
MODELS 13, 14,
Ch. 478. 239


## HOW TO ORDER PARTS

## 1- Use Correct Order Form.

2- On the Purchase Order always give the following information:
(1) PART NUMBER (number printed on the part if different from that shown on this list) and DESCRIPTION for each part ordered. When no part is assigned, order by description and rating. Also give PRICE of part (indicate if no selling).
(2) The CHASSIS NUMBER, which is 478.239 . This number is found on a metal plate at the rear of the chassis.

SCHEMATIC LOCATION	PART NO.	DESCRIPTION	$\begin{aligned} & \text { SELLING } \\ & \text { PRICE } \end{aligned}$
RESISTORS   (Carbon, 1/2 Watt $\pm 20 \%$ Unless Otherwise Specified)			
R 17	RC-180-2	18 Ohms 1/2 Watt $10 \%$	. 14
R 14	RC-151-1	150 Ohms 1/2 Watt	. 14
R 3	RC-181-2	180 Ohms 1/2 Watt $10 \%$	. 14
R 18	RC-222-4	2,200 Ohms 1 Watt	. 31
R 1	RC-223-1	22,000 Ohms 1/2 Watt	. 14
R 2	RC-184-1	180,000 Ohms $1 / 2$ Watt	. 14
R 10	RC-224-1	220,000 Ohms 1/2 Watt	. 14
R 13	RC-474-1	470,000 Ohms 1/2 Watt	.14
R 5	RC-225-1	2.2 Megohms 1/2 Watt	. 14
R 9	RC-106-1	10 Megohms 1/2 Watt	. 14
R $8 \mathrm{~A}, 8 \mathrm{~B}$	VC-21	Off-On Switch and Vol. Control   1 Megohm with 100 K stop.	1.65
CONDENSERS			
C 13	CM-151-1	150 mmfd Mica	. 29
C 14	CP-202-1	. 002 mfd Paper	. 29
C 17	CP-502-2	. 005 mfd Paper	. 26
C 18	CP-203-1	. 02 mfd Paper	. 26
C 19	CPM-203-1	.022 mfd Molded Paper	. 40
C 6,7,8	CP-503-1	.05 mfd Paper	. 26
C 20A,20B	CE-15	$2 \times 40 \mathrm{mfd} 150$ Volts Electrolytic	1.62
C 1A,1B	CV-22	Variable Condenser	2.70
C 2,3		Trimmers (part of C 1A, 1B)	
C 4,5		(part of $T$ 2)	
C 11,12		(part of T 3)	
		COILS \& TRANSFORMERS	
T 2,3	LF-29	I. F. Transformers	1.94
T 1	LC-20-D	Oscillator Coil	. 88
L 1	LP-12	Loop Antenna	2.31
CABINET, HARDWARE \& ACCESSORIES			
	CB-122-M	Cabinet, Magohany (Model 13) or	3.35
	CB-122-I	Cabinet, Ivory (Model 14)	3.35
	KN-33-3	Knobs, Mahogany (Model 13)	. 54
	KN-33-2	or Knobs, Ivory (Model 14)	. 54
	KN-32-2	Pointer Knob, Ivory	. 34
	MS-124	Pointer Shaft Mounting Bracket	. 14
	GR-38	Decorative Grille	2.31
	BF-19	Baffle	. 20
	MS-141-D	Dial Ring	1.03
	SG-7	Dial Spring	. 09
	CR-2	Drive Cord	. 09.
	SP-47-22	4" PM Speaker with output transformer, or	4.60
	SP-47-22A	$4^{\prime \prime}$ PM Speaker with output transform	er 4.60
	LD-65	Line Cord	. 77
	IB-36-1-D	Customer Instruction Book	. 15

MODELS 25, 27,
Ch. 478. 238


## SPECIFICATIONS

## Power Output

Undistorted-1.25 watts
Maximum- 2.25 watts
Sensitivity
$\left.\begin{array}{l}\text { AM-250 uv/m average } \\ \mathrm{FM}-50 \mathrm{uv} \\ \text { average }\end{array}\right\}$ for 50 MW output Selectivity

AM-49.5 Kc. broad at 1000 times signal at 455 Kc .
FM- 810 Kc . broad at 1000 times signal at 10.7 Mc.

## TUBE COMPLEMENT

V1 6BJ6 -FM RF Amplifier
V2 12AT7-FM Mixer and Oscillator
V3 6BJ6 -AM-FM IF Amplifier
V4 12BA6-FM IF Amplifier
V5 19 T8-Ratio Detector, AM Detector and


FIG. 2 - BOTTOM VIEW OF CHASSIS

V6 12BE6-AM Mixer and Oscillator
V7 35C5 -Audio Output
Power Suppiy
105-125 V. D.C.
or 105-125 V., 50-60 cycles A.C.
Frequency Range
AM-530 Kc. to 1630 Kc .
FM- 87 Mc. to 109 Mc .
Intermediate Frequency
AM- 455 Kc.
FM-10.7 Mc.
Antenna

## AM-Loop

FM-External hank
Tuning
Clock dial, 4 section ganged variable
Speaker 4 inch Permanent Magnet type Voice Coil impedance 3.2 ohms
Power
35 watts at 117 volt line


## ALIGNMENT PROCEDURE

PRELIMINARY	Output meter connection $\qquad$ Across speaker voice coil Output meter reading to indicate 500 MW (Standard Output) $\qquad$ 1.27 volt   Generator modulation $\qquad$ 30\%-400 cycles					
	AM ALIGNMENT					
$\begin{aligned} & \text { POSItION } \\ & \text { of } \\ & \text { VARIABLE } \end{aligned}$	GENERATOR frequency	DUMMY ANTENNA	GENERATOR CONNECTION HIGH SIDE	GENERATOR CONNECTION GROUND LEAD	ADJUST TRIMMERS IN ORDER SHOWN FOR MAX. OUTPUT	TRIMMER   FUNCTION
Open	455 Kc	. 05 Mfd	Mixer grid	Chassis	(1) (2)(4)	I. F.
1620 Kc	1620 Kc		${ }^{*}$ Test loop	Test loop		Oscillator
1400 Kc	1400 Kc		*Test loop	Test loop	(12)	Antenna
**600 Kc	600 Kc		*Test loop	Test loop	Check point	Antenna

*Connect generator lead to a Standard Hazeltine Test Loop, Model 1150, placed two feet from the set loop, or three turns of wire about six inches in diameter, placed about one foot from the set loop.
**With a generator signal of 600 Kc , tune the set to the point where maximum output is obtained, which should be approximately 600 Kc on the dial. Adjust antenna section plates of variable for maximum output.
The alignment procedure should be repeated in the original order for greatest accuracy. Align for maximum output.
Always keep the output from the signal generator at its lowest possible value to make the $A$. V. C. action of the receiver ineffective,
FM ALIGNMENT
1 - Connect two $\mathbf{1 0 0 , 0 0 0} \mathrm{ohm}( \pm 5 \%)$ resistors in series across $\mathbf{R 2 2}$.
2 - Connect minus lead from voltmeter to pin 2 of the 19T8 (V5); plus lead to chassis.
3 - Set FM generator to 10.7 Mc and connect high side through a .01 Mfd . condenser to pin 1 of the 12BA6 (V4); low side to chassis (Fig. 5).
4-Adjust (5) for maximum voltage.
5 - Place minus lead of voltmeter at the junction of the two $100,000 \mathrm{ohm}$ resistors in series across R22 used in step 1 ; plus lead to high side of Volume Control, R28 (Fig. 6).
6 - Adjust (6) for zero reading. A positive or negative reading will be obtained on either side of the correct setting.
7 - Connect high side of generator to mixer coil (L3), low side of generator to chassis.

8 - Short A.V.C. to chassis at junction of R21 and R9.
9 -Disconnect negative lead of electrolytic condenser C47 (Fig. 7).
10 - Connect vertical input of scope across R22. (Grounded terminal to chassis, ungrounded terminal to high side of R22.)
11 - Adjust (7), (8), (9) and (10) for greatest vertical sweep of pattern. Stagger tune so that pattern is as shown in Fig. 8.
12 - After alignment is completed resolder negative lead of electrolytic condenser C47.


Repeat the above oscillator adjustments until proper coverage is obtained on both ends of band since the two adjustments affect each other.

106 Mc	106 Mc	300 Ohm	FM Ant. Term. ("A")	Fm Ant. Term. ("G")	(14)	RF
90 Mc	90 Mc	300 Ohm	FM Ant. Term. ("A")	Fm Ant. Term. ("G")	Spacing of L3	RF

Repeat "RF and Oscillator adjustments until proper tracking is obtained at both 90 and 106 Mc , since tracking the set at one frequency affects the tracking at the other frequency.
All RF trimmers are adjusted for maximum output, measured with output meter across speaker voice coil.
For RF alignment, use FM generator signal modulated with 400 cycles 45 Mc sweep ( 22.5 Kc deviation).



FIG. 4 - DIAL STRINGING ARRANGEMENT

## HOW TO ORDER PARTS

## 1-Use Correct-Order Form.

2-On the Purchase Order always give the following information:
(1) PART NUMBER (number printed on the part if different from that shown on this list) and DESCRIP. TION for each part ordered. When no part is assigned, order by description and rating. Also give PRICE of part (indicate if no selling).
(2) The CHASSIS NUMBER, which is 478.238. This number is found on a metal plate at the rear of the chassis.

## PARTS LIST

SCHEMATIC LOCATION	PART NO.	DESCRIPTION	SELLING PRICE
RESISTORS   (Carbon, $1 / 2$ Watt $\pm 20 \%$ Unless Otherwise Specified).			
R 36	RC-47A-5	4.7 Ohm 1 Watt $10 \%$	. 31
R 3,10,13	RC-680-2	68 Ohm 1/2 Watt $10 \%$	. 14
R 39	RP-6	85 Ohm 5 Watt 10\% W.W.	. 63
R 37	RW-101-8	100 Ohm 2 Watt $10 \%$ W.W.	. 29
R 33	RC-181-2	180 Ohm 1/2 Watt 10\%	. 14
R 38	RW-471-8	470 Ohms 2 Watts $10 \%$ W.W.	. 29
R 1,4, 7, 8, 9, 14	RC-102-1	1,000 Ohms $1 / 2 \mathrm{Watt}$	. 14
R 5	RC-222-2	2,200 Ohms 1/2 Watt 10\%	. 14
R 6	RC-103-2	10,000 Ohms 1/2 Watt $10 \%$	. 14
R 25	RC-223-1	22,000 Ohms $1 / 2 \mathrm{Watt}$	. 14
R 22.	RC-273-2	27,000 Ohms 1/2 Watt 10\%	.14
R 15	RC-393-2	39,000 Ohms 1/2 Watt 10\%	. 14
R 2,20	RC-104-1	100,000 Ohms 1/2 Watt	. 14
R. 21,31	RC-224-1	220,000 Ohms 1/2 Watt	. 14
R 32	RC-474-1	470,000 Ohms $1 / 2 \mathrm{Watt}$	. 14
R 27	RC-225-1	2,2 Megohms 1/2 Watt	. 14
P. 16	RC-106-1	10 Megohms 1/2 Watt	. 14
R 28	VC-23-D	Volume Control ( 1 Meg )	
		\& On-Off Switch	1.51
CONDENSERS			
C. 12	CSP-1	1 Mmfd Stackpole	. 14
C 36	CC-2.2-7	2.2 Mmfd Ceramic	. 14
C 29	CC-3.3-11.	3.3 Mmfd Stackpole	. 23
C 11	CMS-010-8	10 Mmid Silver Mica 50 V .	. 34
C 15	CMS-033-9	33 Mmfd Silver Mica	. 29
C 1,9	CC-04708	47 Mmfd Ceramic	. 23
C 44	CC-068-7*	68 Mmfd Ceramic	. 23
C 5	CC-101-7	100 Mmfd Ceramic	. 29
C 43	CM-151-1	150 Mmfd Mica	. 29
C 31	CM-231-8	330 Mmfd Mica	. 29
C 2,16	CC-102-SP	. 001 Mfd Ceramic GMV	. 29
C 3A, B, C	CC-3-0	$3 \times .0015 \mathrm{Mfd}$ Herlec	. 57
C 26A,B,6A,B	CC-2-1	$2 \times .002$ Mfd Herlec	. 43
C 43A, B			
C 32,50,51	CP-202-2	. 002 Mfd Paper	. 26
C 20A, ${ }^{\text {B }}$	CC-2.2	$2 \times .004 \mathrm{Mfd}$ Herlec	. 52
C 4,27,41,58	CC-1-	. 005 Mfd Herlec	. 29
C 55	CPM-203-1	.02400 V. Molded Paper	. 40
C 53	CP-203-20	. 020 Mfd 800 V . Paper	. 37
C 25,45.	CF-503.1	. 05 Mfd 400 V. Paper	. 26
C 47	CE-19	4 Mfd 50 V . Electrolytic	2.65



MODEL 2061,
Ch. 101. 861

## SPECIFICATIONS

## ANTENNA EQUIPMENT

This model has a Silvertone built-in antenna system which will provide excellent local reception under normal conditions.
POWER SUPPLY
117 volts AC, 60 cycle unless otherwise specified. Power Consumption 105 watts.

For locations where an outside antenna is necessary, special noise reducing antenna kit, catalog \#6705 is available. Where noise reduction is not required antenna kit, catalog \#6703 may be used.

## INTERMEDIATE FREQUENCIES

AM-IF Carrier
455 KC.

POWER OUTPUT
Undistorted
2. 4 Watts

Maximum
3. 6 Watts

ALIGNMENT PROCEDURE

## AM ALIGNMENT

Output meter connection
Across speaker voice coil
Generator ground lead connection $\qquad$ $30 \% 400$ cycles
Generator modulation $\qquad$ Extreme clockwise
Position of volume control $\qquad$
Extreme counterclockwise
Position of AM-PHO Switch
A Hazeltine loop may be used to radiate a signal into the receiver loop instead of the dummy antenna connections listed below.


Warning: No attempt should be made to adjust the alignment of this receiver without using the following equipment: Signal Generator, Output Meter, Insulated Screw Driver.


FIG. 1-STRING AND POINTER HOOKUP

SEARS, ROEBUCK PAGE 23-29
MODEL 2061,
Ch. 101.861


FIG. 2 - RADIO CHASSIS LAYOUT - TOP VIEW


FIG. 3 - RADIO CHASSIS LAYOUT - BOTTOM VIEW

## HOW TO ORDER PARTS

1. Use Correct Order Form.
2. On the Purchase Order always give the following information:
(1) PART NUMBER (number printed on the part if different from that shown in this list) and DESCRIPTION for each part ordered. When no part number is assigned, order by description and rating. Also give PRICE of part (indicate if no selling).
(2) The CHASSIS NUMBER, which is 101.861. This number is found on a metal plate at the rear of the chassis.

In all correspondence relating to cabinets, always mention the source code letter stamped into the upper rear rail of consoles or on the bottom of table models, and the Catalog Number shown on the sticker on the back, bottom or inside of the cabinet.

REPAIR PARTS LIST

SCHEMATIC   LOCATION	PART NUMBER	DESCRIPTION	$\begin{aligned} & \text { SUGGESTED } \\ & \text { SELLING } \\ & \text { PRICE EACH } \end{aligned}$
	R85-61164-1	Adapter - Record	\$ . 06
	R74-74742-1	Background - Dial	. 46
	R71-66224-1	Bushing - Line Cord	. 06
	R86-74751-1	Bushing - Rubber	. 06
	R71-65538-1	Button - Snap	. 01
$\begin{aligned} & \text { C13, C16, C17, } \\ & \text { C21, C22 } \end{aligned}$	R45-661032-1	Capacitor - . 01 Mfd - $600 \mathrm{~V} .-$	. 26
C10, C18	R45-77212-1	Capacitor - . 1 Mfd. - $600 \mathrm{~V} .-$	. 17
C7, C11, C24	R45-664732-1	Capacitor - . 047 Mfd - $600 \mathrm{~V} .-$	. 34
C14	R45-662222-1	$\text { Capacitor - . } 0022 \text { Mfd. - } 600 \mathrm{~V} .-$	. 26
C12	R45-664722-1	Capacitor - . 0047 Mfd. - 600 V . -	. 29
C3	R43-74592-4	Capacitor - 3.5 Mmfd. - Ceramic	26
C6, C15	$\begin{aligned} & \text { R43-401010-21 } \\ & \text { R41-77561-1 } \end{aligned}$	Capacitor - 100 Mmfd . - Ceramic   Capacitor - Electrolytic	$\begin{array}{r} .17 \\ 2.85 \end{array}$
C19		50 Mfd . - 150 V .	
C23		$50 \mathrm{Mfd} .-150 \mathrm{~V}$.	
C20		60 Mfd . - 150 V .	
$\begin{aligned} & \mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 8, \\ & \mathrm{C} 9 \end{aligned}$	R42-77558-1	Capacitor - Variable - 3 Gang	3.50
	R71-67326-1	Clip - Transformer Mounting	. 01
	R71-17319-1	Clip - Tuning Shaft Retaining	. 02
L2	R50-77563-1	Coil - Oscillator	1.03
L1	R50-77564-1	Coil-R.F.	1. 57
	R37-74577-1	Control - Dual	2.17
R9		Volume \& ON-OFF - 2 Megohm	
R11		Tone - 1 Megohm	
	R19-60993-1	Cord - Line	. 71
	R74-77596-1	Dial - Station - Lucite	1.97

SCHEMATIC
LOCATION

C1

PART NUMBER

R74-74555-2
R71-47266-1
R74-74753-1
R74-74752-1
R74-67965-2
R30-20963-1
R05-72626-1
R27-77566-1

R74-74802-1
R73-67023-1
R74-74557-1
R80-67187-1
R36-62456-17
R35-332201-1
R35-334701-1
R35-332231-1
R35-334731-1
R35-338231-1
R35-331841-1
R35-333941-1
R35-334741-1
R35-332251-1
R35-331061-1
R35-331561-1
R35-436801-1
R35-433911-1
R35-435611-1
R36-77557-1
R71-66225-1
R81-74553-1
R76-67091-1
R73-44897-1
R72-6240ゝ-2
R72-62460-1
R72-74694-2
R72-62407-1
R73-65722-1

## DESCRIPTION

Escutcheon
Grommet
Knob - Function
Knob - ON-OFF \& Volume
Knob - Outer
Lamp - Mazda \#47
Leaflet - Instruction
Loop \& Back Cover
Capacitor - Antenna Trimmer
Name Plate
Plug - 2 Prong Female
Pointer - Dial
Pulley
Resistor - 4.7 Ohm - FS - $1 / 2 \mathrm{~W}$.
Resistor - 22 Ohm - $1 / 2 \mathrm{~W}$.
Resistor - $\quad 47$ Ohm - $1 / 2 \mathrm{~W}$.
Resistor - 22, 000 Ohm - $1 / 2 \mathrm{~W}$.
Resistor - 47, 000 Ohm - $1 / 2 \mathrm{~W}$.
Resistor - 82, 000 Ohm - $1 / 2 \mathrm{~W}$.
Resistor - 180, 000 Ohm - 1/2 W.
Resistor - 390, 000 Ohm - $1 / 2 \mathrm{~W}$.
Resistor - 470, 000 Ohm - $1 / 2 \mathrm{~W}$.
Resistor - 2. 2 Megohm - $1 / 2 \mathrm{~W}$.
Resistor - $10 \mathrm{Megohm}-1 / 2 \mathrm{~W}$.
Resistor - 15 Megohm - $1 / 2 \mathrm{~W}$.
Resistor - 68 Ohm - 1 W .
Resistor - 390 Ohm - 1 W .
Resistor - 560 Ohm - 1 W .
Resistor - $\quad * 34$ Ohm - 8 W .
*Tapped at 17 ohms
Retainer - Line Cord
Shaft - Tuning
Shield - Tube - Miniature
Socket - 1 Prong
Socket - Tube - 7 Prong - Min.
Socket - Tube - 7 Prong - Min.
Socket - Pilot Lamp
Socket - Tube - 8 Prong - Octal
Socket - 3 Prong

WHEN ORDERING SPEAKER PARTS ALWAYS GIVE THE PART NUMBER APPEARING ON THE SPEAKER

R12-74104-7	Speaker - 10" PM
R77-41699-1	Spring - Drive String Tension
R96-41471-1	String - Drive (per foot)
R33-77559-1	Switch - AM-PHO
R57-77562-1	Transformer - IF \#1
R57-77554-1	Transformer - IF \#2
R56-77556-1	Transformer - Output

MODEL 2061,
Ch. 101.861


SEARS, ROEBUCK PAGE 23-33 MODELS 2060, 2061, Ch. 101. 861-1


John F. Rider

MODELS 3061,
3062, Ch. 101. 861-1
3061, 3062 SUPPLEMENT 2
Except for the change in the Repair Parts listed below refer to Ch. 101.861 for all Service Information, Repair Parts and Ordering Instructions.


SEARS, ROEBUCK PAGE 23-35
MODELS 3004, 3005, 3006, Ch. 757. 130

## SPECIFICATIONS



## TECHNICAL INFORMATION FOR SERVICE MEN

Tuning Range 535 Kc to 1640 Kc . Intermediate frequency- 455 Kc . IF and RF measurements made at 0.5 watt outputapproximately 1.27 volts on a rectifier type voltmeter connected across the voice coil.
Approximate inputs for .5 watt output: IF 50 uv , RF with standard loop: at $600 \mathrm{Kc}, 500 \mathrm{uv} / \mathrm{m}$; at $1000 \mathrm{Kc}, 350 \mathrm{uv} / \mathrm{m}$; at $1400 \mathrm{Kc}, 250 \mathrm{uv} / \mathrm{m}$.

ALIGNMENT DATA

Posifion of Variable	Generafor Frequency	Dummy Ant.	Generator Connection (high)	Generator Connection (low)	Adjusf Trimmers (in order shown)	Trimmer Function
Open	455 Kc	. 05 mfd	Mixed Grid	Float Gnd.	A4, A3, A2, A1	I.F.
Open (Fully)	1640 Kc	50 mmf	*	Float Gnd.	A6	Osc.
1400 Kc	1400 Kc	50 mmf	*	Float Gnd.	A5	Ant.
1000 Kc	1000 Kc	50 mmf	*	Float Gnd.	Check Point	
600 Kc	600 Kc	50 mmf	*	Float Gnd.	Check Point	

*A loop fashioned of several turns of wire radiating the signal into receiver's antenna or through the external antenna connection.



## HOW TO ORDER PARTS

1. Use Correct Order Form.
2. On the Purchase Order always give the following information:
(1) PART NUMBER (number printed on the part if different from that shown in this list) and DESCRIPTION for each part ordered. When no part number is assigned, order by description and rating. Also give PRICE of part (indicate if no selling).
(2) THE CHASSIS NUMBER, which is 757.130 . This number is found on a metal plate at the rear of the chassis.


Schematic Location	Part No.	Description	List Price
L1	E5921	Leaflet, Instruction	\$ . 17
	E603	Loop, Antenna and Rear Cover Assembly	1.57
	E454	Pointer, Dial	. 57
R1		Resistor, 22 K Ohms, 1/2W	. 17
R2		Resistor, 180 Ohms, 1/2W	. 17
R3	E254	Resistor, 5 Meg. Ohms, Volume Control with Switch	1.43
R4		3.3 Meg. Ohms, $1 / 2 \mathrm{~W}$	. 17
R5	E3015	Resistor, 6.8 Meg. Ohms	1.01
R6, R7	(PC-150)	Resistor, 470K Ohms	1.01
R8		Resistor, 120 Ohms, 1/2W	. 17
R9		Resistor, 1500 Ohms 1W	. 33
R10		Resistor, 22 Ohms, 1/2W	. 17
	E432	Shaft, Drive Assembly	. 71
	E452	Spring, Dial	.17
T3	E105	Speaker Assembly, Includes $51 / 4^{\prime \prime}$ PM SPK., \& $1 / 2 \times 1 / 2$ Output Transformer	5.20
T1, T2	E622	Transformers, I.F.	1.85
'	E716	Window, Styrene	1.85

## SPECIFICATIONS

Power Supply
105-120 volts 60 cycle AC, 65 watts
Frequency Range
Broadcast - 1600 - 540 Kc .

Power Output
Undistorted . 8 watts
Maximum 1.5 watts
Speaker Voice Coil Impedance 3.2 ohms
Speaker Voice Coil
changer 488.219-4.
TECHNICAL INFORMATION FOR SERVICEMEN

Tuning range 540 Kc . to 1600 Kc . Intermediate frequency---455 Kc. I-F and r-f measurements made at . 5 watt output---approximately 1.26 volts on a rectifier type voltmeter connected across the voice coil.
Approximate inputs for . 5 watt output: I-F with standard loop: at $600 \mathrm{Kc} 500 \mathrm{uv} / \mathrm{m}$; at 1000 Kc . $400 \mathrm{uv} / \mathrm{m}$; at $1400 \mathrm{Kc} .400 \mathrm{uv} / \mathrm{m}$. R-F external antenna connection: at 600 Kc 250 uv ; at 1000 Kc. 200 uv; at 1400 Kc .200 uv.

ALIGNMENT PROCEDURE


## HOW TO ORDER PARTS

1. Use Correct Order Form.
2. On the Purchase Order, always give the following information:
(1) PART NUMBER (number printed on the part if different from that shown in this list) and DESCRIPTION for each part ordered. When no part number is assigned, order by description and rating. Also give PRICE of part (indicated if no selling).
(2) THE CHASSIS NUMBER, which is 132.053 for Radio Chassis and 488.219-4 for the three speed changer.

In all correspondence relating to cabinet, always mention the source code letter stamped into the upper rear rail of consoles or the bottom of table models, and the CATALOG NUMBER shown on the sticker on the back, bottom or inside of cabinet.

			PARTS LIST	
*	SCHEMATIC LOCATION	PART   NO.	DESCRIPTION	LIST
			CAPACITORS	
	C1A, B, C	N40761	Variable, 3-Gang	3.90
	C2, C5		. 05 uf, 400V. P.T.	. 23
	C3, C10		. 05 uf, 200V. P. T.	. 23
	C4		50 uuf, 500V. Mica.	. 23
	C6, C8		220 unf, 350V. Ceramic	. 23
	C7, C9, C11		. 01 uf, 400 V . P. T.	. 23
	C12A, B	N24249	Electrolytic, 80-50 uf, 150V.	2.22
	C13		. $001 \mathrm{uf}, 200 \mathrm{~V}$. P.T.	. 23
RESISTORS				
	R1, R9		330K ohms, 1/2W.	. 15
	R2		2200 ohms, l/2W.	. 15
	R3		22 K ohms, $1 / 2 \mathrm{~W}$.	. 15
	R4		6.8 megohms, $1 / 2 \mathrm{~W}$.	. 15
	R5		1 megohm, $1 / 2 \mathrm{~W}$.	. 15
	R6		15 ohms, $1 / 2 \mathrm{~W}$.	. 15
	R7, SW-1	N40801	500 K ohms, Volume Control with Switch	1.25
	R8		3.3 megohm, $1 / 2 \mathrm{~W}$.	. 15
	R10		470 K ohms, $1 / 2 \mathrm{~W}$.	. 15
	R11, R13		150 ohms, $1 / 2 \mathrm{~W}$.	. 15
	R12		1000 ohms, 2 W .	. 20
	R14		33 K ohms, 1/2W.	. 15
	R15		68 ohms, 1/2W.	. 15
CHOKES, COILS \& TRANSFORMERS				
	L2	N25706-1	Coil, R.F.	. 70
	L3	N23751-1	Coil, Oscillator	. 66
	T1	N25728-1	Transformer, 1st I.F.	1.77
	T2	N25729-1	Transformer, 2nd I.F.	1.91
	T3	N23931-1	Transforme r , Output	2.50

PAGE 23-40 SEARS, ROEBUCK
MODELS 3052,
3053, Ch. 132. 053


 N19351
N40821

N408
고 N25663
N19551


- コ

○in o oning mo
な~~~•


N19132
N20138-15
N23484
N40775-1
N40811
N40803
N40799-1
N40799-2

$a_{1}$

## SPECIFICATIONS

Power Supply:
Power Output:Undistorted
$\qquad$1.0 Watt
Maximum 2.2 Watt
117 Volts, DC or 56-60 Cycles AC, 40 Watts
Frequency Range:Broadcast535-1605 KC

## ALIGNMENT PROCEDURE


Generator ground lead connected
To B- through 0.1 mfd capacitor
Generator modulation $.30 \%$, 400 cycles
Position of volume control .Fully on
Position of pointer with tuner fully closed. .Pointer should be horizontal, pointing to left (9 o'clock).

$\begin{gathered} \text { Position } \\ \text { Of } \\ \text { Tuner } \end{gathered}$	Generator Frequincy	Dummy Antenna	Generator Connection	Trimmer Adjustment	Trimmer Function
Open	455 KC	0.1 mfd .	$\begin{aligned} & \text { pin } 7 \\ & 6 \mathrm{BE} 6 \end{aligned}$	$\begin{aligned} & \text { T2 (top \& } \\ & \text { bottom) } \end{aligned}$	2nd I.F.
Open	455 KC	0.1 mfd .	$\begin{aligned} & \text { pin } 7 \\ & 6 \mathrm{BE} 6 \end{aligned}$	T1 (top \& bottom)	1st I.F.
Open	1610 KC	0.1 mfd .	$\operatorname{pin}_{6 B E 6}^{7}$	$\underset{\text { (trimmer) }}{\mathrm{C1C}}$	Oscillator
1400 KC	1400 KC	Hazeltine test loop		$\underset{\text { (trimmer) }}{\mathrm{C1B}}$	R.F.
1400 KC	1400 KC	Hazeltine test loop		$\underset{\text { (trimmer) }}{\mathrm{C} 1 \mathrm{~A}}$	Antenna

## ALIGNMENT NOTES:

1. It is recommended that this set be connected to an isolation transformer when aligning on AC.
2. The alignment must be done in the order given above.
3. While making the above adjustments, keep the volume control set for maximum output and the signal generator output attenuated to avoid AVC action.



PAGE 23-44 SEARS, ROEBUCK
MODEL 1017,
Ch. 528.210

1. Use Purchase Order always give the following information:
(1) PART NUMBER (number printed on the part if different from that shown in this list) and DESCRIPTION for each part ordered. When no part number is assigned, order by description and rating. Also give PRICE of part (indicate if no selling). assis.

Schematic   Location	Part   Number	DESCRIPTION


	T83-713 T44-20 T72-56 T42-509	Back, cabinet Baff!e, wood Bushing, pulley Cabinet
$\left.\begin{array}{l}\text { ClA, } \mathrm{ClB}_{3} \\ \mathrm{ClC}\end{array}\right\}$	719-215	Capacitor, variable ( 3 gang).
C2, C3, $\mathrm{C4}$	T16-197	Capacitor, 05 mfd . 200 v .
C5	T15-229	Capacitor, 47 mfd. mica
$\left.\begin{array}{l}\text { C6, C8, } \\ \text { C9, } \\ \text { c11 }\end{array}\right\}$	T17-104	Capacitor, ceramic
c7	T16-150	Capacitor, 02 mfd .400 v .
C10, $\mathrm{Cl2}$	116-190	Capacitor, $\mathbf{. 0 0 5 ~ m f d . ~} 600$
C13, C14	T18-304	Capacitor, electrolytic; $50-30 \mathrm{mfd} .150 \mathrm{v}$. .
C15, C16	$\begin{aligned} & \text { T16-189 } \\ & \text { T11-187 } \end{aligned}$	Capacitor, .05 mfd 400 Clamp, power cord. .
	T83-421	Clip, IF transformer mounting
12	T10-535	Coil, R.F.
13	T10-573	Coil, oscillator
R9	726-129	Control, TONE (500K)
R10	T24-199	Control, VOLUME (1 meg.)
	T23-151	Cord, power line.
	T51-109	Cord, dial drive, approx. 18 in.
	T37-136	Cover, insulator (pilot lamp).
	$\begin{aligned} & \text { T67-565 } \\ & \text { T98-23 } \end{aligned}$	Dial scale, plate.
	T98-24	Grille cloth, baffle
	T47-108	Grommet (gang mounting
	T52-347	Knob, VOLUME
	T52-348	Knob, TONE
	T52-349	Knob, TUNING
	T52-350	Knob, OFF-RADIO-PHONO
	T88-321	Label, schematic, parts list, etc.
	T89-9	Lamp, pilot, 120 v. 6 w.. . . . .
11	T58-88	Loop, antenna Pointer, lucite
	T39-290	Pulley, pointer driv
	T83-561	Rectifier, selenium ( 75 ma .)
R1	T60-759	Resistor, 4700 ohm, $1 / 2 \mathrm{w} .10 \%$
R2	T60-753	Resistor, 220 ohm, $1 / 2 \mathrm{w} .10 \%$.

SEARS; ROEBUCK PAGE 23-45
MODELS 1017, 1018,
Ch. 528. 210-1, -2

## SUPPLEMENT No. 1

Chassis $528.210-1$ is the same as 528.210 except that an antenna coupling has been added to the loop.
The repair parts list for chassis $528.210-1$ is the same as 528.210 except for the following changes:


Chassis 528.210-2 is the same as 528.210-1 except as follows:
The primary of L 3 has been rewired so that Terminal No. 2 is now connected to Terminal No. 5 of the 12BA6 RF tube socket. R1 is connected between Terminal No. 1 of the RF coil and Terminal No. 6 of the 12BA6 socket.

The repair parts list for chassis $528.210-2$ is the same as $528.210-1$ except for the following change:

Part No. T60-759 (located on the schematic diagram at R1) Resistor, 4700 ohm, $1 / 2 \mathrm{w} ., 10 \%$ has been removed.
Part No. T60-786 (also located at R1 on the schematic diagram) Resistor, 6800 ohm, $1 / 2 \mathrm{w}$., $10 \%$ has been added.


Fig. 1. Bottom View of Chassis 528.210-1 and Chassis 528.210-2
Complete cabinet lists for No. 1017 and 1018 follow.


MODELS 1017, 1018,
Ch. 528. 210-1
12BA6


SEARS, ROEBUCK PAGE 23-47
MODELS 1017, 1018,
Ch. 528.210-2


MODELS 3001, 3002, Ch. 132. 054

Power Supply
105-125 Volts, AC-DC, 30 Watts
Frequency Range
Broadcast 540-1600 Kc.

## Specifications

Power Output
Undistorted 0.8 Watts
Maximum 1.5 Watts
Speaker Voice Coil Impedance 3.2 ohms

## TECHNICAL INFORMATION FOR SERVICE MEN.

Tuning range 540-1600 Kc. Intermediate frequency -455 Kc. Measurements at 500 milliwatts output - approximately 1.26 volt on a rectifier type voltmeter connected across the voice coil. Dummy load for I-F. . 05 ufd capacitor in series with generator lead. For R-F, 50 uufd capacitor in series with generator lead. Connect generator ground to receiver floating ground.

## ALIGNMENT DATA

Position of   Variable	Frequency of   Generator	Dummy   Antenna	Generator   Output Lead	Adjust Trimmer   For Maximum	Trimmer   Function
Open	455 Kc.	.05 uf	Pin 7 of   12BE6	A1, A2	I. F.
Open	$1720 \mathrm{Kc}$.	50 uuf	Ant. Coil*	A3	Oscillator
$1400 \mathrm{Kc.**}$	$1400 \mathrm{Kc}$.	50 uuf	Ant. Coil*	A4	Antenna
$600 \mathrm{Kc}$.	$600 \mathrm{Kc}$.	50 uuf	Ant. Coil*	Antenna Section   Plate	Check   Point

NOTES: * Disconnect hank during alignment. ** "A Rocking In" type of tuning is necessary while adjusting A3. (See RL 562).
Approximate inputs for 500 MW output: I-F, 300 uv . R-F at $1400 \mathrm{Kc} ., 780$ uv, at $1000 \mathrm{Kc},. 960 \mathrm{uv}$, at $600 \mathrm{Kc.}$,1380 uv .
CAUTION: Remove the electric or power cord from the wall of floor outlet before replacing tubes, removing, adjusting, or cleaning the chassis, or while connecting an antenna.


TUBE LAYOUT



MODELS 3001,
3002, Ch. 132. 054

## HOW TO ORDER PARTS

1. Use Correct Order Form.
2. On the Purchase Order, always give the following information.
(1) PART NUMBER (number printed on the part if different from that shown in this list) and DESCRIPTION for each part ordered. When no part number is assigned, order by description and rating. Also give PRICE of part (indicate if no selling).
(2) THE CHASSIS NUMBER, which is 132.054 . This number is found on a metal plate at the rear of the chassis.

PARTS LIST

Schematic Location	$\begin{aligned} & \text { Part } \\ & \text { No. } \\ & \hline \end{aligned}$	Description	List
		Capacitors	
C1A, B	N41089	Capacitor, Variable	2.85
C2, C3, C5		Capacitor, Disc. . 02 uf	. 23
C4		Capacitor, Disc. . 002 uf	23
C6		Capacitor, Disc. . 01 uf	23
C7	N41102	Capacitor, Electrolytic 40-20 uf $150 \mathrm{~V}, 20 \mathrm{uf}, 25 \mathrm{~V}$.	2. 30

## Resistors

R1
R2
R3
R5
R6
R7
R8
Resistor, 330 K ohm, $1 / 2 \mathrm{~W}, 20 \%$
.15
Resistor, 22000 ohm, 1/2W, 20\% . 15
Resistor, 2.2 meg., 1/2W, 20\% . 15
Resistor, 47 ohm, 1W, $10 \%$. 15
Resistor, 10 meg, $1 / 2 \mathrm{~W}, 20 \%$. 15
Resistor, 120 ohm, $1 / 2 \mathrm{~W} .10 \%$. 15
Resistor, 2200 ohm, 1W, $10 \%$. 15
Chokes, Coils \& Transformers
L1 N22864-1 Coil, Antenna Assy. 1.00
L2 N41106-1 Coil, Oscillator Assy. . 50

Tl N41168-2 Coil, I. F.Assy. 1.55
T2 N41119-1 Transformer, Output Assy. 1.30

PC-1 N25264 Printed Circuit('Centralab PC 70) . 57
N41223-1 Grill Backing Assy. . 85
N41110 Leaflet, Instruction . 20
N22875 Speaker 4' P.M. 3.08
N25781-1 Silvertone Name Plate $\quad .43$
N41022 Volume Control l meg. 1.15
N41519-1 Cabinet (Brown) $\quad 2.85$
N41519-2 Cabinet (Ivory) $\quad 3.25$
N41087-1 Knob, Volume (Ivory 3001) . 15
N41087-2 Knob, Volume (Red 3002) . 15
N41095-1 Knob, Dial (Ivory 3001) . 43
N41095-2 Knob. Dial (Red 3002) . 43

## POWER SUPPLY

## THIS RADIO CAN BE OPERATED ON EITHER:

110 to 120 VOLTS DIRECT CURRENT
110 to 120 VOLTS, 50 to 60 CYCLE, ALTERNATING CURRENT OR
BATTERIES-WITH ONE $41 / 2$ VOLT "A" and ONE 90 VOLT "B"

## LOOP AERIAL

This radio has a built-in rod antenna. Rod antennas are directional, therefore the volume of a weak station may be improved, or electrical noise may be reduced, by lifting and turning the radio to a different position may be reduced, by lifting and turning the radio to a different position

## INSTALLATION OF REQUIRED BATTERIES

Diagram shows proper location and connections of the following required types of batteries:

One $41 / 2$ Volt "A" Battery, such as Eveready 746A, or Ray-O-Vac P83A or Eveready No. 736A, or equivalent.
One 90 Volt "B" Battery, such as Eveready Type No. 490B or equivalent. TO INSTAIT BATTERIES, GENTLY OPEN CABINET BACK AND CONNECT AND PLACE BATTERIES IN EXACT POSITION SHOWN ON THE DIAGRAM, THEN CLOSE BACK. BE CAREFUL NOT TO INJURE ANY OF THE EXPOSED. RADIO PARTS.

## BATTERY OPERATION

(A) Open cabinet back.
(B) Insert plug on end of radio line cord into the AC-DC receptacle as shown on the above diagram.
(C) Be sure to fold excess line cord and place on top and to the right of the receptacle before closing back.

## ELECTRIC OPERATION

To operate the receiver on 110 to 120 Volt Direct Current, or 110 to 120 Volt, 50 to 60 cycle Alternating Current:
(A) Open cabinet back and take line cord out.
(B) Place the cord in notch in cabinet, CLOSE BACK, and insert plug into 110 to 120 Volt AC or DC electric power outlet.

## SPECIAL INSTRUCTIONS FOR "DIRECT CURRENT" OPERATION

If the current supply is DIRECT CURRENT, and the radio does not play after it has been turned on for approximately one minute, simply reverse radio power cord plug in electric power receptacle.


PAGE 23-2 SENTINEL
MODELS 345P,
1U-345P
ALIGNMENT PROCEDURE
Be sure to follow procedure carefully and in the order given-otherwise the receiver will be insensitive and the dial calibration incorrect. For alignment procedure, read tabulations from left to right. Make the adjustment marked (1) first, (2) next, (3) third.
IF RADIO HAS METAL PLATE ON BOTTOM OF CHASSIS BE SURE TO HAVE PLATE MOUNTED ON CHASSIS WHEN ALIGNING ent:
(A) Use an accurately calibrated test oscillator with some type of output measuring device.
(B) WHEN ADJUSTING THE 1660 KC OSCILLATOR TRIMMER connect the high side of the test oscillator to the connection on the antenna rod closest to the tuning condenser. Connect the low side of the test oscillator to common negative.
(C) THE 1400 KC ANTENNA TRIMMER should be adjusted only after all other adjustments have been made. When aligning the 1400 KC Antenna Trimmer, couple test oscillator to receiver by: (1) make loop consisting of five to ten turns of No. 20 to No. 30 size wire, wound NEITHER LOOP NOR ANTENNA MOVES WHILE ALIGNING.
IMPORTANT: WHEN ADJUSTING THE I.F. TRIMMERS USE A THIN NON-METALLIC SCREWDRIVER.

		TEST OSCILLATOR			Refer to parts layout diagram for location of trimmers mentioned below:
Steps	Set receiver dial to:	Adjust test oscillator frequency to	Use dummy antenna in series with output of test oscillator consisting of:	Attach output of test oscillator to	
1	Any point where no interfering signal is received	Exactly $455 \mathrm{~K} . \mathrm{C}$	0.2 Mfd .   Condenser	High side to connection on antema rod closest to the tuming condenser. Low side to common negative through a .02 MFD blocking condenser.	Adjust each of the 2nd I.F. transformer trimmer adjustment screws for maximum output, then adjust each of the 1st I.F. transformer trimmer adjustment screws for maximum output.
2	Rotate gang condenser to minimum capacity	Exactly   1660 K. C.	$\begin{gathered} \text { See } \\ \text { paragraph (B) } \\ \text { above } \end{gathered}$	$\underset{\substack{\text { paragraph (B) } \\ \text { above }}}{\text { pee }}$	Adjust $1660 \mathrm{~K} . \mathrm{C}$. oscillator trimmer for maximum output.
3	$\begin{aligned} & \text { Approximately } \\ & 1400 \mathrm{~K} . \mathrm{C} . \end{aligned}$	Approx.   1400 K. C.	$\begin{gathered} \text { See } \\ \text { paragraph (C) } \\ \text { above } \end{gathered}$	$\underset{\substack{\text { paragraph (C) } \\ \text { above }}}{\text { See }}$	Adjust $1400 \mathrm{~K} . \mathrm{C}$. antenna trimmer for maximum output.

SENTINEL PAGE 23-3


improved, or undesired electrical noise may be reduced, by lifting and turning the radio to a different position. A trial will reveal
position of best reception with least interference.
.
FUNCTION OF CONTROLS ON RADIO
THE LEFT HAND KNOB controls the volume control and off-and-on switch.

THE RIGHT HAND KNOB is the station selector.
OPERATING INSTRUCTIONS
PLACE VOLUME CONTROL KNOB IN one-half to maximum volume position.

TURN TUNING CONTROL KNOB until the desired station is k station may be heard with greatest volume and clearest tone.

ALIGNMENT PROCEDURE
Loop aerials are directional-the volume of a weak station may be

## LOOP AERIAL

His radio is mesic ci ct in


## 110-120 Wow n direct curler (DC)

## SPECIAL INSTRUCTIONS FOR <br> S

 "DIRECT CURRENT" OPERATION: not play after it has been turned on for approximately one minute, simply reverse radio power cord plug in electric power receptacle. THE LOOP AERIAL SUPPLIED with the radio should provide ample reception in average locations.

ALIGNMENT PROCEDURE
For alignment procedure read tabulations from left to right, and make the adjustment marked (1) first, (2) next, (3) third. Before starting alignment:
(A) Check tuning dial adjustment by tuning gang condenser until plates touch maximum capacity stop (completely in mesh) at which point exactly to last line move to correct position.
se an accurately calibrated test oschator with some type of output measuring device. bring disconnect the lon connection wires Use an accurately calibrated test oscillator with some type of output measuring device.
WHEN ADJUSTING THE 1650 KC OSCILLATOR TRIMMER, remove chassis from from the loop. Attach a 1 megohm resistor across these connections and feed output of test oscillator across the 1 megohm resistor. THE 1400 KC LOOP ANTENNA TRIMMER should be adjusted only after all other adjustments have been made PLACE LOOP AN-

TUNA IN THE SAME POSITION IT WILL BE IN WHEN THE SET IS IN THE CABINET - APPROXIMATELY 58 S
When aligning the 1400 KC Antenna Trimmer, couple test oscillator to receiver loop by: (1) make loop consisting of five to ten turns of near radio loop. BE SURE THAT NEITHER LOOP MOVES WHILE ALIGNING.
(B)

## VOLTAGE RATING

THIS RADIO IS DESIGNED FOR USE ON EITHER:

OR
$110-120$ (DC)

(B) Unscrew the two screws holding the chassis to the rear of the
(C) Remove pointer by gently pulling it away from cabinet.
(D) Pull knobs off of control shafts. (E) accessible when knob is removed.
(F) Slide Chassis out of cabinet.

TO REINSTALL, reverse the above procedure. DO NOT tighten nut too much-otherwise, cabinet may crack.
connect these leads. The green-white wire must be attached to the
terminal which has the word "GREEN" printed close to it. Before remounting the back on the cabinet, be sure to properly re-
connect these leads. The green-white wire must be attached to the TO REMOVE CHASSIS FROM CABINET:
(A) Remove cabinet back.

TO SERVICE TUBES, it is necessary to remove the cabinet back, and detach the two leads from the loop.

PARTS LIST
Description $\quad$ List Price
 $\begin{array}{llll}\text { Carbon, 3.3 Megohm, I/3 W................... } & .08 \\ \text { Carbon, 3.3 Megohm, I/3 W........ }\end{array}$ 31/2" P.M. ................................................... 4.31 Output ......................................................... 1.15 Ceramic, .00025 Mfd .500 V . (used in 29
 Tubular, 2 Mfd. 400 V . (used in


## Part Name Resistor

 Resistor Resistor.Resistor Resistor
Speaker ISIBLZ 춨 NNN N N
 28 E 27
23 E 2027 ransformer Condenser Resistor Condenser 27E105



IMP.ORTANT: When ordering complete cabinet or cabinet parts, be sure to mention required color in addition to part number.
amen rued on fled -snIII
ypeq tou!qes pue doo7
uo!?d!asan
Ist I. F. Transformer...
2nd I. F. Transformer.

$\begin{array}{ll}\ldots . . . & 1.75 \\ \ldots . . & 1.08\end{array}$
3.05
1.09

Tubular, . $01 \mathrm{Mfd} .400 \mathrm{~V} . .$.
Tubular, . $01 \mathrm{Mfd} 200 V.$. ..
Tubular, $.05 \mathrm{Mfd} .200 \mathrm{~V} .$.
Tubular, .05 Mfd .400 V .
IMP.ORTANT: When ordering complete cabinet
.35

## miscellaneous parts

 $81^{\circ}$ Description
Listastic, used to mount and insulate Pointer Jetulod $66 \exists \varepsilon \varepsilon$ dof 6u!cds uo!sue」 Tension Spring for Dial Cord. For Ivory and Red Cabinet.

Baffle Assembly with Grille Cloth..
Hex Head, used to hold Chassis to
PRICES SUBJECT TO CHANGE WITHOUT NOTICE
Description
$\begin{array}{cc}\text { Part No. } & \text { Part Name } \\ .33 \text { E99 } & \text { Pointer }\end{array}$
13E103-8 Pointer Tension
Clip
37E75 Knob
7E303 Baffle
19E34 Nut
 Cabinet

Part No.	Part Name
-33 E 99	Pointer Insulator




Part Name

Cabinet
Line Cord
Dial Shaft



ZS-1-9 ә^!!

## MODELS 343,

1U-343


NOTE 2: Items with illustration numbers (21), (22) and (23) used in IU343 only. Loop and gang connected directly to pin \#7 on 12BE6 in Model 343.


## SPECIFICATIONS :

- Cabinet colors: Ivory and Walnut
- Short wave: 6-20 Megacycles
- Standard Broadcast: 535-1650 Kilocycles
- 115 Volt AC DC
- Full 5" P.M. Dynamic Speaker
- Improved filtering for hum-free reception (Equipped with sealed "long life" filter condenser)
- Automatic volume control
- Large built-in loop antenna
- External Antenna connections
- Tubes: 1-12BE6, 1-12BA6,

1-12AV6, 1-50C5

- 1-35W4 Rectifier

IF ALIGNMENT- 456 KC (Connect to antenna connector on loop).
Align S.W. antenna coil at 17 MC . Bend gang capacitor plates for tracking at 7 MC .
Align B. C. loop antenna at 1400 KC .
Adjust oscillator padder at 600 KC .
Dial pointer alignment-538 KC. with fully closed capacitor.


Top view of chassis and tube location


# INSTALLATION AND OPERATION INSTRUCTION <br> for <br> SUPERHETERODYNE RADIO RECEIVER 

$\begin{array}{ll}\text { Model No. } 389 & \text { Mahogany } \\ \text { Model No. } 390 & \text { White }\end{array}$

CONNECTING THE SET
POWER SUPPLY This receiver is designed to operate on any alternating current supply (AC) ranging from 110 to 120 volts, 50 to 60 cycles; or on any direct current supply (DC) ranging from 110 to 120 volts.

SPECIAL INSTRUCTIONS FOR DC OPERATION When operating from a DC (direct current) power supply it may be necessary to reverse the power cord plug in the wall socket before the receiver will function, due to the polarity condition of a direct current supply. If the receiver fails to perform after being turned on one minute, simply reverse the power plug.

GROUND No ground connection should be used when operating this receiver. The receiver gets its ground connection through the power line and any external connection to the chassis may cause a short circuit and consequent damage.

CAUTION: Do not place receiver on hot objects such as stoves, radiators, etc. Heat will damage the internal components of the receiver.

## CONTROLS AND OPERATION

LEFT HAND KNOB (Manual Volume Control and "On-Off" Switch). Turn this knob to the extreme right. Wait about a minute for tubes to become heated. When signal comes in adjust volume as desired.

RIGHT HAND KNOB (Station Selector). Move the knob over a narrow range of the dial at a point where the desired station is located until the station is received with maximum volume; then readjust the volume control to the proper level. Never use the station selector to adjust the volume as this practice results in distorted tone quality and deficient bass response. The Volume Control only is to be used for this purpose. For maximum clarity the indicator should be adjusted to the center of the area covered by the station being tuned.

## TUNING RANGE

This receiver is designed to operate over the standard broadcast band which extends from 535 to 1620 Kilocycles (KC).

## AERIAL SYSTEM

This receiver has a built-in "loop" aerial. Its excellent design is such as to increase pick-up from stations having wide variations in signal strength. The efficiency and selectivity of the loop provide outstanding reception without the use of an external aerial. The "loop" aerial used on this receiver is somewhat directional so reception from weak stations can be improved by turning the set in the proper direction.

PAGE 23-2 SONORA

MODELS 389, 39		ALIGNMENT				
Step No.	Position of Gang	Signal Generator Frequency	Generator Connection	Dummy Antenna	Adjustment	
1	Open	$\begin{aligned} & 455 \mathrm{KC} . \\ & 455 \mathrm{KC} . \end{aligned}$	Rear   Gang   Terminal	. 1 Mfd.	I.F.Slugs	Adjust for Maximum Output
2	Open	1620 KC.		2 Turns of Hookup	Front Gang Trimmer	Adjust for Maximum Output
3	1400 KC.	1400 KC.		Wire $6^{*}$ in Dia.(Place Approx. a	Rear Gang Trimmer	Adjust for Maximum Output
4	600 KC.	600 KC.	Antenna	Foot from \& parallel to loop.)		Check Gang   Alignment


LLUS. NO. PART NO. PART NAME

Cl,C3	N-8745	Condenser	Gang Tuning with Pulley
C2,C4	-.	Trimmers	Gang
C5,C9	N-1345	Condenser.	Paper . 05 MFD. 200 Volts
C6	N-6015	Condenser	Ceramic 100 MMFD. 500 V. 20\%
C7	PART OF		
	$\mathrm{N}-8150$	Condenser	10 MMFD .500 Volt $10 \%$
C8	$\mathrm{N}-4894$	Condenser	Paper 005 MFD. 600 Volts
${ }^{*} \mathrm{C} 10$	$\mathrm{N}-6488$	Condenser	Ceramic 259 MMFD. 500 V. 20\%
${ }^{*} \mathrm{Cl1}$	N-1344	Condenser	Paper 01 MFD. 400 Volts
$\mathrm{Cl2}$	$\mathrm{N}-1344$	Condenser	Paper . 01 MFD. 400 Volts
Cl3	N -1346	Condenser	Paper . 05 MFD. 400 Volts
C14)   C15)	$\mathrm{N}-7889$	Condenser	Electrolytic ( 50 MFD. 150 V.) $(30$ MFD. 150 V.)

John F. Rider


F'idif(i) MODEL 1210 mAhOGANY MODEL 1211 BIONDE

AM.FM RADIO.PHONOGRAPH COMBINATION


I lialfoll table radio
MODEL 241 MAHOGANY
MODEL 242 BIONDE
8 TUBE, AM FM

## BRIEF DESCRIPTION

MODEL 1210 in Mahogany and 1211 in Blond are Radio-Phonograph combinations incorporating the 8 W10 radio chassis and an automatic record changer.

RADIO CHASSIS 8W10: is an eight-tube A.M.-F.M. Super-Heterodyne receiver. This compact receiver contains a built-in line cord antenna for local F.M. reception and full range tone control. AUTOMATIC RECORD CHANGER: The record changer in these models is a VM-950 Tri-o-matic three-speed changer.

PAGE 23-2 SPARTON
MODELS 241, 242,
1210, 1211, Ch. 8W10

## CHASSIS DIAGRAM



TOP VIEW


## ALIGNMENT DATA

$\begin{aligned} & \text { OPER- } \\ & \text { ATION } \end{aligned}$	$\begin{aligned} & \text { ALIGNMENT } \\ & { }_{O F} \end{aligned}$	GENERATOR CONNECTED TO	DUMNY ANT.	GENERATOR FREQUENGY	$\begin{aligned} & \text { BAND } \\ & \text { SWITCH } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { TUNING } \\ & \text { COND } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { TRIMMER OR } \\ & \text { SLUG } \end{aligned}$	REMARKS
1.	Set Dịal pointer even with left-hand stop line with condenser gang closed.							
2.	Connect output meter across speaker terminals.							
3.	A.M.-I.F.	Pin \#7 of 6BE6 Conv. Tube	.02 MFD Cond.	456 KC.	A.M.	Open	T4 Sec. Slug	Max. Reading
							T4 Pri. Slug	Max. Reading
							T2 Sec. Slug	Max. Reading
							T2 Pri. Slug	Max. Reading
4.	Repeat Operation \#3.							
5.	A.M.-R.F.	A.M. Ant. On Cabinet	*	1500 KC.	A.M.	$\begin{aligned} & 1500 \mathrm{KC} \\ & 1500 \mathrm{Kc} \end{aligned}$	C2B Osc.Tri.	Peak Accurately
6.				1500 KC .			C17 Ant. Tri.	Peak Accurately
7.	A.M.-R.F.	On Cabinet	*	600 Kc .	A.M.	600 KC	L-2 Slug	Max. Reading
8.	Repeat operations \#5, \#6 and \#7.							
9.	Check Calibrations at 600, 1000 and 1500 KC .							
10.	SPECIAL NOTE: For complete F.M.-I.F. Visual Alignment instructions please refer to Pages 5-8.							
11.	F.M.-T.F. Alignment using an A.M. Generator and Output Meter.							
12.	$\begin{aligned} & \text { T5 F.M. } \\ & \text { Ratio Det. } \end{aligned}$	$\begin{aligned} & \text { Pin \#I of } \\ & \text { 2nd 6BA6Tube } \end{aligned}$	$\begin{aligned} & .02 \mathrm{MFD} . \\ & \text { Cond. } \end{aligned}$	10.7 MC.	F.M.	Open	T5 Sec. Slug	Max. Reading
							T5 Pri. Slug	Max. Reading
13.	NOTE: Operations $11,12,14,15$, 18 and 19 must be made with generator output as low as possible, consistent with usable output meter reading.							
14.	$\begin{aligned} & \text { T3 2nd. } \\ & \text { F.M.-I.F. } \end{aligned}$	Pin \#l lst 6BA6 Tube	$.02 \text { MFD. }$Cond.	10.7 MC.	F.M.	Open	T3 Sec. Slug	Nax. Reading
							T3 Pri. Slug	Max. Reading
15.	$\begin{aligned} & \text { TI lst } \\ & \text { F.M.-I.F. } \end{aligned}$	Pin \#8 on l2at7 Mixer Tube	. 02 MFD . Cond.	10.7 MC.	F.M.	Open	Tl Sec. Slue	Max. Reading
							Tl Pri. Slug	Max. Reading
16.	Adjust secondary slug on T5 ratio detector transformer to minimum deflection or dip on output meter. Under certain conditions it is possible to adjust $T 5$ sec. slug to minimum noise with the receiver tuned to a weak station. This operation is very critical and the receiver must be tuned to the center response only.							
17.	F.M.-R.F. alignment using an A.M. Generator with frequencies of 88 to 108 MC. and a vacuum tube voltmeter or D.C. voltmeter. ( 20,000 Ohms per volt).							
18.	Place meter across C36 elect. condenser. (Meter reading approximately 1 volt)							
19.	F.M.-R.F.	F.M. Ant.	Match Gen. TO 300 Ohm	106 MC.	F.M.	106 MC.	C2A Osc. Tri.	Max. Reading
							C2C Ant. Tri.	Peak Accurately
20	Check Calibration at 88 MC.							

VOLTAGE CHART

Line Voltage： 117 Volts AC $\quad$Position of volume control：Full with set tuned to   quiet channel．Position of band switch A．M．										
FUNCTION		Voltage of Sockets Prongs to Ground See Prong Nos．on Schematic．								
		No． 1	No． 2	No． 3	No． 4	No． 5	No． 6	No． 7	No． 8	No． 9
6	A．M．Conv．\＆F．M．Osc．	－2． 5	0	0	6．3＊	90	80	＊${ }_{\text {为 }}$		
77 X	F．M．－R．F．\＆Mixer	135	$-.6$	0	0	0	150	－1	1.2	6．3＊
6	I．F．Amp．	－． 1	0	6.33	0	235	100	1.0		
6 X	Ratio Det．Driver	－． 5	0	$6.3 *$	0	95	90	1.2		
5	Ratio Det．	0	－． 25	5．6＊	0	0	0	0		
6	lst A．F．－A．M．Det．\＆A．V．C．	－． 1	0	6．3＊	0	$-.1$	－． 1	95		
6GT	Power Amplifier	0	0	250	260	0	240	6．3＊	14	
GT	Rectifier	0	270		260\％		260＊		270	
ES：Voltage readings are for schematic diagram in this bulletin．Allow $15 \% f$ or - on all measurements．Always use meter scale which will give greater deflection within scale limits．All D．C．measurements made with 20,000 ohms per volt voltmeter．All A voltages made with rectifier type voltmeter．										
$\begin{array}{r} \text { * } \\ \text { 氷出 } \\ \text { X } \end{array}$	AC Volts   Cannot be measured with 20,000 ohms per volt voltmeter．   Band switch on F．M．									

DUMMY ANTENNA $\quad \mathrm{Cl}-200 \mathrm{mmf}$ ．Condenser 400 V．D．C．



V
Choke Coil Speci 1.
Tubing－ $3 / 8^{\prime \prime}$ diameter Bakelite
－－－Case Shield
Choke Coil Specification
$\stackrel{\text { A }}{\text { Receiver }}$
 0

NOTE：When using this dummy antenna the generator
output impedance should be 10 ohms or lower．


Generator

## VISUAL I. F. - F: M. ALIGNMENT DATA ${ }^{1210, ~ 1211, ~}$

WARNING: Do not proceed with any of the following alignment instructions unless it is certain that the $A M-I F$ is in accurate alignment. If not, align the AM-TF system according to the step by step alignment procedure.

1. DESCRIPTION OF CIRCUIT USED:

A 6AL5 is employed as a ratio detector. This tube is preceeded by a 6BA6 ratio detector driver and a stage of amplification at 10.7 Mc . also utilizing a 6BA6 tube. The 2nd section of the 12AT7 tube is used as the FM mixer. All IF coupling uses individual slug tuned transformers.

2. THEORY OF VISUAL ALIGNMENT.

One of the characteristics of a tuned circuit.is the fact that when it is excited or driven by a generator such as a vacuum tube or another tuned circuit, the voltage developed across it will vary with slight changes in frequency. This voltage will be greatest when the frequency is equal to the resonant frequency of the circuit and will be less if the frequency is higher or lower than the resonant frequency.

Thus if whwere to shift the frequency from high to low or low to high across the resonant frequency and make a record of the voltage across the tuned circuit, we could plot the voltage against frequency and obtain a curve which might look like Fig. 1.
volts


## PAGE 23-6 SPARTON

## MODELS 241, 242,

1210, 1211, Ch. 8W10
This is the selectivity curve or response curve for the circuit under discussion. This type of circuit may be aligned or adjusted to resonance by simply changing either $L$ or $C$ until maximum voltage is obtained at the resonant frequency. Now if another circuit tuned to the same resonant frequency is coupled to the simple case above, a number of things can happen. First current flowing in one circuit will induce current in the second circuit, the magnitude of this current depending on the degree or amount of coupling between the two circuits. This coupling may be in the form of mutual inductance, mutual capacitance or any impedance common to the two circuits. Now if we repeat the proceedure outlined for obtaining the response curve of a single tuned circuit using the voltage developed across the secondary of the coupled circuit while driving the primary, we may get either of two types of curves depending on the magnitude of the coupling, (a) in Fig. 2 is a typica? curve for two circuits coupled below critical coupling and (b) is a representation of the curve for an over coupled circuit.

Fig. 2
(A)


Overcoupled circuits producing a response curve like (b) Fig. 2 are often employed where it is important that the response curve remain approxinately flat over a narrow band of frequencies near the resonant frequency. They are also frequently combined with single peaked circuits to produce a response curve like Fig. 3.


Fig. 3

The dotted lines indicate the curves of the individual cireuits and the solid curve shows the overall response of the two or more pairs of coupled circuits. Circuits like the above or approaching them in form are desirable in an Fir receiver where the pass band should be of the order of 200 Kc . Now from the above it is evident that simple peaking both sides of a circuit coupled below critical for maximum voltage will provide optimum alignment but if this proceedure is followed with an overcoupled circuit it is almost a certainty that tine two circuits rill not be tuned to the resonant frequency but will instead be aligned so that either one or the other is accentuated. The response curve will then look like Fig. 4 (a) or (b).


Now if tinis overcoupled circuit is combined with a single peaked circuit (where the coupling is below critical), the misalignment becomes worse, something like Fig. 5.

Fig. 5


## VISUAL I. F. -F. M. ALIGNMENT DATA

From the above it appears tinat to properly align a receiver using overcoupled IF transformers it will be necessary to take a response curve of each stage and align the circuit so that the two peaks are symmetrical, that is, approximately equal in amplitude and displaced equally from the center frequency. To do this with a CW or AM signal would be laborious and time consuming whereas the use of visual equiprent makes it nearly as simple as adjusting a simple single peaked amplifier.

Visual alignment test equipment performs the operation of plotting the response curve almost exactly as described above except that instead of manually changing the generator frequency, recording the voltage and then plotting the results, these operations are performed automatically and simultaneously by a combination of electronic circuits. The operation is briefly as follows.

In the signal generator a low AC voltage is applied to a reactance tube modulator which shifts the oscillator frequency from low to high or from high to low at a rate determined by the frequency of the AC voltage and by an amount determined by the AC voltage. The frequency at any instant is dependant on the AC voltage present at that instant of time. An oscilloscope is provided which may be considered a voltmeter used to read the voltage across the tuned circuit, provided a detector is used to convert the RF to a low audio frequency. This voltage is then applied to the vertical plates and results in a vertical displacement of the spot on the screen. Some of the voltage used to shift the oscillator frequency is also applied to the horizontal plates of the oscilloscope providing a means of displacing the spot horizontally. It is now evident that since for any given AC voltage only one frequency may be obtained and since that AC voltage will result in an exact amount of spot deflection on the scope we can read the voltage across the circuit under examination by noticing the position of the spot at this exact instant.

Now if we consider the frequency as shifting from low to high 60 times per second and remember that the spot is moving across the screen of the scope 60 times per second at exact synchronization with the change in frequency it is only necessary to apply the voltage from our circuit to the vertical plates to obtain a replica of the response curve on the face of the cathode ray tube. This curve will be repeated 60 times per second if our sweep frequency is 60 cycles. Adjustments to the circuit may not be made and the effect on the response curve noted instantaneously.

Although it is possible to observe the selectivity curves as show in Fig. 1, 2, and 3 on the scope by the use of an auxiliary special detector coupled to the plate of the last IF tube, it is much more convenient to observe the effects of IF alignment upon the shape of the ratio detector output trace. When this is done the auxiliary detector is not necessary and a direct connection of the scope into the receiver circuits will provide all the necessary connections.

If the overall selectivity curve is not "flat-topped" (solid line in Fig. 3) the ratio detector curve cannot be linear (straight) throughout the center section, symmetrical and have sufficient band width (Fig. 6).

Under these conditions it would not be possible to receive a signal without distortion and higher than normal noise, the degree of distortion and abnormal noise dependent upon the extent to which the center of the ratio detector trace departs from a straight line and the extent to which the entire trace departs from true symmetry.

After a pattern similar to Fig. 5 is obtained with connection \#1 shown in the block diagram, the generator lead may be moved ahead through the IF system one tube at a time and the intervening transformer aligned for maximum output but at all times a curve very similar to Fig. 6 must be maintained.
3. EQUIPMENT REQUIRED.
(a) A sweep signal generator with a center frequency of 10.7 Mc , and a total sweep width of at least 400 Kc . Examination of the block diagram will reveal a variable resistor-capacitor circuit inserted in the lead between the FM sweep generator and the horizontal amplifier of the oscilloscope.
This control should be adjusted so that the dual trace observed on the oscilloscope will blend into a single trace and thereby eliminate any confusion due to the two traces.
(b) An Oscilloscope with either a $3^{\prime \prime}$ or $5^{\prime \prime}$ tube equipped with both vertical and horizontal amplifiers.
4. ALIGNAHNT OF THE 10.7 I.F.

Turn the wave band switch to F.M. and the generator to 10.7 Mc . Connect the F.M. signal generator output lead to the grid of the ratio detector driver tube and the scope to the lst audio plate. Now proceed to align the ratio detector transformer for maximum linearity and output, being careful to maintain as symmetrical a trace as possible. Note that the adjustment of the secondary circuit, controls to a large extent, the linearity and symmetry of the pattern, and adjustment of the primary will influence the gain of the circuit. Fig. 6 represents a linear detector curve properly aligned.

## PAGE 23-8 SPARTON

## MODELS 241, 242,

1210, 1211, Ch. 8W10

It is importont that the generator sweep a sufficiently wide band of frequencies so that the curves on both ends of the straight portion can be seen. Maximun linearity of alignment will result when these curves are symmetrically shaped and as previously stated tinis will result in minimam distortion and noise.

Fig. 6


Connect the generator output lead to the grid of the I.F. amplifier. Align primary and secondary of the I.F. transformer being careful to maintain the same basic ratio detector trace as just described.

Observe that by alternately adjusting the primary and secondary, the vertical amplitude can be increased witiout the response curve becoming distorted. At all times it is important to reduce the signal generator output to maintain the scope picture on the screen. This will avoid overload and possible misalignment therefrom.

Move the generator lead to the grid of the converter tube and align No. 1 I.F. transformer following the same proceedure as above.

Fig. 7, (A), (B), (C), and (D) represent typical selectivity curves of an overall I. F. Amplifier. Fig. 7, (AA), (BB), (CC), and (DD) represent the corresponding ratio detector curves.

Fig. 7

(A)

Not Overcoupled
Properly Aligned (Right)

(AA)
Marrow Bandpass

(B)

Overcoupled Properly Aligned (Right)

(BB)
Proper Alignment

(c)

Overcoupled
Improperly Aligned (Wrong)

(CG)
Overcoupled

(D)

Overcoupled Improperly Aligned (Wrong)

(DD)
IF Transformer Improperly Aligned

Should the trace appear unsatisfactory, a very slight readjustment of the detector secondary alignment may be made at this time as the need for any but a slight correction is an indication of incorrect alignment in one of the other stages. This is permissible only if the degree of correction necessary is slight. If this is not the case the entire alignment procedure should be repeated.


## PAGE 23-10 SPARTON

MODELS 241, 242, 1210, 1211,
Ch. 8W10; 380, 381, 1304,1305, Ch. 8L3

	DESCRIPTION	PART NO.
L-1	LOOP ANTENNA	PA5250-3,4 or 7
L-2	LOOP LOADING COIL	AA6616-1
L-3	B.C.OSC. COIL	AA6665-3
L-4	F.M.OSC. COIL	PA5200-8゙
L-5	$100 \mathrm{MC.CHOKE}$ COIL (1500 $\sim$ FORM	AA6798-3
L-6	CHOKE COIL	AA6769-2
L-7	CHOKE COIL	AA6798-6
L-8	CHOKE COIL	AA6769-2
L-9	F.M. R.F. COIL	PA5200-9
L-10	LINE CORD ANT. CHOKE	AA6664-1
L-11	CHOKE COIL	AA6798-7
T-1	NO. 1 I.F. F.M. TRANS.	AA6667-1
T-2	NO. 1 I.F. A.M. TRANS.	AA6668-5
T-3	NO. 2 I.F. F.M. TRANS.	AA6667-3
T-4	NO. 2 I.F. A.M. TRANS.	AA6668-1
T-5	RATIO DETECTOR	AA6684-1
T-6	OUTPUT TRANS.	AB44061-2
T-7	POWER TRANS.	AB44013-1
T-8	FILTER CHOKE	AB47004-1


KNOB-VOLUME	PA5654-1
KNOB-TONE-ON/OFF	PA5654-2
KNOB-BAND SWITCH	PA5654-3
KNOB-TUNING	PA5654-4
DIAL SCALE	PB30017
ESCUTCHEON-MODEL 1210	PD93027-1
ESCUTCHEON-MODEL 1211	PD93027-2
RECORD PLAYER-VM950	PD93110



ELECTRICAL CHARACTERISTICS OF CHASSIS TYPE 8L3 ARE IDENTICAL TO THAT OF CHASSIS TYPE 8W10


Spali(Oll model 1304
MAHOGANY RADIO-PHONO COMB.
8 TUBE AM-FM RADIO;
3.SPEED RECORD PLAYER

Spartoll MODEL 1305
GOLDEN WHEAT RADIO-PHONO COMB.
8 TUBE AM-FM RADIO;
3-SPEED RECORD PLAYER

Spdrtoll model 380
GENUINE MAHOGANY
8 TUBE AM-FM WITH PHONO JACK
AND 813 CHASSIS
D/did (0)l mOdel 381
GOLDEN WHEAT
8 TUBE AM-FM WITH PHONO JACK
AND 813 CHASSIS


A. All defective clocks used on Sparton radios must be returned to our Factory for replacement.
B. Clock parts will not be stocked or shipped to the field for clock repair by dealer servicemen.
G. To remove the defective clock for shipment to our Factory, the following procedure must be used.

1. Remove clock by removing the two (2) screws on the back of housing. Do not return clock housing.
2. Do not cut, but unsolder the three clock lead wires at their points of connection on the chassis base.
3. Defective clocks must be properly tagged with defective material tag and properly packed to prevent transportation damage.
D. Violation of this procedure will automatically void the warranty on the defective clock.


CHASSIS TYPE 5B3C


MODELS 320C, 321C, 325C, 329C, Ch. 5B3C
voltage chart


NOTES: Voltage readings are for schematic diagram in this bulletin. Allow $15 \%$ or - on all measurements. Alsways use meter scale which will give greatest deflection within scale limits. All DC measurements made with 20,000 ohms per volt voltmeter. All AC voltages made with rectifier type voltmeter.

* AC Volts.
** Cannot be measured with 20,000 ohms per volt voltmeter.
STEP BY STEP ALIGNMENT PROCEDURE

$\begin{aligned} & \text { OPER- } \\ & \text { ATION } \end{aligned}$	$\begin{gathered} \text { ALIGNMENT } \\ O F . \end{gathered}$	$\begin{gathered} \text { GENERATOR } \\ \text { CONNECTED } \\ \text { TO } \end{gathered}$	$\begin{aligned} & \text { DUMMI } \\ & \text { ANTENNA } \end{aligned}$	GENERATOR FREQUENCY	$\begin{aligned} & \text { TUNING } \\ & \text { COND. } \\ & \text { SETTING } \end{aligned}$	TRIMMER	REMARKS
1.	I.F.	$\begin{aligned} & \text { Pin \#7 on } \\ & \text { l2BE6 } \end{aligned}$	$\begin{array}{\|l\|} \hline .02 \text { MFD. } \\ \text { Cond. } \end{array}$	456 KC.	$\begin{aligned} & \text { Fully } \\ & \text { Open } \end{aligned}$	$\begin{aligned} & \text { Slug T-2 } \\ & \text { Top \& Bottom } \end{aligned}$	Peak Accurately
						$\begin{aligned} & \text { Slug T-1 } \\ & \text { Top \& Bottom } \end{aligned}$	Peak Accurately
2.	Broadcast	*	Driver Loop	1500 KC.	1500 KC.	C2A Osc. Tr.	Peak Accurately
						C2D Osc. Tr.	* *
						C2B Ant. Tr.	宁 ${ }^{\text {\% }}$
3.	Repeat operations 1 and 2						
4.	Check cali	ations at	600, 10	and 1500	c.		

* Use driver loop as shown below.
**. Trimmer C2D as shown on schematic is preset at factory and only on certain conditions will have to be re-adjusted in the field. This trimmer is located on bottom side of gang.
$* * *$ Rock dial while adjusting for maximum output.



## SPECIFICATIONS

Two loops of $1 / 4^{\prime \prime}$ copper tubing $8^{\prime \prime}$ in diameter speced $1 / 4^{\prime \prime}$ apart with 400 ohms resistor in series. Connecting cable and resistor must be shielded.
The loop should be spaced twice the diameter of the loop from the receiver being aligned to prevent an over modulated aignal and poor alignment of the receiver

MODELS 320C, 321C,
325C, 329C, Ch. 5B3C;
360, 361, 365, 369,
Ch. 5B3


PAGE 23-16 SPARTON
MODELS 301, 305,
309, Ch. 4E3


## CHASSIS TYPE 4E゙3

VOLTAGE CHART

Line Voltage: 117 Volts AC		Position of volume control: Full with set tuned to quiet channel.						
TUBE	FUNCTION	Voltage of Sockets Prongs to -B See Prong Nos. on schematic.						
		No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7
1R5	Osc. Converter	1.37	93	60	**	1.37	0	2.7
$1 \mathrm{U}_{4}$	I.F. Amplifier	2.7	93	93	0	2.7	0	4.1
1U5	Det. A.V.C. \& lst Audio	1.37	15	11.5	0	0	0	0
3 V 4	Output	4.1	93	93	0	5.9	0	7.5

NOTES: .Voltage readings are for schematic diagram in this bulletin. Allow $15 \%$
for - on all measurements. Always use meter scale which will give
greatest deflection within scale limits. All DC measurements made with
20,000 ohms per volt voltmeter. All AC voltages made with rectifier type
voltmeter.
** Cannot be measured with 20,000 Ohms per volt voltmeter.

$\begin{aligned} & \text { OPER } \\ & \text { ATION } \end{aligned}$	$\begin{gathered} \text { ALI GNMENT } \\ \mathrm{OF} \end{gathered}$	$\begin{aligned} & \text { GENERATOR } \\ & \text { CONNECTED } \\ & \text { TO } \end{aligned}$	DUMMY ANTENNA	GENERATOR FREQUENGY	$\begin{aligned} & \text { TUNING } \\ & \text { COND. } \\ & \text { SETTING } \end{aligned}$	TRIMMER	REMARKS
1.	I.F.	$\begin{aligned} & \text { Pin \#6 } \\ & 1 R 5 \text { Tube } \end{aligned}$	.1 Mfd. Cond.	456 KC.	Open	Slug T-2   Top \& Bottom	Peak accurately
						$\begin{aligned} & \text { Slug T-I } \\ & \text { Top \& Bottom } \end{aligned}$	Peak accurately
2.	Osc.	Separate Loop	*	1620 KC.	Open	C2B Osc.Tr.	Peak accurately
3.	R.F.		*	1500 кс.	1500 кс.	C2A Ant.Tr.	Peak accurately
4.	Repeat Operation \#3.						
5.	Check calibration at $600 \mathrm{KC}$. , $1000 \mathrm{KC}$. and $1500 \mathrm{KC}$.						
6.	Check Operations \#1 to \#6 inclusive.						

* Use driver loop as shown in this balletin.

The generator must be connected to the dummy loop antenna and not to the loop of the receiver for R.F. alignments.
Trimmer C2C as shown on schematic is preset at factory and only on certain conditions will have to be moved. However, should it become necessary to adjust this trimmer on the bottom of the gang a cutout in the chassis base has been provided.


Two loops of $1 / 4^{\prime \prime}$ copper tubing $8^{\prime \prime}$ in diameter spaced $1 / 4^{\prime \prime}$ apart with 400 ohms resistor in sories. Connecting cable and resistor nust be shielded.
The liop should be spaced twice the diameter of the loop from the receiver being aligned to prevent an over modulated signal and poor alignment of the receiver.
SCHEMATIC DIAGRAM
SPARTON SUPERHETERODYNE MODEL $4 E 3$



The tubes used are as follows:

12AT7	FM RF Amplifier, Converter
6BE6	FM Osc, Am Osc, Converter
6BA6	FM-AM, Ist I.F. Amplifier
6BA6	FM, 2nd I.F. Amplifier
6AL5	FM Detector
6AT6	AM Detector, AVC, Audio
6AQ5	Power Output
6X4	Power Rectifier
No. 44	Pilot Lights (2)

## SERVICE NOTES

## GENERAL

CAUTION: If realignment is necessary be sure the proper test equipment is available, as listed below, before proceeding with the alignment procedure

Due to the high frequencies at which FM signals are received the service man must use great care when servicing these sets. Extreme caution must be used regarding the moving of component parts in the R.F. and oscillator circuits of the receiver as those circuits can be detuned in this manner.

If it becomes necessary to replace components such as resistors and condensers they must be replaced with parts of the same size, type, voltage rating and tolerance as called for in the parts list.

When installing new parts they should be placed in the same position as the original, and the leads should be cut to the same length.

## VOLTAGE CHART

	$\begin{gathered} \text { PIN } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PIN } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { PIN } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { PIN } \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { PIN } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PIN } \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PIN } \\ 7 . \end{gathered}$	$\begin{gathered} \hline \text { PIN } \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PIN } \\ 9 \end{gathered}$
6BE6   FM \& AM OSC AM CONV	0	0	0	$\begin{array}{r} 6 \\ A C \\ \hline \end{array}$	155	125	0		
12AT7   FM RF AMP \& CONV	170	0	1.5	0	0	155	0	I	$\begin{gathered} 6 \\ A C \\ \hline \end{gathered}$
6BA6   Ist IF   AM \& FM	0	0	0	$\begin{array}{r} 6 \\ A C \\ \hline \end{array}$	150	100	0		
6BA6 2nd IF FM	0	0	0	$\begin{array}{r} 6 \\ A C \end{array}$	155	110	1		
6AL5   FM DETECTOR	0	0	0	$\begin{gathered} 6 \\ A C \end{gathered}$		0	0		
6AT6   AM DETECTOR,   AVC, AUDIO	$-.5$	0	0	$\begin{gathered} 6 \\ A C \end{gathered}$	0	0	60		
6AQ5 POWER OUTPUT	0	7.5	0	$\begin{gathered} 6 \\ A C \end{gathered}$	215	170	0		
$6 \times 4$ POWER RECTIFIER	$\begin{array}{r} 230 \\ \text { AC } \end{array}$		0	$\begin{gathered} 6 \\ A C \end{gathered}$	235	$\begin{aligned} & 230 \\ & A C \end{aligned}$	235		

Band Switch on AM position. Dial 1600 KC. No Signal.

## ALIGNMENT NOTES

This receiver has been thoroughly inspected and tested at the factory, using the most modern test equipment available, such as FM sweep generators and oscilloscopes. All R.F. and I.F. circuits have been accurately adjusted at the factory and no attempt should be made to realign these circuits unless it is absolutely necessary.

## EQUIPMENT USED FOR ALIGNMENT

Vacuum tube voltmeter.
AM Signal generator
FM Sweep generator.
Oscilloscope.
Insulated screw driver.
Dummy antenna:

> .1 MFD condenser
> .00025 MFD mica condenser
> 150 ohm resistor (2)

Output meter.
All voltage readings are taken from tube pin to chassis.
All measurements are made with no signal, using a 20,000 ohm per volt meter.

AC input voltage must be maintained at 117 volts for accurate readings.

AC voltages shown are at 1000 ohms per volt.
All voltages shown are approximate.


FIG. 4 DIAL CORD STRINGING

MODEL 350-C



FIG. I SCHEMATIC DIAGRAM


This Aircastle 3-way portable radio is designed to operate on self-contained batteries or $110-120$ volt, 60 cycle $A C$ or $D C$ current.

It has a high efficiency built-in antenna; no outside aerial or ground is necessary. Because this typeantenna is highly directtional and to obtain the best possible reception with a minimum of noise, it may be necessary to turn the set to a position whereby the antenna is at a $90^{\circ}$ degree angle to the direction of the station - this is the position of the clearestand best reception.

Do not place near a hot radiator or stove. Give set reasonable care and it will add many happy hours to your listening pleasure -- at home or away.

TO OPERATE ON AC OR DC HOUSE CURRENT: Plug power cord into wall outlet in normal manner. Turn on-off volume control until click is heard - this turns on the power. Continue turning control about half way of range. Adjust tuning control to the station of your choice for best clarity of reception. Re-adjust volume to desired level.

NOTE: If siight hum is heard when operating with AC current, or if no signal is heard when operating on DC current, reverse power plug into power outlet.

TO OPERATE ON BATTERY: Plug power cord into slot at back of chassis. Operation of set is then same as operating on house current. Caution: To get the most service from your battery, turn off set when not being used.

## BATTERY PACK RE PLACEMENT

This set used type $90 \mathrm{~V}-9 \mathrm{~V}$ battery pack. When replacing, it is suggested that you observe how old battery is placed and connect new battery pack in same manner.

## ALIGNMENT DATA

Step	Connect high side of Signal Generator to:	Signal Generator output	Dial Pointer Setting	Adjust for Maximum output
*1	IR5 pin 7 through 0.1 mfd condenser	455 KC	To high end of dial where signal is unaffected	Ist IF   Trans former (L4)
				2nd IF   Transformer (L5)
*2	Couple to recelver loop with several turns of wire.	1620 KC	Minimum capacity	Oscillator trimmer
*3	Same as above	1400 KC	Tune to signal	RF Transformer (L2)
				Antenna section trimmer

a) Measure output with output meter across speaker voice coil.
b) Signal Generator output should be kept as low as convenient to give reading without overload and without AVC action.

## MODELS 652.6P2E,

652. 6P2S


HOW TO ORDER PARTS
Always specify the following on your order blank:

ITEM FOR WHICH PART IS ORDERED	MODEL NUMBER	PART NUMBER	DESCRIPTION	QUANTITY	PRICE

PARTS LIST

$\begin{gathered} \text { SYMBOL } \\ \text { NO. } \end{gathered}$	PART NO.	DESCRIPTION	PRICE*
C1, C2, C	CV-29	Variable Condenser	2.30
C17, C20	CE-1003C.	Electrolytic 40mfd/l50V	1.20
Any condenser, paper, (specify value)			. 15
Any Discap condenser (specify value)			.15
	\|CCT-100-25	Ceramic Tubular condenser	. 12
Any resistor, carbon, (specify value)			. 15
R16	RW1951	Resistor, wire wound	. 60
T	TR103	Output Transformer	1.40
SP	SP42A	Speaker less/trfr	3.60
LI	LPFE-11A	Loop Antenna	.80
L2	LCl2	RF Coil	. 60
L3	LClI	Oscillator Coil	. 60
14,4.5	LF 24	IF Trans former	. 90
SI	SWSS-6	Slide Switch	. 60
SR	SE1000	Selenium Rectifier	1.20
	CB-6P2E	Cabinet for model 652.6P2E	3.60
	XNV-6P2	Knob, Volume, on, off	.60
	KNT-6P2	Knob, Tuning	. 60
R8	VC-53	Volume Control	1.20

[^31]
## John F. Rider

## INSTALLATION

Your new Aircastle $A M-F M$ receiver is designed for use on $A C 60$ cycle or $D C$ current of 105-120 volt. If you are in doubt of the current supply in your locality, consult your power company.

When operating on $D C$ current source, it is necessary to insert the power plug with the proper polarity. If the set fails to function after an interval sufficient for the tubes to reach their operating temperature, reverse the power plug in the outlet.

If operating on $A C$ current and a slight hum is heard, reverse the power plug in the outlet as this may be pick-up interference from your power source.

Do not use an external ground with this receiver. Do not place receiver near a hot stove or radiator as it might damage set.

## ANTENNA

This receiver has a high efficiency builitin AM antenna. For most locations and under normal receiving conditions, this antenna will be adequate to provide excellent results.

For FM reception, this set has a line antenna which will provide satisfactory reception in most localities.

However, for best possible reception regardless of location from stations, an external FM antenna should be used. Any FM antenna with a 300 ohm line may be used and should be placed as high as possible to overcome any obstruction that might impair reception. The two-lead-in wires of the antenna should be attached (one lead to each screw) to the terminal strip located on the cabinet back after detaching the small wire that was between the two screws on terminal block when set was shipped.

## TO OPERATE

To turn the receiver on, rotate on-off volume switch (outer-most knob) untilit clicks. Continue rotating knob to about half of its range allowing set to reach its operating temperature. Then turn station selector knob to the desired station. It is always recommended that you tune the station with the volume control set low as this enables you to get the exact point where the station comes with maximum volume and clarity - this is particularly true of FM reception.

To select the $A M$ or $F M$ band, it is necessary to turn the inner-most knob located on the volume control to the right for the AM band; to the left for FM band.

## SERVICE NOTES

When installing new parts they should be placed in the same position as the original, and the leads should be cut to the same length. Lack of sensitivity and poor tone quality may be due to any one or a combination of causes, such as weak or defective tubes or speaker, open or grounded resistors, or bypass condensers. Never attempt to realign the set until all other possible sources of trouble have been first thoroughly investigated and definitely proved not to be the cause. It will be necessary to follow the procedure outlined below and to use recommended equipment for satisfactory results.


FM Oscillator and RF coils directly below associated section of variable condenser.

## AM ALIGNMENT PROCEDURE

Measure output across speaker voice coil with output meter.

Step	Connect high side of signal generator to:	Signal Generator setting:	Dial Pointer Setting	Adjust for maximum output
\#1	12BE6, pin *7 through 0.1 mfd condenser	455 KC	At high end of dial where signal is unaffected	2nd AM IF transformer T5
				1st AM IF transformer   T4
*2	Couple to receiver loop antenna with several turns of wire.	1620 KC	Minimum capacity	AM oscillator trimmer condenser
*3	Same as above	540 KC	Maximum capacity	Adjust slug in 540 KC coil
*4	RECHECK	Step *2		
*5	Same as above	1400 KC	Tune to signal	AM antenna section trimmer condenser

## FM ALIGMMENT PROCEDURE

	Step	Connect high Side of Signal Generator	signal Generator setting	VTVM   connection	Adjustment	Output Indication	Remarks	
	1	12AT7 pin \#2 through 0.1 mfd condenser	10.7MC	$\begin{aligned} & 19 \mathrm{~T} 8 \text { pin } \\ & \text { \#2 } \end{aligned}$	$\left.\left.\begin{array}{\|c\|}\hline \text { 2nd FM IF } \\ \text { Transformer } \\ \text { T2 }\end{array}\right] \begin{array}{c}\text { 1st FM IF } \\ \text { Transformer } \\ \text { T1 }\end{array}\right]$Bottom slug   only of ratio   detector trans.   T3	Adjust for maximum output indication on VTVM	Reduce signal generator output so that no more than 2.0 volts output is measured on VTVM	
	2	Make up network of two 6.8 K resistors as shown on schematic and connect across points$X-X$ as indicated.					Refer to tube layout chart and schematic for location of trimmers.	
	3	Same as in step \#1	10.7MC	High side to point "Z" on schematic.   Low side to point labeled "Y".	Top slug only of ratio detector trans. T3	Adjust for zero reading on VTVM.		
	4	Remove resistor network of step 2					Tune Receiver	Remarks
$\begin{aligned} & 1 \\ & z \\ & w \\ & z \\ & z \end{aligned}$	5	Connect sweep generator to FM antenna terminals of receiver with 150 ohm resistor in series with each lead.	```87.6 MC #75KC deviation 400 cps.```	Output meter across speaker voice coil.	Expand or compress oscillator coil.	Adjust until max. signal is obtained on output meter	Maximum capacity (fully meshed)	
	6	*	$\begin{aligned} & 108.4 \mathrm{MC} \\ & \pm 75 \mathrm{KC} \\ & 400 \mathrm{cps} \end{aligned}$	*	FM oscillator trimmer condenser	Adjust for maximum signal	Minimum capacity	Recheck step 5
	7	*	$\begin{aligned} & 90 \mathrm{MC} \\ & \pm 75 \mathrm{KC} \mathrm{e} \\ & 400 \mathrm{cps} \end{aligned}$	"	FM-RF coil expand or compress	Adjust for maximum signal	Tune to signal	
	8	"	$\begin{aligned} & 105 \mathrm{MC} \\ & \pm 75 \mathrm{KC} \\ & 400 \mathrm{cPs} \end{aligned}$	"	FM-RF trimmer condenser	Adjust for maximum signal	Tune to signal	Recheck   Step 7

PAGE 23-10 SPIEGEL

## MODEL 652.8TF1



PARTS LIST

8 0 0 0			$\omega$		-

1500 OHM
100 K OHM
68 OHM
220 OHM
22 K OHM
$22 K ~ O H M$
470 OHM
IK OHM
3.3 MEGOHM




## HOW TO ORDER PARTS

ALWAYS SPECIFY The following information on your repair part order blank.

Item for   Which Part   is Ordered	Model   No.	Part   No.	Oescription   Of Part And   Finish	Quantity   Wanted	Price of   Each Part	Total   Price

## PARTS LIST

SYMBOL NO.	PART NO.	DESCRIPTION	PRICE
C1, -2, -3, -4	CV 24	VariabTe condenser	\$ 3.00
C 39	CE-1008	Electrolytic, 4mfd, 25V	. 60
C 41	CE-1009	Electrolytic, 10mfd, 25V	. 60
C42, C43, $\mathrm{C44}$	CE-1014C	Electrolytic, 40-40-20mfd/150V	1.20
PC 50	PC 50	Filpac	. 12
Any Condenser,	Paper, Mic	Ceramic (Specify Value)	. 15
Any Resistor (S	pecify Val	Desired)	. 12
R 18	vc 40	Volume Control/w Switch	2.60
SR	SE 1001	Selenium Rectifier	1.60
SP	SP. 49	Speaker W/Transformer	4.40
L4		AM Loop Antenna	. 80
L11	LC 32	AM Oscillator Coil	. 43
L3	LC 29	RF Coil, FM	. 30
LS	LC 28	FM Oscillator Coil	. 30
T1	IF 51	IF Transformer (FM)	
T2	IF 52	"	
T4, T5	IF 55	IF Transformer (AM)	
T3	IF 53	Ratio Detector Transformer Cabinet (Mahogany) Specify for Model 652.8TF1M	3.60
	CC-8TF1	Grille cloth	. 60
	DL 71	Dial Scale	1.20
	M5 D11	Decorative Panel Strip	. 45
		Knobs (Specify - Band Switch, volume or Tuning)	. 30
V1, V4		6BJ6	2.10
V2		12 AT 7	2.90
V3		12BE6	1.90
V5		$12 \mathrm{AU6}$	1.80
V6		19 T 8	2.90
v7		$50 \mathrm{C5}$	2.00

Prices subject to change without notice.

## MODELS 610.CL152B,

 610. CL152M MODELS 610. CL152B, 610.CL152M

GO TO SLEEP WITH MUSIC:

to and adjust the volume.
2. A scale marked from 0 to 60 and a "SLEEP SWITCH" are located at the bottom of the clock face. Set the "SLEEP SWITCH" by turning the knob pointer to whatever fraction of an hour you want to keep the radio playing. The radio will be turned off in one hour when the pointer is turned all the way to 60. Thirty minutes would be
 the knob pointer one-quarter of the distance from 0 to 60. 3. Turn the "OPERATION SELECTOR" to "AUTO" if you
wish to go to sleep and wake up to music. If you do not wish to go to sleep and wake up to music. If you do not want the clock-radio to awaken you turn the "OPERATION
SELECTOR" to the "OFF" position.

TO TURN ON APPLIANCES AUTOMATICALLY: A convenient outlet plug has been provided at the back of your AIRCASTLE e se yons 'səouritide inok fo Kue uo uint of otpey-yoolo
to " AUTO." to" Appliance. the SLEEP
60 minutes
 position.

AROUND THE CLOCK WITH YOUR CLOCK-RADIO: You will also find countless other ways to time your cooking and appliance operations all through the day ... Your clockradio is fully AUTOMATIC...An electronic helper in your home...saving you many minutes every minute of the day.
 l. Turn the "ALARM SET" pointer to the time you would
like your appliance to start operating. If the alarm buzzer is not desired, push the ALARM SET knob inward. 2. Turn the OPERATION SELECTOR knob to the "AUTO" position.

3. Insert the plug of your electrical appliance into the outlet plug on the back of your AIRCASTLE Clock-Radio. 4. Turn on your electrical appliance switch. $$
\begin{array}{l}\text { 1-50C5.... Power Output } \\ \\ \\ l-35 \mathrm{H} 4 . \ldots \text { Rectifier }\end{array}
$$

VVICE NOTES
Voltages taken from different parts of the circuit to the common ground above chassis are measured with volume control in maximum position, all tubes in their sockets, no signal applied, and with a voltmeter having a resistance of 20,000 ohms per volt. All voltages should be measured with an input voltage of 118 volts AC only. To check for open bypass condensers, shunt each condenser with a known good condenser of the same capacity and voltage rating.
 Frequency Range... 538 to 1650 KC 1-12BE6...Mixer tubes: Frequency Range... 538 to 1650 KC 1-12BE6...Mixer 1-12AT6... Vetector-AVC-1st Audio Vetector-AVC-1st Audio

 $$
\begin{array}{l}1-50 \mathrm{C} 5 \ldots . \text { Power Output } \\ \\ 1-3514 . \ldots \text { Rectifier }\end{array}
$$

SERVICE NOTES
Voltages taken from different parts of the circuit to

$\pm$
Radio can be used to time appliances, such as coffee
makers, electric roasters, television receivers, etc.
l. Plug the electric appliance into the appliance
outlet on the back of your clock-radio.
2 Adjust the ALARM SET pointer to the time the
appliance is to be turned on within a l2-hour period. If
you wish the alarm buzzer to sound leave the ALARM SET
knob pulled out.

PAGE 23－14 SPIEGEL

$\begin{aligned} & \text { MODELS 610. } \\ & \text { CL152B, } \\ & \text { 610. CL152M } \end{aligned}$			咕	
		艮	辱	$\begin{aligned} & \text { 最 } \\ & \text { 会 } \end{aligned}$
			N	E
	为氝氝哥		可	
		$\stackrel{\text { 晨 }}{\text {－}}$	$\stackrel{\text { 甞 }}{\square}$	
		㖴	宮	皆


ALIGNING INSTRUCTIONS
Never．attempt any adjustments on this receiver unless
it becomes necessary to replace a coil or transformer，or it becomes necessary to replace a coil or transformer，or
the adjustments have been tampered with in the field． Always make certain that other components，such as tubes，
 with re－alignment．If re－alignment is necessary follow the instructions on page 6 under the heading＂Alignment Procedure．＂After the re－alignment has been completed， repeat the procedure as a final check． To remove the chassis for servicing，remove the three the cabinet back，volume control knob and tuning knob． Remove the bracket securing the clock to the cabinet and slide out the chassis and clock．
ALIGNMENT PROCEDURE
Yolume Control－－Maximum，all adjustments．No signal ap－
plied to antenna． plied to antenna．
Connect dummy antenna in series with output lead of signal generator．
Connect ground lead of signal generator to common ground above chassis．
The following equipment is necessary for proper alignment Signal generator that will provide the test frequencies as listed，modulated 400 cycles， $30 \%$ ． Non－metallic screwdriver．
Output meter．
Dummy antenna－． 1 MFD condenser．
For alignment points refer to Schem

SPIEGEL PAGE 23-15 MODELS 610. CL152B, 610. CL152M


PARTS LIST

SCHEMATIC NUMBER	PART NUMBER	DESCRIPTION	PRICE
		CONDENSERS	
Cl	CC200	100 MMFD Ceramic	\$ .25
C2	C208	. 1 MFD 400 volt	. 35
C3	CC500	500 MMFD Ceramic	. 25
C4	CC201	200 MMFD Ceramic	. 25
C5, C6, C 7	C206	. 01600 volt	. 30
	C 204	. 05400 volt	. 35
C9L	C14L	. 1 MFD 400 volt condenser-choke assbly.	. 50
CE-601	CE-601	Dual 50 MFD 150 volt electrolytic	2.50 2.75
CV1, cV2	$\mathrm{CV}-149$	2 section variable	
		RESI STORS	
RI	R306	\| 20 K ohim $\frac{1}{2}$ watt $20 \%$	. 10
R2	R310	2 megohm $\frac{1}{2}$ watt $20 \%$	. 10
R3	R311	10 meqohm $\frac{1}{2}$ watt $20 \%$	- 10
R4, R9	R307	250 K ohm $\frac{1}{2}$ watt $20 \%$	. 10
R5	R308.	500 K ohm $\frac{1}{2}$ watt 20\%	. 10
R6	R320	150 K ohm $\frac{1}{2}$ watt $20 \%$	. 20
R7	R321	27 ohm $\frac{1}{2}$ watt $20 \%$ 1.5 K ohm 1 watt $20 \%$	. 10
RV-152	RV-152	$\frac{3}{4}$ megohm volume control	1.00
		COILS AND TRANSFORMERS	
Ll	L-A51	Magna-Loop Antenna Coil	1.50
L2	1655-16	Ist I.F. Transformer	2.00
L3	1655-16	2nd I.F. Transformer	2.00
L4	L201.	R.F. Oscillator Coil	1.00
		MI SCELLANEOUS	
T-47	T-47	Pilot Light	. 15
PM-300	PM-300	Speaker, 5" PM, includes Output Transformer	6.40
	$\mathrm{H}-100$ $\mathrm{H}-101$	Cabinet	6.00 .20
	C57G27	Electric Clock	7.50
AR-152	AR-152	Appliance Socket	. 40
		DIAL PARTS	
	$\mathrm{H}-102$ $\mathrm{H}-103$	Dial Pointer Dial Pulley	.35 .05
	H-152	Dial Window	. 30
	H-104	String, Dial Drive	. 05
	H-105	Spring, Dial Drive String Tension	.10

all orders subject to prices at time of shipment

## HOW TO INSTALL THE RECEIVER

Your new Radio is a seven tube (plus rectifier) superhetro- received, it may be necessary to use an external dipole andyne FM-AM radio receiver designed for use on $105_{\imath} 125$ tenna. Remember too, FM reception is limited as to distance

Power Supply...............105-125 volis 60 cycle AC only.	The tubes used are as follows:	
Power Consumprion.-....................................... 65 Watts.	12AT7	FM RF Amplifier, Converter
Frequency Range FM.............................. 88 to 108 MC.	6BE6	FM Osc, Am Osc, Converter
Frequency Range AM....................... 540 to 1600 KC.	6BA6	FM-AM, 1st I.F. Amplifier
I.F. Frequency FM...........................................-10.7 MC.	6BA6	FM, 2nd I.F. Amplifier
I.F. Frequency	6AL5	FM Detector
	6AT6	AM Detector, AVC, Audio
Band width, FM, Ratio Detector.......................... 330	6AQ5	Power Output
Band width, FM, 1st I.F...................................... 280 KC.	6X4	Power Rectifier

volts 60 cycle $A C$ only.
It covers the standard AM broadcast frequency range, $540-1600$ kilocycles (KC), and the FM frequency range from 88 to 108 megacycles (MC).

This receiver is shipped from the factory complete with 2 built-in loop antennae for standard AM broadcast reception, and FM stations. These antennas will be satisfactory for good reception under normal conditions. Terminals are provided at the back of the radio for connecting external AM and FM antennas, wherever this is found to be desirable as explained below.

When the receiver is to be used under difficult conditions, such as in buildings constructed mainly of steel, or those with steel lath, or, when large buildings, mountains or other objects are between the receiver and the station to be

## SPECIFICATIONS

and when used outside the primary service area of the transmitter, an outside antenna is very necessary.

The type of dipole to be used depends on the signal strength of the station in that particular area, as well as conditions of reception as outlined above. There are three types of FM dipole available; the single dipole, the folded dipole and the non directional dipole. The single dipole is bi-directional and will receive stations located within a range of 10 to 15 miles in front or in back of the antenna. The non-directional dipole may be used, as the name implies, when the stations to be received are located in several different directions within a 10 to 15 mile range. The folded dipole with reflector gives maximum efficiency in any one direction and in many instances will double the distance over which satisfactory reception can be had.

## ALIGNMENT NOTES

## GENERAL

CAUTION: If realignment is necessary be sure the proper test equipment is available, as listed below, before proceeding with the alignment procedure as given

Due to the high frequencies at which FM signals are received the service man must use great care when servicing thes sets. Extreme caution must be used regarding the moving of component parts in the R.F. and oscillator circuits of the receiver as those circuits can be detuned in this manner.

If it becomes necessary to replace components such as resistors and condensers they must be replaced with parts of the same size, trype, voltage rating and tolerance as called for in the parts list.

When installing new parts they should be placed in the same position as the original, and the leads should be cut to the same length.

This receiver has been thoroughly inspected and tested at the factory, using the most modern test equipment available, such as FM sweep generators and oscilloscopes. All R.F. and I.F. circuits have been accurately adjusted at the factory and no attempt should be made to realign these circuits unless it is absolutely necessary.

## EQUIPMENT USED FOR ALIGNMENT

Vacuum tube voltmeter.
AM Signal generator
FM Sweep generator.
Oscilloscope.
Insulated screw driver.
Dummy antenna:
.I MFD condenser
. 00025 MFD mica condenser
150 ohm resistor (2)
Output meter.
ALIGNMENT PROCEDURE

STEPS	$\begin{aligned} & \text { RECEIVER } \\ & \text { DIAL } \\ & \text { SETTING } \\ & \hline \end{aligned}$	BAND SWITCH POSITION	$\begin{aligned} & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { FREQUENCY } \end{aligned}$	DUMMY ANTENNA	$\begin{gathered} \text { SIGNAL } \\ \text { GENERATOR } \\ \text { CONNECTIONS } \end{gathered}$	OUTPUT   INDICATOR	TRIMMER ADJUSTMENT	TRIMMER FUNCTION	REMARKS
1	Minimum capacity	AM	455 KC 400 cycle AM	. 1 MFD	High side-grid of AM converter tube (6BE6) Low side-chassis	Output Meter across voice coil	$T 2 \& T 4$	AM I.F.	Adjust for maximum output
2	"	"	1620 KC 400 cycle AM	"	"	"	C 2A	AM Oscillator	"
3	1400 KC	"	1400 KC 400 cycle AM	. 00025 MFD	High side-One ant. terminal Low side-Other ant. terminal	- "	C IA	AM Antenna	"
4	Any position whers there is no station interference.	FM	$\qquad$	. 1 MFD	High side-grid of 2nd I.F. amplifier tube (6BA6)   Low side-chassis	Connect V.T.V.M. to plate of Ratio Detector tube, pin 2 (6AL5)	Top T5	Ratio detector primary	Adjust for maximum negative voltage,
5	$\cdots$	"	$\begin{gathered} 10.7 \mathrm{MC} \\ 400 \text { cycle } \\ 250 \mathrm{KC} \text { Deviation } \end{gathered}$	"	*	Connect scope to audio take-off point (across vol. c.ont.)	Bottom T5	Ratio detector secondary	Adjust for a balanced pattorn on scopo. See Fig. 2
6	-	"	$\begin{gathered} 10.7 \mathrm{MC} \\ 400 \text { eycle } \\ 80 \text { KC Deviation } \end{gathered}$	"	High side-grid of Ist 1.F. amplifior tube (6BA6) Low side-chassis	* .	T3	FM 2nd I.F.	Adjust for maximum gain and best pattern on scope. Soe Fig. 2
7	-	"	"	$\cdots$	High sido-grid (pin 7) of FM converter tube (12AT7) Low side-chassis	"	TI	FM ist I.F.	"
6	108.5 MC	"	108.5 MC 400 cycle $30 \%$ modulation (22.5 KC doviation)	300 ohms in high side	High side-ant. terminal   Low sido_chassis	Connect output moter across voice coil	C 8	FM oscillator	Adiust for naximum output
9	105 MC	"	105 MC 400 cycle $30 \%$ modulation (22.5 KC doviation)	-	-	-	C 3A	FM R.F.	$\cdots$





$$
\text { Band Switch on AM position. Dial } 1600 \text { KC. No Signal. }
$$

All voltage readings are taken from tube pin to chassis.
All measurements are made with no signal, using a $\mathbf{2 0 , 0 0 0}$ ohm per volt meter.
AC input voltage must be maintained at 117 volts for accurate readings.
AC voltages shown are at 1000 ohms per volt.
All voltages shown are approximate.


## CAPACITORS

Reference No．	Part No．	Description
C1，C2，C3，C4	A－1201－6	Tuning Gang
CIA	－－	Trimmer on loop
C2A	ーーーー	Trimmer on gang
C3A	ーーーー	Trimmer on gang
C5	CWZ02503M	． $05 \mathrm{mfd}-200 \mathrm{~V}$ paper
C6	CCG05022D	$2.2 \mathrm{mmf} \pm .5 \mathrm{mmf}$ GP ceramic
C7	CCC05330K	$33 \mathrm{mmf} \pm 10 \%$ NPO ceramic
C8	CVP070ST	$1-10 \mathrm{mmf}$ Trimmer
C9	CCG05015D	$1.5 \mathrm{mmf} \pm .5 \mathrm{mmf}$ GP ceramic
CIO	CCC05150K	$15 \mathrm{mmf} \pm 10 \%$ NPO ceramic
Cll	CCG05101M	$100 \mathrm{mmf} \pm \mathbf{2 0 \%}$ GP ceramic
$\mathrm{Cl}_{2}$	CCG05102Y	1000 mmf GP ceramic
Cl 3	CCG05102Y	1000 mmf GP ceramic
Cl 4	CCG05101M	$100 \mathrm{mmf} \pm \mathbf{2 0 \%}$ GP ceramic
C15	CCG05102Y	1000 mmf GP ceramic
$\mathrm{Cl}_{6}$	CDZ05502Y	5000 mmf GMV ceramic
C 17	CDZO5IO3Y	$10,000 \mathrm{mmf}$ GMV ceramic
Cl 8	－－－－	Part of TI
Cl 9	－	Part of TI
C20	－－	Part of T2
C21	－－	Part of T2
C22	CDZ05502Y	5000 mmf GMV ceramic
C23	CDZ05502Y	5000 mmf GMV ceramic
C24	CDZ05103Y	10.000 mmf GMV ceramic
C25	－－－－	Part of T3
C26	－－－－	Part of 13
$\left.\begin{array}{l} \mathrm{C} 27 \\ \mathrm{C} 28 \end{array}\right\}$	－－－	Part of T4
C29	－－－－	Part of T4
C30	CCG05101M	$100 \mathrm{mmf} \pm \mathbf{2 0 \%}$ GP ceramic
C31	CDZ05502Y	5000 mmf GMV ceramic
C32	CDZ05502Y	5000 mmf GMV ceramic
C33	CDZ05103Y	$10,000 \mathrm{mmf}$ GMV ceramic
$\left.\begin{array}{l}\text { C34 } \\ \text { C35 }\end{array}\right\}$	－－	Part of T5
C36	CMA05152M	$1500 \mathrm{mmf} \pm 20 \%$ mica or ceramic
C37	CMA0533IM	$330 \mathrm{mmf} \pm 20 \%$ mica or ceramic
C38	CMA05331M	$330 \mathrm{mmf} \pm 20 \%$ mica or ceramic
C39	CESO405	4 mfd －50 volt electrolytic
C40	CWZ02103M	． 01 mfd －200V paper
C41	CWZ02 103M	． $01 \mathrm{mfd}-200 \mathrm{~V}$ paper
C42	CWZ06502M	． 005 mfd －600V paper
C43	CFQ433C35	10 mfd ＠25V lytic＊
C44	CWZ06502M	． 005 mfd －600V paper
C45	CFQ433C35	30 mfd －300V lytic＊
C46	CFQ433C35	30 mfd －300V lytic＊
C47	CFQ433C35	40 mfd －350V lytic＊
C48	CCG05102Y	1000 mmf GP ceramic
C49	CDZ05502Y	5000 mmf GMV ceramic
C50	CDZ05502Y	5000 mmf GMV ceramic
C51	CDZ05103Y	$10,000 \mathrm{mmf}$ GMV ceramic
C52	CCG05102Y	1000 mmf GP ceramic
C53	CCG05101M	$100 \mathrm{mmf} \pm 20 \%$ ceramic

## RESISTORS

R1	RCC273K	Part of L 2
R2	RCC273K	$27 \mathrm{~K} \pm 10 \% 1 / 2 \mathrm{~W}$
R3	RCC472M	$4700 \pm 20 \% 1 / 2 \mathrm{~W}$
R4	RCC56IM	$560 \pm 20 \% 1 / 2 \mathrm{~W}$

RESISTORS—Continued

Reference No.	Part No.	Description
R5	- - -	Part of L5
R6	RCC22IM	$220 \pm 20 \% 1 / 2 W$.
R7	RCC222M	$2200 \pm 20 \%$ 1/2W
R8	RCC183K	$18 \mathrm{~K} \pm 10 \% 1 / 2 \mathrm{~W}$
R9	RCC820K	$82 \pm 10 \% 1 / 2 W$
R10	RCCIO4M	$100 \mathrm{~K} \pm 20 \% 1 / 2 \mathrm{~W}$
RII	RCCI03M	$10 \mathrm{~K} \pm 20 \% 1 / 2 \mathrm{~W}$
RI2	RCC183K	$18 \mathrm{~K} \pm 10 \% 1 / 2 \mathrm{~W}$
R13	RCC820K	$82 \pm 10 \% 1 / 2 W$
R14	RCC103M	$10 \mathrm{~K} \pm 20 \% 1 / 2 \mathrm{~W}$
RI5	RCC102M	$1000 \pm 20 \% 1 / 2 W$
R16	RCCIOIM	$100 \pm 20 \% 1 / 2 W$
R17	RCC473M	$47 \mathrm{~K} \pm 20 \% 1 / 2 \mathrm{~W}$
R18	RCC332K	$3300 \pm 10 \% 1 / 2 W$
R19	RCCI22K	$1200 \pm 10 \% 1 / 2 W$
R20	RCCI83K	$18 \mathrm{~K} \pm 10 \% \mathrm{t}$ W W
R21	RCCI83K	$18 \mathrm{~K} \pm 10 \%$ 1/2W
R22	RCC104M	$100 \mathrm{~K} \pm 20 \%$ 1/2W
R23	RCC102M	$1000 \pm 20 \% 1 / 2 W$
R24	RCC335M	3.3M $\pm 20 \% 1 / 2 \mathrm{~W}$
R25	RCC473M	47K $\pm 20 \% 1 / 2 \mathrm{~W}$
R26	RCC474M	470K $\pm 20 \% 1 / 2 \mathrm{~W}$
R27	RCC225M	$2.2 \mathrm{M} \pm 20 \%$ 1/2W
R28	RCC224M	$220 \mathrm{~K} \pm 20 \% 1 / 2 \mathrm{~W}$
R29	RVC400S	I.OM volume control with switch
R30	RCC475M	$4.7 \mathrm{M} \pm 20 \%$ 1/2W
R31	RCC473M	47K $\pm 20 \% 1 / 2 \mathrm{~W}$
R32	RCF27IM	$270 \pm 20 \% 1 / 2 W$
R33	RWJI02K	$1000 \pm 10 \% 5 W$
R34	RCFIOIM	$100 \pm 20 \%$ IW
R35	RCC225M	2.2M $\pm 20 \% 1 / 2 W$
R36	RCC474M	470K $\pm 20 \%$ 1/2W
R37	RCC474M	$470 \mathrm{~K} \pm 20 \% 1 / 2 \mathrm{~W}$
$\begin{aligned} & \mathrm{PC} 80 \\ & \mathrm{~K}=1000 \mathrm{OHMS} \end{aligned}$	A-1376-6F MS	Centralab PC80 couplate

## COILS

Loop Antenna (includes CIA)
AM grid choke (includes RI)
FM oscillator coil
AM oscillator coil
FM cathode choke (includes R5)
FM-RF plate choke
FM-RF coil
RF filament choke
RF filament choke
IF filament choke

## TRANSFORMERS

I0.7 MC input IF
455 KC input IF
10.7 MC interstage IF

455 KC output IF
10.7 MC ratio detector

Audio output Transformer
Power Transformer

## SWITCHES

A-2002-17
A-2003-17
Function switch
Tone switch
Part of R29

## INSTALLATION

Your Aircastle radio-phonograph needs no special outside aerial. You may locate it anywhere it is convenient to an outlet. Do not place it near a radiator or heater for the extreme heat may damage the cabinet.

Your radio-phonograph operates on 105120 volts, 60 cycles, $A C$ only. Do not connect to a supply other than specified or the Guarantee is invalid. If you are not sure of the power supply, your local utility company will supply the information.

## THE RADIO

All the controls for your radio are conveniently located at the front of the cabinet. At the extreme left is the radiophonograph control knob. When it is set at the first position, the radio will play; the second position turns the phonograph on and automatically starts the turntable. The middle knob is the on-off volume control. At the right is the tone control knob which may be adjusted from treble to bass tones. The station selector is above the radio dial.

## HOW TO OPERATE THE REGORD CHANGER

Your Aircastle phonograph is equipped with a Tri-O-Matic record changer and an allgroove, all-speed needle. This means that you can play any size record, any speed record. You may also play any assortment of 10 - and 12 -inch records of the same speed. Your Tri-0Matic changer automatically selects the right "set-down" position for 7-10- or 12-inch records.
Loosen the two mounting bolts until the changer floats free on mounting springs.
LOADING: First lift the record support arm off the spindle and swing toward the back. Place the records (up to ten 12-inch or twelve 10 - and 7inch records) on the spindle and lower to the off-set shelf. Holding the records level, return the record support to spindle. AUTOMATIC OPERATION: Now set the MOTOR SPEED CONTROL to proper speed for the records to be played ( $33-1 / 3,45$ or 78 RPM). As long as you play the same speed record, you can mix 10 - and 12 -inch records. The 10 and 12 -inch index levers will automatically determine the "set-down" posi-

tion. All you have to do is set the motor speed control.
With the records on the spindle, the motor speed control set, turn the changer control knob to REJ (reject) and release. The Tri-O-Matic changer will automatically play all the records on the spindle. After the last record has been played, the changer automatically shuts off, pick-up arm returns to rest, and the turntable stops.

## REPEATING AND REJECTING

If you wish to repeat any particular record, place it on the turntable (not the off-set shelf). Do not swing record support over the spindle. Turn the CHANGER CONTROL to REJ and release. The 7- or 10 inch record will automatically repeat until the CHANGER CONTROL is turned to OFF.

Records may be rejected (that is, removing the pick-up arm from the record) at any time by simply turning the CHANGER CONTROL to REJ.

To turn off the phonograph, turn the CHANGER CONTROL to OFF. However, never turn off the phonograph while it is in the changing cycle. Do not attempt to force the pick-up arm back to the arm rest.

## MANUAL OPERATION

Before you place any records on the turntable, place the record support arm on the spindle and turn CHANGER CONTROL to REJ. Allow the changer to automatically shut off. Then lift the record support arm and swing to the back, away from the turntable. Place your record (again you can play any size, any speed) on the turntable and set the CHANGER CONTROL to ON. Be careful not to turn past the ON position. With the turntable spinning, place the pick-up arm on the record on the leadin groove of the record. When you wish to $r$ esume automatic operation, set the CHANGER CONTROL to REJ. Then, as outlined above, load records on the spindle.

SCHEMATIC


TUBE LAYOUT CHART


ALIGNMENT PROCEDURE

Receiver   Dial   Setting	Signal Generator Frequency	Dummy   Antenna	Signal Generator Connections	Output Indicator	Trimmer Adjustment	Trimmer Function	Remarks
Minimum capacity	455 KC . 400 cycle AM	. IMFD	High side-grid converter tube 12BE6 Low side-chassis	Output Meter across voice coil	L3 \& L4	I.F.	Adjust for maximum output
"	$\begin{aligned} & 1600 \mathrm{KC} \\ & 400 \mathrm{cycle} \mathrm{AM} \end{aligned}$	" . .	"	"	C-4 OSC	Oscillator	"
1400 KC	$\begin{aligned} & 1400 \mathrm{KC} \\ & 400 \mathrm{cycle} \mathrm{AM} \end{aligned}$	$\begin{aligned} & .00025 \\ & M F D \end{aligned}$	High side-one ant. terminal Low side-0ther ant. terminal	"	$\begin{aligned} & \mathrm{C}-2 \\ & \text { An.t. Loop } \end{aligned}$	Antenna	"

## HOW TO ORDER PARTS

The followinq information is needed to properly handle your repair part order. ALWAYS SPECIFY on your order blank -

Item for   which Part   is Ordered	Model   No.	Serial   No.   When   Given)	Part   No.	Description   Of Part	Quantity   Wanted	Price of   Each Part	Total   Price	Shipping   Weiqht
RADIO-   PHONOGRAPH								

## PARTS LIST

FOR MODELS 652. 5975 and 652. 5985

ILLUSTRATION NUMBER	PART NUMBER	DESCRIPTION OF PART	PRICE EACH
C1-C2-C3-C4	CV-20	var. Cond. Two gang Tuning	\$ 1.70
C5-C6-C17	CM-221	Mica Cond. 200 mmfd	. 20
C7-C15-C16	CP-103-4	Tubular Cond. . $01 \mathrm{mfd}-400 \mathrm{~V}$	. 20
C8	CP-202-4	Tubular Cond. . $002 \mathrm{mfd}-400 \mathrm{~V}$	20
C9	CP-103-6	Tubular Cond. . $01 \mathrm{mfd}-600 \mathrm{~V}$	. 20
C10	CP-104-4	Tubular Cond. . $1 \mathrm{mfd}-400 \mathrm{~V}$	. 20
C11	CP-503-4	Tubular Cond. $.05 \mathrm{mfd}-400 \mathrm{~V}$	20
C12-C13-C14	CE-1000	Elect. Cond. $40 \times 40 \times 20 \mathrm{mfd} / 150 \mathrm{~V}$	1.20
R1	RC-223-1	Carbon Res. 22 K ohm 1/2W $20 \%$	. 20
R2	RC-221-1	Carbon Res. 220 ohm 1/2W 20\%	. 20
R3	RC-106-1	Carbon Res. 10 meg ohm 1/2W 20\%	. 20
R4	RC-224-1	Carbon Res. 220 K ohm 1/2W $20 \%$	. 20
R5	VC-19	Tone Cont 500 K ohm	. 80
R6	RC-151-1	Carbon Res. 150 ohm 1/2W 20\%	. 20
R7	VC-18	Vol. Cont W/S 1 meg ohm	. 80
R8	RC-225-1	Carbon Res. 2.2 meg ohm 1/2W 20\%	. 20
R9	RC-105-1	Carbon Res. 1.0 meg ohm $1 / 2 \mathrm{~W} 20 \%$	. 20
R11	RC-222-4	Carbon Res. 2200 ohm 1W 20\%	. 20
R12	RC-331-4	Carbon Res. 330 ohm 1W 20\%	. 20
R13	RC-180-1	Carbon Res. 18 ohm 1/2W 20\%	. 20
L1	LP-510	Loop Ant.	1.00
L2	LC-10	Osc. Coil	1.00
L3	IFT 50	1st I.F.	1.60
L4	IFT 50	2nd I.F.	1.60
S2	SW12	Switch, Radio \& Phono	. 60
CR	Astatic LT5-AG	Crystal	6.00
B55		Fidelitone Needle or equivalent	1.00
M1	V.M-950-26	VM Changer	50.00
SP	SP-100	5" Speaker w/output XFMR	5.00
		Tube 12BE6	1.80
		Tube 12BA6	1.80
	.	Tube 12AT6	1.50
		Tube 50C5	2.00
		Tube 35W4	1.25

STEWART-WARNER PAGE 23-1

## ALIGNMENT PROCEDURE

MODELS $9160-\mathrm{A},-\mathrm{B}$,
-C, -D, -E

1. During the alignment of this receiver, the Tuning and Pointer knob will have to be set to a specific frequency. Since the dial scale is an integral part of the cabinet, the receiver chassis must be in the cabinet for correct positioning of the gang condenser and pointer. Before removing chassis from cabinet it will first be necessary to take off Volume Control knob, to pry off the two retaining clips at top of cabinet back and to remove the two chassis mounting screws which are accessible through slot openings at each side of cabinet back. (NOTE: Do not disturb the two externally mounted screws at bottom of cabinet back; these screws serve to mount loop and back to chassis frame.) Then turn the Tuning and Pointer knob to the desired position for alignment and, taking care not to change this setting,
pull Tuning and Pointer knob from gang condenser shaft. Now chassis can be withdrawn from cabinet without disturbing position of condenser.
2. Couple the signal generator to the receiver by connecting its output to several turns of wire formed in a circular shape so that it may be placed adjacent and parallel to the receiver loop antenna.
3. Connect an output meter across the speaker voice coil or from the plate of the 50C5 tube to chassis through a 0.1 Mfd . condenser.
4. Set volume control at maximum volume position and use a weak signal from the signal generator.

DUMMY ANT. IN SERIES WITH SIGNAL GENERATOR	SIGNAL GENERATOR CONNECTION	SIGNAL GENERATOR FREQUENCY	RECEIVER DIAL SETTING	TRIMMER AND SLUG NUMBER	TRIMMER AND SLUG DESCRIPTION	TYPE OF ADJUSTMENT
NONE	Connect directly to coupling turn as described in step 2 above.	455 KC   400 cycle Modulation	Any point where it does not affect the signal.	1-2	2nd I.F.	Adjust for maximum output. Then repeat adjustment.
				3-4	1st I.F.	
NONE	Connect directly to coupling turn as described in step 2 above.	1500 KC 400 cycle Modulation	1500 KC	5	Broadcast Oscillator	Adjust for maximum output.
NONE	Connect directly to coupling turn as described in step 2 above.	1500 KC 400 cycle Modulation	Tune to 1500 KC generator signal	6	Broadcast Antenna	Adjust for maximum output.



## SOCKET VOLTAGES

1. All measurements made with a voltmeter having a sensitivity of 20,000 ohms per volt except where indicated by ( ${ }^{*}$ ). The ( ${ }^{*}$ ) symbol designates a vacuum tube voltmeter measurement.
2. Dial tuned to maximum counter-clockwise position.


REAR OF CHASSIS
NOTE A: Grounding of center stud on tube socket is necessary to reduce capacity coupling between other pins. Oscillation may result if this ground is omitted

PAGE 23-2 STEWART-WARNER
MODELS 9160-A, 9160-B, 9160-C, 9160-D, 9160-E



Model 9164-B-Grey and Yellow

## SPECIFICATIONS

## FREQUENCY RANGE:

540 Kc . to 1600 Kc .
TUNING METHOD:
2 section ganged condenser; solid mounting.

## TUNING INDICATOR:

"GLOW LITE" illuminates funed frequency thru translucent dial.
I.F. FREQUENCY:

455 Kc.
POWER SUPPLY:
117 volts A.C.


The clock in this combination receiver is self-starting and therefore when the receiver plug is inserted into the wall outlet the clock will automatically start. Should there be a temporary stoppage of current, due to a power failure or other causes, the clock will automatically be turned on again after power has been restored. Resetting of the clock hands will then be required to make-up for the time the power was off.

SETTING THE CLOCK MANDS: To set the clock hands to the correct time merely use the Clock Set knob and rotate hands until they indicate the correct time.
Part 520334
Jan. 25, 1952

SETTING CLOCK AND RECEIVER FOR AUTOMATIC OPERATION: Tune the radio to the desired station and set the volume to the proper level. Turn Radio Control Switch to the "AUTO" position.

To set the Starting Time, rotate Alarm Set knob only in the direction indicated by the "ALARM" arrow until the Alarm Pointer on the hour hand indicates the desired time on the Alarm Dial. Radio will automatically be turned on at this pre-set time and will continue to play until receiver is turned off manually. Clock can not be again set for automatic operation until Radio Control Switch has been turned manually to the "OFF" position.

## REMOVING AND REPLACING CLOCK KNOBS AND CRYSTAL

KNOBS: The Radio Control Switch knob, or the Alarm Set knob may be taken off by prying them forward. The Clock Set knob is screwed on and must be removed by rotating it in a counterclockwise direction while at the same time holding the shaft steady with a fine pair of long nose pliers-WARNING: Place a piece of paper between pliers and the dial crystal to avoid damage to this part.

CRYSTAL: In order to service this part, it will be necessary to remove receiver chassis from cabinet, and to withdraw clock unit from chassis.

To remove receiver chassis from cabinet first take off the Volume and Tuning knobs. Next pry off the two retaining clips at top of cabinet back and remove the two chassis mounting screws which are accessible through slot openings at each side of cabinet back. (NOTE: Do not disturb the two externally mounted screws at bottom of cabinet back;

## PARTS REPLACEMENT

Should it be desired to replace any other parts than those disted in the receiver parts list, they may be obtained by writing to: Telechron Dept.
General Electric Co.
Ashland, Mass.
Please specify that unit for which parts are wanted is a: C40Bg 10 Switch Timer.
these screws serve to mount loop and back to chassis.) Chassis can now be withdrawn from cabinet.

To remove the clock, first slip the "Glow Lite" from its bracket. Next, remove the fibre shield around top of clock by prying off the two retaining clips located on each end of shield. Unsolder all leads coming from radio chassis to the clock. Now take off the three mounting screws that retain clock mounting bracket and entire unit can be withdrawn from receiver chassis. Remove the clock knobs as indicated in previous section.

Next, bend out the four retaining ears that hold bezel in position and remove it from clock. The bezel background and crystal can now be taken off.

## ALIGNMENT PROCEDURE

1. During the alignment of this receiver, the "GLOW LITE" tuning indicator will have to be set to a specific frequency. Since the dial scale is an integral part of the cabinet, the receiver chassis must be in the cabinet for correct positioning of the gang condenser and pointer. Before temoving chassis from cabinet it will first be necessary to take off Volume Control 'knob, to pry off the two retaining clips at top of cabinet back and to remove the two chassis mounting screws which are accessible through slot openings at each side of cabinet back. (NOTE: Do no ${ }^{+}$disturb the two externally mounted screws at bottom of cabinet back; these screws serve to mount loop and back to chassis frame.) Then turn the Tuning knob to the desired position for
alignment and, taking care not to change this setting, pull Tuning knob from shaft. Now chassis can be withdrawn from cabinet without disturbing position of condenser.
2. Couple the signal generator to the receiver by connecting its output to several turns of wire formed in a circular shape so that it may be placed adjacent and parallel to the receiver loop antenna.
3. Connect an output meter across the speaker voise coil or from the plate of the 50 C 5 tube to B - lug through a 0.1 Mfd . condenser.
4. Set voluine control at maximum volume position and use a weak signal from the signal generator.

| DUMMY ANT. <br> IN SERIES <br> WITH SIGNAL <br> GENERATOR | SIGNAL <br> GENERATOR <br> CONNECION | SIGNAL <br> GENERATOR <br> FREQUENCY | RECEIVER <br> DIAL <br> SETTING | TRIMMER <br> AND SLUG <br> NUMBER | TRIMMER <br> AND SLUG <br> DESCRIPTION | TYPE OF ADJUSTMENT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



## SOCKET VOLTAGES

1. All measurements made with a voltmeter having a sensitivity of 20,000 ohms per voit except where indicated by (*). The (*) symbol designates a vacuum tube voltmeter measurement.
2. Dial tuned to maximum counter-clockwise position.


## REAR OF CHASSIS

## PARTS LIST





## frequency range

540 Kc . to 1600 Kc.

## TUNING METHOD:

2 section ganged condenser; solid mounting.

## TUNING INDICATOR:

"GLOW LITE" illuminates tuned frequency thru translucent dial.

## I.F. FREQUENCY:

455 Kc.

POWER SUPPLY:
117 volts A.C

## SPEAKER:

4 inch PM Dynamic
Voice coil impedance- 3.2 ohms

## SPECIFICATIONS <br> CLOCK SET:

Conveniently accessible at front of clock.

## ALARM:

Turns radio on at a pre-set time. "Buzzer Alarm" can be set to sound ten minutes after radio has been "turned on" automatically.

## SLEEP SWITCH:

Turns radio off automatically up to one hour after being set.

## UTILITY SOCKET:

Accommodates a 117 volt A.C. type appliance whose rating does not exceed 1100 watts.

## POWER OUTPUT:

Undistorted-. 7 watt
Maximum-1.1 watt

## ANTENNA:

High impedance loop
WEIGHT: (Packed)
7 lbs.
DIMENSIONS:
Length-113/8
Height-63/4"
Depth-57/8"

## CLOCK DIAL:

Easy to read Black and Gold numerals with luminescent hour markers and hands.

## CLOCK OPERATION

The clock in this combination receiver is self-starting and therefore when the receiver plug is inserted into the wall outlet the clock will automatically start. Should there be a temporary stoppage of current, due to a power failure or other causes, the clock will automatically be turned on again after power has been restored. Resetting of the clock hands will then be required to make-up for the time the power was off.

SETTING THE CLOCK HANDS: To set the clock hands to the correct time merely use the Clock Set knob and rotate hands until they indicate the correct time.

SETTING CLOCK AND RECEIVER FOR AUTOMATIC OPERATION: Tune the radio to the desired station and set the volume to the proper level. Turn Radio Control Switch to the "AUTO" position.

To set the Starting Time, pull the Alarm Set knob forward. Then rotate this knob only in the direction indicated by the "ALARM" arrow until the Alarm Pointer on the hour hand indicates the desired time on the Alarm Dial. Radio will automatically be turned on at this pre-set time and will continue to play until receiver is turned off manually. Clock can not be again set for automatic operation until Radio Control Switch has been turned manually to the "OFF" position.

If you wish to hear the "buzzer alarm," leave the Alarm Set knob in the "out" position and the buzzer will sound approximately 10 minutes

after radio has been turned on. To shut buzzer off, merely push in the Alarm Set knob.

If you do not wish the "buzzer alarm" to sound, push Alarm Set knob in after completing the setting of the Starting Time.

USING "BUZZER ALARM" INDEPENDENTLY OF THE RADIO OPERATION: If you wish to use the clock as an alarm only, independent of the radio, merely set alarm as described in paragraph entitled "To set the Starting Time." Set the Alarm Dial approximately 10 minutes ahead of desired Alarm Time. To shut the buzzer off, push in the Alarm Set knob.

SETTING CLOCK AND RECEIVER FOR AUTOMATIC SHUT-OFF: If radio has been previously turned on automatically, it will first be necessary to momentarily set Radio Control Switch to the "OFF" position before setting it to either of the following positions. Place the Radio Control Switch in either the "OFF" or "AUTO" position. THE TWO PRECEEDING PROCEDURES ARE VERY IMPORTANT! Setting the control to the "AUTO" position will allow the receiver to subsequently be turned on automatically at a pre-set time.

Now, turn the Sleep Switch in the direction of the "SLEEP" arrow. Rotating this knob all the way clockwise to the " 60 " position will allow the radio to operate for approximately one hour from the time the Sleep Switch has been set.

Setting this switch to any intermediate point will allow the receiver to operate for a proportional part of the hour.
CONNECTING THE APPLIANCE: Insert the power plug of the appliance into the utility socket provided at rear of the receiver. This appliance must have a wattage rating that does not exceed 1100 watts. If this wattage is exceeded, damage to either the timing mechanism or the radio could occur.

## REMOVING AND REPLACING

KNOBS: The Radio Control Switch knob, Alarm Set knob, or the Sleep Switch knob may be taken off by prying them forward. The Hand Set knob is screwed on and must be removed by rotating it in a counterclockwise direction while at the same time holding the shaft steady with a fine pair of long nose pliers-WARNING: Place a piece of paper between pliers and the dial crystal to avoid damage to this part. CRYSTAL: In order to service this part, it will be necessary to remove receiver chassis from cabinet, and to withdraw clock unit from chassis.

To remove receiver chassis from cabinet first take off the Volume and Tuning knobs. Next pry off the two retaining clips at top of cabinet back and remove the two chassis mounting screws which are accessible through slot openings at each side of cabinet back. (NOTE: Do not disturb the two externally mounted screws at bottom of cabinet back;

AUTOMATIC STARTING OF THE APPLIANCE: To start the appliance automatically, turn the "ON-OFF" Switch of the appliance to the "ON" position and set the clock as described in paragraph entitled "To set the Starting Time." The radio and utility socket are energized simultaneously and therefore the radio can not be turned on while the instrument is pre-set for automatic operation of an appliance. But, once the appliance is on, the radio can be used in the normal manner.
If you do not wish to hear the radio when the appliance is automatically turned on, turn the Volume Control fully counter-clockwise.
When you have finished using the appliance and wish to use the radio independently of it, either turn the appliance's "ON-OFF" Switch to the "OFF" position or remove the appliance plug from the utility socket at rear of receiver.

AUTOMATIC SHUT-OFF OF AN APPLIANCE: An appliance can be shutoff automatically by connecting it to the utility socket in the same manner as described above.
The setting for automatic shut-off is the same as described in paragraph entitled "Setting Clock and Receiver for Automatic Shut-off."

As the sleep Switch has no accurate calibration the setting of this switch must be approximate. This instrument is not recommended when accurate shut-off time is required.
these screws serve to mount loop and back to chassis.) Chassis can now be withdrawn from cabinet.
To remove the clock, first slip the "Glow Lite" from its bracket. Next, remove the fibre shield around top of clock by prying off the two retaining clips located on each end of shield. Unsolder all leads coming from radio chassis to the clock. Now take off the three mounting screws that retain clock mounting bracket and entire unit can be withdrawn from receiver chassis. Remove the clock knobs as indicated in previous section.
Next, bend out the four retaining ears that hold bezel in position and remove it from clock. The bezel background and crystal can now be taken off.

## SERVICING CLOCK MECHANISM

Should service of the clock mechanism be required contact your Stewart Warner Distributor for the name and address of the nearest Telechron Service Depot.

## PARTS REPLACEMENT

[^32]
## ALIGNMENT PROCEDURE

1. During the alignment of this receiver, the "GLOW LITE" tuning indicator will have to be set to a specific frequency. Since the dial scale is an integral part of the cabinet, the receiver chassis must. be in the cabinet for correct positioning of the gang condenser and pointer. Before temoving chassis from cabinet it will first be necessary to take off Volume Control knob, to pry off the two retaining clips at top of cabinet back and to remove the two chassis mounting screws which are accessible through slot openings at each side of cabinet back. (NOTE: Do not disturb the two externally mounted screws at bottom of cabinet back; these screws serve to mount loop and back to chassis frame.) Then turn the Tuning knob to the desired position for
alignment and, taking care not to change this setting, pull Tuning knob from shaft. Now chassis can be withdrawn from cabinet without disturbing position of condenser.
2. Couple the signal generator to the receiver by connecting its output to several turns of wire formed in a circular shape so that it may be placed adjacent and parallel to the receiver loop antenna.
3. Connect an output meter across the speaker voice coil or from. the plate of the 50 C 5 tube to B - lug through a 0.1 Mfd . condenser.
4. Set volume control at maximum volume position and use a weak signal from the signal generator.

DUMMY ANT.   IN SERIES   WITH SIGNAL   GENERATOR	SIGNAL   GENERATOR   CONNECTION	SIGNAL   GENERATOR   FREGUENCY	RECEIVER   DIAL   SETTING	TRIMMER   AND SLUG   NUMBER	TRIMMER   AND SLUG   DESCRIPTION	TYPE OF ADJUSTMENT



SOCKET VOLTAGES

1. All measurements made with a voltmeter having a sensitivity of 20,000 ohms per volt except where indicated by (*). The (*) symbol designates a vacuum tube voltmeter measurement.
2. Dial tuned to maximum counter-clockwise position.


3. Remove chassis and loop antenna (mounted to chassis) from cabinet-ailow loop to remain attached to chassis.
4. Replace the dial scale on the shaft of the gang condenser.
5. Since the "position indicator" for the dial scale is an integral part of the cabinet, it becomes necessary to install a "temporary pointer" when the chassis is removed from the cabinet. This can readily be accomplished by securing a piece of heavy wire to the dial light bracket and shaping the free end of the wire so that it can be placed in a vertical position between the dial scale and the dial light. With the gang condenser fully meshed, the "temporary pointer" should appear at the edge of the broadcast band dial scale base line.
6. Connect ground lead of signal generator to B-.

CAUTION: If your test oscillator is designed with an AC-DC power supply, connect ground lead of signal generator to B- through a 25 Mfd. condenser.
5. Connect an output meter across the speaker voice coil or from the plate of the $50 B 5$ tube to $B$ - through a 0.1 Mfd. condenser.
6. Set volume control at maximum volume position and use a weak signal from the signal generator.


bottom view
BAND SWITCH SET TO "SW" POSITION
dIAL TUNED TO MAXIMUM COUNTER-CLOCKWISE POSITION

fill view of cultus
dRIVE CORD ARRANGEMENT


To string dial cord, turn the main drive drum to maximum counterclockwise position and use following parts
114955 Clip on end of
502773 Cord ( $31 / 2$ feet)
119087 Ring
161384 Tension Spring


REAM OF CHASSE
NOTE A: The center stud of this tube must be connected to $B$ - to reduce capacity coupling between other pins. Oscillation may result if this connection is omitted.

PAGE 23-12 STEWART-WARNER
MODEL 9156-A


## ALIGNMENT PROCEDURE

1. During the alignment of this receiver, the pointer will have to be set to a specific frequency. Since the dial scale is an integral part of the cabinet, the receiver chassis must be in the cabinet for correct positioning of the gang condenser and pointer.
Before setting the pointer to the desired frequency, it will be necessary to check the position of pointer with respect to the gang condenser To accomplish this, rotate tuning knob fully counter-clockwise until gang condenser is fully meshed. With gang in this position, pointer should be directly over the third dot or depression located on the first left hand vertical bar of the speaker grill. (See picture of the receiver on front side of this data sheet).
If the pointer is not properly positioned, hold the Tuning Knob steady and move the pointer manually to the proper place.
2. Before removing chassis from cabinet, it will be necessary to take off the Volume Control knob and Tuning knob, to pry off the two retaining clips at top of cabinet back and to remove the two chassis mounting screws which are accessible through openings at bottom corners of cabinet back. (NOTE: Do not disturb the two externally mounted
screws at bottom of cabinet back; these screws serve to mount loop antenna and back to chassis frame). Then turn the tuning shaft until pointer is set to desired frequency for alignment and taking care not to change this setting, withdraw chassis from cabinet. The cabinet grill will hold the pointer, allowing it to be pulled from its shaft as chassis is withdrawn.
3. Couple the signal generator to the receiver by connecting its output to several turns of wire formed in a circular shape so that it may be placed adjacent and parallel to the receiver loop antenna.
4. Connect an output meter across the speaker voice coil or from the plate of the 50C5 tube to B- (see voltage chart for convenient connection point) through a 0.1 Mfd . condenser.
5. Set volume control at maximum volume position and use a weak signal from the signal generator.
6. After alignment has been completed and chassis reassembled in cabinet and pointer properly positioned, check calibration over entire dial and should the calibration error be objectionable, repeat procedure, exercising greater precaution in the initial setting of the pointer.

DUMMY ANT. IN SERIES WITH SIGNAL GENERATOR	SIGNAL GENERATOR CONNECTION	SIGNAL GENERATOR FREQUENCY	RECEIVER DIAL SETTING	TRIMMER AND SLUG NUMBER	TRIMMER AND SLUG DESCRIPTION	TYPE OF ADJUSTMENT
NONE	Connect directly to coupling turn as described in step 2 above.	$455 \text { KC }$	Any point where it does not affect the signal.	1-2	2nd I.F.	Adjust for maximum output. Then repeat adjustment.
		Modulation		3-4	1 st I.F.	
NONE	Connect directly to coupling turn as described in step 2 above.	1500 KC 400 cycle Modulation	1500 KC	5	Broadcast Oscillator	Adjust for maximum output.
NONE	Connect directly to coupling turn as described in step 2 above.	1500 KC 400 cycle Modulation	Tune to 1500 KC generator signal	6	Broadeast Antenna	Adjust for maximum output.



TRIMMER LOCATIONS

## POINTER AND SRIVE CORD ARRANGEMENT

Ta string dial cord, turn the gang condenser drum to maximum counter-clockwise position and position pointer drum as shown in illustration and use the following parts:


## POINTER REPLACEMENT

In order to replace the pointer, it $\cdot$ will first be necessary to remove the chassis from the cabinet as outlined in step 2 in the Alignment Procedure.
A new pointer may now be installed by inserting it, from the rear of the cabinet, into the recess at the front base of cabinet. Final positioning of pointer can only be done after chassis has been reinserted into cabinet and pointer has engaged pointer shaft. The setting must be accomplished in accordance with directions given in the second paragraph of step 1 of the Alignment Procedure.

## SOCKET VOLTAGES

1. All measurements made with a voltmeter having a sensitivity of 20,000 ohms per volt excep where indicated by (*). The (*) symbol designates a vacuum tube voltmeter measurement.
2. Dial tuned to maximum counter-clockwise position

NOTE A: Grounding of cen ter stud on tube socket is necessary to reduce capacity coupling between other pins. Oscillation may result if this ground is omitted.

rear of chassis

## MODELS 9161-A,

9161 -B, 9161 -C


- John F. Rider


1. With the gang condenser fully meshed, the dial pointer should be in a horizontal position, parallel to the bottom edge of the cabinet. If it is set incorrectly, merely hold tuning control shaft steady and turn pointer to correct position.
2. Duting the alignment of this receiver, the dial pointer will have to be set to several different frequencies. Since the dial scale is an integral part of the cabinet, the receiver chassis must be in the cabinet for correct positioning of the gang condenser and pointer. To remove chassis from cabinet, first remove cabinet back, all knobs, and the two chassis mounting screws. Turn dial pointer to desired position for alignment and hold tuning shaft firmly in one hand. Then carefully remove pointer from gang condenser shaft. Chassis

can now be withdrawn from cabinet without disturbing position of condenser.

NOTE: During the alignment of the Broadcast R.F. and Oscillator stages of this receiver, it will not be necessary to remove chassis from cabinet as trimmers 5,6 and 7 can be adjusted by the use of a short screwdriver.
3. Connect ground lead of signal generator to receiver chassis.
4. Connect an output meter across the speaker voice coil or from the plate of the 3 V 4 tube to chassis through a .01 Mfd . condenser.
5. Set volume control at maximum volume position and use a weak signal from the signal generator.

DUMMY ANT.   IN SERIES WITH SIGNAL GENERATOR	CONNECT HIGH SIDE OF SIGNAL GENERATOR TO	SIGNAL GENERATOR FREQUENCY	$\begin{aligned} & \text { BAND } \\ & \text { SWITCH } \\ & \text { POSITION } \end{aligned}$	$\begin{aligned} & \text { RECEIVER } \\ & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	TRIMMER NUMBER	TRIMMER   DESCRIPTION	TYPE OF ADJUSTMENT
. 2 Mfd .	Terminal "C" of Broadcast Antenna Coil	455 KC   400 cycle AM Modulated	Broadcast (counterclockwise)	Any point where it does not affect the signal.	1-2	2nd I.F.	Adjust for maximum output. Then repeat adjustment.
Condenser					3-4	1st I.F.	
200 MMFD. Mica Condenser	External antenna lead (blue)	1500 KC   400 cycle AM Modulated	Broadcast (counterclockwise)	1500 KC	5	Broadcast Oscillator (Shunt)	Adjust for maximum output.
200 MMFD. Mica Condenser	External antenna lead (blue)	1500 KC   400 cycle AM Modulated	Broadcast (counterclockwise)	Tune to 1500 KC Generator Signal	6	Broadcast Antenna	Adjust for maximum output.
200 MMFD. Mica Condenser	External antenna lead (blue)	600 KC   400 cycle AM Modulated	Broadcast (counterclockwise)	Tune to 600 KC Generator Signal	7	Broadcasi Oscillator (Series Pad)	Adjust for maximum output. Try to increase output by detuning trimmer and retuning receiver dial until maximum output is obtained.
200 MMFD. Mica Condenser	External antenna lead (blue)	Repeat adjustment of trimmers 5 and 6 at 1500 Kc . Then re-check adjustment of trimmer 7 at 600 Kc .					
400 OHM Carbon Resistor	External antenna lead (blue)	15. MC   400 cycle AM Modulated	Short Wave (clockwise)	15 MC	8	Short Wave Oscillator	Adjust for maximum output. Check to see if proper peak was obtained by tuning in image at approx. 14.1 MC. If image does not appear, realign at 15 MC. with trimmer screw farther out. Recheck image.
400 OHM Carbon Resistor	External antenna lead (blue)	15 MC   400 cycle AM Modulated	Short Wave (clockwise)	Tune to 15 MC Generator Signal	9	Short Wave Antenna	Adjust for maximum output. Try to increase output by detuning trimmer and retuning receiver dial until maximum output is obtained.



## SOCKET VOLTAGES

1. All measurements made with a voltmeter having a sensitivity of 20,000 ohms per volt except where indicated by (*). The (*) symbol designates a vacuum tube voltmeter measurement.
2. Band switch set to "BC"" position.
3. Dial tuned to maximum counter-clockwise position.

Botiom view of chnssis


## MODEL 9159-A

## SQUEALING OR INOPERATIVE 9159-A RADIOS

Because of inadequate plating on some 9159-A chassis, it was impossible to effect a good soldered ground connection. Over a period of time, these solder joints may develop a high resistance to ground, causing the receiver to operate improp-
erly, or become entirely inoperative. All chassis solder connections should be prodded with a screw driver to see if they will break loose. If they do, the chassis should be cleaned and the connecfion resoldered, using a good soldering flux.

To string dial cord, turn the main drive drum to maximum counter-clockwise position and use following parts:

114955 Clip on end of cord 502773 Cord ( $31 / 2$ feet)
119087 Ring ( $1 / 2$ feet) 161384 Tensio


## ALIGNMENT PROCEDURE

1. During the alignment of this receiver, the pointer will have to be se to a specific frequency. Since the dial scale is an integral part of the cabinet, the receiver chassis must be in the cabinet for correct positioning of the gang condenser and pointer.
Before setting the pointer to the desired frequency, it will be necessary to check the position of pointer with respect to the gang condenser To accomplish this, rotate tuning knob fully counter-clockwise until gang condenser is fully meshed. With gang in this position, pointer should be parallel with base of cabinet.
If the pointer is not properly positioned, hold the Tuning Knob steady and move the pointer manually to the proper place.
2. Before removing chassis from cabinet, it will be necessary to take off the Volume Control knob, Tone knob, Tuning knob and cabinet back and to remove the two chassis mounting screws at bottom of cabinet. Then turn the tuning shaft until pointer is set to desired frequency for alignment and taking care not to change this setting, remove pointer.
3. Connect an output meter across the speaker voice coil or from the plate of the 35 C 5 tube to B - (see voltage chart for convenient connection point) through a 0.1 Mfd . condenser.
4. Connect ground lead of signal generator to $B-$ lug. CAUTION: If your signal generator is designed with an AC-DC power supply, connect ground lead to B- lug through a .25 Mfd. condenser. (See voltage chart for convenient $B-$ connection.)
5. Set tone control to its maximum clockwise position.
6. Set volume control at maximum volume position and use a weak signal from the signal generator.
7. After alignment has been completed and chassis reassembled in cabine and pointer properly positioned, check calibration over entire dial and should the calibration error be objectionable, repeat procedure, exercising greater precaution in the initial setting of the pointer.

DUMMY ANT.   IN SERIES   WITH SIGNAL GENERATOR	SIGNAL GENERATOR CONNECTION	SIGNAL GENERATOR FREQUENCY	RECEIVER   DIAL   SETTING	TRIMMER AND SLUG NUMBER	$\begin{aligned} & \text { TRIMMER } \\ & \text { AND SLUG } \\ & \text { DESCRIPTION } \end{aligned}$	TYPE OF ADJUSTMENT
0.1 Mfd. Condenser	Lug on R.F.   Trimmer \#6	455 KC   400 cycle Modulation	Any point where it does not affect the signal.	1-2	2nd I.F.	Adjust for maximum output. Then repeat adjustment.
				3-4	1 st I.F.	
200 Mmfd. Mica Condenser	External Antenna Terminal on Loop Frame	1600 KC 400 cycle Modulation	1500 KC	5	Broadcast Oscillator	Adjust for maximum output.
200 Mmfd. Mica Condenser	External Antenna Terminal on Loop Frame	1500 KC   400 cycle Modulation	Tune to 1500 KC generator signal	6	Broadcast R.F.	Adjust for maximum output.
200 Mmfd . Mica Condenser	External Antenna Terminal on Loop Frame	1500 KC   400 cyole Modulation	Tune to 1500 KC generator signal	7	Broadcast Antenna	Adjust for maximum output.

TRIMMER LOCATION CHART


## POINTER AND DRIVE CORD ARRANGEMENT

To string dial cord, turn the main drive drum to maximum counter clockwise position and use following parts:
114955 Clip on end of cord
117057 Cord (2 feet)
505161 Tension Spring


## SOCKET VOLTAGES

1. All measurements made with a voltmeter having a sensitivity of 20,000 ohms per volt except where indicated by (*). The (*) symbol designates a vacuum tube voltmeter measurement.
2. Terminals on loop antenna are shorted together to minimize noise signal pickup.
3. Dial tuned to 540 Kc.
4. Volume control set to maximum with no signal.
5. Tone control set at its maximum clockwise position.

NOTE A: The center stud of this tube must be connected to B - to reduce capacity coupling between pins. Oscillation may result if this connection is omitted.

PARTS LIST

$\begin{aligned} & \text { DIA- } \\ & \text { GRAM PART } \\ & \text { NO. NO. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { LIST } \\ & \text { PRICE } \end{aligned}$	$\begin{array}{ll} \text { DIA- } \\ \text { GRAM } & \text { PART } \\ \text { NO. } \end{array}$	DESCRIPTION	LIST	$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\underset{\text { PRICE }}{\text { LIST }}$
	CONDENSERS			RESISTORS-Continue			MISCELLANEOUS-Continued	
12-A,B,C .... 520388	Condenser-variable gang (includes drum)...... $\$$	\$4.50	33-A.......... 505858	Resistor-carbon 470,000 Ohms $1 / 5$ watt (Part		508235	Clip-retains cabinet back ...........................	. 03
14............. 512016		. 25	33-D........... 505858	of Audic Coupling Unit)..........................	. 80	${ }_{\text {L }} 117057$	Cord-dial drive (2 Knob-'to required).....i.ioper ft.	. 35
15...............513405	Condenser--ceramic 15 Mmfd .500 volt (Temperature Compensating)	. 25	33-D............505858	Resistor-carbon of Audio Coupling Unit).........................	. 80	520387-B	Knob-"'TONE" for Model $9165-\mathrm{B}$ (Tan).........	. 30
19.............. 512503	Condenser-mica 100 Mmfd . 500 volt	. 25	35.............. 510179	Resistor-carbon 220,000 Ohms $1 / 2$ watt.	. 12	520385-A	Knob-"TUNING" for Model 9165-A (Black	
21-A........... 505867	Condenser-ceramic 66 Mmfd . (Part of 1st I.F.		36.............. 510121	Resistor-carbon 150 Ohms $\pm 10 \% 1 / 2$ watt....	. 16		and Yellow)	. 40
		2.15	38.an_...... 510240	Resistor-carbon 1500 Ohms 1 watt................	.16	520385-B	Knob-"TUNING" for Model 9165-B (Rust	
21-B........... 505867	Condenser-ceramic 83 Mmfd . (Part of 1st I.F.	2.				520386-A		. 40
23.............. 512016	Condenser- 02 Mfd . 400 volt.	25		COILS AND TRAN			(Black) ..........................................	. 25
25-A.......... 505867	Condenser-ceramic 83 Mmfd . (Part of 2nd I.F.		16.................. 5080892	Loop antenna	1.60	520386-8	Knoob-'VOLUME ON', for 9165-B (Rust)....	. 25
25-B 505867	transformer) .....................................	2.15	20............... 506094	Coil-oscillator	1.50	520384-A	Pointer for Model 9165-A (Black)....................	- . 35
25-B........... 505867	Condenser-ceramic 66 Mmfd . (Part of 2nd I.F. transformer)	2.15	21.............. 505867	Transformer-1st I.F. (includes condensers	15	$\begin{array}{\|l\|l\|} \hline 520384- \\ 520186 \end{array}$	Rubber washer for mounting front panel to	. 35
28,29 ......... 512503	Condenser-mica 100 Mmfd .500 volt.............	. 25	25.............. 505867	Transformer-2nd I.F. (Includes condensers	2.15		cabinet bo	. 05
30............. 512002	Condenser-. 002 Mfd . 600 volt.....................	. 20	25............... 505867	25-A and 25-B)		18785	Screw- \#8-7/8" chassis mountin	. 02
$32 \ldots . . . . . . . . . . . . .512002$ $33-$ B........ 505858	Condenser-. 002 Mfd. 600 volt.........i	. 20	40............. 508146	Transformer--output	2.10		Screw-\#8-32 $\times 3 / 8^{6}$, plastic thread cutting;	- 05
	of Audio Coupling Unit)...................	. 80		OTHER ELECTRICAL PARTS		170820	Screw-\#8-32 ${ }^{1 / 2^{\prime \prime}}$ plastic thread cutting;	
33-C........... 505858	of Audio Coupling Unit).   Condenser-ceramic 5000 Mmfd .450 volt (Part	. 80	33-A to D .. 505858	Audio Coupling Unit   A-Resistor-carbon $470,000 \mathrm{Ohms} 1 / 5 \mathrm{w}$.			retains cabinet back   Shaft--tuning $\qquad$	$.02$
34............. 512040	Condenser-- 15 Mfd . 400 volt.	. 35		B-Condenser-ceramic 250 Mmfd .450 v .	80	505367	Shield-tube; minjature	. 15
37............. 512006	Condenser-. 005 Mfd .600	. 25		C-Condenser-ceramic 5000 Mmfd .450 v .	. 80	507364	Socket-miniature ( 7 pin ) ............................	. 24
39-A,B ....... 508147	Condenser-electrolytic			D-Resistor-carbon 470,000 Ohms $1 / 5 \mathrm{w}$. Speaker-P.M. Dynamic ( $5^{\prime \prime}$ )				
	$\left.\begin{array}{l} \text { A- } 20 \mathrm{Mfd} .150 \mathrm{v} \\ \text { B- } 30 \mathrm{Mfd} .150 \mathrm{v} \end{array}\right\}$	1.40	42.............. 508699	Speaker-P.M. Dynamic ( $5^{\prime \prime}$ ) MISCELLANEOUS	4.80	$\begin{aligned} & 520394 \\ & 520395 \end{aligned}$	Instruction Book   Service Data Sheet	N/C
41............. 512030	Condenser-. 05 Mfd. 600 volt..........................	. 30	508244	Back for cabinet				
	RESISTORS		505368	Base for tube shield (miniature)				
13............ 510125	Resistor-carbon 220 Ohms $1 / 2$ watt.............. Resistor-carbon 470,000 Ohms $1 / 2$ watt.......	. 12	505165					
18............... 510161	Resistor-carbon 22,000 Ohms $1 / 2$ watt.............	. 12		and Yellow) ..........................................	10.00			
22............. 510121	Resistor-carbon $150 \mathrm{Ohms} \pm 10 \% 1 / 2 \mathrm{watt}$....	. 16	520392	Cabinet (complete) for Model 9165-B (Rust				
24............. 510191	Resistor-carbon 1 Meg. $1 / 2$ watt...................	. 12		and Tan)	10.00			
26............ 510164	Resistor-carbon 33,000 Ohms $1 / 2$ watt..........	. 12	520383-A	Cabinet body for Model 9165-A (Black)........	6.00			
27-A,B,C ... 520390	Volume and Tone control (includes ON-OFF switch)		$\begin{aligned} & 520383-\mathrm{B} \\ & 520382-\mathrm{A} \end{aligned}$	Cabinet body for Model 9165-B (Rust)   Cabinet front for Model 9165-A (Black and	6.00		...:? $0^{\circ}$	
	A-Volume control; 1 Meg.)			Yellow)	3.50			
	B-Tone control; 1 Meg.	2.25	520382 - B.	Cabinet front for Model 9165-B (Rust and Tan)	3.50			
	component is mounted on an auxiliary		500473	Clip for mounting li.r. transformer...............	. 02			
bracket,	remove this bracket and mount new con-		508149	Clip for mounting loop antenna.................	. 02			
trol dir	ectly to side of chassis.)		112745	Clip for mounting R.F. coil	. 01		:	
31.............. 510197	Resistor-carbon 10 Meg . $1 / 2$ watt................	. 12	114955	Clip-retainer on end of dial cord.................................				

## 455 K.C.



## REMOVING CHASSIS FROM CABINET

MODELS 9170-B,
9170-C, 9170-D

1. Raise the carrying handle until Latch Button is exposed. Press down on the button and simply separate the back and front halves of the cabinet while holding the latch button down.
2. Disconnect back retaining cord by removing center screw on receiver chassis.
3. Remove the four chassis mounting screws (see Trimmer Location

Chart) and lift chassis from cabinet.
4. Disengage one end of handle from escutcheon by squeezing together the wire retaining clip.
5. Remove the escutcheon by taking out the cross slotted screws.
6. Control knobs may now be removed by pulling them straight up.

## ALIGNMENT PROCEDURE

1. Remove chassis from cabinet by following procedure described above.
2. Connect an output meter across the speaker voice coil or from the plate of the 3 S 4 tube to chassis through a 0.1 Mfd . condenser.
3. Set volume control at maximum and use a weak signal from the signal generator.
4. Operate the receiver from a 117 volt $A C$ or $D C$ line.

SIGNAL GENERATOR CONNECTIONS		SIGNAL GENERATOR frequencr	RECEIVER DIAL SETTING	TRIMMER OR SLUG NUMBER	TRIMMER DESCRIPTION	TYPE OF ADJUSTMENT
CONNECT HIGH SIDE OF SIGNAL GENERATOR TO	CONNECT GROUND LEAD OF SIGNAL GENERATOR TO					
Lug on trimmer \#6 at side of gang (see chart below for location of trimmer).	Any B- terminal in chassis.   CAUTION If your signal generator is designed with an AC-DC type power supply, connect ground lead of signal generator to receiver through a .25 Mfd. condenser.	455 KC	Any point where it does not affect the signal.	1 and 2	2nd I.F. 1st I.F.	Adiust for maximum output. Then repeat adjustment.

IMPORTANT: Before undertaking alignment of the oscillator and antenna trimmers it is necessary to reassemble the chassis in the cabinet. The tuning knob should be installed on the gang condenser shaft so that when the condenser is fully meshed, the dot under the smaller 5 of the 55 on dial scale is directly opposite the pointer (gold mark on cabinet). As battery position slightly affects R.F. alignment, it is prefer-
able to have batteries in proper place. To gain access to oscillator and antenna trimmers, it will be necessary to open back of cabinet. In order to provide a coupling for the signal generator, during this part of the procedure, wind several turns of wire in a circular shape to form a radiating loop that may be placed adjacent (axes parallel) to the loop antenna. Now complefe the alignment procedure as follows.


## MODELS 9170-B,

 9170-C, 9170-D

TRIMMER LOCATION CHART
PARTS LIST

$\begin{array}{ll} \text { DIA- } \\ \text { GRAM } & \\ \text { NOART } \\ \text { NO. NO. } \end{array}$	DESCRIPTION	LIST
CONDENSERS		
12.A, B $\quad 521294$	Condenser-variable gang	2.50
$13 . \quad . \quad . \quad .513008$	Condenser-ceramic 470 Mmfd . 350 volt.	. 30
$16 \ldots \ldots . . . . . .512217$	Condenser-. 1 Mfd .400 volt.	. 50
$18 . . .{ }^{-1 . . .513022}$	Condenser-ceramic . 01 Mfd .450 volt.	. 34
$19 \ldots 513002$	Condenser-ceramic 47 Mmfd .500 volt.	. 24
22.A...... 521318	Condenser-ceramic 62 Mmfd . (Part of 1 st I.F. transformer)	1.50
22-B $\ldots$-... 521318	Condenser-ceramic 47 Mmfd . (Part of 1 st I.F. transformer) $\qquad$	1.50
24.	Condenser-ceramic . 01 Mmfd. 450 volt....-.......	. 34
25........ 512214	Condenser-. 05 Mfd . 400 volt.	30
27.1	Condenser-. 05 Mfd . 400 volt	30
28-A $\ldots$.... 521319	Condenser-ceramic 20 Mmfd . (Part of 2nd I.F. transformer) $\qquad$	1.50
32-A..... 521305	Condenser-ceramic 150 Mmfd .500 volt (Part of Audio Coupling Unit)	1.25
32-B $\quad 521305$	Condenser-ceramic 002 Mfd. 500 volt (Part of Audio Coupling Unit)	25
32-D....... 521305	Condenser--ceramic 01 Mfd. 500 volt (Part of Audio Coupling Unit)	1.25
32-F ....... 521305	Condenser-ceramic 150 Mmfd. 500 volt (Part of Audio Coupling Unit).	1.25
32-H........521305	Condenser-ceramic 5000 Mmfd. 500 volt (Part of Audio Coupling Unit).	1.25
33._....... 512214	Condenser-. 05 Mfd. 400 volt..................---3.-	.30
$34-\mathrm{A}, \mathrm{~B},$		
	$\left.\begin{array}{l}\left.\begin{array}{l}\text { A- } 250 \mathrm{Mfd} \text {. } 15 \mathrm{volt} \\ \text { B- } 40 \mathrm{Mfd} \\ \text { C- } 40 \mathrm{Mfd} . \\ 150 \\ \mathrm{volt}\end{array}\right\}\end{array}\right\}$	2.50
37.......... 513010	Condenser-ceramic 1500 Mmfd . 350 volt.	. 30
RESISTORS		
$14 \ldots 510195$	Resistor-carbon 4.7 Meg . $1 / 2$ watt.	12
15........ 510129	Resistor-carbon 390 Ohms $\pm 10 \% 1 / 2$ wati...-	. 12
$17 . . . . . . . . .510173$	Resistor-carbon 100,000 Ohms 1/2 watt.-......	. 12
21......... 510161	Resistor-carbon 22,000 Ohms $1 / 2$ watt...........	. 12
$23 \ldots \ldots . . . .510197$	Resistor-carbon 10 Meg . $1 / 2$ watt	. 12
26......... 510194	Resistor-carbon 3.3 Meg . $1 / 2 \mathrm{watt}$	12
29-A, B ... 521218	Volume control-1 Meg. (with On-Off switch)	1.25
31.	Resistor-carbon 27 Ohms $\pm 10 \% 1 / 2$ watt...	12
32-C...... 521305	Resistor-carbon 10 Meg. $1 / 5$ watt (Part of Audio Coupling Unit)	1.25
32-E....... 521305	Resistor-carbon 4.7 Meg. $1 / 5$ watt (Part of Audio Coupling Unit).	1.25
32-G....... 521305	Resistor-carbon 1 Meg. $1 / 5$ watt (Part of Audio Coupling Unit).	1.25
32-J ..-..... 521305	Resistor-carbon 3.3. Meg. $1 / 5$ watt (Part of Audio Coupling Unit) $\qquad$	1.25
35.......... 510126	Resistor-carbon 270 Ohms $\pm 10 \% ~ 1 / 2$ watt....	
36......... 510133	Resistor-carbon 680 Ohms $\pm 10 \%$ 1/2 watt....	. 12
38.....--- 510179	Resistor-carbon 220,000 Ohms $1 / 2$ watt.......	. 12
$41 . . .{ }^{-1 . . . ~} 510133$	Resistor-carbon 680 Ohm's $\pm 10 \% 1 / 2$ watt....	. 12
42......... 510146	Resistor-carbon 3300 Ohms $1 / 2$ watt..............	. 12
$43-A, B . . .521210$	Resistor-wire wound (include mounting bracket) $\left.\begin{array}{l} \text { A-2000 Ohms } \pm 5 \% 7 \text { watt } \\ \text { B }-150 \text { Ohms } \pm 10 \% 3 \text { wait (fuse type) } \end{array}\right\} \text {... }$	1.00
COILS \& TRANSFORMERS		
11......... 521375	Antenna-rod type (included mounting board)	2.00
$20 \ldots \ldots \ldots$	Coil-oscillator .........-. ${ }^{\text {a }}$ -	
22.......... 521318	Transformer-1st I.F. (includes condensers 22A and 22B) $\qquad$	1.50
28.......... 521319	Transformer-2nd 1.F. (includes condenser 28 -A)	1.50
39.......... 521266	Transformer-output	1.75


all prices on this parts uist are subject to change without notice.

SPECIFICATIONS


TUBE COMPLEMENT
1 12BE6 Oscillator and Converter
1 12BA6 IF Amplifier
1 12AT6 Detector-Audio Amplifier
$150 C 5$ Power Output
1 35W4 Rectifier

ALIGNMENT PROCEDURE

- Output meter across voice coil ( 3.2 ohm).
- Volume control at maximum for all adjustments.
- Align for maximum output. Reduce input as needed to keep output near 1.28 volts ( 0.5 watt).

SIGNAL GENERATOR				TUNER SETTING	ADJUST TRIMMERS TO MAXIMUM OUTPUT (in order shown)
Frequency	Coupling Capacitor	Connections to Receiver	Ground Connection		
455 kc	0.1 mfd .	12BE6 grid	B -	Rotor full open (Plates out of mesh)	Input and output slugs of IF cans
1650 kc	0.1 mfd .	12BE6 grid	B -	Rotor full mesh (Plates in mesh)	Oscillator trimmer A2
1500 kc.		Radiating Loop		1500 kc	Antenna trimmer Al

PARTS LIST

CAPACITORS		
Circuit Symbol	$\begin{gathered} \text { S-C } \\ \text { Part No. } \end{gathered}$	Description
C. 1	81778	Variable Condenser (30-39)
C. 2	81779	40-40-20 MF--150 V Electro. (31-38)
C. 3	110724	. $1 \mathrm{MF}-400 \mathrm{~V}$ (32-57)
C. 4	110801	. 05 MF - 400 V (32-5)
C. 5	110801	. 05 MF - 400 V (32.4)
c. 6	110291	100 MMF - 500 V (35-4)
C. 7	110542	. $02 \mathrm{MF}-400 \mathrm{~V}$ (32-3)
C. 8	110805	. 005 MF - 200 V ( $32-20)$
C. 9	110801	. 05 MF - 400 V (32-5)
C. 10	110291	100 MMF - 500 V (35-4)


Circuit   Symbol	S-C   Part No.				Description

## MISCELLANEOUS

## COILS

$\mathrm{X}-1 \quad 81797 \quad$ Couplate (CRL-400-001K) (36-3)
81784 4" Speaker (80-14)
81785 Knob - Volume Control (122-56)
$81786 \quad$ Knob - Tuning (122-58)
81776 Knob - Clock Controls
81777 Cabinet (120-70)
81775

## SERVICING OF TELECHRON MOVEMENT

Telechron has established service stations which are prepared to service the movement unit when delivered by itself - that is when physically removed from the radio receiver case. Under no circumstances will the clocks be serviced when not removed from the cabinet.
To take the clock movement out of the cabinet follow the instructions given below. Remove the following:

1. Line cord from power line.
2. Tuning knob - volume control knob.
3. Back panel and chassis from cabinet.
4. Three nuts holding clock clamp shield around clock.
5. Unsolder the black, blue and green wires connected to the clock after pulling back the clock shield.
6. Before the clock can be removed from the cabinet, the slumber switch must be in the full 60 minute position and the operation selector knob must be in the "on" position.
7. Remove the clock movement by slightly turning the rim so the movement parts can pass thru the cabinet opening.


## ALIGNMENT CHART

An accurate, calibrated signal generator and d-c vacuum tube voltmeter are necessary in order to align this radio. A sweep frequency signal generator and an oscilloscope may be used if available, but are not required. Any attempt to align without the required equipment is certain to result in failure. The chart lists the various alignment steps. Location of the alignment points is shown on the tube location and part identification chart.

Observe the following precautions:
(A) Make all adjustments in order given.
(B) Use a non-metallic screw driver and light pressure for slug adjustments.
(C) The standard 300 -ohm dummy antenna comprises a pair of resistors, one connected in series with each terminal of signal generator, of such value that the total impedance between terminals, including signal generator is 300 ohms.
(D) To use signal generator with sweep oscillator and oscilloscope, substitute steps 2A, 3A and 4A for steps 2, 3 and 4.

Band and Pointer	Signal Generator	Meter Connection	Adjustments and Notes
$1 . \quad$ -	-	-	With tuning capacitor fully meshed: Adjust dial pointer to marker at top left of dial; adjust f-m tuning slugs flush with bottom of glass coil-forms.
2. $A M$ HF; low ( 540 kc ) end of dial.	455 kc , no modulation, high side to pin 7 (grid) of V-10 (6BE6) thru . 01 uf capacitor, low side to chassis.	D.c VTVM to terminal 4 of L-10 and chassis. (AGC voltage).	Use least input signal to provide -1 to - 1.5 volts on -3-volt scale. Adjust secondary (top) of T-3, T-5, T-7 for maximum negative voltage with 1000 -ohm resistor across primary winding of transformer being adjusted. Adjust primary (bottom) of T-3, T-5, T-7 for maximum negative voltage with 1000 -ohm resistor across secondary winding of transformer being adjusted.
3. FM AFC OFF; low end of dial.	10.7 mc , no modulation; high side to high side of L-1 thru . 01 uf capacitor, low side to chassis.	Same as step 2.	Use least input signal to provide - 1 to -1.5 volts on - 3-volt scale. Adjust secondary (top), primary (bottom) of T-6 for maximum negative voltage. Leave signal generator output set to provide -2 volts, the correct signal level for step 4.
4. Same as step 3.	Same as step 3.	D-c VTVM to iunction R-17 and R-18 and to chassis.	Use -3-volt scale. Adjust secondary (top) of T-6 for zero voltage between positive and negative voltage.
5. FM AFC OFF; 108 mc .	$108 \mathrm{mc}, 400 \mathrm{cps}$ modulation to terminals FM and G thru 300 -ohm dummy antenna (note C).	D-c VTVM to terminal 4 of L-10 and chassis. (AGC voltage).	Use least input signal to provide - 1 to - 1.5 volts on -3-volt scale. Adjust C-29 (FM osc.) for maximum negative voltage.
6. FM AFC OFF; 88 mc .	88 mc ; otherwise same as step 5.	Same as step 5.	Check dial calibration. If incorrect, change position of C-31 in relation to L-6 (osc. coil) to obtain correct dial calibration of 88 mc and repeat steps 5 and 6 until dial calibration is correct at 108 mc and at 88 mc .
7. FM AFC OFF; 108 mc .	108 mc ; otherwise same as step 5.	Same as step 5.	Use least input signal to provide - 1 to -1.5 volts on -3-volt scale. Adjust C-7 (RF) C-1 (ant.) for maximum negative voltage. While adjusting C-7, rock signal generator slowly, returning to 108 mc . Recheck C-29.
8. FM AFC OFF; 100 mc .	100 mc ; otherwise same as step 5.	Same as step 5.	Check dial calibration.
9. FM AFC OFF; 90 mc .	90 mc ; otherwise same as step 5.	Same as step 5.	Check dial calibration. If steps 8 or 9 show incorrect dial calibration, repeat steps $1,5,6,7,8$ and 9.
10. AM HF; 1650 kc .	$1650 \mathrm{kc}, 400 \mathrm{cps}$ modulation to LOOP terminals through 50 -ohm resistor.	Same as step 5.	Use least input signal to provide - 1 to - 1.5 volts on - 3 -volt scale. Adjust C-42C (AM osc.) for maximum negative voltage.
11. AM HF; 1400 kc .	1400 र̌c; otherwise same as step 10.	Same as step 5.	Use least input signal to provide - 1 to - 1.5 volts on -3-volt scale. Adjust C-42A (ant.) and C-42B (RF) for maximụm negative voltage.
12. AM HF; 600 kc .	600 kc ; otherwise same as step 10.	Same as step 5.	Use least input signal to provide -1 to - 1.5 volts on -3-volt scale. Adjust L-9 (low-frequency antenna) slug for maximum negative voltage.
13. AM HF; 1000 kc .	Same as step 11.	Same as step 5.	Repeat step 11.
14. AM HF; 1000 kc .	1000 kc, 10 kc modulation; otherwise same as step 10.	A-c voltmeter across output connector TB-3.	Rock funing slowly to center of dip in meter reading while increasing signal input to provide readable indication.
15. Same as step 14.	Same as step 14.	Same as step 14.	Adjust C-50 to center of dip in meter reading. Increase signal input if necessary to obtain readable indication on 3 -volt or lower scale.

Alternate steps 2, 3 and 4 for use with sweep oscillator and oscilloscope

Band and Pointer	Signal Generator	Meter and Scope Connection	Adjustments and Notes
2A. AM HF; low (535 kc) end of dial.	455 kc , swept at 22.5 kc . High side to pin 7 (grid) of $\mathrm{V}-10$ (6BE6) thru . 01 uf capacitor. Low side to chassis.	D-c VTVM to terminal 4 of L-10 and chassis. (AGC voltage). Scope to pin 2 of T-5 (3rd IF, AM) and chassis.	Use least input signal to provide - 1 to -1.5 volts on -3-volt scale of VTVM. Adiust primary (bottom) and secondary (top) of T-3, T-5 and T-7 for best double-trace curve.
3A. FM AFC OFF; low end of dial.	10.7 mc swept at 150 kc . High side to high side of L-1 thru .01 uf capacitior. Low side to chassis.	D-c VTVM same as step 2A. Scope to pin 2 of V-6 (6AL5) with C-22 disconnected.	Use least input signal to provide - 1 to - 1.5 volts on - 3 -volt scale of VTVM. Adjust primary (bottom) and secondary (fop) of T-1, T-2, T-4 and primary (bottom) of T-6 for best double-trace curve. Reconnect C-22 before step 4A.
4A. Same as step 3A.	Same as step 3A.	D-c VTVM same as step 2A. Scope to junction of R-17 and R-18.	Use least input signal to provide - 1 to - 1.5 volts on -3-volt scale of VTVMi. Adiust secondary (top) of T-6 for crossover.

PAGE 23-4 STROMBERG-CARLSON
MODELS 400RPM, 400RPM2,
400RPO, Custom


SELECTOR   SWITCH	TUBE			TERMINAL								
POSITION	SYMBOL	TYPE	FUNCTION	1	2	3	4	5	6	7	8	9
FM	V-1	6CB6	FM-RF Ampl.	-. 1	0	0	$\begin{aligned} & \text { AC } \\ & 6.3 \end{aligned}$	170	150	0	-	-
FM	V-2	6AU6	FM Mixer	0	0	0	$\begin{aligned} & \text { AC } \\ & 6.3 \end{aligned}$	200	200	4.8	-	-
Any	V-3	6BA6	1st IF Ampl.	-. 1	0	0	$\begin{aligned} & \text { AC } \\ & 6.3 \end{aligned}$	190	140	1.0	-	-
Any	V-4	6BA6	2nd IF Ampl.	0	1.8	0	$\begin{aligned} & \text { AC } \\ & 6.3 \\ & \hline \end{aligned}$	190	140	2.5	-	-
FM	V-5	6AU6	FM Limiter AM Detector	-. 5	0	0	$\begin{aligned} & \text { AC } \\ & 6.3 \end{aligned}$	90	20	0	-	-
FM	V-6	6AL5	FM Ratio Det.	. 9	. 9	0	$\begin{aligned} & \text { AC } \\ & 6.3 \end{aligned}$	0	0	0	-	-
FM	V-7	12AT7	FM Osc., Var. Reactance	130	0	2.5	0	0	175	-2	0	AC 6.3
FM	V-8	6AL7	Tuning Indic.	0	0	350	-. 8	-. 8	-. 8	$\begin{aligned} & A C \\ & 6.3 \end{aligned}$	. 6	-
AM	V-9	6BA6	AM-RF Ampl.	0	0	$\begin{aligned} & \mathrm{AC} \\ & 6.3 \end{aligned}$	0	190	110	1	-	-
AM	V-10	6BE6	AM Converter	-10	0	0	$\begin{aligned} & \text { AC } \\ & 6.3 \end{aligned}$	190	110	-. 5	-	-
FR-AES	V-11	12AU7	AF Amplifier	22	-. 4	0	30	30	20	-. 4	0	30
Any	V-12	$12 \mathrm{AX7}$	AF Amplifier	200	0	21	30	30	250	0	2.4	30
Any	V-13	12AT7	AF Amplifier Phase Inv.	200	100	100	301	30	100	0	. 2	30
Any	V-14	6F6	Power Outpul	0	30	400	340	0	0	30	30	-
Any	V-15	6F6	Power Output	0	30	400	30	0	0	30	30	-
Any	V-16	5U4G	Rectifier	NC	400	NC	$\begin{array}{r} \text { AC } \\ 380 \end{array}$	NC	$\begin{gathered} \text { AC } \\ 380 \end{gathered}$	NC	400	-

NOTES: No signal input. Power supply 117 volts, 60 cps . Tuning capacitor fully meshed -540 kc end of dial. Voltages measured to chassis (ground). A-c voltages measured using 1000 ohm-per-volt voltmeter. D-c voltages measured using vacuum-tube voltmeter. NC indicates no connection. Variations of $\pm 10 \%$ in voltage readings may be obtained due to variation in tubes, resistors, etc.
$\mathrm{V}-11, \mathrm{~V}-12, \mathrm{~V}-13$ heater voltage 6.3 volts AC measured between terminals 4 or 5 and $9 ; \mathrm{V}-14, \mathrm{~V}-15$ heater voltages 6.3 volts $A C$ measured between terminals 2 and 7 ; $V-16$ filament voltage 5.0 volts $A C$ measured between terminals 2 and 8 .
general assembly

	R.P.O.	RPM	RPM2
BAFFLE - SPEAKER ....................................	102012	102012	102012
CABINET ASSEMBLY ..................................	108301	108321	108335
CABLE ASSEM. - SPEAKER ........................	109054	109054	109054
CHASSIS ASSEMBLY ...................................	112621	112621	112621
DOORS (PAIR) ....-...--........-.........................	81888	81924	
ESCUTCHEON ....-...-.....................................	125607	125607	125607
KNOB - LOUDNESS ........-........................	134625	134625	134625
KNOB - TUNING .....................................	134625	134625	134625
KNOB - SELECTOR ...................................	134624	134624	134624
KNOB - BASS ........................................	134626	134626	134626
KNOB - TREBLE ........................................	134627	134627	134627
LOCK WASHER - SPKR. MTG. ...........-.......	526081	526081	526081
PILOT LAMP ..-.............................................	29956	29956	29956
LAMP CAP - (RED) ...................................	801401	801401	801401
RECORD CHANGER ...........................-.........	100941	100941	100941
SCREW CHASSIS MTG. .................-.-.-.-....--	203549	203549	203549
SCREW - ESCUTCHEON ...........-................	163653	163653	163653
SCREW - SPKR. MTG. ..............-................	511991	511991	511991
SPKR. ASSEMBLY .........................................	100942	100942	100942
WASHER - SPEAKER MTG. ........................	525571	525571	525571

TUBE COMPLEMENT

Circuit   Symbol	S-C   Part No.	Description
V-1	162092	6CB6 FM-RF Amp.
V-2	162032	6AU6 FM Mixer
V-3	162012	6BA6 1st I.F. Amp.
V-4	162012	6BA6 2nd I.F. Amp.
V-5	162032	6AU6 FM Limiter and AM Det.
V-6	162022	6AL5 FM Ratio Det.
V-7	162067	12AT7 FM Osc. and Var. Reactance
V-8	162064	6AL7 Tuning Ind.
V-9	162012	6BA6 AM-RF Amp.
V-10	162013	6BE6 AM Converter
V-11	162042	12AU7 AM Amp.
V-12	162070	12AX7 AF Amp.
V-13	162067	12AT7 AF Amp. and Phase Det.
V-14	162112	6F6 Power Output
V-15	162112	6F6 Power Output
V-16	162107	5U46 Rectifier

## CAPACITORS

Circuit   Symbol	$\begin{gathered} \text { S-C } \\ \text { Part No. } \end{gathered}$	Descripłion	Voltage
C-1	110045	1-12 uuf	
C-2	110410	27 uuf, NPO	400
C-3	110694	100 uvf, GP	500
C-5	110818	1000 uuf	500
C.6	110694	100 uuf, GP	500
C. 7	110045	1-12 uuf	
C. 8	110471	22 uuf, NPO	500
C. 9	110694	100 uuf, GP	500
C-10	110818	1000 uuf	500
C-11	110586	5000 vuf	450
C-12	110540	. 01 uf	400
C-13	110540	. 01 uf	400
C-14	110586	5000 uuf	450
C-15	110540	. 01 uf	400
C-16	110540	. 01 uf	400
C-17	110585	5000 uuf	450
C-18	110540	. 01 uf	400
C-19	110817	2200 uuf	400
C-20	110463	330 uuf, GP	350
C-21	110585	5000 uuf	450
C-22	111093	5 uf	50
C-23	110463	330 uuf, GP	350
C-24	110463	330 uuf, GP	350
C-25	110815	1000 uuf	500
C-26	110818	1000 uuf	500
C-27	110818	1000 uuf	500
C-28	110439	2.2 uuf, NPO	500
C-29	110045	1-12 uof	
C. 30	110584	5 uuf, NPO	500
C-31	110407	33 uuf, NPO	400
C. 32	110816	33 uuf, N220	400
C-33	110458	47 uuf, GP	500
C-34	110818	1000 uof	500
C-35	110453	220 uuf, GP	500
C. 36	110439	2.2 uuf, GP	500
C-37	110818	1000 uuf	500
C-38	110694	100 uuf, GP	500
C-39	110815	1000 uuf	500
C-40	110815	1000 uuf	500
C-41	110548	. 22 uf	400
C-42	110121	AM Tuning Variable	
C-43	110661	. 1 uf	200
C-44	110586	5000 uuf	450
C-45	110540	. 01 uf	400
C-46	110661	. 1 uf	200
C. 47	110413	5 uuf, N750	400
C-48	110694	100 uuf, GP	500
C-49	110540	. 01 uf	400
C-50	110056	30-270 uuf	350


Circuir   Symbol	S-C   Part No.	Description		Voltage
C-51	110458	47 uuf, GP		500
C-52	110661	. 1 uf		200
C-53	110544	. 047 uf		400
C-54 Radio*	110540	. 01 uf		400
C-55	110543	. 033 uf		400
C-56	110538	4700 uuf		400
C-57	110576	750 uuf		500
C-58	110544	. 047 uf		400
C-59	110542	. 022 uf		400
C-60	110676	750 uuf, GP		350
C-61	110410	27 uuf, NPO		400
C-62	110543	. 033 uf		400
C-63	111609	(20 uf		25
		(20 uf		25
		(20 uf		450
				450
C-64	110543	. 033 uf		400
C-65	110410	27 uuf, NPO		400
C-66	110538	4700 uuf		400
C-67	110455	470 vuf		350
C-68	35590	(30 uf		350
		(40 uf		450
		( 50 uf		50
		(15 uf		300
C-69	110455	470 uuf		350
C-70	110538	4700 vuf		400
C-71	110661	. 1 uf		200
C-72	110546	. 1 uf		400
C.73	110546	. 1 uf		400
C.74	110555	. 01 uf		600
C.75	46320	(30 uf		500
		( 30 uf		500
C-54 SR-405*	* 110661	. 1 m		200
	RESISTORS			
Circuit	S-C			
Symbol	Part No.	Resistance	Watt	Tol.
R-1	149119	1 Megohm	$1 / 2 \mathrm{~W}$	20\%
R-3	149400		1 W	10\%
R-4	149113	6800 ohms	$1 / 2 \mathrm{~W}$	20\%
R-5	28162	2200 ohms	$1 / 2 \mathrm{~W}$	10\%
R-6	149101	1 K ohms	$1 / 2 \mathrm{~W}$	20\%
R-7	28144	68 ohms	$1 / 2 \mathrm{~W}$	10\%
R-8	28170	10K ohms	$1 / 2 \mathrm{~W}$	10\%
R-9	149101	1 K ohms	$1 / 2 \mathrm{~W}$	20\%
R-10	28144	68 ohms	$1 / 2 \mathrm{~W}$	10\%
R-11	28148	150 ohms	$1 / 2 \mathrm{~W}$	10\%
R-12	149108	15 K ohms	$1 / 2 \mathrm{~W}$	20\%
R-13	149101	1 K ohms	$1 / 2 \mathrm{~W}$	20\%
R-14	28177	47 K ohms	$1 / 2 \mathrm{~W}$	10\%
R-15	28184	270K ohms	$1 / 2 \mathrm{~W}$	10\%
R-16	149385	100K ohms	$1 / 2 \mathrm{~W}$	10\%
R-17	149095	100 ohms	$1 / 2 \mathrm{~W}$	20\%
R-18	149234	22K ohms	$1 / 2 \mathrm{~W}$	5\%
R-19	28168	6800 ohms	$1 / 2 \mathrm{~W}$	10\%
R-20	28168	$6800 \text { ohms }$	$1 / 2 \mathrm{~W}$	10\%
R-21	28187	470K ohms	$1 / 2 \mathrm{~W}$	10\%
R-22	149101	1 Kohm	$1 / 2 \mathrm{~W}$	20\%
R-23	149402		1 W	10\%
R-24	149107	10K ohms 10K ohms	$1 / 2 \mathrm{~W}$	20\%
R-25	149101		$1 / 2 \mathrm{~W}$	20\%
R-26	28152	1 K ohm 330 ohms	$1 / 2 \mathrm{~W}$	10\%
R-27	28150	220 ohms	$1 / 2 \mathrm{~W}$	10\%
R-28	149113	100 K ohms	$1 / 2 \mathrm{~W}$	20\%
R-29	149058		2 W	10\%
R-30	149101	27K ohms   IK ohm	$1 / 2 \mathrm{~W}$	20\%
R-31	28164	3300 ohms	$1 / 2 \mathrm{~W}$	10\%
R-32	149119	1 Megohm	$1 / 2 \mathrm{~W}$	20\%
R-33	28144	68 ohms	$1 / 2 \mathrm{~W}$	10\%
R-34	149051	68 ohms   4700 ohms	2 W	10\%
R-35	28162	4700 ohms	$1 / 2 \mathrm{~W}$	10\%


Circuit Symbol	$\begin{gathered} \text { S-C } \\ \text { Part No. } \end{gathered}$	Resistance	Watt	Tol.
R-36	149095	100 ohms	$1 / 2 \mathrm{~W}$	20\%
R-37	149109	22K ohms	$1 / 2 \mathrm{~W}$	20\%
R-38	28166	4700 ohms	$1 / 2 \mathrm{~W}$	10\%
R-39	149121	2.2 Megohms	$1 / 2 \mathrm{~W}$	20\%
R-40	28183	220K ohms	$1 / 2 \mathrm{~W}$	10\%
R-41	28183	220K ohms	$1 / 2 \mathrm{~W}$	10\%
R-42	28179	68K ohms	$1 / 2 \mathrm{~W}$	10\%
R-43	28190	820K ohms	$1 / 2 \mathrm{~W}$	10\%
R-44	149122	3.3 Megohms	$1 / 2 \mathrm{~W}$	20\%
R-45	28177	47K ohms	$1 / 2 \mathrm{~W}$	10\%
R-46	28187	470K ohms	$1 / 2 \mathrm{~W}$	10\%
R-47	28177	47K ohms	$1 / 2 \mathrm{~W}$	10\%
R-48	149122	3.3 Megohms	$1 / 2 \mathrm{~W}$	20\%
R-49	28179	68K ohms	$1 / 2 \mathrm{~W}$	10\%
R-50	28183	220K ohms	$1 / 2 \mathrm{~W}$	10\%
R-51*	149385	100K ohms	$1 / 2 \mathrm{~W}$	10\%
R-52	28174	27K ohms	$1 / 2 \mathrm{~W}$	10\%
R-53	149385	100K ohms	$1 / 2 \mathrm{~W}$	10\%
R-54	149122	3.3 Megohms	$1 / 2 \mathrm{~W}$	20\%
R-55	149122	3.3 Megohms	$1 / 2 \mathrm{~W}$	20\%
R-59	28177	47K ohms	$1 / 2 \mathrm{~W}$	10\%
R-60	28187	470K ohms	$1 / 2 \mathrm{~W}$	10\%
R-61	145627	Loudness Con		
R-62	149385	100K ohms	$1 / 2 \mathrm{~W}$	10\%
R-63	149107	10K ohms	$1 / 2 \mathrm{~W}$	20\%
R-64	28174	27K ohms	1/2 W	10\%
R-65	28163	2700 ohms	$1 / 2 \mathrm{~W}$	10\%
R-66	28175	33K ohms	$1 / 2 \mathrm{~W}$	10\%
R-67	28187	470K ohms	1/2 W	10\%
R-68	28187	470K ohms	1/2 W	10\%
R-69	145628	5 Megohms	Dual Pot.	
R-71	28177	47 K ohms	1/2 W	10\%
R-72	28177	47K ohms	$1 / 2 \mathrm{~W}$	10\%
R-73	28164	3300 ohms	$1 / 2 \mathrm{~W}$	10\%
R-74	149386	150 K ohms	$1 / 2 \mathrm{~W}$	10\%
R-75	28184	270K ohms	$1 / 2 \mathrm{~W}$	10\%
R-76	28171	12K ohms	$1 / 2 \mathrm{~W}$	10\%
R-77	28163	2700 ohms	$1 / 2 \mathrm{~W}$	10\%
R-78	28177	47K ohms	$1 / 2 \mathrm{~W}$	10\%
R.79	149108	15K ohms	1/2 W	20\%
R-80	28166	4700 ohms	$1 / 2 \mathrm{~W}$	10\%
R-81	28177	47K ohms	$1 / 2 \mathrm{~W}$	10\%
R-82	28183	220K ohms	$1 / 2 \mathrm{~W}$	10\%
R-83	28183	220K ohms	$1 / 2 \mathrm{~W}$	10\%
R-84	46369	350 ohms	5 W	
R-85	28156	680 ohms	$1 / 2 \mathrm{~W}$	10\%
R-86	28177	47K ohms	$1 / 2 \mathrm{~W}$	10\%
R-88	149402	10K ohms	1 W	10\%
R-89	46486	100 ohms	2 W	
R-90	149612	(750 ohms (2500 ohms	$\begin{array}{r} 6 \mathrm{~W} \\ 11.9 \mathrm{~W} \end{array}$	
R-91	149424	2.7 ohms	1 W	10\%
R-92	149424	2.7 ohms	1 W	10\%
R-93	149086	47K ohms	2 W	20\%
R-94*	149113	100 ohms	$1 / 2 \mathrm{~W}$	20\%


Circuit	S-C   Part No.	COILS
Symbol	Description	
L-1	114097	Antenna coil (FM)
L-2	114693	RF Choke
L-3	114098	RF Coil (FM)
L-4	114707	RF Choke
L-5	114618	RF Choke
L-6	114098	Osc. Coil (FM)
L-7	114620	RF Coil
L-8	114707	RF Choke
L-9	114122	Ant. Coil (FM)
L-10	114095	RF Coil (AM)
L-1 I	114123	Osc. Coil (AM)
L-12	161044	(1Okc filter) Reactor

TRANSFORMERS

Circuit   Symbol	S-C   Part No.	Description
T-1	114363	First IF-FM
T-2	114363	Second IF-FM
T-3	114414	Second IF-AM
T-4	114363	Third IF-FM
T-5	114414	Third IF-AM
T-6	114404	Ratio Detector
T-7	114414	First IF-AM
T-8	161337	Output transformer
T-9	161776	Power transformer


Circuit   Symbol	S-C   Part No.	Description
F-1	25156	Fuse, 3 amp., 3AG
FL-1	110478	Filter assembly
$\mathrm{l}-1$	30933	Dial Lamp
1-2	30933	Dial Lamp
J-1	31539	Twin input jack
J-2	31539	Twin input jack
J.3	31539	Twin input jack
J. 4	152038	A-c socket
J-5	152033	Relay Power Jack
J-6	34421	Cabinet Lamp Jack
P-1	30224	Plug used for J1, J2, J3 and J6
S-1	158652	Selector switch

46302
A.C. Cord and Plug

Dial Bracket-Right
Dial Bracket-Left
Dial Glass
Grommet-A.C. Cord
Grommet-Dial Glass
Pointer-Dial
Tuning Shaft Assembly-Flywheel

105715
105716
122600
131024
131015
144602
150604
*R-51 and R-94 used on Custom 400-omitted on SR 405


PAGE 23-8 STROMBERG-CARLSON MODE LS 400RPM, 400RPM2, 400RPO, Custom


STROMBERG-CARLSON PAGE 23-9
MODELS 400RPM, 400RPM2, 400RPO, Custom


- John F. Rider




## SPECIFICATIONS

POWER SUPPLY
105-125 Volts AC or DC, 35 Watts
FREQUENCY RANGE . . . . . . . . . . 540-1650 Kc.
INTERMEDIATE FREQUENCY . . . . . . . 455 Kc .
LOUDSPEAKER. . . 5" P. M. , 1. 47 Oz. Magnet

SYLVANIA TUBE COMPLEMENT
Function Type
Oscillator-Mixer ..... 12BE6
I. F. Amplifier ..... 12BA 6
Detector - A.V.C. - 1st A.F. ..... 12AT6
Audio Output ..... 50C5
Rectifier ..... 35W4

## ALIGNMENT PROCEDURE

## PRELIMINARY INSTRUCTIONS

Allow chassis and signal generator several minutes warm-up.

Connect an A. C. Voltmeter across voice coil terminals and set volume control to full volume position.

Keep generator output at lawest useable level to prevent A.V.C. action from interfering with accurate alignment.

## I. F. ALIGNMENT

1. Set the variable tuning capacitor to a point near $1,000 \mathrm{Kc}$. where no signals are heard.
2. Tune amplitude modulated signal generator to 455 Kc . Connect generator output leads to "Neg. B" and through a 0.1 Mfd . capacitor to pin 7 (control grid) of the 12BE6 Oscillator-Mixer tube.
3. Align I. F. transformers T1 and T2 by adjusting first the cores accessible from under the chassis, then the top cores. Repeat this operation until a maximum meter reading is obtained.

## R. F. ALIGNMENT

1. Turn variable tuning capacitor counterclockwise to minimum capacity setting.

PAGE 23-2 SYLVANIA
MODELS 511B, $511 \mathrm{H}, 511 \mathrm{M}$, $512 \mathrm{BR}, 512 \mathrm{CH}, 512 \mathrm{GR}, 512 \mathrm{RE}$,
512YE, Ch. 1-601-1
2. Tune generator, connected as above, to 1650 Kc.
3. Adjust oscillator trimmer $\mathbf{C 4}$ for maximum output.
4. Connect generator to a Hazeltine loop so
as to radiate a 1450 Kc . signal into the receiver.
5. Tune receiver to 1450 Kc .
6. Tune antenna trimmer C2 to obtain maximum output.


TOP LAYOUT FOR 1-601-1 CHASSIS

© John F. Rider

SYLVANIA PAGE 23-3 MODELS $511 \mathrm{~B}, 511 \mathrm{H}, 511 \mathrm{M}$, 512BR, $512 \mathrm{CH}, 512 \mathrm{GR}, 512 \mathrm{RE}$, 512YE, Ch. 1-601-1

SCHEMATIC DIAGRAM FOR 1-601-1 CHASSIS

MODELS 511B, $511 \mathrm{H}, 511 \mathrm{M}$, $512 \mathrm{BR}, 512 \mathrm{CH}, 512 \mathrm{GR}, 512 \mathrm{RE}$, 512YE, Ch. 1-601-1

## REPAIR PARTS LIST

SCHEMATIC LOCATION	SERVICE   PART NUMBER	DESCRIPTION
	582-0011	Antenna - Loop
	776-0004	Baffle - Speaker
	482-0002	Base - Miniature Tube Shield
	813-0007	Cabinet - Plastic - Black (511B)
	813-0017	Cabinet - Plastic - Brown (512BR)
	813-0019	Cabinet - Plastic - Chartreuse (512CH)
	813-0020	Cabinet - Plastic - Green (512GR)
	813-0022	Cabinet - Plastic - Ivory (511H)
	813-0009	Cabinet - Plastic - Mahogany (511M)
	813-0016	Cabinet - Plastic - Red (512RE)
	813-0018	Cabinet - Plastic - Yellow (512YE)
C6	166-0100P	Capacitor - Ceramic - . 0001 Mfd . - 500 V .
C17	161-2002	Capacitor - Electrolytic - 40 Mfd - - 150 V .
C18		40 Mfd . - 150 V .
C13, C15	162-06247	Capacitor - Paper - . 0047 Mfd. - 600 V.
C5, C7	162-0411M	Capacitor - Paper - . 01 Mfd . - 400 V .
C16	162-04122	Capacitor - Paper - . 022 Mfd . - 400 V .
C14, C19, C20	162-04147	Capacitor - Paper - . 047 Mfd . - 400 V .
C1, C3	170-0006	Capacitor - Variable - 2 Gang
C2, C4		Trimmers (Part of 170-0006)
	487-0004	Clip - I. F. Transformer Mounting
L1	113-0015	Coil - Oscillator
R4	152-0012	Control - Volume with On-Off Switch
	195-0002	Cord - Line
	722-0019	Dial - Station Numerals (511B, 511M, 512BR, 512GR, 512RE)
	722-0021	Dial - Station Numerals ( $511 \mathrm{H}, 512 \mathrm{CH}, 512 \mathrm{YE}$ )
	740-0024	Knob - On-Off \& Volume
R9	181-0151	Resistor - 150 Ohm - 1/2 W.
R1	181-0223	Resistor - 22, $000 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.
R3, R6	181-0473	Resistor - 47, 000 Ohm - 1/2 W.
R12	181-0104	Resistor - 100, 000 Ohm - 1/2 W.
R7, R8	181-0474	Resistor - 470, 000 Ohm - 1/2 W.
R2	181-0225	Resistor - 2.2 Megohm - 1/2 W.
R5	181-0106	Resistor - $10 \mathrm{Megohm} \mathrm{-} 1 / 2 \mathrm{~W}$.
R11	189-0013	Resistor - 25 Ohm - 1 W. - W. W.
R10	182-0122	Resistor - 1, 200 Ohm - 1 W .
	497-0005	Retainer \& Bushing - Line Cord
	482-0003	Shield - Miniature Tube
	412-0015	Socket - 7 Prong-Miniature Tube
	539-0501	Speaker - 5" P. M.
T1	121-0013	Transformer - I. F. \#1 (57-69301-1)- Matched Pair
T2	122-0013	Transformer - I. F. \#2 (57-69302-1) or
T1	121-0016	Transformer - I. F. \#1 (57-69303-1)_ Matched Pair
T2	122-0016	Transformer - I. F. \#2 (57-69304-1) ${ }^{\text {- Matched Pair }}$
T3	143-0011	Transformer - Output
		Tube - 12AT6
		Tube - 12BA6
		Tube - 12BE 6
		Tube - 35W4
		Tube - 50C5

SYLVANIA PAGE 23-5


## GENERAL DESCRIPTION

The clock on each radio may be used to:
(A) Provide accurate sweep second time.
(B) Turn radio off automatically after retiring.
(C) Turn radio program on for awakening.
(D) Awaken to music with appliance operating.
(E) Turn appliance on and off with radio on or off.


## SPECIFICATIONS

## POWER SUPPLY

105-125 Volts, 60 Cycle AC, 35 Watts

## APPLIANCE OUTLET

Maximum Load
1100 Watts
FREQUENCY RANGE $\qquad$ 540-1650 Kc.

INTERMEDIATE FREQUENCY
455 Kc .
LOUDSPEAKER $\qquad$ 5" P. M. , 1. 47 Oz. Magnet

SYLVANIA TUBE COMPLEMENT

Function	Type
Oscillator-Mixer	12BE6
I. F. Amplifier	12BA6
Detector - A.V.C. - 1st A. F.	12AT6
Output	50 C 5
Rectifier	35W4

## CABINET DIMENSIONS (inches)

Width 10.2, Height 7.8, Depth 6.3

## ALIGNMENT PROCEDURE

## PRELIMINARY INSTRUCTIONS

Take chassis from cabinet as in step $C$ page 8.
Insert temporary jumper between closely spaced pins of clock socket.

Allow chassis and signal generator several minutes warm-up.

Connect an AC Voltmeter across voice coil terminals and set volume control to full volume position.

Keep generator output at lowest useable level to prevent AVC action from interfering with accurate alignment.

## I. F. ALIGNMENT

1. Set the variable tuning capacitor to a point near $1,000 \mathrm{Kc}$. where no signals are heard.
2. Tune amplitude modulated signal generator to 455 Kc . Connect generator output to Negative " $B$ " and thruugh a 0.1 Mfd. capa-
citor to control grid (pin 7) of the 12BE6 Oscillator-Mixer tube.
3. Align I.F. transformers T1 and T2 by adjusting first the cores accessible from under the chassis, then the top cores. Repeat this operation until a maximum meter reading is obtained.

## R. F. ALIGNMENT

1. Turn tuning shaft clockwise to minimum capacity setting of the variable capacitor.
2. Tune generator, connected as described above, to 1650 Kc .
3. Adjust oscillator trimmer $\mathbf{C} 4$ for maximum output.
4. Connect generator to a Hazeltine loop to radiate a 1450 Kc . signal into the receiver.
5. Tune the receiver to 1450 Kc .
6. Adjust antenna trimmer C2 to obtain maximum output.

Remove the jumper from the closely spaced 542BR, CH, GR, RE, pins on the clock socket and replace the clock YE. Ch. 1-602-1 plug. Reinstall the receiver chassis in the

'IOP LAYOUT FOR 1-602-1 CHASSIS


BOTTOM LAYOUT FOR 1-602-1 CHASSIS


DIAL CORD HOOKUP

PAGE 23-8 SYLVANIA


SCHEMATIC LOCATION	SERVICE   PART NUMBER	DESCRIPTION
	582-0013	Antenna - Loop
	482-0002	Base - Miniature Tube Shield
	813-0008	Cabinet - Plastic - Black (541B)
	813-0012	Cabinet - Plastic - Brown (542BR)
	813-0014	Cabinet - Plastic - Chartreuse (542CH)
	813-0013	Cabinet - Plastic - Green (542GR)
	813-0021	Cabinet - Plastic - Ivory (541H)
	813-0010	Cabinet - Plastic - Mahogany (541M)
	813-0011	Cabinet - Plastic - Red (542RE)
	813-0015	Cabinet - Plastic - Yellow (542YE)
C6	166-0100P	Capacitor - Ceramic - . 0001 Mfd. - 500 V.
C17	161-2002	Capacitor - Electrolytic - 40 Mfd - - 150 V .
C18		40 Mfd . - 150 V .
C13, C15	162-06247	Capacitor - Paper - . 0047 Mfd . - 600 V .
C5	162-0411M	Capacitor - Paper - . 01 Mfd . - 400 V .
C16	162-04122	Capacitor - Paper - . 022 Mfd . - 400 V .
C7, C14, C 19	162-04147	Capacitor - Paper - . 047 Mfd . - 400 V .
C1, C3	170-0007	Capacitor - Variable - 2 Gang
C2, C4		Trimmers (Part of 170-0007)
	487-0004	Clip - I. F. Transformer Mounting
L1	113-0015	Coil - Oscillator
R4	152-0013	Control - Volume \& On-Off
	195-0002	Cord - Line
	715-0008	Cover - Front
	723-0003	Dial - Station Numerals
	749-0013	Knob - Feature Control
	740-0021	Knob - Tuning - Volume \& On-Off
	552-5226	Nut - Speed Tuning Shaft
	552-0031	Nut - Speed - Clock Mounting
	792-0006	Pointer - Dial
	494-0007	Pully - Dial Drive
R9	181-0151	Resistor - 150 Ohm - 1/2 W.
R1	181-0223	Resistor - 22, $000 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.
R3, R6	181-0473	Resistor - 47, 000 Ohm - 1/2 W.
R7, R8	181-0474	Resistor - 470, 000 Ohm - 1/2 W.
R2	181-0225	Resistor - 2.2 Megohm - 1/2 W.
R5	181-0106	Resistor - 10 Megohm - $1 / 2 \mathrm{~W}$.
R11	189-0013	Resistor - 25 Ohm - 1 W. - W. W.
R10	182-0122	Resistor - 1,200 Ohm --1 W.
	497-0005	Retainer \& Bushing - Line Cord
	493-0017	Shaft - Tuning
	482-0003	Shield - Miniature Tube
	481-0014	Sleeve - Shaft Bearing
	419-0005	Socket - 2 Prong - Appliance
	419-0004	Socket - 3 Prong - Clock
	412-0015	Socket - 7 Prong - Miniature
	539-0501	Speaker - 5" P. M.
	496-0023	Spring - String Drive
	495-0006	String - Drive (Specify desired length when ordering)
T1	121-0016	Transformer - I. F. \#1
T2	122-0018	Transformer - I. F. \#2
T3	143-0019	Transformer - Output
		Tube - 12AT6
		Tube - 12BA6
		Tube - 12BE6
		Tube - 35W4
		Tube - 50C5

PAGE 23-10 SYLVANIA MODELS 541B, H, M,
542BR, CH, GR, RE,
YE, Ch. 1-602-1


## SPECIFICATIONS

Power Supply V1
AC/DC Operation $117 \mathrm{~V} . \mathrm{DC}$ or AC 15 Watts Battery Operation 7.5V."A", 75V. or 90V. "B" V3 Frequency Range. . . 540 KC to 1650 KC Intermediate Frequency . . . . . . 455 KC Speaker . . . . . . . . . . . . 4' x 6' P. M.

## TUBE COMPLEMENT

Oscillator/Mixer 1R5<br>IF Amplifier 1U4<br>Detector, AVC, 1st AF 1U5<br>Audio Output 3V 4

## ALIGNMENT <br> PRELIMINARY INSTRUCTIONS

1. Remove chassis from cabinet.
2. Allow chassis and signal generator several minutes warm up.
3. Keep generator output at lowest usable level to prevent AVC action from interferring with accurate alignment.
4. Connect AC voltmeter across voice coil.
5. Adjust volume control to full volume.

STEP	SIGNAL Frequency	GENERATOR   Connection	RADIO DIAL SETTING	ADJUST	COMMENTS
1.	455 KC	Thru . 01 Mfd. to pin 6 of 1R5.	Tuning cap. plates fully open.	$\begin{aligned} & \mathrm{T} 2 \mathrm{D} \\ & \mathrm{~T} 2 \mathrm{C} \\ & \mathrm{~T} 1 \\ & \mathrm{~B} \\ & \mathrm{~T} 1 \mathrm{~A} \end{aligned}$	Connect ground lead of signal generator to negative " B " in receiver.   Adjust T1 and T2 (IF transformers) for maximum output.
2.	1650 KC	Radiated to receiver thru a loop of several turns.	Tuning cap. plates fully open	$\begin{aligned} & \text { C4 trim- } \\ & \text { mer } \end{aligned}$	Adjust C4 (high-end oscillator trimmer) for maximum output. Set variable tuning capacitor to minimum capacity.
3.	$\begin{aligned} & 1400 \mathrm{KC} \text { to } \\ & 1500 \mathrm{KC} \end{aligned}$	Same as 2.	$\begin{aligned} & 1400 \mathrm{KC} \text { to } \\ & 1500 \mathrm{KC} \end{aligned}$	$\begin{gathered} \text { C1 trim- } \\ \text { mer } \end{gathered}$	Adjust C1 (antenna trimmer) for maximum output.
4.	600 KC	Same as 2.	Approx. 600 KC	L2 core	Adjust L2 (low-end oscillator adjustment) for maximum output while simultaneously "rocking" variable tuning capacitor.
5.	Repeat step 3.				

## CHASSIS

1. Remove control knobs, station selector pointer and base. Remove station selector pointer by gripping it with either a bent wire hook or needle nose pliers inserted in the center slots.
2. Remove the four screws securing chassis and dial caps to the cabinet. Note assembly of the handle and dials, and that chassis

## REMOVAL

slides through grooves in cabinet. The chassis may now be removed.
3. To facilitate calibration, turn volume control until it clicks "Off" and Station Selector until tuning capacitor is fully meshed. Line up indicator marks accordingly, and press on knobs.


BOTTOM LAYOUT

PAGE 23-12 SYLVANIA
MODEL 433, Ch. 1-604-1


SCHEMATIC DIAGRAM FOR 1-604-1 CHASSIS

SERVICE
PART NUMBER
DESCRIPTION
MISCELLANEOUS CHASSIS PARTS





## R



CHOKES，COILS，AND TRANSFORMERS

$582-0016$	Loop Antenna（includes mounting board）
$113-0025$	Oscillator Coil
$121-0022$	1st IF Transformer
$122-0024$	2nd IF Transformer
$143-0027$	Audio Output Transformer

> MISCELLANEOUS CABINET PARTS

Bar－Handle Frame
Cabinet－Plastic－Black（Model 433B）
Cabinet－Plastic－Green（Model 433GR） Cabinet－Plastic－Ivory（Model －Plastic－Luggage（Model 433LU） Cabinet－Plastic－Red（Model 433RE）
Cabinet－Plastic－Yellow（Model 433 YE）

Cabinet－Plastic－Yellow（Model Handle－Plastic（Model 433B）
Cap－Handle－Plastic（Model 433H）
Cap－Handle－Plastic（Model 433GR）
Cap－Handle－Plastic（Model 433RE）
Cap－Handle－Plastic（Model 433YE）
Cover－Base
Dial－Station Selector
H
0
0
0
0
0
0
0
0
0
0
0
0
Nameplate－Sylvania


803－0012
П
813－0034
813－0038
$813-0037$



4



0
0
0
1
1
4

SCHEMATIC
LOCATION


## SPECIFICATIONS

Power Supply . . . . . . . . 105-128 Volts
25 to 60 Cycle AC or DC, 35 Watts Frequency Range . . . . 540 KC to 1650 KC Intermediate Frequency . . . . . . 455 KC Loudspeaker . . . . . . . . . . . 5" P. M.

## TUBE COMPLEMENT

## ALIGNMENT PROCEDURE

## PRELIMINARY INSTRUCTIONS

1. Remove chassis from cabinet.
2. Allow chassis and signal generator several minutes warm up.
3. Keep generator output at lowest usable level to prevent AVC action from interfe:ing with accurate alignment.
4. Connect AC voltmeter across voice coil.
5. Adjust volume control to full volume.

STEP	SIGNAL   Frequency	GENERATOR   Connection	RADIO DIAL SETTING SETTING	ADJUST	COMMENTS
1.	455 KC	Thru 0. 1 Mfd. to pin 7 of 12 BE 6 .	$\begin{gathered} 1000 \mathrm{KC} \\ (\text { Approx. }) \end{gathered}$	$\begin{array}{ll} \mathrm{T} 2 & \mathrm{D} \\ \mathrm{~T} 2 & \mathrm{C} \\ \mathrm{~T} 1 & \mathrm{~B} \\ \mathrm{~T} 1 & \mathrm{~A} \end{array}$	Connect ground lead of signal generator to negative " $B$ " in receiver.   Set radio dial to approximately 1000 KC where no signals are audible.   Adjust T1 and T2 (IF transformers) for maximum output.
2.	1650 KC	Radiated to receiver thru a loop of several turns.	Tuning Cap. plates fully open	$\begin{aligned} & \text { C4 trim- } \\ & \text { mer } \end{aligned}$	Adjust C4 (oscillator trimmer) for maximum output.   Set variable tuning capacitor to minimum capacity.
3.	$\begin{aligned} & 1400 \mathrm{KC} \text { to } \\ & 1500 \mathrm{KC} \end{aligned}$	Same as 2.	$\begin{aligned} & 1400 \mathrm{KC} \text { to } \\ & 1500 \mathrm{KC} \end{aligned}$	$\begin{aligned} & \text { C2 trim- } \\ & \text { mer } \end{aligned}$	Adjust C2 (antenna trimmer) for maximum output.
4.	600 KC	Same as 2	$\begin{gathered} 600 \mathrm{KC} \\ \text { (Approx.) } \end{gathered}$	L2 core	Adjust L2 (low-end oscillator adjustment) for maximum output while simultaneously "rocking" variable tuning capacitor.
5.	Repeat step 3.				



SYLVANIA. PAGE 23-15 MODELS 513, 563, Ch. 1-601-2, 1-601-3




## SPECIFICATIONS

quency Range.	KC
IF Frequency	455 KC
Power Supply	105 to 128 Volts
	60 Cycle AC, 35 Watts
Appliance Outlet	Maximum Load 1100Watts
Loudspeaker	. $5^{\prime \prime}$ P.

## TUBE COMPLEMENT

## V1

V2
V3
V4
V5

Oscillator/Mixer	12BE6
IF Amplifier	12BA6
Detector, AVC, lst AF Amplifier	12AT6
Audio Output	50 C 5
Rectifier	35 W 4

## ALIGNMENT PROCEDURE

## PRELIMINARY INSTRUCTIONS

1. Remove chassis from cabinet as in step C, under "Chassis Removal."
2. Insert temporary jumper between pins 4 and 5 on clock socket to complete AC circuit.
3. Allow chassis and signal generator several minutes warm-up.
4. Keep generator output at lowest usable level to prevent AVC action from interfering with accurate alignment.
5. Connect AC voltmeter across voice coil and set volume control to full volume.

STEP	SIGNAL GENERATOR		RADIO DIAL SETTING	ADJUST	COMMENTS
1.	455 KC	Thru . 01 Mfd . to pin 7 of 12BE6	Extreme right hand side	T1 (Both cores)   T2 (Both cores)	Connect ground lead of signal generator to negative " $B$ " in receiver.   Adjust T1 and T2 (IF transformers) for maximum output.
2.	1650 KC	Radiated to receiver thru a loop of several turns	Extreme right hand side	C5 trimmer	Set variable tuning capacitor to minimum capacity.   Adjust C4 (high-end oscillator trimmer) for maximum output.
3.	$\begin{aligned} & 1400 \mathrm{KC} \text { to } \\ & 1500 \mathrm{KC} \end{aligned}$	Same as 2.	$\begin{aligned} & 1400 \mathrm{KC} \text { to } \\ & 1500 \mathrm{KC} \end{aligned}$	$\begin{aligned} & \mathrm{C} 2 \text { trim - } \\ & \text { mer } \end{aligned}$	Adjust C2 (antenna trimmer) for maximum output
4.	600 KC	Same as 2.	Approx. 600 KC	L2 Core	Adjust L2 (low-end oscillator adjustment) for maximum output while simultaneously "rocking' variable tuning capacitor.
5.	Repeat step 3. Then remove clock socket jumper.				

## REMOVAL OF CHASSIS AND TIMER MOVEMENT

A. Remove line cord from power socket.
B. Set all clock hands toward upper right hand corner of clock face.
C. Remove chassis from cabinet as follows:

1. Remove volume control and tuning control knobs.
2. Remove the two upper clips on back cover.
3. Remove three chassis mounting screws from the underside of cabinet.
4. Pull chassis part way out of cabinet and disconnect four-prong clock plug.
5. Remove chassis completely.
D. Remove clock from cabinet as follows:
6. Remove two upper clock mounting screws.
7. Loosen two lower clock mounting screws and lift clock assembly up and out from the cabinet.
NOTE: The panelescent clock face (on 543 models only) is an integral part of clock assembly. When replacement of panelescent unit becomes necessary, position all clock hands at either $12 o^{\prime}$ clock or $6 o^{\prime}$ clock. Remove clock hands with care to avoid bending them or enlarging mounting holde in hands. When installing, locate hands at same position as before removal.

## SERVICING OF SESSIONS MOVEMENT

The Sessions clock-timer unit is warranted under normal use and service against defects in workmanship and material for a period of one year from date the timer is sold by Sessions. Sessions agrees to repair or replace without charge any part or parts proved
to be defective within the warranty period. The clock-timer unit must be removed from the radio cabinet when repairs by Sessions are necessary. Sylvania distributors will supply name of the nearest Sessions service station.

PAGE 23-18 SYLVANIA
MODELS 543, 593, Ch.
1-602-2, 1-602-3



REPAIR PARTS LIST


	CAPACITORS	
C1	170-0009	Variable - 2 Gang (antenna section)
C2		Trimmer (part of C1)
C3	160-04147	. $047 \mathrm{Mfd} .-400$ V. - Paper
C4	170-0009	Variable - 2 Gang (Oscillator section)
C5		Trimmer (part of C4)
C6	166-0100P	100 Mmfd. - 500 V. - Ceramic
C7, C8, C9		Listed under "Miscellaneous
C10, 111		Electrical Parts"
C12	160-04147	. $047 \mathrm{Mfd} .-400 \mathrm{~V} .-\mathrm{Paper}$
C13	161-2002	$40 \mathrm{Mfd} .-150 \mathrm{~V}$. - Electrolytic
C14	162-04122	. 022 Mfd . - 400 V . - Paper
C15	161-2002	$40 \mathrm{Mfd} .-150 \mathrm{~V}$. - Electrolytic
C16	160-04147	. 047 Mfd . - 400 V . - Paper
C17	166-1000D	. 001 Mfd. - 500 V. - Ceramic
CHOKES, COILS, AND TRANSFORMERS		


L1	$582-0017$	Loop Antenna (includes back cover)
L2	$113-0023$	Oscillator Coil
T1	$121-0021$	1st IF Transformer.
T2	$122-0023$	2nd IF Transformer
T3	$143-0028$	Audio Output Transformer

PAGE 23-20 SYLVANIA
MODELS 543, 593, Ch.
1-602-2, 1-602-3

SCHEMATIC
LOCATION

SERVICE
PART NUMBER DESCRIPTION
MISCELLANEOUS CABINET PARTS

714-0013	Bezel
813-0026	Cabinet - Plastic - Black (Models 543B, 593B)
813-0029	Cabinet - Plastic - Chartreuse (Models 543CH, 593CH)
813-030	Cabinet - Plastic - Green(Models 543GR, 593GR)
813-0027	Cabinet - Plastic - Ivory (Models 543H, 593H)
813-0028	Cabinet - Plastic - Mahogany (Models 543M, 593M)
813-024	Cabinet - Plastic - Red (Models 543R, 593R)
813-0031	Cabinet - Plastic - Yellow(Models 543YE, 593YE)
$721-0009$	Dial - Clock and Station (Glass)
487-018	Fastener - Snap (Loop antenna and back cover mounting)
$740-0038$	Knob - Panalescent Dimmer Control (543 models only)
$740-0033$	Knob - Tuning, Volume and On/Off

## MISCELLANEOUS CHASSIS PARTS

482-0002
492-0045 487-0004 792-0010 494-0007 497-0005 496-0028 482-0003 419-0005 419-0009 412-0015 496-0023

Base - Miniature Tube Shield
Bracket - Panelescent Station Dial
Clip - IF Transformer Mounting
Pointer - Station Dial
Pulley - Dial Drive
Retainer and Bushing - Line Cord
Shaft - Tuning
Shield - Miniature Tube
Socket - 2 Prong - Appliance
Socket - 4 Prong - Clock
Socket - 7 Prong - Miniature
Spring - String Drive
MISCELLANEOUS ELECTRICAL PARTS

53-00
195-0011
190-0009

539-0501
924-0003
477-0005
477-0004
Control - Volume and On/Off
Control - Panelescent Dimmer (Chassis 1-602-2 only)
Cord - Line
Printed Circuit - Detector/Audio Plate
220 Mmfd. - 500 V
.002 Mfd . - 500 V .
250 Mmfd. - 500 V.
.005 Mfd. - 500 V .
250 Mmfd . - 500 V .
6. 8 Megohm - $1 / 2 \mathrm{~W}$.
$470,000 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.
$470,000 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.
Speaker - 5" P. M.
Unit - Clock Motor (Sessions No. A742)
Unit - Panelescent Light (Clock dial)
(Chassis 1-602-2 only)
Unit - Panelescent Light (Station dial)
(Chassis 1-602-2 only)

## RESISTORS

R1	$181-0220$
R2	$181-0223$
R3	$181-0225$
R4, R5, R6	
R7	
R8	$181-0151$
R9	$182-0122$
R10	$181-0123$
R11	$181-0123$
R12	$181-0123$
R13	
R14	$189-0013$
R15	$181-0123$
R16	$181-0474$

$22 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.
22,000 Ohm - $1 / 2 \mathrm{~W}$.
2.2 Megohm - $1 / 2 \mathrm{~W}$.

Listed under "Miscellaneous Electrical Parts"
150 Ohm - $1 / 2 \mathrm{~W}$.
$1,200 \mathrm{Ohm}-1 \mathrm{~W}$.
12, $000 \mathrm{Ohm}-1 / 2 \mathrm{~W}$. (Chassis $1-602-2$ only)
12,000 Ohm - $1 / 2 \mathrm{~W}$. (Chassis $1-602-2$ only)
$12,0000 \mathrm{hm}-1 / 2 \mathrm{~W}$. (Chassis $1-602-2$ only)
Listed under "Miscellaneous Electrical Parts"
25 Ohm - 1W - W.W.
12, $000 \mathrm{Ohm}-1 / 2 \mathrm{~W}$. (Chassis 1-602-2 only)
470, $000 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.

TUBE COMPLEMENT
12BE6 - Oscillator/Mixer
12BA6 - IF Amplifier
12AT6 - Detector, AVC, 1st Audio Amplifier
50C5 - Audio Output
35W4 - Rectifier

SYLVANIA PAGE 23-21

## SPECIFICATIONS

Power Supply 105 to 128 V .60 Cycle AC 80 Watts
Frequency Range
AM Broadcast. . . 540 KC to 1600 KC
FM Broadcast. . . . 88 MC to 108 MC
Intermediate Frequency
AM Carrier . . . . . . . . . 455 KC
FM Carrier . . . . . . . . . 10.7 MC

V1
V2
V3
V4
V5
V6
V7
V7
V8

## 1-603-2 TUBE COMPLEMENT

RF Amplifier - FM
6AU5
Oscillatór/Mixer
6BE6
1st IF Amplifier - AM, FM

2nd IF Amplifier - FM AM Detector, AVC, 1st AF FM Discriminator Audio Output (1-603-1) Audio Output (1-603-2) 6BA6 6AU6 6AT6 6AL5 6W6GT	Rectifier 6AS5
7Z4	



## ALIGNMENT PROCEDURE

## GENERAL PREALIGNMENT INSTRUCTIONS

1. Remove chassis from cabinet.
2. Allow receiver and test equipment to warm up for approximately 15 minutes before proceeding with alignment.
3. Use proper insulated alignment tool for powdered iron cores with slots.
4. When constructing FM alignment detector circuit, keep leads short.
5. Ground all test equipment unless otherwise stated.
6. Keep generator output as lowest usable level to prevent AVC action from interfering with accurate alignment.
7. Position FM/AM/PHONO switch as follows:

DESIRED   POSITION	BAND SWITCH
SETTING	
FM	Full Counterclockwise
AM	Center

FM IF ALIGNMENT

STEP	SIGNAL GENERA Connection	TOR   Freq.	SWEEP GENERATOR   Connection   Freq.		$\begin{aligned} & \text { OSCILLOSCOPE } \\ & \text { CONNECTION } \end{aligned}$	ADJUST	OUTPUT READING	COMMENTS
1.	Loosely couple marker to pin 1 of 1 st IF Amp. - 6BA6	$\begin{aligned} & 10.6 \mathrm{MC} \\ & 10.7 \mathrm{MC} \\ & 10.8 \mathrm{MC} \end{aligned}$	To pin 1 of 1st IF Amp. - 6BA6	10.7 MC	Thru detector circuit of Figure A to pin 5 of 2nd IF Amp. - 6AU6	$\begin{aligned} & \mathrm{T} 3-\mathrm{F} \\ & \mathrm{~T} 3-\mathrm{E} \end{aligned}$	Response curve of Figure B	Connect 500 ohm resistor from pin 5 to pin 6 of 2 nd IF Amp. - 6AU6. Obtain maximum vertical amplitude for response curve.   Set sweep generator for approximately 500 KC to 1 MC sweep.
2.	Loosely couple marker to pin 7 of Osc. Mixer - 6BE6.	$\begin{aligned} & 10.6 \mathrm{MC} \\ & 10.7 \mathrm{MC} \\ & 10.8 \mathrm{MC} \end{aligned}$	To pin 7 of Osc. Mixer-6BE6.	10.7 MC	Same as 1.	$\begin{aligned} & \mathrm{T} 1-\mathrm{B} \\ & \mathrm{~T} 1-\mathrm{A} \end{aligned}$	Response curve of Figure B	Same as 1 ; reduce sweep generator output to avoid AVC distortion of response curve.
3.	Loosely couple marker to pin 1 of 2 nd IF Amp. - 6AU6.	$\begin{aligned} & \text { 10. } 6 \mathrm{MC} \\ & 10.7 \mathrm{MC} \\ & 10.8 \mathrm{MC} \end{aligned}$	To pin 1 of 2 nd IF Amp. -6AU6	10.7 MC	Across de-emphasis capacitor, C37 . 0033 Mfd .	$\begin{aligned} & \mathrm{T} 5-\mathrm{K} \\ & \mathrm{~T} 5-\mathrm{J} \end{aligned}$	Response curve of Figure C	REMOVE 500 OHM RESISTOR ADDED FOR STEP 1. Center 10.7 MC marker. Obtain maximum linear output for response curve.



FIGURE A


FM RF ALIGNMENT

STEP	SIGNAL GENE Connection	$\begin{aligned} & \text { ATOR } \\ & \text { Freq. } \end{aligned}$	TUNING CAPACITOR POSITION	OUTPUT METER CONNECTION	ADJUST	OUTPUT READING	COMMENTS
1.	Thru resistor network of Figure D to FM antenna terminal board.	108.5 MC	Fully open	Across speaker voice coil.	C9	Maximum	Set Volume control to full CW position and set Tone control to full CCW position. Use a 400 cycle modulated signal. Keep generator output at lowest usuable value.   Leave AM loop antenna leads connected during FM RF alignment.
2.	Same as 1.	108 MC	108 MC	Same as 1.	C8	Maximum	Same as 1 using printed calibration dial on chassis assembly to properly position tuning capacitor.
3.	Same as 1.	87. 5 MC	Fully closed	Same as 1.	$\begin{array}{r} \text { L5 } \\ \text { coil } \end{array}$	Maximum	Same as 1 "spiking" (squeezing or spreading turns of coil) L5 for maxinum output reading. Use a non-metalic pick for this adjustment.
4.	Same as 1	88 MC	88 MC	Same as 1.	$\begin{gathered} \text { L4 } \\ \text { coil } \end{gathered}$	Maximum	Same as 2 "spiking" (squeezing or spreading turns of coil) L4 for maximum output reading. Use a non-metallic pick for this adjustment.

SYLVANIA PAGE 23-23
MODELS $25-\mathrm{M}, \mathrm{M}-1,75-\mathrm{B}, \mathrm{B}-1, \mathrm{M}, \mathrm{M}-1$, 178B, BU, M, MU, 373B, BU, M, MU, Ch. 1-603-1: 388B, BU, M, MU, Ch. 1-603-2
AM ALIGNMENT

STEP	SIGNAL GENERA Connection	TOR   Freq.	TUNING CAPACITOR POSITION	OUTPUT METER CONNECTION	ADJUST	OUTPUT   READING	COMMENTS
1.	Thru . 1 Mfd. capacitor to pin 7 of Osc. Mixer - 6BE6.	455 KC	Fully open	Across speaker voice coil.	$\begin{aligned} & \mathrm{T} 4-\mathrm{H} \\ & \mathrm{~T} 4-\mathrm{G} \\ & \mathrm{~T} 2-\mathrm{D} \\ & \mathrm{~T} 2-\mathrm{C} \end{aligned}$	Maximum	Set Volume control to full CW position and set Tone control to full CCW position.   Use a 400 cycle modulated signal. Keep generator output at lowest usuable value.
2.	Radiated to receiver thru a wire loop of several turns. or:   Thru a 50 Mmfd . capacitor to AM antenna board.	1650 KC	1650 KC	Same as 1.	C12	Maximum	Same as 1 using printed calibration dial on chassis assembly to properly position tuning capacitor.
3.	Same as 2.	1400 KC	1400 KC	Same as 1.	C 3	Maximum	Same as 2.



DIAL CORD HOOKUP

## REPAIR PARTS LIST

SCHEMATIC	SERVICE	
LOCATION	PART NUMBER	DESCRIPTION
	CAPACITORS	
C1	163-0470	470 Mmfd. - 500 V. - Mica
C2	163-0470	470 Mmfd. - 500 V . - Mica
C3	172-0031	Trimmer - AM Loop Antenna
C4	163-0032	22 Mmfd . - 500 V . - Mica
C5	170-0008	Variable - 4 Gang (FM RF Section)
C6	170-0008	Variable - 4 Gang (FM Oscillator Section)
C7	170-0008	Variable - 4 Gang (AM Antenna Section)
C8		Trimmer (Part of C5)
C9		Trimmer (Part of C6)
C10	170-0008	Variable - 4 Gang (AM Oscillator Section)
C11	163-0470	470 Mmfd . - 500 V . - Mica
C12		Trimmer (Part of C10)
C13	166-0010P	10 Mmfd . - 500 V . - Ceramic
C14	163-0047	47 Mmfd . - 500 V . - Mica
C15	165-0006A	6 Mmfd. - 500 V . - Ceramic
C16	165-0006 ${ }^{\text {* }}$	6 Mmfd. - 500 V . - Ceramic
C17	166-4700D	. 0047 Mfd - - 500 V . - Ceramic
C18	163-0470	470 Mmfd - 500 V . - Mica
C19	168-0002D	. 01 Mfd . - 500 V . - Ceramic
C20	166-0470N	470 Mmfd . - 500 V . - Ceramic
C21	168-0002D	. 01 Mfd. - 500 V . - Ceramic
C22	168-0002D	. 01 Mfd. - 500 V. - Ceramic
C23	163-3900	. 0039 Mfd . - 500 V . - Mica
C24	163-0100	100 Mmfd . - 500 V . - Mica (Part of T4)
C25	163-0100	100 Mmfd . - 500 V . - Mica (Part of T4)
C26	166-0270N	270 Mmfd. - 500 V . - Ceramic
C27	168-0002D	. 01 Mfd . - 500 V . - Ceramic
C28	163-0047	47 Mmfd . - 500 V . - Mica
C29	166-4700D	. 0047 Mfd.- 500 V. - Ceramic
C30	168-0002D	. 01 Mfd . - $500 \mathrm{~V} .-\mathrm{Ceramic}$ (Chassis 1-603-2 only)
C31	166-4700D	. 0047 Mfd - - 500 V . - Ceramic
C32	$166-4700 \mathrm{D}$	. 0047 Mfd.- 500 V. - Ceramic
C33	163-0100	100 Mmfd. - 500 V . - Mica
C34	168-0002D	. 01 Mfd . - 500 V . - Ceramic
C35	160-06218	. 0018 Mfd.- 600 V. - Paper - Molded
C36	166-2000P	. 002 Mfd . - 500 V . - Ceramic
C37	166-3300P	. 0033 Mfd. - 500 V . - - Ceramic

## SERVICE

PART NUMBER
DESCRIPTION
CAPACITORS (CONT'D)

C38	$166-0470 \mathrm{~N}$	$470 \mathrm{Mmfd}-500 \mathrm{~V}$.	- Ceramic
C39	$161-1008$	4 Mfd.	-50 V.


L1	$111-0012$
L2	$582-0012$
L3	$146-0014$
L4	$112-0009$
L5	$113-0021$
L6	$113-0011$
L7	$146-0014$
L8	$146-0013$
T1	$121-0017$
T2	$121-0018$
T3	$122-0017$
T4	$122-0019$
T5	$128-0007$
T6	$141-0017$
T6	$141-0036$
T7	$143-0018$

CHOKES, COILS, AND TRANSFORMERS
$726-0003$
$416-0011$
$497-0005$
$497-0013$
$487-0013$
$487-0004$
$554-0019$
$417-0006$
$722-0020$
$497-0012$
$792-0007$
$494-0007$
$493-0016$
$482-0007$
$411-0007$
$417-0002$
$417-0009$
$412-0015$
$412-0020$
$412-0003$
$412-0001$
$419-0003$
$496-0023$

## MISCELLANEOUS CHASSIS PARTS

$726-0003$	Background - Dial
$416-0011$	Board - Antenna (FM)
$497-0005$	Bushing and Retainer - Line Cord
$497-0013$	Bushing - Rubber
$487-0013$	Button - Snap
$487-0004$	Clip - IF Transformer Can Mounting
$554-0019$	Clip - Tuning Shaft Retaining
$417-0006$	Connector Pin - Antenna Lead
$722-0020$	Dial - Station
$497-0012$	Grommet - Rubber
$792-0007$	Pointer - Dial
$494-0007$	Pulley - Dial Drive
$493-0016$	Shaft - Tuning
$482-0007$	Shield - Miniature Tube
$411-0007$	Socket - Dial Light
$417-0002$	Socket - 1 Prong - Phono Input
$417-0009$	Socket - 2 Prong - Phono Motor
$412-0015$	Socket - 7 Prong Miniature
$412-0020$	Socket - 7 Prong Miniature - Mica filled
$412-0003$	Socket - 8 Prong Octal
$412-0001$	Socket - 8 Prong Lock-in
$419-0003$	Socket - 8 Prong - Speaker
$496-0023$	Spring - Drive String Tension

MISCELLANEOUS ELECTRICAL PARTS
157-0017

R13
R15
$195-0008$
$195-0002$
$611-0047$
$573-0004$

Control-Dual-Tone, Volume and On/Off
Control-Volume
Control-Tone
Cord and Receptacle Assembly
Cord - Line
Cord - Line
Lamp - \#47
Lamp - \#47
Switch - FM/AM/PHONO
RESISTORS

181-0121	120 Ohm - 1/2 W.
181-0181	180 Ohm - 1/2 W.
181-0223	22,000 Ohm - 1/2 W.
181-0101	$100 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.
181-0105	1 Megohm - $1 / 2 \mathrm{~W}$.
181-0270	2,700 Ohm - $1 / 2 \mathrm{~W}$.
181-0181	180 Ohm - 1/2 W.
181-0225	2.2 Megohm - 1/2 W.
181-0680	68 Ohm - 1/2 W.
181-0272	2, 700 Ohm - 1/2 W.
181-0473	47,000 Ohm - 1/2 W.
181-0474	470, $000 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.
	Listed under "Miscellaneous Electrical Parts"
181-0473	47, 000 Ohm - 1/2 W.
	Listed under "Miscellaneous Electrical Parts"
181-0101	100 Ohm - 1/2 W.
181-0106	10 Megohm - 1/2 W. (Chassis 1-603-2 only)
181-0106	10 Megohm - 1/2 W.
181-0474	470, 000 Ohm - 1/2 W.
181-0181	180 Ohm - 1/2 W.
181-0223	22,000 Ohm - 1/2 W.
181-0223	22,000 Ohm - 1/2 W.
189-0007	4.3 Ohm - $1 / 2 \mathrm{~W} .-\mathrm{W} . \mathrm{W}$.
182-0181	180 Ohm - 1 W. (Chassis 1-603-1 only)
182-0221	220 Ohm - 1 W. (Chassis 1-603-2 only)
181-0474	470,000 Ohm - 1/2 W.
187-0009	1,850 Ohm - $5 \mathrm{~W} .-\mathrm{W} . \mathrm{W}$. (Chassis 1-603-1 only)
187-0015	1,600 Ohm - 5 W. - W. W. (Chassis 1-603-2 only)

SYLVANIA PAGE 23-25 MODELS 25-M, M-1, 75-B, B-1, M, $\mathrm{M}-1,178 \mathrm{~B}, \mathrm{BU}, \mathrm{M}, \mathrm{MU}, 373 \mathrm{~B}, \mathrm{BU}, \mathrm{M}$,


SCHEMATIC DIAGRAM FOR 1-603-1 CHASSIS

PAGE 23-26 SYLVANIA
MODELS 388B, BU, M,
MU, Ch. 1-603-2



LINE VOLTAGE: 120 VOLTS AC						FULL VOLUME CONTROL - NO SIGNAL				
TUBE	No. 1	P I N S								
		No. 2	No. 3	No. 4	No. 5	No. 6	No. 7			
35W4	-	-	85 AC	120 AC	120 AC	-	130	V		
50C5	0	-9.8 V	26 AC	76 AC	-	110 V	120	V	"4 Tube	Radio"
12BE6	$-10 \mathrm{~V}$	0 V	26 AC	13 AC	105 V	105 V	-. 8	V		
12AT6	-1 V	0 V	0 AC	13 AC	$-.8 \mathrm{~V}$	-. 7 V	58	V		

Voltage readings made with V.T.VM from pins designated to $\mathrm{B}-$.

## ALIGNMENT CHART

STEPS	ALIGN	DUMMY ANTENNA	GENERATOR FREQUENCY	DIAL SETTING	CONNECT GENERATOR TO	ADJUST	OUTPUT METER ACROSS VOICE COIL
1	I.F.	. 05	455 KC	High Freq. End	Pin 7-12BE6 Converter Grid	Double Slug	Peak for Max.
2	Osc.	. 05	1650 KC	High Freq. End	Pin 7-12BE6 Converter Grid	Cl0B   Osc. Tuner Trim	Peak for Max.
3	Hank Ant.	100 mmf .	1500 KC	1500 KC	Ant. Lead	$\begin{gathered} \text { Cl0A } \\ \text { R.F. Tuner Trim } \end{gathered}$	Peak for Max.
4	Repeat Steps 2 and 3						



TOP VIEW

PAGE 23-2 TELE KING
MODEL RK-41,



LINE VOLTAGE: 117 VOLTS AC						FULL VOLUME CONTROL - NO SIGNAL		
TUBE	Pin \#1	Pin $\# 2$	Pin \#3	Pin $\div 4$	Pin \#5	Pin $\% 6$	Pin \#7.	
1R5	1.25 V	98 V	48 V	-10 V	1.25 V	-. 4 V	2.5 V	
145	0 V	25 V	26 V	$-.4 \mathrm{~V}$	0 V	-.2. V	1.25 V	PORTABLE RADIO
1 U 4	2.5 V	98 V	97 V	0 V	2.5 V	1.3 V	3.75 V	
3V4	3.75 V	93 V	97 V	0 V	5.1 V	0 V	6.3 V	

Voltage readings made with V.T. VM from pins designated to $\mathrm{B}-$.
$B+$ at input filter - 125 V DC.
B+ at output filter - 98V DC.
ALIGNMENT CHART

STEPS	ALIGN	DUMMY ANTENNA	GENERATOR FREQUENCY	DIAL SETTING	CONNECT GENERATOR TO	ADJUST	OUTPUT METER ACROSS VOICE COIL
1	2nd I.F.	. 05	455 KC	High Freq. End	Pin 6-1 R5 Converter Grid	$\mathrm{T}-2$   Double Slug	Peak for Max.
2	1st I.F.	. 05	455 KC	High Freq. End	Pin 6-1R5 Converter Grid	T-1   Double Slug	Peak for Max.
3	Osc.	. 05	1650 KC	High Freq. End	Pin 6-1R5 Converter Grid	C19B   Osc. Tuner Trim	Peak for Max.
4	Loop Ant.	Radiate into Loop Ant.	1500 KC	1500 KC	Several Turns Around Loop	C19A   Loop Tuner Trim	Peak for Max.
5	Repeat Steps 3 and 4						



TOP VIEW

PAGE 23-4 TELE KING
MODEL RKP-53,
Ch. REP-1


John F. Rider


LINE VOLTAGE: 120 VOLTS AC					FULL VOLUME CONTROL - NO SIGNAL			
TUBE	P I N S							
	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	
35W4	-	-	88 AC	120 AC	120 AC	-	125 V	
5OC5	6.4 V	0 V	36 AC	88 AC	0 V	98 V	115 V	
12BE6	$-7.4 \mathrm{~V}$	0 V	24 AC	36 AC	98 V	98 V	$-.8 \mathrm{~V}$	"5 Tube Radio"
12BA6	$-1 \mathrm{~V}$	0 V	24 AC	12 AC	96 V	98 V	1.3 V	, .
12AT6	$-1 \mathrm{~V}$	0 V	0 AC	12 AC	$-1.2 \mathrm{~V}$	-.9 V	52 V	

Voltage readings made with V.T.VM from pins designated to $B-$.
ALIGNMENT CHART

STEPS	ALIGN	DUMMY ANTENNA	GENERATOR FREQUENCY	DIAL SETTING	CONNECT GENERATOR TO	ADJUST	OUTPUT METER ACROSS VOICE COIL
1	2nd I.F.	. 05	455 KC	High Freq. End	Pin 7-12BE6 Converter Grid	$\begin{gathered} \text { T-2 } \\ \text { Double Slug } \end{gathered}$	Peak for Max.
2	1 st I.F.	. 05	455 KC	High Freq. End	Pin 7-12BE6 Converter Grid	$\begin{gathered} \text { T-1 } \\ \text { Double Slug } \end{gathered}$	Peak for Max.
3	Osc.	. 05	1650 KC	High Freq. End	Pin 7-12BE6 Converter Grid	C11B   Osc. Tuner Trim	Peak for Max.
4	Loop Ant.	Radiate into Loop Ant.	1500 KC	1500 KC	Several Turns Around Loop	Cl1A   Loop Tuner Trim	Peak for Max.
5	Repeat Steps 3 and 4						



TOP VIEW

PAGE 23-6 TELE KING
MODEL RK51,
Ch. RE-1


LINE VOLTAGE: 117 VOLTS AC							FULL VOLUME CONTROL - NO SIGNAL						
tUBE COMPLEMENT	P I N							No. 6		No. 7		No. 8	
	No. 1	No. 2	No. 3		No. 4		N S						
3575	-	117 AC	-		-		-	117		90	AC	120	V
50 L 6	-	90 AC	110	V	95 V		0 V	-		38		7	$V$
12SQ7	-	-. 8 V	0	$V$	-. 7 V		$-.7 \mathrm{~V}$	52	V	12.5	AC	0	AC
12SK7	-	38 AC	0 V	$V$	-. 8 V		0 V	96	V	25		96	V
12SA7	-	25 AC	96		96 V		-. 7 V	0	V	12.5		-. 8	V

Voltage readings made with V.T.VM from pins designated to $B$ -

ALIGNMENT CHART

STEPS	ALIGN	DUMMY   ANTENNA	GENERATOR   FREQUENCY	DIAL   SETTING	CONNECT   GENERATOR TO	ADJUST	OUTPUT METER   ACROSS VOICE COIL	
1	2nd I.F.	.05	455 KC	High Freq.   End	Pin 8-12SA7   Converter Grid	T-2   Double Slug	Peak for Max.	
2	1 st I.F.	.05	455 KC	High Freq.   End	Pin 8-12SA7   Converter Grid	T-1   Double Slug	Peak for Max.	
3	Osc.	.05	1650 KC	High Freq.   End	Pin 8-12SA7   Converter Grid	Cl1B   Osc. Tuner Trim	Peak for Max.	
4	Loop Ant.	Radiate into   Loop Ant.	1500 KC	1500 KC	Several Turns   Around Loop	C11A   Loop Tuner Trim	Peak for Max.	
5								



5 TUBE AM RADIO MODEL RE-2A USED IN COMBINATIONS			$L_{0-2}$	${ }^{\text {B }}$ Prast Oscillator Coil	$10.5$
Schmematic Symbol Ho.	Description	TeleKing   Part Reference No.	$\begin{aligned} & \text { PC.-150 } \\ & \text { PL.3 } \end{aligned}$	Printed Circuit   Pilot Lamp GE 1490	$\begin{aligned} & \text { CRP. } 5 \\ & \text { PL. } 3 \end{aligned}$
C-1. C.7	. 01 Mfd 400 V		P. 26	Tone Control w. Switch 2 Megohms	
	. 02 Mfd 400 V	CP.4.12	R-1	22 K ohms $1 / 2 \mathrm{~W}$	RC-223.2
	. 17 Mdd 600 V	CP-6.01	R-2	2.2 Megohms $1,2 \mathrm{~W}$	RC-225-1
C. ${ }^{\text {c. }} 5$	47 Mfd 500 V	CM. 447	R-3	1 Megohm $1 / 2 \mathrm{~W}$	.RC-105-2
C-6	25 Mfd 50 V Electrolytic	${ }_{\text {CP-4-427 }}$	${ }_{\text {R.5 }}$	150 ohms $1 / 2 \mathrm{~W}$	${ }_{\text {RC-151-1 }}$
	. 05 Mid 600 V	CP.6-15	R.6	220K ohms 12 W	RC-224.2
${ }_{\text {C. }-11} \mathrm{C}-10$	4040 Mrd 150 V Electrolytic	CEM-19	R.7	1000 ohms 2 W	${ }^{\text {RC-102.7 }}$
C-11 ${ }_{\text {c-11a, }}$ C-11t	2.Gang Variable Cond. w. Drum	CV-5	${ }_{\text {R. }}^{\text {R. }}$	330 ohms iw	RC. 3314
L-1	B'cast Loop Antenna	LA.6 ${ }^{\text {c- }}$	${ }_{\text {T. } 13} 1$	Audio Output Transformer	T.132



## AND SERVICE DATA <br> Alignment

A Signal Generator is required having the following frequencies: $455 \mathrm{KC}, 1400 \mathrm{KC}, 1650 \mathrm{KC}$. An output meter should be connected across the speaker.

FIRST STEP: Connect the hot lead from the generator to the ANT. section of the gang condenser, through a 1 MFD condenser. The ground lead from the generator must be connected to the metal frame of the gang condenser. Turn the gang condenser to complete minimum capacity. Adjust the generator to 455 KC and adjust the trimmers of the 1 st and 2nd I.F. transformers until a maximum reading is noted on the output meter.

AC CORD $\xlongequal{\text { TUBE AND TRIMMFR LLOCATION }}$


PAGE 23-2 TRAV-LER
MODEL 5170




POWER SOURCES: This receiver may be operated on alternating current (AC) of 110 to 125 volts at 60 cycles or on direct current (DC) of 110 to 125 volts. When used on DC , if the tubes light up but set does not play, reverse the cord plug in the power outlet.

CAUTION: Always predetermine voltage of power source. Never try to plug this receiver into a 220 volt line, as this will cause serious damage.

INSTALLATION: Unwind the power cord and plug into a convenient outlet. This receiver is equipped with a sensitive loop antenna and under ordinary conditions no external antenna would be required.

Due to the directional qualities of the loop antenna the reception of some stations may be improved by placing the receiver in different positions.

CONTROLS: Two knobs control the operation of this receiver. The left hand knob is used to turn set off and on. It is also used to control volume. Rotate knob to your right in a clockwise direction and a click will be heard. This turns receiver on. Allow about 30 seconds for tubes to heat up, then continue to rotate knob to your right to increase volume. The right hand knob is the station selector. Rotate this knob to right or left to locate your station. By mentally adding a zero to the numbers on the dial, the result will be read directly in kilocycles. To turn set off, turn left hand knob to your left in a counterclockwise direction as far as it will go and a click will be heard. The power switch will then be turned off.


## ALIGNMENT AND SERVICE DATA

Remove chassis from cabinet for alignment.
A Signal Generator is required having the following frequencies: $455 \mathrm{KC}, 1400 \mathrm{KC}, 1650 \mathrm{KC}$. An output meter should be connected across the speaker.

The volume control of the receiver should be turned to maximum during the I.F. and all subsequent alignment and the generator output as low as possible to prevent the A. V. C. from working and giving false readings.

FIRST STEP: Connect the hot lead from the generator to the ANT. section of the gang condenser through the . 1 MFD. condenser. The ground lead from the generator must be connected to " $B$ " minus under the chassis. Turn the gang condenser to complete minimum capacity. Set the generator to 455 KC. Adjust the trimmers of the first and second I.F. transformers until a maximum reading is noted on the output meter.

SECOND STEP: With the leads from the generator still connected in the same manner, adjust the Signal Generator to 1650 KC . Adjust the OSC. trimmer until the 1650 KC signal is tuned in. The gang condenser must be at complete minimum capacity for this adjustment.

THIRD STEP: Remove the generator leads from the gang condenser. Loosely couple the generator to the receiver loop by using a complete turn of wire. With the receiver and generator set at 1400 KC , increase the generator output. Adjust the ANT: trimmer until a maximum signal is noted on the output meter. No further adjustment should be made as the coils and gang condenser in this receiver have been specially handled at the factory to insure


IIII CHASSIS GROUND
Date-2-14-52

PART NO.		DESCRIPTION	PART NO.		DESCRIPTION	PART NO.		DESCRIPTION
1R-23	R-I	3.3 MEG. RESISTOR I/2W 2Q \%		6-3	ANT. TRIMMER CONDENSER.	LL-28	L-1	LOOP ANT.
1R-11	R-2	470M $\sim$ RESISTOR J/2W $20 \%$		G-4	OSG. TRIMMER CONDENSER	LO-13	L-2	OSC. COIL.
+ B - 14	R-3	150~ RESISTOR 1/2 w $20 \%$	$\mathrm{PC-2}$	C-1	. 05 MFD. CONDENSER 200 V .	L-6.	T-1	INPUT I.F. TRANSFORMER
1,R-17	R-4	$33 \sim$ RESISTOR $1 / 2 \mathrm{~W} 20 \%$	MC-4	C-2	50 MMFD . MICA CONDENSER.	니-7	T-2	OUTPUT I.F. TRANSFORMER
$\|\mathrm{R}-2\|$	R-5	330~ RESISTOR $1 / 2 \mathrm{~W} 20 \%$	PC-9	c-3	.I MFD. CONDENSER 400 V .		T-3	SPK.OUTPUT TRANSFORMER
IR-9 $\mathrm{VC-3E}$	R-6	$22 M \Omega$ RESISTOR $1 / 2 W 20 \%$ I MEG. VOLUME CONTROL.	EC-24-f	C-4	50 MFD .7 ELEGTROLYTIC 150 V. 50 MFD.	SPK-19	$\begin{gathered} \text { v.c. } \\ \text { s. } \end{gathered}$	VOICE COIL. P.M.SPEAKER
IR-10	R-8	47M - RESISTOR $1 / 2 \mathrm{~W} 20 \%$		c-6	220MMFD. 1	CO-1	P	LINE CORD.
LR-20	R-9	220M - RESISTOR $1 / 2 \mathrm{~W} 20 \%$		c-7	.002MFD.	sw	sw	AC. SWITCH ON VOLUME CONTROL
iR-42 HR- 13	R-10	IO00~ RESISTOR IW $20 \%$ 2.2MEG. RESISTOR $1 / 220 \%$		C-8	220MMFD. .005 MFD.			
6C-58	$\begin{aligned} & 6-1 \\ & 6-2 \end{aligned}$	gang condenser.	PC-10	c-10	. 005 MFD . CONDENSER 400V.			

FREQUENCY RANGE: 535 KC. TO 1630 KC. OPERATING INSTRUCTIONS and requires no external power source.
POWER SOURCES: This receiver operates from its own enclosed batteries
CONTROLS: Two controls are provided for the operation of this receiver and are located on the left and right ends of the front panel of the cabinet. VOLUME CONTROL AND "OFF-ON SWITCH": The right hand knob is the volume control and is also used to turn the receiver "OFF" or "ON". Rotate this knob upward and a click will be heard, which indicates that the receiver is "ON". Turn this knob further upward to increase volume, or
downward to decrease volume.

STATION SELECTOR: The left hand knob is the station selector or tuning control. Rotate this knob upward or downward to select your desired station.
 directly in kilocycles i.e., 14 plus 00 equals 1400 KC , or 65 plus 0 equals

Rotate the tuning knob until the proper station has been selected, then adjust the volume control to the desired level.

ANTENNA: This receiver is equipped with a sensitive Ferramic Rod antenna and requires no external antenna wire. However, due to the directional qualities of the antenna, some stations may appear to be weak in reception. This condition may be remedied by rotating, or changing the position, of the receiver.

CAUTION: When you have finished listening to the receiver, turn the volume control all the way downward until a click is heard and the word "OFF" appears in the window opening of the cabinet. This will indicate that the switch is turned off. If the switch is left on for long periods of time the
 ical operation.

## BATTERY SERVICING



 the back.

## ALIGNMENT AND SERVICE DATA

Refer to Fig. No. 1 for location of mounting screws, and remove the chassis from the cabinet for alignment. A signal generator is required having the following frequencies: $455 \mathrm{KC}, 1400 \mathrm{KC}$, and 1630 KC . An output meter should be connected across the speaker.

FIRST STEP: Connect the hot lead from the generator to the ANT. section of the gang condenser, through a . 1 MFD. condenser. The ground lead from the generator may be connected to any spot on the metal chassis. Turn the gang condenser to complete minimum capacity. Set the generator to 455 KC . Adjust the movable iron cores in the IF cans. The IF adjustments are made in the top and in the bottom of the can nearest to the gang condenser. The remaining IF can, farthest from the gang condenser, is adjusted only from the tri:. Adjust the cores until a maximum reading is noted on the output meter.

The volume control of the receiver should be turned to maximum during the IF and all subsequent alignment and the generator output as low as possible to prevent the AVC from working and giving false readings.

SECOND STEP: With the leads from the generator still connected as in IF alignment, adjust the generator to 1630 KC . Make sure that the gang condenser is turned to complete minimum capacity. Adjust the generator to 1630 KC . and adjust the oscillator trimmer of the receiver until the signal is tuned in. Next, turn the gang condenser to complete maximum capacity. Adjust the generator to 535 KC ., then adjust the iron core in the end of the oscillator coil until the signal is tuned in. It may be well to recheck the 1630 KC . setting to make sure that the adjustment of the iron core has not shifted the frequency.

THIRD STEP: Remove the generator leads from the gang condenser and the chassis. Loosely couple the generator to the antenna by laying the hot generator lead near the antenna rod. Set the generator at 1400 KC . and tune in the 1400 KC . signal on the receiver. Adjust the ANT. trimmer until a maximum signal is noted on the output meter.

No further adjustment should be necessary as the coils and gang condenser in this receiver have been specially handled at the factory to insure proper alignment at the lower frequencies.


VOLUME CONTROL: The left hand knob is the volume control. After the power selector knob has been properly set and the receiver is in operation, rotate the
volume control knob to the right to increase volume or to the left to decrease volume.

## BATTERY SUPPLIERS

The batteries for this receiver may be purchased from any reliable dealer.
For proper operation this receiver requires two "A" batteries and one "B" battery.

POWER SOURCES: This receiver is designed for operation on either an external power source or on the enclosed batteries.

AC OR DC OPERATION: This receiver may be op
110 to 125 volt AC current or 110 to 125 DC current.
 operation only.

To operate on AC or DC open the small door at the right in the back of
the cabinet. Pull out the power cord and plug into a convenient outlet of the
To operate on the enclosed batteries, follow instructions under "Controls."
ANTENNA: This receiver is equipped with a sensitive loop antenna and rethe loop some stations may appear to be weak in reception. This condition

CONTROLS. This receiver has three control knobs which are located on the

STATION SELECTOR KNOB: The center knob is the station selector. Rotate this knob to the right or left to select your desired station. The dial scale is the result will be read directiy in (KC) kilocycles. (i.e., 60 plus 0 equals 600 KC or 140 plus 0 equals 1400 KC ).

 position is the "OFF" position. The small dot on this knob must point to "OFF"
when the receiver is not in use. The center position is "AC-DC" and is used when it is desired to operate the receiver from a power line source. The extreme right hand position is "BATT" and is used when it is desired to operate on the
enclosed batteries. enclosed batteries.

AC OPERATION: When an AC power source is used, set the power selector
knob to "AC-DC" after the power cord has been plugged into a convenient outlet. The receiver is now ready for operation:

DC OPERATION: If the receiver does not operate after a few seconds, reverse
the power cord plug in the outlet and it will operate properly.
 to. "BATT" and the receiver is ready for operation on the enclosed batteries.


 is turned all the way off.

## MODEL 5301

## ALIGNMENT AND SERVICE DATA

## (See Fig. No. 2 For Trimmer Location)

Remove chassis from cabinet for alignment.
A Signal Generator is required having the following frequencies: 455 KC , $1400 \mathrm{KC}, 1650 \mathrm{KC}$. An output meter should be connected across the speaker.

The volume control of the receiver should be turned to maximum during the I. F. and all subsequent alignment and the generator output as low as possible to prevent the A. V. C. from working and giving false readings.
FIRST STEP: Connect the hot lead from the generator to the ANT. Section of the gang condenser through a . 1 MFD . condenser. The ground lead from the generator must be connected to " $B$ " minus under the chassis. Turn the gang condenser to complete minimum capacity. Set the generator to 455 KC . Adjust the movable iron cores in the IF cans. These IF adjustments are made in the top and in the bottom of the can under the chassis. Adjust the cores until a maximum reading is noted on the output meter.
SECOND STEP: With the leads from the generator still connected in the same manner, adjust the Signal Generator to 1650 KC . Adjust the OSC. trimmer until the 1650 KC signal is tuned in. The gang condenser must be at complete minimum capacity for this adjustment.
THIRD STEP: Remove the generator leads from the gang condenser and replace the chassis in the cabinet. Loosely couple the generator to the receiver loop by making a complete turn of wire over the outside of the cabinet. With the receiver and generator set at 1400 KC , increase the generator output. Adjust the ANT. trimmer through the hole which is provided in the end of the cabinet until a maximum signal is noted on the output meter. The ANT. trimmer hole in the side of the cabinet is covered by a small plug button. Replace this button after adjustment has been made. No further adjustment should be made as the coils and gang condenser in this receiver have been specially handled at
 the factory to insure proper alignment at the lower frequencies.



## GENERAL DESCRIPTION

This model is a HI-FIDELITY two band ten tube (plus 2 rectifiers) AM and FM receiver with a three speed automatic record changer together with a pre-amp system. The I-F stages use high gain miniature type tubes. Built-in Air Wave Antennas are provided for the FM and broadcast bands. Features include compensator circuits to prevent oscillator drift, push-pull pentode power output stage, automatic volume control, a coaxial two-way 12" P.M. dynamic loud speaker and provisions for use of external $A M$ and $F M$ antennas if desired.

## ELECTRICAL SPECIFICATIONS

Power Supply
105-125 volts AC 60 cycles, 95 watts, 120 watts with record changer.
Frequency Ranges and
Band Width . . . . . . . . . AM-535-1620 KC-8¹⁄2 KC FM-88-108 MC-200 KC

Intermediate Frequency. AM-455 KC FM-10.7 MC

Selectivity
AM-43 KC Broad at 1000 times signal, measured at 1000 KC I.F. FM-200 KC broad at 2 times down
I.F. FM-800 KC broad at 200 times down

## ELECTRICAL SPECIFICATIONS (Cont.)

Sensitivity
AM-5 microvolts (average) for 100 milliwatts output FM-20 microvolts (average) for 30 db quieting

Amplifier Frequency
Response. . . . . . . . . 20 to 20,000 CPS
Power Output
12.5 watts maximum 12 watts $10 \%$ distortion

Loud Speaker. . . . . . . . . The single unit coaxial, dual cone Electro-Voice SP-12-B 12-inch full range speaker, with $16-\mathrm{oz}$. Alni-co-V Magnet, gives smooth response ( 30 through 13,000 cycles). The 5 cu . ft . tone chamber is specially designed for optimum speaker performance. Other features are a 2 -inch aluminum voice coil and a wide dispersion high frequency radiator cone. The voice coil impedance is 8 -ohms 400cycles.

Record Changer . . . . . . One of the newest and best high fidelity units available, the VM 935 High Fidelity record changer uses a resonance-free die cast aluminum tone arm. The cartridge is a GE RPX-050 ( 60 H 30 ) variable reluctance plug-in type with GE PRJ-010 (61H28) twin sapphire needles. A 4-pole, 4-coil motor and weighted, balanced turntable eliminate hum and turntable rumble and insure constant speed. The muting switch will insure quiet operation during change cycle.

```
Tube and Dial Lamp
Complement
1 6BA6 AM-FM R-F Amplifier
1 12AT7 FM Osc. \& Mixer
1 6BA6 FM-AM 1st I-F Amplifier
1 6BA6 FM 2nd I-F Amplifier
1 6AL5 FM Detector
1 6AV6 Audio Amplifier, AM 2nd Detector and AVC
2 6V6-GT Audio Output
2 6X4 Rectifiers
1 12AX7 2nd Audio \& Phase Inverter
1 12AX7 Pre-Amplifier
2 No. 47 Dial Lamps
3 No. 51 Indicator Lamps
```




## DRIVE CORD REPLACEMENT

Use a new $10 \times 68$ drive cord assembly or a new length of cord 46 inches long for the installation, winding three turns clockwise around the drive shaft with the turns progressing away from the chassis. After completing the installation, rotate the drive shaft a few turns to take up the slack in the cord.

## TUBE SOCKET VOLTAGES

Socket voltages are shown on the Schematic dragram at the tube socket terminals. All voltages are between the socket terminal and chassis ground. Plate, screen and cathode voltages were taken with a 1000 ohm-per-volt meter with a 300 volt scale used for plate and screen voltages. Audio grid voltages were read with a vacuum tube volt-meter. Conditions of measurement are:

Line voltage . . . . . . . . . . . . . . . . . . . 117 Volts AC
Signal Input .................................. None A variation of $\pm 10 \%$ is usually permissible.


WELLS-GARDNER PAGE 23-3

## ALIGNMENT PROCEDURE

## AM STAGES

The following is required for aligning:
An All Wave Signal Generator Which Will Provide an Accurately Calibrated Signal at the Test Frequencies as Listed.
Output Indicating Meter, Non-Metallic Screwdriver, Dummy Antennas $-.1 \mathrm{mf}, 200 \mathrm{mmf}$.

Volume Control-Maximum all Adjustments
Connect Radio Chassis to Ground Post of Signal Generator with a Short Heavy Lead.
Allow Chassis and Signal Generator to "Heat Up" for Several Minutes.

SIGNAL GENERATOR		CONNECT GENERATOR OUTPUT TO	THROUGH DUMMY ANTENNA	BAND SWITCH SETTING		- ADJUST	ADJUST FOR
	FREQUENCY SETTING						
I-F	455 kc	12AT7   Pin 7 and Chassis	. 1 mf	Broadcast	Rotor Fully Open	2nd I-F Pri. \& Sec. (1) \& (2) 1st I-F Pri. \& Sec. (3) \& (4)	
Broadcast	1620 kc	External ant. term.	200 mmf	Broadcast	Rotor Fully Open	Broadcast Oscillator C-33	Maximum
	1400 kc	External ant. term.	200 mmf	Broadcast	Turn Rotor to Max. Output Set pointer to	Broadcast Interstage C-29	Output
	1400 kc	External ant. term.	200 mmf	Broadcast	1400 kc See Note A	Loop Antenna C-48	

FM STAGES

The following equipment is required for aligning:
An accurately calibrated signal generator providing unmodulated signals at the test frequencies listed below.

Non-metallic screwdriver.
Dummy Antennas and I-F Loading Resistor-. $01 \mathrm{mf}, 300$ ohms and 1000 ohms.

Zero center scale DC vacuum tube voltmeter having a range of approximately 3 volts.
(If a zero center scale meter is not available, a standard scale vacuum tube voltmeter may be used by reversing the meter connec tions for negative readings.)
Allow chassis and signal generator to warm up for several minutes

	SIGNAL	GENERATOR					
	FREQUENCY SETTING	CONNECT GENERATOR OUTPUT TO	THROUGH DUMMY ANTENNA	BAND SWITCH SETTING	$\begin{aligned} & \text { GANG } \\ & \text { CONDENSER } \\ & \text { SEITING } \end{aligned}$	ADJUST	$\begin{aligned} & \text { ADJUST } \\ & \text { FOR } \end{aligned}$
Discriminator	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note B } \end{aligned}$	6BA6 2nd I-F Pin 1 and Chassis	. 01 mf	FM	Rotor Fully Open	Disc. Pri. (5) Note A	Maximum   Deflection
	$\begin{aligned} & 10.7 \text { MC } \\ & \text { Note B } \end{aligned}$	6BA6 2nd I-F Pin 1 and Chassis	. 01 mf	FM	Rotor Fully Open	$\begin{gathered} \text { Disc. Sec. (6) } \\ \text { Note C } \end{gathered}$	Zero Center
I-F	10.7 MC   Note F	6BA6 lst I-F Pin 1 and Chassis	. 01 mf	FM	Rotor Fully Open	2nd I-F Pri. Note A and D (7)   2nd I-F Sec. Note A and $E$ (8)	Maximum Deflection
Diseriminator	$\begin{gathered} 10.7 \mathrm{MC} \\ \text { Note F } \\ \hline \end{gathered}$	6BA6 lst I-F Pin 1 and Chassis	. 01 mf	FM	Rotor Fully Open	Disc. Pri. (5) Note A	Maximum Deflection
	$\begin{aligned} & \text { 10.7 MC } \\ & \text { Note F } \end{aligned}$	6BA6 1st I-F Pin 1 and Chassis	. 01 mf	FM	Rotor Fully Open	Disc. Sec. (6) Note C	Zero Center
	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note F } \end{aligned}$	FM-RF Gang Condenser terminal	. 01 mf	FM	Rotor Fully Open	1st I-F Pri. (9) 1st I-F Sec. (10) Notes A, D \& E	Maximum Deflection
Recheck I-F Adjustments in order given							
R-F \& Osc.	108.4   Note H	Disconnect dipole and connect generator to dipole terminals with resistor in series	300 ohms	FM	Rotor Fully Open	$\begin{gathered} \hline \text { Oscillator C-35 } \\ \text { Note G } \end{gathered}$	Maximum Deflection
	104.5	Disconnect dipole and connect generator to dipole terminals with resistor in series	300 ohms	FM	Tune Rotor for Max. AVC voltage	FM $\begin{gathered}\text { Interstage } \\ \text { C- } 32\end{gathered}$	Maximum Deflection
	104.5	Disconnect dipole and connect generator to dipole terminals with resistor in series	300 ohms	FM	Tune Rotor for Max. AVC voltage	Ant. C-47	Maximum Deflection

Recheck R-F and Osc. Adjustments in order given

NOTE A-Test Equipment connections are as given in the table. The zero center scale DC vacuum tube voltmeter is to be connected between chassis ground and the AVC line at the junction of resistor R-22 and condenser C-18 for all adjustments except the discriminator secondary adjustment, for which See Note C.
NOTE B-A signal of .1 volt must be fed into the receiver for this adjustment.
NOTE C-Disconnect zero center DC vacuum tube voltmeter from AVC and connect to junction of R-18 and C-62. Adiust for zero voltage indication.

NOTE D-Before adjusting Pri. core connect 1000 ohm load resistor across the 2nd I.F. secondary terminals. Input may have to be increased to .1 volt if receiver is badly mis-aligned.
NOTE E-Disconnect 1000 ohm load resistor from secondary terminals and connect across the 2nd I.F. primary terminals. Input may have to be increased to .1 volt if receiver is badly mis-aligned.
NOTE F-Input can be reduced to 10,000 microvolts.
NOTE G-Oscil!ator frequency above signal frequency.
NOTE H-Remove the 1000 ohm load resistor before attempting to check the R-F and oscillator adjustments.

PAGE 23-4 WELLS-GARDNER


Use only genuine factory tested parts (for the part numbers listed) to insure service jobs you can depend on and to obtaln original set performance.
Use universal parts where no part numbers or prices are listed.
IMPORTANT - All prices in this literature are subject to change without notice and are subject to an additional charge to cover any applicable sales tax, use, occupation, or other tax affecting our purchase or sale of merchandise.


## PARTS LIST (continued)



TRANSFORMERS AND COILS

L-2	9A2025	Interstage Coil (AM)	2.20
L-3	9 A 2024	Interstage Coil (FM)	. 10
1.4	9 92022	Oscillator Coil (AM)	. 15
L.5	35A5	Osc. Cathode Choke	. 25
L-6	9 Al 881	Filament Choke	. 80
L.7	942023	Oscillator Coil (FM)	. 15
L-8	35A7	Mixer Plate Choke	. 30
L. 9	9 9.2027	Antenna Coil (FM)	1.05
L-10	$52 \times 93$	Filter Choke	2.25
T-1	9A2043	Ist I-F Trans. (FM)	2.15
T-2	9 92029	1st I-F Trans. (AM)	2.00
T.3	9A2030	2nd I-F Trans. (FM)	1.85
T.4	9 A2042	2nd I-F Trans. (AM)	1.45
T-5	9A2064	Discriminatar Coil	2.95
7-6	9 92004	Di-Pole Antenna	. 95
T.7	942312	"B" Range Loop Antenna	2.50
T-8	$53 \times 335$	Power Transformer	10.80
7.9	$51 \times 163$	Output Transformer	5.50


Ref. No.	Part No.	Description	List Price
DIAL AND DRIVE ASSEMBLY			
	$58 \times 775$	Dial Glass	1.40
	$58 \times 777$	Glass Control Panel	4.90
	25×1650	Dial Bracket	1.40
	$41 \times 88$	Dial Light Reflector	. 15
	$15 \times 280$	Pointer	. 25
	$10 \times 68$	Drive Cord Assembly	. 20
	$28 \times 113$	Drive Cord Tension Spring	. 05
	7A199	Pilot Light Socket Assembly	. 45
	74103	No. 47 Pilot Light Bulb	. 25
	19X192	"C" Washer (Mtg. Drive Shaft)	. 05
	26×531	Drive Shaft	. 90
	$6 \times 67$	Rubber Grommet	. 05
MISCELLANEOUS			
	12 A 514	12'1 PM Speaker . . . . . . . . . . . . . . . . . 56.00	
	3 A462	Tube Socket (Miniature)	. 30
	3 A436	Tube Socket (12AT7) (Miniature)	. 80
	3 A426	Tube Socket (Miniature))	. 20
	3 A 430	Pre-Amp Socket	. 15
	3 A 458	Tube Socket (Miniature))	. 20
	3 A 460	Tube Socket	1.05
	3 A 474	Tube Socket	. 15
	$66 \times 10$	Selenium Rectifier	2.30
	3 A 305	Phono Socket (Single Pin Tip)	. 10
	4 A 405	Antenna Terminal Strip	. 10
	2 A 433	Band Switch	4.20
	7 A252	Pilot Light Socket Assembly (Phono Ind.)	. 20
	74253	Pilot Light Socket Assembly (Radio Ind.)	. 25
	74233	Pilot Light Assembly $\}$ Cabinet	. 65
	74230	Jewel (Red) ..... ${ }^{\text {a }}$ (Rase	. 25
	7432	No. 51 Pilot Light Bulb ..... (7A253-7A252-7A233)	15
	13X839-2	Line Cord \& Plug Assembly	. 65
	$32 \times 403$	Tube Shield	. 10
	$32 \times 404$	Tube Shield	. 25
	10A825-1	Knob (Volume Control)	1.60
	10A825-2	Knob (Tuning)	1.60
	10A825-3	Knob (Band Indicator)	1.60
	10A823-2	Knob (Tone) Outer	. 50
	10A824	Knob (Tone) Inner	. 50
	28×568	Spring (10A824 Knob)	. 05
	74243	Phono Light Socket Assembly (Phono Comp.)	. 40
	74244	Phono Light Bulb 10 W. ....	. 50

## TYPE V-28A193 RECORD CHANGER PARTS

V-6208 Motor Assembly 60 sycles . . . . . . . . . . . . 105-125 Volts A. C.
V-6497-BG Tone Arm (Shell only)
V-6320-BG Cartridge Head
GE-RPX-050 Variable Reluctance Cartridge complete with dual stylus assembly ............ 15.60
GE-RPJ-010 Dual Stylus Assembly


## MODEL D-2015

3. 

## TO TURN OFF RADIO MANUALLY

Turn Lullaby Knob counter-clockwise (to left) to "O" position.

## 4.

## TO AWAKE TO MUSIC

Select station and adjust volume to level sufficient to a waken (as indicated in Illustration 2B)

this time setting may be il hours in advance OR LESS. AFTER HAVING SET AWAKENING HOUR PUSH I: j "ALARM" KNOB.

## 6.

TO AWAKE TO MUSIC AND BUZZER ALARM
Select station and adjust volume to level sufficient to awaken you (as indicated in Illustration 2B)
 ADVANGE OR LESS.
Buzzer sounds as a reminder approximately 10 minutes after radio comes on. To shut off buzzer push in "Alarm" Knob.
5.

## TO AWAKE TO BUZZER ALARM



IS SET TEN MINUTES AHEAD OF HOUR FIGURE AND MINUTE MARKS DESIRED FOR AWAKENING
this time setting may be il hours in advance OR LESS.
FOR EXAMPLE :- SHOULD YOU DESIRE TO AWAKEN
AT 7, SET ALARM POINTER TO 6:50 to Shut off buzzer push in "alarm" Knob

## 7.

## TO TURN RADIO OFF AUTOMATICALLY

 WHEN RETIRINGThis receiver can be adjusted to play for a period of 60 or fewer minutes before retirement if desired by the listener.



ALIGNMENT PROCEDURE

- Output meter across voice coil (3.2 ohm)
- Volume control at maximum for all adjustments.

SIGNAL GENERATOR				TUNER SETTING	ADJUST TRIMMERS TO MAXIMUM OUTPUT (in order shown)
Frequency	Coupling Capacitor	Connections to Receiver	Ground Connection		
455 kc	0.1 mfd .	12BE6 grid	B-	Rotor full open (Plates out of mesh)	Input and output slugs of IF cans
1650 kc	0.1 mfd .	12BE6 grid	B-	Rotor full open (Plates out of mesh)	Oscillator trimmer A2
1500 kc		Radiating Loop		1500 kc	Antenna trimmer A1

> 8. - To Turn Radio Off Automatically When Set "Radio" Control as in Illustration 4.
Set "Lullaby" Knob as in Illustration 7.
9. - To Turn Radio Off Automatically When Retiring and Awaken to Buzzer Alarm Set Controls as in Illustration 5.
Set "Lullaby" Knob as in Illustration 7.

Illustration 6.


PARTSHIST
When ordering parts, specify part number and model number.

##  <br> $\xrightarrow[\text { Price* }]{\text { List }}$

 $\$ 2.16$
우ㅇㅜㅜ욱

 DESCRIPTION
CAPACITATORS Variable Condenser, 2 gang
40 mfd . $40 \mathrm{mfd} .-20 \mathrm{mfd}$., triple electrolytic cond
$.2 \mathrm{mfd} ., 200$ volt, paper
 $.05 \mathrm{mfd} ., 200$ volt, paper $.01 \mathrm{mfd} ., 400$ volt, paper $.005 \mathrm{mfd} ., 600$ volt, paper $.0001 \mathrm{mfd} ., 500$ volt, mica 1500 ohm, 1 watt $20 \%$ -
 470,000 ohm, $1 / 4$ watt $20 \%$

150 ohm, $1 / 4$ watt $20 \%$ 3.3 megohm, $1 / 4$ watt $20 \%$. 22,000 ohm, $1 / 4$ watt $20 \%$ $22 \mathrm{ohm}, 1 / 2$ watt $20 \%$
220,000 ohm, $1 / 4$ watt 20 220,000 ohm, $1 / 4$ watt $20 \%$
$1 / 2$ meg. volume control with switch $1 / 2$ meg. volume control with switch
100 ohms, $1 / 2$ watt $20 \%$
A N D TR A N S F OR M ER S AND TRANSFORMERS Input IF transformer Output IF transformer
MISCELLANEOUS 4 inch P.M. speaker with output Selector knob
 :

## む <br> 


OMNM
$\stackrel{\#}{\ddot{\infty}}$

* Prices subject to change.


```
4 Tube Superheterodyne
Tuning Frequency Range 540 to 1620 kc.
Intermediate Frequency }455\textrm{kc
```

Power Output
Speaker
Speaker Voice Coil Impedance.
0.25 watt maximum, 150 milliwatts ( $10 \%$ distortion) . . . 5-inch PM Dynamic 3.2 ohms

ALIGNMENT PROCEDURE

IMPORTANT - Check to see that dial pointer indexes on dial scale. See illustration.

Volume control - Maximum for all adjustments
Connect dummy antenna in series with high side of signal generator.

Connect generator ground to chassis.
Connect output meter across voice coil of speaker.
Use lowest output setting of signal generator capable of producing an audio output of approx. 50 milliwatts.


Band	Signal Generator Frequency	Dummy Antenna	Connection To Radio	$\begin{gathered} \text { Receiver } \\ \text { Dial } \\ \text { Setting } \\ \hline \end{gathered}$	Trimmer Adjustment   (In Order Shown)	Trimmer Function	Type of Adjustment
I.F.	455 KC.	. 1 MFD.	Stator of rear section of tuning gang.	1000 KC.	A, B - 2nd. I.F.	Output I.F.	Adjust for maximum output
	455 KC.	. 1 MFD.	Stator of rear section of tuning gang.	1000 KC.	C,D-1st. I.F.	Input I.F.	Adjust for maximum output
$\begin{aligned} & \text { BROAD- } \\ & \text { CAST } \end{aligned}$	1500 KC.	. 0002 MFD.	Antenna lead (Green)	1500 KC .	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~F} \end{aligned}$	Oscillator Mixer	Adjust for maximum output


(A1)-ECONOMIZER SWITCH -USED\%/MEW*
FRONT APRON
BOTTOM VIEW OF CHASSIS
NOTES - VOLTAGE READINOS TAKEN WITH AN ELECTRONIC VOLTMETER
"nc"-no connection (TERMINAL USED AS A TIE LUG).
"nR"-not readable.

Serial No. AB200501 UP
 at maximum capacity, attach the pointer and index it with the extreme left hand dial marker.

This receiver is designed to operate on a single unit Wizard B6430, Wizard B6432, Ray-O-Vac No.AB-82, Burgess 17G-D60, Eveready 748, Bond 0528 or General 60DL-ILL battery.


C-8	46AZ 602 J	. $006 \mathrm{mfd} .600 \mathrm{~V} .$, tubular	. 15
C-9,10	46AY203	. $02 \mathrm{mfd} .600 \mathrm{~V} .$, tubular	. 20
C-13	46AZ 202 J	. $002 \mathrm{mfd} .600 \mathrm{~V} .$, tubular	. 15
	TRANSFORMERS		
T-1	51B1084	Transformer, mixer	. 85
T-2	51B1085	Transformer, oscillator	1.03
T-3	50B412	Transformer, 1st IF	1.60
T-4	50B413	Transformer, 2nd IF	1.56
T-5		Transformer, output   (Part of speaker ass'y.)	
		RESISTORS	

R-1 RC20AE683K 68,000 ohms 1/2 watt, carbon

The battery Economizer Switch is located on the top of the chassis, left side. (See illustration) ALWAYS HAVE THIS ECONOMIZER SWITCH IN THE "NEW" BATTERY POSITION WHEN THE RADIO IS NEW OR AFTER A NEW BATTERY HAS BEEN INSTALLED. When the volume of stations decreases noticeably (After 200 or 300 hours of actual use), this switch should be pushed to the "USED" battery position.

R-2 RC20AE333K 33,000 ohms $1 / 2$ watt, 16
R-3 RC20AE682M 6800 ohms $1 / 2$ watt, 16 carbon
R-4,7 RC20AE475K 4.7 megohms $1 / 2$ watt, .16 carbon
$\dot{\mathrm{R}}-5,10$ RC20AE225K 2.2 megohms $1 / 2$ watt, 16 carbon
R-6 25B806 1 megohm, volume control .85
R-8 RC1UAE565M 5.6 megohm $1 / 4$ watt, . 16
R-9 RC20AE105K 1 megohm $1 / 2$ watt, 16
23A062 . 75 ohms $1 / 2$ watt 16
LS-1 85C085
Speaker ass'y. (In- $\$ 5.40$ cludes PL-1, T-5)
SO-1 6A275-0
Socket, speaker
.10
6A314
Socket, miniature (tube)
.14
.94
10.60

66D500
14B175
Battery cable ass'y.
10.60

Cabinet, plas
.65
CAPACITORS
.19
2.30
C-1 46AU503J
C-2 48B208
$.05 \mathrm{mfd} .200 \mathrm{~V} .$, tubular
Tuning condenser,
.16
C-3 CM20A101M
C-4,12 46AY103J
$100 \mathrm{mmf} .500 \mathrm{~V} .$, mica
$.01 \mathrm{mfd} .600 \mathrm{~V} .$, tubular
.16
.15
.75
$\begin{array}{ll}\mathrm{C}-5 & 45 \mathrm{~A} 143 \\ \mathrm{C}-6,14 & 47 \mathrm{~B} 20 \mathrm{~A} 102 \mathrm{M} 3 \quad 1000 \mathrm{mmf} \text {. } 350 . \text { V., ceramic } 20\end{array}$
C-7,11 CM20A271M 270 mmf .500 V ., mica
.18

DIAL	AND DRIVE ASSEMBLY.	
		List Price
82B155	Pointer	.16
74A256	Shaft, tuning	.12
4A192	"C"washer	.05
4A195	Washer, spring	.05
75A012	Tension spring, drive	.05
	cord	
38A001	Cord, dial drive	$.05 / \mathrm{yd}$
22B225	Dial glass (clear)	.96
67C883	Dial backing	1.08
76A412	Clip, dial glass	.05
subject to change without notice.		

NOTICE: There is a model number label on the chassis. This label identifies the radio. When ordering parts or writing, give ALL information appearing on this label.

## GENEREAL DESCRIPTION

This model is a 3-way portable radio with 4 tubes plus a selenium rectifier and uses a built-in antenna. The receiver will operate on 115 volts, 50 to 60 cycles AC, or 115 volts DC, or on the self-contained batteries. When using the radio on $A C$, reversing the plug may reduce hum. If the radio does not operate in one minute on direct current (DC), reverse the plug. When bat-
tery operation is desired, the line cord plug is inserted into a socket switch on the chassis (see bottom cabinet view), the insertion automatically moves the switch contacts for battery operation. When the line cord plug is out of the chassis switch, the batteries are automatically disconnected.


## ©PERATATAN

## OFF-ON SWITCH AND VOLUME CONTROL

The knob on the left is both the on-off switch and the volume control. When the control is turned all the way counter-clockwise, the set is off. A slight clockwise rotation will click the switch and turn the set on. The knob may then be used to regulate the volume. Be sure your set is turned completely off when not in use; otherwise the tubes will wear out and/or the batteries will be discharged unnecessarily.

## TUNING KNOB

The knob on the right is the tuning knob; rotation of this knob moves the indicator along the dial scale. When selecting a station turn the knob back and forth until the tone is clearest and loudest. Do not use the runing knob to regulate volume; the volume control should be used for that purpose after the station selector has been tuned in properly.

## SPECIFICATIONS



15 volts, DC or 50-60 cycles AC,
A Battery- 7.5 volts, 50 milli amperes.
B Battery- 90 volts, 14 milliamperes
Frequency Range.... 540 to 1600 kc .
Intermediate Freq... 455 kc .
Selectivity................At 1000 kc., 60 kc. at 1000 x

514
Serial No.B-394901 up



Bottom Chassis View

Manufacturer	A	B
RCA	VS-065	VS-090
General	31	132
Ray-O-Vac	P-751	4390
Eveready	717	490
Burgess	C5	N60

## BATTERY REPLACEMENT

Since the receiver is small and compact, not every A or B Battery will fit in the space provided. Listed to the left are the five most common manufactured types to be used for replacement.



John F. Rider

## ALIGNMENT PRDCEIDURE

The Alignment Procedure below includes the sensitivities at the input of various stage. All measurements are based on an output of 50 milliwatts. This may be measured by disconecting the speaker voice coil and substituting a 3.2 ohm, 5 watt resistor across the secondary winding of the output transformer. A reading of .4 volts $A C$ across this resistor will be equivalent to a

50 milliwatt output with speaker connected. The volume control must be set to maximum.

The signal source must be an accurately calibrated signal generator capable of supplying the frequencies designated, modulated $30 \%$ with a 400 -cycle audio signal. A 400 -cycle audio signal is required for the audio measurement. Variations in sensitivities of plus or minus $25 \%$ are usually permissible.

FREQUENCY	COUPLING CAPACITOR	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	CONNECTION TO RADIO	GROUND CONNECTION	ADJUST	INPUT FOR 50 MILLIWATTS OUTPUT
455 kc.	. 1 mfd .	1000 kc.	Pin No. 6 of 1R5	(shell of lytic)	I.F. slugs	100 microvolts
1620 kc.	. 1 mfd .	1600 kc.	Pin No. 6 of 1R5	(shell of lytic)	C1-B Osc.   Trim. on gang	
1400 kc.	Radiation Loop	1400 kc.	Radiation loop	None	C-2 Antenna Trim. on gang	250 microvolts
400 cycles	. 05 mfd.		Pin No. 6 of 1U5	(shell of lytic)	-	. 040 volts
400 cycles	. 05 mfd .	-	$\begin{gathered} \text { Pin No. } 6 \text { of } \\ 3 \mathrm{~V} 4 \end{gathered}$	B- (shell of lytic)		3 volts

## PARTS LIST

When ordering parts, specify part number and complete model number


WESTERN AUTO SUPPLY PAGE 23-11

## MODELS D-2102A, B,

 D-2103A, B
## SERVICE DATA

Power Supply.......... 115 volts, DC or 50-60 cycle, AC 24 watts.
Frequency Range..... 540 to 1600 Kc .
Infermediate Freq... 455 Kc .
Selectivity $\qquad$ At 1000 Kc., 60 Kc. , at 1000 x signal
Sensitivity
150 u. v. per meter
Power Output.......... 0.8 watts undistorted, 1.0 watt maximum
Loud Speaker..........4" PM., v.c. impedance, 3.2-ohms Tube Complement.

12BE6, Converter 12BA6, IF Amplifier

50C5, Audio output 25Z6, Rectifier 12AV6, or 12AT6, Detector, AVC, Audio


## ALIGNMENT PROCEDURE

Loop must be connected and set volume to maximum.

SIGNAL GENERATOR				TUNER SETTING	ADJUST FOR MAXIMUM OUTPUT	$\begin{aligned} & \text { INPUT FOR } \\ & \text { 50-MILIIWATT } \\ & \text { OUTPUT } \end{aligned}$
Frequency	Coupling Capacitor	Connection to Radio	Ground Connection			
455 kc.	. 1 mf	12BE6; Pin 7		Capacitor fully open (plates out of mesh)	Top and bottom Cores in output and input I.F. cans	65 microvolts
1620 kc .	. 1 mf	12BE6, Pin 7		Capacitor fully open (plates out of mesh)	Oscillator trimmer C1-D on gang	70 microvolts
535 kc .	. 1 mf.	12BE6, Pin 7		Capacitor fully closed	Check for adequate range	70 microvolts
1400 kc .	-	Lay generator lead near back of cabinet		Tune in 1400 kc . signal	Antenna trimmer $\mathrm{C}-1 \mathrm{C}$ on gang	200 to 400 microvolts
400 cycles	. 1 mf	12AT6, Pin 1				. 06 volts
Serial No. 367000 up 514						



NOTE: Capacitor C2 should be .09 mmf . SCHEMATIC DIAGRAM

Please specify part number and chassis model number when ordering replacements.



MODELS D2386,
D2387, D2388

## INSTALLATION

Place the receiver upright on a table or other level surface convenient to a power outlet. Do not place it on or near a radiator or heater.

This receiver is designed to operate from a 117 Volt A C or D C source of supply. On A C, improved reception may sometimes be obtained by turning the plug halfway around and reinserting it into the power outlet. Try it both ways and leave it in the position which gives the best reception. On D C, the receiver will operate with the plug inserted in only one position.

## ANTENNA

A 15 foot hank antenna is attached to the receiver which should be uncoiled and stretched out to its full length for best reception. Run the wire around the room floor and around window frames for good signal pickup.

In locations of low signal areas an Outdoor Antenna will greatly improve reception and our Western Auto Aerial Kits Numbers 3D5111 and 3D5110 will prove highly satisfactory by increasing the reception volume level.

This receiver is designed to operate without a ground connection and no attempt should be made to use one.

## OPERATION

Insert the power cord plug into the power receptacle. To turn the receiver on, turn the Volume Control knob located on the right side of the receiver until a click is heard. In about 30 seconds the set will be in operating condition. Turning the Volume to the right or clockwise increases the volume.

Tune in stations by turning the large center tuning knob. The numbers the tuning knob passes over, show Kilocycles with the last two ciphers leff off. For example number 9 is the location of 900 Kilocycles. As you have tuned in the station desired move the tuning knob to the position which produces the deepest rounded tones with a minimum background noise and clearest reception.

To turn the receiver off, turn the volume knob to the left or counter clockwise position until a click is heard.

## ELECTRICAL SPECIFICATIONS

Intermediate Frequency. $\qquad$ .455 kc .   Tuning $\qquad$ Two gang capacitor Speaker. $\qquad$ 4 inch PM, 3.2 ohm voice coil impedance   Power Consumption. $\qquad$ 30 Watts Power Output...................... 1 watt undistorted, 1.5 watt maximum Sensitivity $\qquad$ 800 Microvolts at 50 milliwatts Output

## TUBE COMPLEMENT

12 BE 6	...Mixer and Oscillator
12 SQ 7.	Detector, A.V.C. and 1 st Audio
50 C 5.	..... Audio Output
35 W 4.	...........P ower Rectifier

## TUBES

This receiver is shipped with the tubes in their proper sockets. If for some reason tubes have been removed, make certain they are reinserted into their proper sockets as shown below.


ALIGNMENT PROCEDURE

## PRELIMINARY:

Outout meter connection. $\qquad$ Across 3.2 ohm speaker voice voil Output meter reading to indicate 0.05 watt across speaker voice coil. $\qquad$ 0.4 volt

Generator Modulation. $30 \%, 400$ cycles
Position of volume control $\qquad$ maximum (full 0\%, 400

Position of pointer with Rotor full open (Plates out of mesh) $\qquad$ slightly beneath the 1620 kc calibration mark on the dial (pointer horizontal to light)

	Position of Variable	SIGNAL GENERATOR				Trimmer Adjustments (In order shown)
		Frequency	Dummy Antenna	Connection to Receiver	Ground Connection	
IF	Rotor Full Open (Plates out of mesh)	455 kc.	. 1 mfd	$\begin{aligned} & \text { Grid of 12BE6 } \\ & \left(\mathrm{P}_{\mathrm{in}} 7\right) \end{aligned}$	B.	Input and Output Trimmers on I.F. Can T3 and T4
RF	Rotor Full Open (Plates out of mesh)	1620 kc.	75 mmf	Antenna Hank	Chassis	$\begin{aligned} & \text { Oscillator Trimmer } \\ & T 2 \end{aligned}$
	1400 kc.	1400 kc .	75 mmf	Antenna Hank	Chassis	Antenna Trimmer
	600, kc.	600	75 mmf	Antenna Hank	Chassis	(Check Point)*

*With a generator frequency of 600 Kc , tune the set to the point where maximum output is obtained, which should be approximately 600 Kc on the dial.

Align for maximum output. Reduce input as needed to keep output near 0.4 volts.
The alignment procedure should be done in the order given for greatest accuracy.
Always keep the output from the generator at its lowest possible value to prevent the AVC of the receiver from inferfering with accurate alignment.


John F. Rider

## PARTS LIST

When ordering parts, specify part number, model number and series.

Ref. No. Part No.

R1	180.126
R2	$180-115$
R3	$180-122$
R4	180.123
R5	180.124
R6	180.109
R7	180.109
R8	180.113
R9	180.125
R10	$120-104$

## RESISTORS

6000 Ohms 1/2 W 20\%
15000 Ohms 1/2 W 20\%
4.7 Megohms $1 / / 2$ W 20\%

10 Megohms 1/2 W 20\%
2200 Ohms 1 W 20\%
330000 Ohms 1/2 W 20\%
330000 Ohms 1/2 W 20\%
22 Ohms 1/2 W 20\%
68 Ohms 1 W 20\%
2 Megohms, Volume control
100000 stop \& switch

## CONDENSERS

C1A-B	$160-104$
C2	$152-104$
C3	$152-105$
C4A-B	$150-107$
C5	$152-105$
C6	$158-103$
C7	$156-102$
C8	$158-102$
C9	$158-104$
L2	$132-104$
L1	$136-106$
T1	$130-103$

210-103 WH
210.103 E

210-103 R
205-101
206-101 G
206-101 B
206-101 GR
206-101 R
220-104 E
220.104 R
220.104 WH

225-104 P
185.101

185-104
170-105

Variable Condenser
.05 Mfd 200 Volt Paper
.05 Mfd 400 Volt Paper
$70 \times 30 \mathrm{Mfd} 150$ Volt Electrolytic
.05 Mfd 400 Volt Paper
.002 Mfd 400 Volt Disc
100 Mfd Ceramicon
.01 Mfd 200 Volt Paper
.02 Mfd 200 Volt Paper
COILS \& TRANSFORMERS
Antenna Coil
Oscillator Coil
I F Transformer

## CABINET and ACCESSORIES

Cabinet, White D 2387 (In carton)
Cabinet, Ebony D 2386 (In carton)
Cabinet, Red D 2388 (In carton)
Insert Clear Radio
Gold Foil Face Radio
Blue Foil Face Radio
Green Foil Face Radio
Red Foil Face Radio
Volume Control Knob Ebony
Volume Control Knob Red
Volume Control Knob White
Cardboard Back
6 ft Line Cord
15 f. Antenna Hank
4" PM Speaker with output Transformer


## CHECK YOUR LINE VOLTAGE

Unless otherwise marked this radio must be operated on a supply of $105-125$ volts AC, 60 cycles only. Do not connect the radio to a wall outlet unless
certain that the power supply is correct for the receiver. If in doubt, telephone your local power company before inserting the plug. Radios of this model which are to be used on other power supplies are marked accordingly.

8 TUBES


2 BANDS

FM BAND
88-108 MEGACYCLES
This band is calibrated in megacycles and covers the frequency modulation band of 88-108 megacycles. Reception in this band is usually limited to "line of sight" distances between the transmitting and receiving antennas. This is normally up to about 30 miles with approximately 45 miles being the extreme range.

## TONE CONTROL

Use this knob to adjust the tone of the receiver. When turned clockwise the high notes will predominate and when turned counter-clockwise a deep bass effect will result.

## ON-OFF SWITCH AND VOLUME CONTROL

The On-Off switch and Volume control are operated by the some knob. To turn the radio on, turn the knoh clockwise until a click is heard. Allow approximately 30 seconds for the tubes to heat. Then continue to turn the knob clockwise to increase the volume.

BROA DCAST BAND
540 - 1600 KILOCYCLES This band is calibrated in channel numbers. To obtain the kilocycle number add a zero to the number on the dial scale.

## B AND AND PHONO RA DIO SWITCH

This control has three positions, FM, Broadcast and Phono. In the Phono position, the electrical circuits are connected for the reproduction of records played on the automatic record player.

## GENERAL INFORMATION

## ANTENNA

Two antennas are incorporated in the receiver, a Truetone Stratoscope Loop Antenna for the broadcast range and a folded dipole antenna for the FM (frequency modulation) range. For the reception of local or powerful nearby stations, or in areas where the signal strength is good, usually no other antenna will be required. However, in some locations for the reception of FM stations, or distant stations in the broadcast band, an outside antenna is essential.

As the need for an external antenna varies in different locations, it is suggested that the radio be tried with the two antennas in order to determine if an external antenna is needed. If it is felt that an additional antenna is needed a folded dipole antenna with a 300 ohm line lead-in should be used. This type of antenna will increase the signal pickup on the FM band. Attach two terminal clips (packed in the literature envelope) to the lead-in of the outside FM antenna. Then connect the lead-in to the terminal strip at the rear of the receiver (see tube position illustration.)

It should be remembered in conjunction with the erection of an FM folded dipole antenna that FM reception is usually limited to "line of sight" distances or up to about 45 miles. Before erecting a special antenna for FM reception it is best to make certain that an FM station exists in your area.

For some locations FM reception may prove satisfactory with the dipole antenna but an external antenna may be needed for broadcast reception. For these ranges a terminal is attached to the loop antenna to which an external antenna may be connected. The antenna should be 50 to 60 feet long, with not more than 30 feet of lead-in and should be erected as high as possible and at right angles to the nearest electric lines.

NOTE: An external ground connection is not required.


## TUBES AND DIAL LAMP

The type designation of each tube is stamped on the tube and the radio chassis base. The correct positions in which the tubes must be installed are shown in the tube position illustration.

The tubes in the radio should be checked periodically by taking them out and having them tested.

When replacing the tubes, be sure that they are inserted in the proper sockets. To insîall a rube, insert the center guide pin into the center hole of the tube socket and turn the tube until the key drops into position. Then push the tube down until it is held firmly in the socket. To install a tube into a miniature type tube socket, line up the tube prongs with the holes in the socket and then gently push the tube down until it is held firmly in the socket. All tubes must be in their sockets to operate the radio. Use only No. 47 dial lamps.

## IF THE RADIO FAILS TO OPERATE SATISFAC TORILY

Recheck the foregoing instructions. If the radio still does not appear to operate satisfactorily, proceed as follows:

FIRST-Check Power Supply. Be sure there is power at the convenience outlet to which the radio is connected. To determine this, connect a lamp to the outlet and see whether or not the lamp lights.

Check the voltage and frequency of the power supply with that shown on the power rating label on the radio. If there is any doubt concerning the power supply, withdraw the plug from the outlet and consult the local power company before reinserting the plug.

SECOND-Check Tube Positions. See that the tubes are in the correct sockets as shown in the illustration.

Make certain that the tubes are operating. (Glass tubes will light very dimly.)

THIRD-Check Antenna. If an outside antenna is being used, inspect the antenna system to see that it is in good condition and not grounded at any point.

FOURTH-Test Tubes: Remove the tubes from the
radio, take them to your local radio dealer and have them tested either by means of a tube tester or by inserting them in a radio that is operating satisfactorily.

FIFTH-Service. If the radio does not function properly after the above procedure has been followed and the tubes have been tested, get in touch with the dealer from whom the radio was purchased or call in a competent radio technician.

## FAULTY FM RECEPTION

The requirements for $F M$ reception are more critical than for Standard band broadcast or short wave reception. This includes the area in which the receiver is located, the type of antenna used, the distance the receiver is located from the station to be received and other factors not encountered in Standard band broadcast reception. It is to be noted that reception in the high frequency FM band is usually limited to "line of sight" distances or up to about 45 miles. Also tall buildings or other structures between the transmitter and the receiver may be found to affect reception. Reception under these conditions will sometimes be helped by the addition of an external folded dipole antenna with a 300 ohm line lead-in. Information concerning this is given in the Antenna paragraph.


## DRIVE CORD <br> REPLACEMENT

Replacement of the drive cord may be accomplished as shown in the illustration, For this purpose use the new drive cord assembly listed in the Replacement Parts List Turn the gang condenser until the plates are fully meshed. Then install the string as shown, winding three turns counter-clock-wise around the tuning shaft with the turns progressing away from the chassis. After the cord is installed, rotate the tuning shaft several times in order to take up any slack in the cord.


## RECORD PLAYER CONNECTIONS

For models not equipped with buili-in record player, a socket marked PHONO is provided on the back of the chassis for connection to an external record player or automatic record changer. When it is desired to play records through the radio, insert the connector on the cable of any standard record player into this socket. Turn the band switch to the phono position and use the volume control to adjust the sound level.

## TUBE AND DIAL LAMP COMPLEMENT

1	SCB6	FM Converter and AM Oscillator
1	6BJ6	FM R-F Amplifier
1	6AU6	1st FM I-F and AM Mixer
1	6BA6	2nd FM I-F and AM I-F
1	6AV6	AM Detector and 1st Audio
1	6AL5	Ratio Detector
1	6AQ5	Audio Output
1	6X5-GT	Rectifier
2	No. 47	Dial Lamps

## ELECTRICAL SPECIFICATIONS

Power Output -
117 volts AC-40 watts 60 cycles
60 watts phono operating

Power Output -
2.3 watts maximum
1.0 watts $10 \%$ distortion

Speaker - 6 inch PM dynamic

Frequency Ranges -
Broad cast 540-1600 KC
Frequency Modulation 88-108 MC

Intermediate Frequency -
AM 455 KC - FM 10.7 MC

Selectivity - AM - 45 KC broad at 1000 times signal, Measured at 1000 KC
I.F. FM - 200 KC broad at 2 times down

AM Sensitivity - (For . 5 watt output with external antenna)

15 microvolts average

FM Sensitivity - (For . 5 watt output)
10 microvolts average

PAGE 23-20 WESTERN AUTO SUPPLY
MODELS D1435A, D1436A

## ALIGNMENT PROCEDURES <br> AM STAGES

The following is required for aligning:
An All Wave Signal Generator Which Will Provide an Accurately Calibrated Signal at the Test Frequencies as Listed.
Output Indicating Meter, Non-Metallic Screwdriver, Dummy Antennas - . 1 mf , and 50 mmf .

Volume Control Maximum all Adiustments.
Connect Radio Chassis to Ground Post of Signal Generator with a Short Heavy Lead.
Allow Chassis and Signal Generator to "Heat Up" for Several Minutes.

SIGNAL GENERATOR				$\begin{gathered} \text { GANG } \\ \text { CONDENSER } \\ \text { SETTING } \end{gathered}$	ADJUST	ADJUST FOR
FREQUENCY SETTING	$\begin{aligned} & \text { CONNECT } \\ & \text { GENERATOR } \\ & \text { OUTPUT TC } \end{aligned}$	THROUGH DUMMY ANTENNA	$\begin{aligned} & \text { CONNECT } \\ & \text { GROUND } \\ & \text { TO } \end{aligned}$			
455 KC	Control Grid 6BA6 Pin No. 1	. 1 mf	Chassis Base	Rotor Fully Open	2nd I.F. Pri. (1) and Sec. (2)	Maximum Output
455 KC	Control Grid 6AU6 Pin No. 1 lst Det.	. 1 mf	Chassis Base	Rotor Fully Open	$\begin{gathered} \text { 1st I.F. Pri. (3) } \\ \text { and Sec. (4) } \end{gathered}$	Maximum Output
455 KC	Control Grid 6AU6 Pin No. 1	. 1 mf	Chassis Base	Rotor Fully Open	2nd I.F. Pri. (1) and Sec. (2)	Maximum Output
1620 KC	Control Grid 6AU6 Pin No. 1	. 1 mf	Chassis Base	Rotor Fully Open	Oscillator C-44	Maximum Output
1400 KC	External   Antenna Terminal	50 mmf	Chassis Base	Turn Rotor to Max. Output. Set Pointer to 1400 KC See Note A	Antenna C-41	Maximum Output

NOTE A-If the pointer is not at 1400 KC on the dial, reset pointer to the 1400 KC mark on the dial scale.

## FM STAGES

The following is required for aligning:
An accurately calibrated signal generator providing unmodulated signals at the test frequencies listed below.

Dummy antennas, 5000 mmf and 300 ohms,

SIGNAL GENERATOR			BAND SWITCH SETTING	GANG CONDENSER SETTING	ADJUST	ADJUST FOR
FREQUENCY SETTING	CONNECT GENERATOR OUTPUT TO	THROUGH DUMMY ANTENNA				
10.7 MC	$\begin{aligned} & \text { 6BAC } \\ & \text { Pin } \end{aligned}$	5000 mmf	FM	Rotor Fully Open	Ratio Det. Pri. (5)	Maximum Deflection (Note 1)
10.7 MC	$\begin{aligned} & \text { 6BA6 } \\ & \text { Pin } 1 \end{aligned}$	5000 mmf	FM	Rotor Fully Open	Ratio Det. Sec. (6)	(Note 2)
10.7 MC	$\begin{aligned} & \text { 6AU6 } \\ & \text { Pin } 1 \end{aligned}$	5000 mmf	FM	Rotor Fully Open	2nd. I.F. Adi. (at top only)   (7)	Maximum Deflection (Note 1)
10.7 MC	$\begin{aligned} & 6 \mathrm{BJJ6} \\ & \text { Pin } 5 . \end{aligned}$	5000 mmf	FM	Rotor Fully Open	1st I.F. Adi.   Pri. (8) and Sec.   (9)-2nd I.F.   Adj. (7) Ratio Det. Pri. (5) In order Shown	Maximum Deflection (Notel)
10.7 MC	$\begin{aligned} & 6 \mathrm{BJf6} \\ & \text { Pin } 5 \end{aligned}$	5000 mmf	FM	Rotor Fully Open	Ratio Det. Sec. (6)	(Note 2)
92 MC	FM Antenna Terminals	300 ohms	FM	Pointer to 92 mc . on dial	$\text { Osc. } \underset{L-5}{\text { Coil Adi. }}$	Maximum Deflection (Note 1)
92 MC	FM Antenna Terminals	300 ohms	FM	Pointer to 92 mc on dial	R.F. Coil Adi.	Maximum Deflection (Notel)

FM ALIGNMENT NOTES
V.T.V.M. having a range of approximately 3 volts.

Allow chassis and signal generator to heat up for several minutes.

NOTE 1 - Connect V.T.V.M. common lead to chassis. Connect D. C. probe to Pin 7, of 6AL5. Input should be adiusted for approximately -3 V . output.



NOTE 2 - Connect V.T. V.M. common lead to junction of R-14 and R-15.
Connect D.C. probe to junction of R-13 and C-30.
Adjust Ratio detector secondary for zero output.

WESTERN AUTO SUPPLY PAGE 23-21


PAGE 23-22 WESTERN AUTO SUPPLY

## MODELS D1435A, D1436A

NOTICE: There is a model number label on the chassis. This label identifies the receiver as to chassis and issue letter. When ordering parts or writing, give ALL information on this label.

## MISCELLANEOUS

12A509	6"' P.M. Speaker
$4 \times 1183$	Escutcheon
10 A759	Knob (Mah)
10A766	Knob (Beige)
76X5	Resistor Capacitor Combinatio
$13 \times 546$	Line Cord and Plug Assembly
2A437	Band Change Switch ( $6 \dot{\mathrm{X}} \dot{5}$ )
3 3474	Tube Socket (Octal) (6X5).
3A305	Phono Socket - Single Pin Tip
3 A426	Tube Socket (Miniature) (6AU6) (6AL5) (6AV6) (6AQ5)
3 A 458	Tube Socket (Miniature) (6BA6) . . . .
3 A 473	Tube Socket (Miniature) (6CB6) (6BJ6)
$32 \times 403$	Tube Shield (6BJ6) (6BA6) (6CB6)
	Cabinet No. 454 (Mag.)

## CAPACITORS

 $\left.\begin{array}{l}1 A \\ 1 \mathrm{~B}\end{array}\right]$
$47 \times 6$
$80 \times$ $47 \times 61$ $47 \times 625 \quad 56 \mathrm{mmf}$ $47 \times 616 \quad 9 \mathrm{mmf}$ 47X618 15 mmf (Non-ms.) Part of T-1 (1st I-F Trans. F.M.) Part of T-2 (1st 1-F Trans. A.M.) Part of T-3 (2nd I-F Trans. F.M.) RCP 10W2503M . 05 mf 200 V Tubular.
Part of T-5 (2nd I-F Trans. A.M.)
Part of T-4 (Ratio Det.)

Part of	T-4
(Ratio	
$47 \times 509$	47 mmf .)
$47 \times 575$	2700 mmf
$47 \times 623$	390 mmf


$45 \times 361 \quad 4 \mathrm{mf} \quad 100 \mathrm{~V}$-Dry Electrolytic . . .
Part of $76 \times 5$ (See Miscellaneous)
RCP $10 W 2502 \mathrm{M} .005 \mathrm{mf} 200 \mathrm{~V}$ Tubular
$\begin{array}{llll}\text { RCP } 10 \mathrm{~W} 2103 \mathrm{M} & .01 \mathrm{mf} & 200 \mathrm{~V} & \text { Tubular . . . . . . } \\ \text { RCP } 10 \mathrm{~W} 4104 \mathrm{M} & .1 \mathrm{mf} & 400 \mathrm{~V} & \text { Tubular . . . . . . }\end{array}$

\section*{| 17A256 | $2-24 \mathrm{~mm}^{f}$ | 800 |
| :--- | :--- | :--- |
| $47 \times 621$ | 220 mmf | Trimmer $\ldots \ldots$ |}

1500 mmf Ceramic.......... 40 mf 200 V $\begin{array}{cc}40 \mathrm{mf} & 200 \mathrm{~V} \\ 40 \mathrm{mf} & 200 \mathrm{~V} y \text { Electrolytic . . . . } \\ 20 \mathrm{mf} & 25 \mathrm{~V}\end{array}$

RESISTORS


## DIAL AND DRIVE ASSEMBLY

$58 \times 774$
$15 \times 260$
$19 \times 192$ $6 \times 66$ $25 \times 1616$ $28 \times 113$ 7A103 7A199 $10 \times 90$
$26 \times 522$

Dial Glass.
Pointer ..
"C'" Washer (Mtg. Drive Shaft)
Rubber Gromme
Dial Bracket.
Drive Cord Tension Spring
No. 47 Pilot Light
Pilot Light Socket Assembly Drive Cord Assembly Drive Shaft

## TYPE V-28A187 RECORD CHANGER PARTS

See Note	Motor Assembly, 60 Cycles 105-125 Volts AC
V-2503G	Pickup Arm
10L3-J	Astatic Cartridge Complete
Al-J	Needle (l Mil)...
A3-J	Needle (3 Mil)
E: Specify part number stamp	



## SPECIFICATIONS

FREQUENCY RANGE:540 to 1615 kc .INTERMEDIATE FREQUENCY:455 kc .
TUBE COMPLEMENT:
1 12BE6 Converter
1 12BA6
$\qquad$
$\qquad$ Det., AVC, and 1st A-F Amp.1 50C5 ........................................................................... Output Amp.1. 35 W 4
$\qquad$Rectifier
POWER OUTPUT:
Undistorted ..... 0.9 watt
Maximum 1.5 watts
LOUDSPEAKER:

$\qquad$
OPERATING VOLTAGE: 105 tơ 120 volts, 60 cycles $A-C$POWER. CONSUMPTION:
Radio ..... 35 watts
Clock 2.5 watts

## ALIGNMENT

It is recommended that the chassis be isolated from the power line by means of an isolation transformer.
Make certain that the dial pointer is correctly positioned.
While making the following adjustments, keep the volume control set for maximum output and the signal generator output attenuated to avoid AVC action.

	Connect Signal   Generator to	Signal   Step	Generator   Frequency	Radio   Dial
1.	Stator of ant. tuning capacitor (A)   through a 200 mmf capacitor	455 kc.	Minimum   capacity	Adjust for Maximum Output -   order and bottom slugs of T2 and T1 in
2.	Same as step 1	1615 kc.	Minimum   capacity	Oscillator trimmer (D)
3.	Radiated signal	1400 kc.	$1400 \mathrm{kc}$.	Antenna trimmer (B)

${ }^{*}$ It is recommended that a fiber aligning tool that snugly fits the slot in the powdered iron core be used to prevent chipping of the slot.
9-51 Form RM3256.

PAGE 23-2 WESTINGHOUSE
MODELS H-355T5,
H-345T5; Ch. V-2157-5


## PRODUCTION CHANGES IN V-2157-5 CHASSIS

WIRING CHANGE TO PREVENT "MOTORBOATING" - In later production, a possible cause of motorboating is eliminated by a slight rearrangement of wiring. The changes, which are physical in nature and involve no schematic changes, are illustrated at the right. If motorboating occurs in a chassis that does not contain the change, proceed as follows:

1. Remove the wire that is connected between pin $\# 6$ of the 50C5 and the 2 nd I-F transformer.
2. Disconnect lead \#7 of the multiple capacitor and resistor assembly (Z1) from the 2nd I-F transformer, and connect it to pin $\# 6$ of the 50C5 socket.
3. Connect an insulated wire between pin \#6 of the 50C5 socket and pin \#6 of the 12BE6 socket.
INCREASE IN WATTAGE OF R10 - In later production, the wattage of R10 ( 22 ohms) is increased from $1 / 2 \mathrm{w}$. to 1 w . to prevent resistor burn-


BOTTOM VIEW OF V-2157-5 CHASSIS SHOWING CHANGE TO ELIMINATE "MOTORBOATING"
out. The part number of the 1 watt resistor is RC30AE 220 M , and its list price is $\$ 0.10$. The parts list should be changed accordingly.

## PARTS LIST FOR MODELS H-355T5 AND H-356T5

When ordering parts, specify model number of set in addition to part number and description of part.
CABINET AND MISCELLANEOUS

Part No.	Description	List Price Each
V-1248-1	Cabinet, H-355T5 (less front grille, baffle and pointer)	\$5.75*
V-1248-2	Cabinet, H-356T5 (less front grille, baffle and pointer)	5.75*
V-5426	Clip, I-F mounting	. 03
V-10783-2	Dial ......................	. 90
V-10782-1	Grille, front	. 60
V-10784-1	Knob, volume (H-355T5)	. 10
V-10784-2	Knob, volume (H-356T5)	. 10
V-10774-4	Pointer (H-355T5)	. 55
V-10774-5	Pointer (H-356T5)	. 55
V-10032	Shield, chassis bottom	. 45
V-9888-2	Socket, 12BE6, 50C5, 35 W 4	. 12
V-9888-3	Socket, 12AV6, 12BA6	. 14
V-5405	Socket, molded power (clock controlled AC)	. 28
V-10079-2	Speaker, 4" PM (includes T3)	$5.50 *$

## V-2157-5 CHASSIS

Ref.	
No.	Part No.
C1	V-10788-1
C2	RCP 10W2503M
C4	V-9991
C5	V-10157-4473M
C6	RCP 10W4103M
C7	RCP10W4503M
L1	V-10785-1
R1	RC20AE223M
R2	RC20AE335M
R3	RC20AE680M
R4	V-9993-5
R8	RC20AE151M
R9	RC30AE152M
R10	RC20AE220M
T1	V-9735-1
T2	V-9735-1
T3	V-10079-2
T4	V-9992
Z1	V-10789-1


Description	List Price Each
Capacitor, variable	\$2.50
Capacitor, 05 mfd 200 v.	. 20
Capacitor, electrolytic, 50-50 mfd 150 v .	1.65
Capacitor, 047 mfd 400 v .	. 30
Capacitor, 01 mfd 400 v .	. 20
Capacitor, 05 mfd 400 v .	. 24
Loop, antenna	1.25*
Resistor, 22,000 ohms $1 / 2 \mathrm{w}$.	. 05
Resistor, 3.3 megohm 1/2 w. .........................................................	. 05
Resistor, 68 ohms 1/2 w.	. 05
Control, volume, 500,000 ohms	. 80
Resistor, 150 ohms 1/2 w. .............................................................	. 06
Resistor, 1500 ohms 1 w.	. 30
Resistor, 22 ohms 1/2w.	. 07
Transformer, I-F	1.25
Transformer, I-F	1.25
Transformer, audio (includes speaker) ..........................................	5.50 *
Transformer, oscillator	. 55
Multiple capacitor and resistor assembly	. 90

*Price includes Federal Excise Tax
NOTE: All prices are subject to change without notice

## MODEL H-357C10,

Ch. V-2180-5


## SERVICE NOTES SPECIFICATIONS

FREQUENCY RANGES:
Amplitude Modulation
Frequency Modulation
$\qquad$ 540 to 1615 kc . 88 to 108 mc .

1 6C4 $\qquad$ T $\qquad$ Phase Inverter
2 6V6GT $\qquad$ Output Amp.
1 5Y3GT . Rectifier

## POWER OUTPUT:

Undistorted 6.5 watts
Maximum 7.5 watts

Amplitude Modulation
455 kc .
Frequency Modulation 10.7 mc .

## INTERMEDIATE FREQUENCIES:

$\qquad$
LOUDSPEAKER: 10" PM
TUBE COMPLEMENT:
1 6BJ6 $\qquad$ RF Amplifier (FM)
1 12AT7
2 6BA6 $\qquad$ Mixer-osc.
1 6AL5 $\qquad$ Ratio Det (FM)

1. 6AV6 ...................................... Det. and AVC (AM) and A-F Amp.
2. GAV6 Det. and AVC (A (AM) and A-F Amp.

## ALIGNMENT

## BROADCAST BAND

Connect an output meter across the speaker voice coil.
While making the following adjustments, keep the volume control set for maximum output, the tone control setfor maximum treble, and the signal generator output attenuated to avoid AVC action.

Step	Connect Signal Generator to -	Signal Generator Frequency	Radio Dial   Setting	Adjust
1	Set the band switch to AM.			
2	Stator of tuning capacitor (A) through 0.1 mfd capacitor	455 kc .	minimum capacity	Pri. and sec. of $T 7$ and $T 6$ for max. out put in order given

NOTE: If the I-F transformers are badly mis-aligned, it may be impossible to obtain sufficient output using the above system. In this event, it will be necessary to align each transformer separately. Start with the last I-F transformer and work forward, connecting the signal generator to the control grid of the tube preceding the transformer under alignment.

3	Radiated signal (no actual connec-   tion)	1615 kc.	minimum   capacity	AM osc. trimmer (D) for max. output
4	Radiated signal (no actual connec-   tion)	1400 kc.	tune to   signal	AM ant. trimmer (B) for max. output (rock-   in adjustment)



FM BAND
Do not align the FM circuits until all AM adjustments have been completed.

Step	Connect Signal Generator to -	Signal Generator Frequency	Radio Dial Setting	Adjust
1	Set the band switch to FM			
2	Connect two 100,000 ohm resistors (the resistances must be equal within 5 per cent) between pin No. 7 of the 6AL5 tube and ground as shown on the schematic diagram.			
3	Connect a V.T.V.M. between points " X "' and " Y '" (see schematic diagram).			
4	Pin No. 2 of 12 AT 7 through a .01 mfd mica capacitor	10.7 mc .	minimum capacity	Sec. of T4 for zero (use medium strength signal)
5	Connect the V.T.V.M. between point " $Z$ '" and ground			
6	Same as step 4	10.7 mc .	minimum capacity	Pri. of T4 and pri. and sec. of T3 and T2 for max.
7	Reconnect the V.T.V.M. between points "X" and " Y " ' and increase the signal strength 10 times.			
8	Same as step 4	10.7 mc .	minimum capacity	Recheck sec. of T4 for zero voltage
9	Reconnect the V.T.V.M. between point ' $Z$ '' and ground			
10	Same as step 4	10.7 mc .	minimum capacity	Pri. of T4 for maximum voltage
11	Remove the two 100,000 ohm resistors that were inserted in step 2			
12	FM ant. terminal through a 300 ohm non-inductive resistor	98 mc .	98 mc .	FM osc. core for maximum voltage
13	Same as step 12	98 mc .	98 mc .	FM R-F trimmer (C46) for maximum voltage
14	Same as step 12	105 mc .	tune to signal	FM R-F core for maximum voltage
15	Same as step 12	90 mc .	tune to signal	FM R-F trimmer (C46) for maximum voltage (rock-in)
16	Recheck steps 14 and 15 for tracking			



FIG. 2 - TOP VIEW OF CHASSIS


FIG. 3 - DIAL DRIVE

PARTS LIST FOR MODEL H-357C10
When ordering parts, specify model number of set in addition to part number and description of part.
CABINET AND MISCELLANEOUS

## List Price

Part No.	Description	Each
V-1230-1	Cabinet	\$87.10**
V-6415-4	Cable, phono pickup	. 55
V-4898-1	Catch, bullet	. 06
V-5426	Clip, IF mounting	. 03
V-3219S-1	Cord, dial drive ( $100{ }^{\prime}$ spool)	1.40


| V-9845-1 | Cover, back (record changer) ....... | .50 |
| :--- | :--- | :---: | :---: |
| V-10308-1 | Dial ................................... | .70 |
| V-8576 | Doors, matched pair (less hardware) | 35.00 |
| V-8577 | Drawer, record changer (complete) | 12.50 |
| V-10604-1 | Escutcheon, dial .................... | 1.30 |


SPECIFICATIONS
FREQUENCY RANGE: ................... 540 to 1615 kc . INTERMEDIATE FREQUENCY: ............... 455 kc . TUBE COMPLEMENT:
1 1R5 Converter
1 1U4 .......................................................F-F Amp.
1 1US .................... Det., AVC and lst A-F Amp. 1 3V4 .................................... Power Output Amp. POWER OUTPUT:
Maximum ............................................... 0.23 watt
Undistorted ............................................. 0.12 watt
POWER SUPPLY:
Battery Operation:
1 "A" Battery (4.5 v.) - Eveready 736, Ray-O-Vac P93A, or Burgess F3
1 "B" Battery (90 v.) - Eveready 490, Ray-O-Vac 4390, or Burgess N60
Line Operation:
105 to 120 volts, $50-60$ cycles A-C; or D-C CURRENT CONSUMPTION (Battery Operation):
" $A$ " Battery $\qquad$ ... 0.1 Amp .

POWER CONSUMPTION (Line Operation):
15 watts


FIG. 1 - REAR VIEW WITH COVER OPEN


FIG. 2 - CHASSIS LAYOUT

## ALIGNMENT

It is recommended that the chassis be isolated from the power line by means of an isolation transformer.
While making the following adjustments, keep the volume control set for maximum output and the signal generator output attenuated to avoid AVC action.

Step	Connect Signal   Generator to -	Signal   Generator   Frequency	Radio   Dial	Adjust for Maximum Output -
1	Stator of R-F tuning capacitor (A)   through a 0.1 mfd	455 kc.	minimum   capacity	Top and bottom slugs in 2nd and 1st   I-F trans. in order given*
2	Same as step 1	1615 kc.	minimum   capacity	Osc. trimmer (D)
3	Radiated Signal	1400 kc.	1400 kc.	Ant. trimmer. (C)

*It is recommended that a fiber aligning tool that snugly fits the slot in the powered iron core be used to prevent chipping of the slot.
Form RM3262 11-51

WESTINGHOUSE PAGE 23-9 MODELS H-331P4U, H-333P4U, Ch.


NOTE. ALL voltages measured from common negative using a 20,000 ohm/volt meter. line voltage set at lit va.c. voltages should be as shown $\pm$ io per cent. all capacitance values in mfd. and all resistance values in ohms unless otherwise specified.

## PARTS LIST FOR MODELS H-331P4U AND H-333P4U

When ordering parts specify model number of set in addition to part number and description of part.

Ref.	Part
No.	No.
C1	V-10417-1
C2	V-10157-4473M
C3	V-6552-2
C4	V-9863-3
C5	RCP10W2503M
C8	V-9863-2
C9	RCP10W2104M
C10	RCP10W2104M
C11	RCP10W2503M
	V-9446-2
R1	RC20AE104M
R2	RC20AE682M
R3	RC20AE474M
R4	RC20AE823K
R7	RC20AE335M
R8	V-9993-3
R9	RC20AE106M
R10	RC20AE105M
R11	RC20AE105M
R12	V-6067-8
R13	RC20AE471K
R14	RC20AE152K
R15	RC20AE821K
R17	RC20AE102M
R18	RC20AE475M
R19	RC20AE270K
R20	V-10435-2
R21	RC20AE473M
R22	RC20AE820K
SW1	V-9993-3
SW2	V-10426-1
T1	V-6972-5
T2	V-6972-6
T3	V-10401-1
T4	V-5661-2



## MODELS H-331P4U AND H-333P4U

The following changes are incorporated in lates production of the V-2164U chassis:

1. To improve the operation of the HF oscillator at low line voltage, the dropping resistor for the pin \#3 grid of the 1R5 tube (R2) is changed to 22,000 ohms, and the grid return resistor for the 1 R 5 and 3V4 tubes (R4) is changed to 150,000 ohms.
2. An improved line-battery switch (SW2) is used in later production. In chassis containing the improved switch which is designated V-10426-2, the 82 ohm resistor ( R 22 ) in series with the positive lead of the B battery is not used, and the battery is connected directly to the switch.
3. To prevent $B$ battery leakage when the line plug is inserted for battery operation and the onoff switch is in off position, the connecting points for the negative lead from the A battery and the negative lead from the $B$ battery are interchanged. The negative lead from the $B$ battery now connects to the point where the A battery negative lead previously connected, and vice versa.

The parts list should be changed to read as follows:


WESTINGHOUSE PAGE 23-11
MODELS H-331P4, H-332P4, H-333P4, Ch. V-2164

## MODELS H-331P4U AND H-333P4U

The following changes are included in later production:

1. In some chassis, a 12 mmf capacitor (C12) is added in parallel with the antenna tuning section of the variable capacitor (Cl) to assure that the antenna circuit can be aligned correctly.
2. C 10 , connected from common negative to the filaments of the $1 R 5$ and $1 U 5$, is removed from the chassis.

## MODEL H-332P4

(MAROON)

## SERVICE NOTES

For service information on Model H-332P4, refer to the H-331P4U and H-333P4U service notes and any supplementary information there?o. With the exception of coloring, Model H-332P4 is the same as Models H-331P4U and H-333P4U.

The cabinet and knob for Model H-332P4 are listed below. Other parts for this model are the same as those listed in the H-331P4U and H-333P4U service notes.

$$
\begin{array}{llc}
\text { Part No. } & \text { Description } & \text { List Price Each } \\
\neq \text { V-1234-4 } & \text { Cabinet, H-332P4 (maroon) } & \$ 6.50^{*} \\
\neq \mathrm{V}-10420-3 & \text { Knob, H-332P4 } \\
& \\
\text { \& New part number listed for the first time in Westinghouse radio or television service information. } \\
\text { * Price includes Federal Excise Tax. } \\
\text { NOTE: All prices are subject to change without notice. }
\end{array}
$$



## SERVICE NOTES

## SPECIFICATIONS

FREQUENCY RANGE: ................. 540 to 1600 kc .
INTERMEDIATE FREQUENCY: ................ 455 kc .
TUBE COMPLEMENT:
1 1R5 Converter
1 1U4 ..........................................IF Amplifier
1 1US .................Det., AVC and 1st AF Amp.
13 V 4 $\qquad$ Power Output Amp.

## BATTERIES:

```
1 "A". Battery (1.5 v.), Size D - Eveready
950 , Burgess No. 2, or Ray-O-Vac No. 2.
1 "B" Battery (67.5 v.) - Eveready 467,
Burgess XX45, or Ray-O-Vac 4367
```


## CURRENT CONSUMPTION:

```
"A" Battery
"B" Battery.................................. . 008 amp
```



FIG. 2 - REAR VIEW OF V-2182-2 CHASSIS

FIG 3-TOOL REQUIRED FOR IF ALIGNMENT

For service information on Model $\mathrm{H}-415 \mathrm{P} 4$, refer to the $\mathrm{H}-414 \mathrm{P} 4$ service notes and any supplementary information thereto. With the exception of the cabinet color, Model H-415P4 is the same as Model H-414P4.



Fig. 1 Schematic Diagram of

WESTINGHOUSE PAGE 23-15

Part No.
-f V-1267-5
V-11167-2
-f V-8709
-f V-11111-5
-f V-11110-5
-f V-11112-5
-f V-5662-3
Cabinet assy., includes back cover, handle,
clips and grill cloth.
Clip, handle
Cover, back
Dial
Handle, less clips
Knob, off-on-volume. Add to V-2182-2
Chassis parts list.
Cable, "B" Battery
PARTS LIST FOR MODEL H-414P 4

Cabinet and Miscellaneous

+ V-1267-4 Cabiner
V-11167-2 Clip, handle
V.11127-1 Contact, A $f$ battery . 06

V-11136-1 Contact, A-battery . 06
V-11111-4 Dial
V-11110-4 Handle
V-11112-4 Knob **
V-11142-1 Socket 7Pin minature molded (1U5 and 3V4) . 17
V-11142-2 Socket 7Pin minature molded (1R5 and 1U4) .17
V-11135-1 Speaker, " $2 \times 3$ " oval P.M. 5.75*

## V.2182-2 CHASSIS

C1 V-11126-1	Capacitor, variable (A, B. and C)	2.50
C2 V-5596	Capacitor, . 005 mfd .	. 25
C3 V-10710-4	Capacitor, 4 mmf .	. 17
C4 V-9863-4	Capacitor, . 0015 mfd .	. 20
C5 RC10W2503M	Capacitor, 05 mfd 200 V	. 20
C7 V-10710-5	Capacitor, 100 mfd .	. 17
C8 V-5596	Capacitor, 005 mfd .	. 25
C9 V-10710-5	Capacitor, 100 mmf .	. 17
C10 V-9863-2	Capacitor, 002 mfd .	. 20
C11 V-9863-2	Capacitor, . 002 mfd .	. 20
C 12 V-6321-2	Capacitor, 10 mfd .90 V	1.05
+ L1 V-11132-2	Loop, antenna (iron core)	**
L2 V-11128-1	Coil, oscillator	. 95
$\mathrm{R}_{1} \mathrm{RC} 20 \mathrm{AE} 104 \mathrm{~K}$	Resistor, 100,000 ohm 1/2W	. 05
R2 RC20AE153K	Resistor, 15,000 ohms 1/2W	. 05
R3 RC20AE475M	Resistor, 4.7 megohms $1 / 2 \mathrm{~W}$	. 05
R4.RC20AE335M	Resistor, 3.3 megohms 1/2W	. 05
R5 RC20AE473M	Resistor, 47,000 ohms $1 / 2^{\text {W }}$	. 05
R6 V-11129-1	Control, volume, 2 megohms (Consists of R6 and SW. 1)	1.20
R7 RC20AE475M	Resistor, 4.7 megohms $1 / 2 \mathrm{~W}$	. 05
R9 RC20AE105M	Resistor, 1 megohms 1/2W	. 05
R 10 RC20AE335M	Resistor, 3.3 megohms	. 05
R11 RC20AE391K	Resistor, 390 ohms ${ }^{1 / 2} \mathbf{2}$	. 08
T1 V-11138-1	Transformer, 1st IF	1.65
T2 V-11138-2	Transformer, 2nd IF	1.65
T3 V-11139-1	Transformer, Audio output	2.00

\& New Part listed for first time in Westinghouse Television or Radio service information.

- Includes Federal Excise Tax.
** Price Furnished on Request.
NOTE: All prices subject to change without notice.



## CHASSIS V-2185-1

## MODEL H-377

## AC POWER SUPPLY (OPTIONAL)

## SERVICE NOTES

## SPECIFICATIONS

FREQUENCY RANGE: $\qquad$ 540 to 1.600 kc .
INTERMEDIATE FREQUENCY: $\qquad$ 455 kc .

## TUBE COMPLEMENT:

1 1R5 $\qquad$ Converter
11 U 4 IF Amplifier
1 1US ..................Det., AVC and 1st AF Amp.
1 3V4 Power Output Amp.

## POWER OUTPUT:

## Battery Operation:

Indistorted
.075 watt
Maximum . 18 watt
Line Operation (with H-377 power supply): Undistorted ......................................... 12 watt Maximum ....................................................... 22 watt

LOUDSPEAKER: $31 / 2^{n} \times 31 / 2^{\prime \prime} P M$

BATTERIES:
"A" Battery (1.5 v.), Size G - Ray-O-Vac No. 8R, Burgess No. 21R, Eveready No. 964, or General No. 77.
NOTE: Smaller 1.5 . (size D) batteries can be used as " $A$ ", batteries by rotating the $A \neq$ battery contact 180 degrees (see Fig. 2). Batteries recommended are Ray-O-Vac No. 2, Burgess No. 2R, or Eveready No. 950.
"B" Battery ( 67.5 v.) - Ray-O-Vac No. 946, Burgess No. P45, or Eveready No. 477.

LINE VOLTAGE (H-377 POWER SUPPLY): 105 to 120 volts, 50 to 60 cycles AC

CURRENT CONSUMPTION:
"A" Battery
0.25 amp .
"B"' Battery .008 amp.

POWER CONSUMPTION(H-377 POWER SUPPLY): 4 watts H-410P4, H-411P4,


## ALIGNMENT

While making the following adjustments keep the volume control set for maximum output and the signal generator output attenuated to avoid AVC action.

Step	Connect Signal   Generator to -	Signal   Generator   Frequency	Radio   Dial	Adjust for Maximum Output -
1	Stator of RF section of tuning   capacitor C1 through a .01 mfd   capacitor	455 kc.	Minimum   capacity	Top and bottom slugs of 2nd and 1st IF trans   formers in order given. SEE NOTE.
2	Radiated signal	1625 kc.	1625 kc.	Osc. trimmer "D" (rock-in)
3	Radiated signal	1400 kc.	1400 kc.	Ant. trimmer "B"
4	Repeat steps 2 and 3			

NOTE: When adjusting the IF transformers, it is recommended 'bat a fiber aligning tool which snugly fits the slot in the powdered iroz core be used to prevent chipping of the slot.

TO REMOVE BACK COVER - Insert the edge of a coin into the slot in the top of the cabinet, and twist the coin.

PAGE 23-18 WESTINGHOUSE MODELS H-409P4,
H-410P4, H-411P4,
Ch. V-2185-1


John F. Rider

## PARTS LIST FOR MODELS H-409P4, H-410P4 AND H-41IP4

When ordering parts, specify model number of set in addition to part number and description of part.
CABINET AND MISCELLANEOUS


PARTS LIST FOR MODEL H-3T7 AC POWER SUPPLY

Ref.   No.	Part No.	Description	List Price Each	Ref.   No.	Part No.	Description	List Price Each
P51	V -5847-3	Bushing, strain relief (AC cord) (H-377)	\$ . 10	L51	$\begin{aligned} & V-11303-1 \\ & V-11302-1 \end{aligned}$	Reactor, filter Rectifier, selenium	\$1.60
	V-11296-1	Cable assy., AC power supply (H-377)	$2.85$		V-11189-1	250 ma (A voltage) Rectifier, selenium	1.85
	V-4349-1	Cord, AC power	. 70			12 ma ( B voltage)	1.55
C51	V-6321-3	Capacitor, elec.,		R 52	RC30AF472K	Resistor, 4700 ohms 1 w .	. 09
		20 mfd 150 v	1.25	R53	V -11345-1	Resistor, adjustable	. 40
C52	V-11184-1	Capacitor, elec., 1500 mfd		R54	V-6067-10	Resistor,	
		3 v, , 1500 mfd 2 v ., and				3,900) ohms 1 w	. 20
		1500 mfd 1.5 v.	4. 50	T51	V-11304-1	Transformer, power	2.45

[^33]NOTE: All prices are subject to change without notice.
$\square$

The 7 H 04 ZJ chassis incorporates a superneterodyne circuit with two stages of IF, on the FM Band, and two stages on the AM Band, There is one stage of RF amplification on the FM Band.

When adjustments are made on the 7 HO 4 Zl or any $\mathrm{AC}-\mathrm{DC}$ chassis, a line isolation transformer ( $110-\mathrm{V}$ input to $110-\mathrm{V}$ output) is recommended in order to avoid a "hot" chassis. If an isolation transformer is not available, check the AC voltage between chassis and bench ground, and if there is any indication of voltage, reverse the plug before handling the set.

The IF transformers and the discriminator transformer are the new permeability tuned type. The advantage of an IF transformer of this type is its extreme stability under various humidity and temperature conditions. The upper coil is the secondary and the lower the primary. When adjusting these IF and discriminator transformers, tuning wrench 68-19 can be inserted into the top slug, rotated until maximum output is obtained and then dropped down to the lower slug and the same operation repeated. The tuning wrench is so designed that turning one slug does not affect the adjustment of the others.

FM IF Alignment: Reasonably accurate alignment can be made by following the procedure outlined in this service note.

FM Discriminator Alignment; When the secondary of the discriminator is aligned (operation 5) use sufficient signal input to get a good positive and negative indication before setting the slug for zero reading. A center zero indicating meter is recommended for this adjustment, but is not absolutely necessary. Reversing the leads of a non-zero center meter, or observing closely when the meter starts to go to the left (negative) of zero will give the same results.

Alignment of this chassis will, in most cases, be unnecessary unless an IF or RF transformer is replaced or the adjustments have been tampered with.

Correct alignment can only be made if the following procedure is followed:

A vacuum tube voltmeter with isolation resistor of $2,000,000$ ohms in series with the hot lead will serve for FM adjustments. This lead should be shielded.

An AC output meter connected across the primary or secondary of the output transformer will be satisfactory for all AM adjustments.

The signal generator output should be kept just high enough to get an indication on the meter.
(a) Vacuum Tube Voltmeter Lug 7 on discriminator transformer to chassis (half discriminator load).
(b) Vacuum Tube Voltmeter Lug 5 on discriminator transformer to chassis (full discriminator load).
(c) Vacuum Tube Voltmeter from Limiter Grid to Chassis.
(d) Loosen Slugs by applying a hot iron to the cement.



M 总 a   $z$ 0 0 0 0 0 0 0 0   品  	                      		 	雰品     
思 品   description		－	Mه̣        	ざざ ざ ざ ざ         응웅ㅇㅇㅇㅇㅇㅇ웅   总 总总豙   さきミニニミ   33   33           


The 7 H 04 Z 2 chassis incorporates a superheterodyne circuit with two stages of IF, on the FM Band, and two stages on the AM Band. There is one stage of RF amplification on the FM Band.	zero reading. A center zero indicating meter is recommended for this adjustment, but is not absolutely necessary. Reversing the leads of a non-zero center meter, or observing closely when the meter starts to go to the left (negative) of zero will give the same results.
When adjustments are made on the 7 H 04 Z 2 or any $\mathrm{AC}-\mathrm{DC}$ chassis, a line isolation transformer ( $110-\mathrm{V}$ input to $110-\mathrm{V}$ output) is recommended in order to avoid a "hot" chassis. If an isolation transformer is not available, check the AC voltage between chassis and bench ground, and if there is any indication of voltage, reverse the plug before handling the set.	Alignment of this chassis will, in most cases, be unnecessary unless an IF or RF transformer is replaced or the adjustments have been tampered with.   Correct alignment can only be made if the following procedure is followed:
The IF transformers and the discriminator transformer are the new permeability tuned type. The advantage of an IF transformer of this type is its extreme stability under various humidity and temperature conditions. The upper coil is the secondary and the lower the primary. When adjusting these IF and discriminator transformers, tuning wrench 68-19 can be inserted into the top slug, rotated until maximum output is obtained and then dropped down to the lower slug and the same operation repeated. The tuning wrench is so designed that turning one slug does not affect the adjustment of the others.	A vacuum tube voltmeter with isolation resistor of $2,000,000$ ohms in series with the hot lead will serve for FM adjustments. This lead should be shielded.   An AC output meter connected across the primary or secondary of the output transformer will be satisfactory for all AM adjustments.
FM IF Alignment: Because of the wide band pass, it is desirable to use a FM signal generator and a cathode ray oscilloscope when aligning the FM IF channel. The instruction book for the Zenith Model 800 Signal Generator (Form Z8001) covers complete FM alignment procedure. If visual alignment equipment is unavailable, reasonably accurate alignment can be made by following the procedure outlined in this service note.   (a) Vacuum Tube Voltmeter Lug 7 on discriminator tran   (b) Vacuum Tube Voltmeter Lug 5 on discriminator tran	
FM Discriminator Alignment; When the secondary of the discriminator is aligned (operation 5) use sufficient signal input to get a good positive and negative indication before setting the slug for	(d) Loosen Slugs by applying a hot iron to the cement.

## MODEL H723Z2,

Ch. 7H04Z2

MODEL H723Z2 CHASSIS 7H04Z2


$\stackrel{+}{8}$
Mot loon at bo hia. (3) (4) Min (3)-(3) (4)-(5)





## MODEL H723Z2,

Ch. 7H04Z2


The 7 HO 2 Zl chassis incorporates a superheterodyne circuit with two stages of IF, on the FM Band, and two stages on the AM Band. There is one stage of RF amplification on the FM Band.

When adjustments are made on the 7 H 02 Z 1 or any AC-DC chassis, a line isolation transformer ( $110-\mathrm{V}$ input to $110-\mathrm{V}$ output) is recommended in order to avoid a "hot" chassis. If an isolation transformer is not available, check the AC voltage between chassis and bench ground, and if there is any indication of voltage, reverse the plug before handling the set.

The I.F. transformers and the discriminator transformer are the new permeability tuned type. The advantage of an IF transformer of this type is its extreme stability under various humidity and temperature conditions. The upper coil is the secondary and the lower the primary. When adjusting these IF and discriminator transformers, tuning wrench 68-19 can be inserted into the top slug, rotated until maximum output is obtained and then dropped down to the lower slug and the same operation repeated. The tuning wrench is so designed that turning one slug does not affect the adjustment of the other.

FM IF Alignment: Reasonably accurate alignment can be made by following the procedure outlined in this service note.

FM Discriminator Alignment: When the secondary of the discriminator is aligned (operation 5) use sufficient signal input to get a good positive and negative indication before setting the slug for zero reading. A center zero indicating meter is recommended for this adjustment, but is not absolutely necessary. Reversing the leads of a non-zero center meter, or observing closely when the meter starts to go to the left (negative) of zero will give the same results.

Alignment of this chassis will, in most cases, be unnecessary unless an IF or RF transformer is replaced or the adjustments have been tampered with.

Correct alignment can only be made if the following procedure is followed:

A vacuum tube voltmeter with an isolation resistor of $2,000,000$ ohms in series with the hot lead will serve for FM adjustments. This lead should be shielded.
An AC output meter connected across the primary or secondary of the output transformer will be satisfactory for all AM adjustments.
The signal generator output should be kept just high enough to get an indication on the meter.
(a) Vacuum Tube Voltmeter Lug 7 on discriminator transformer to chassis (half discriminator load).
(b) Vacuum Tube Voltmeter Lug 5 on discriminator transformer to chassis (full discriminator load).
(c) Vacuum Tube Voltmeter from Limiter Grid to Chassis.
(d) Loosen Slugs by applying a hot iron to the cement.

## MODEL H724Z1,

Ch. 7H02Z1



PAGE 23-12 ZENITH

PARTS LIST

DIAG.

PART NO. NO. DESCRIPTION

## DIAL ASSEMBLY

26-463
46-859
46-860
$46-900$
$46-901$
46-901
78-932
$78-932$
$80-69$
80-444
80-580
100-105 PL1
171-11
188-150
S-14524
S-14525
S-17334
S-17336
S-17467
S-18442
COILS \& CHOKES
20-355 Ll F.M. Ant. Coil
95-1102 T3A 3rd I.F. Trans. - 455
$\begin{array}{lll}95-1150 & \text { Tl,T3 } & \text { ist \& 3rdI.F. Trans. }-1 \\ 95-1153 & \text { T4 } & \text { Disc. Trans. }-10.77 \mathrm{Mc} .\end{array}$
95-1250 TlA lst I.F.Trans. - 455 kc
95-1251 T2 2ndI.F. Trans.- $10.7 \mathrm{Mc} \& 455 \mathrm{kc}$
S-13871 L2 F.M. Detector Coil Asșem.
S-15694 L3 Broadcast Osc. Coil Assem.
F.M. Osc. Coil Assem.

## CONDENSERS

22-3 C6 . 01 Mfd. Ceramic (8 used) 500V

$22-3$	$C 6$
$22-4$	$C 25$
$22-5$	$C 7$
$22-6$	$C 22$

.004 Mfd. Ceramic
110 Mmfd Cer m
10 Mmfd . Ceramic (Disc.)(2 used) 500 V
$\begin{array}{llll}22-6 & C 22 & 470 \mathrm{Mmfd} . \text { Ceramic } & 500 \\ 22-229 & \mathrm{C} 21 & .005 \mathrm{Mfd} . & 500\end{array}$
$\begin{array}{lll}22-448 & \mathrm{C} 13 \mathrm{M} .004 \mathrm{Mfd} . & 600 \mathrm{~V}\end{array}$
$\begin{array}{lll}22-829 & \text { Cll } & .05 \mathrm{Mfd} . \\ 22-830 & \text { C15 } & .02 \mathrm{Mfd} .\end{array}$
$\begin{array}{lll}22-1126 & \mathrm{C} 23 & .01 \mathrm{Mfd} . \\ 400\end{array}$
$\begin{array}{lll}22-1158 & \mathrm{C} 16 & .05 \mathrm{Mfd} . \\ 22-1220 & \mathrm{C} 14 & .002 \mathrm{Mfd} .\end{array}$
$\begin{array}{llll}22-1220 & \text { Cl4 } & .002 \mathrm{Mfd} . & 600 \mathrm{~V} \\ 22-1367 & \text { C9 } & 50 \mathrm{Mmfd} . \text { Ceramic } & 500 \mathrm{~V} \\ 22-1506 & \text { C8 } & 22 \mathrm{Mmfd}, \text { Ceramic (2 used) } & 500 \mathrm{~V}\end{array}$
$22-1676 \quad \mathrm{C} 20^{\circ} \quad .001 \mathrm{Mfd}$. Ceramic (3 used) 500V
22-1742 Cl Two Section Gang Cond.
22-1757 Cl7,C18 Elect. Cond, $-40 \mathrm{Mfd}-150 \mathrm{~V} 80$
Mfd.
$\begin{array}{lll}22-1766 & \mathrm{C} 10 & .68 \mathrm{Mmf} \\ 22-1775 & \mathrm{C} 24 & .047 \mathrm{Mfd} \\ 22-1852 & \mathrm{C} 5 & 75 \mathrm{Mmf}\end{array}$
22-1852 C5 7.5 Mmfd. Ceramic 500V
$\begin{array}{llll}22-1887 & \mathrm{C} 19 & 25 \mathrm{Mmfd} \text {. Ceramic } & 500 \mathrm{~V} \\ 22-2112 & \mathrm{C} 27 & .001 \mathrm{Mfd} . \text { Ceramic } & 500 \mathrm{~V}\end{array}$
22-2276 C26 Dual Ceramic Cond.-.01 Mfd. -
.01 Mfd .
Dial Scale
Bandswitch Knob
Tuning Control Knob
Vol, Control Knob
Tone Control Knob
Dial Pointer
Dial Light Socket Assem
Dial Cord Tension Spring
Tuner Arm Tension Spring
Tuner Arm Stop Spring
Neon Indicator Bulb
Pilot Light Jewel
Retaining Ring (1 used on S-17334 \& 1 used with S-17467)
ond. Pulley \& Cam Assem.
Tuning Shaft \& Pulley Assem.
Tuning Shaft Brkt \& Ins. Strip Assem.
Brkt. \& Pulley Assem.
Dial Cord \& Eyelet Assem.

PRICE

PSISTOR

63-686 R18 150 Ohm W.W. $1 / 2 \mathrm{~W} 10 \%$ Ins. Res.
63-1450 R13 22 Ohm W.W. 1W 20\% Ins. Res.
63-1744 R2 100 Ohm W.W. $1 / 2 \mathrm{~W} 20 \%$ (2 used) Ins.Res. 2
63-1758 R2 100 Ohm W.W. W. 220 .

PART NO.	NO.	DESCRIPTION	PRICE
63-1782	R11	820 Ohm W.W. $1 / 2 \mathrm{~W} 10 \%$ Ins. Res.	. 21
63-1800	R14	2200 Ohm W.W. 1/2W 20\% (2 used) Ins.Res.	. . 21
63-1828	R4	10K Ohm W.W. 1/2W 20\% Ins. Res.	. 21
63-1835	R15	15 K Ohm W.W. 1/2W $20 \%$ Ins. Res.	. 21
63-1856	R19	47 K Ohm W.W. 1/2W $20 \%$ Ins. Res.	. 21
63-1870	R 8	100 K Ohm W.W. 1/2W $20 \%$ (4 used) Ins.Res	s. 21
63-1876	R16	150K Ohm W.W. 1/2W $10 \%$ (2 used) Ins.Res	s. . 21
63-1898	R17	470 K Ohm W.W. 1/2W $20 \%$ (2 used) Ins.Res.	. . 21
63-1.912	R9	1 Megohm W.W. 1/2W $20 \%$ Ins. Res.	. 21
63-1926	R7	2.2 Megohm W.W. 1/2W 20\%(2 used)Ins.Res.. 21	
63-1940	R3	4.7 Megohm W.W. 1/2W $20 \%$ (3 used)	
63-2143	R10	Volume Control \& Switch	1.81
63-2144	R20	Tone Control	1.20
63-2424	R21	39 Ohm W.W, 1 W 10\% Ins. Res.	. 30
63-3137	R12	1000 Ohm W.W. 5W 20\%	
		MISCELLANEOUS	
11-85		Line Cord \& Plug (6 ft. lg)	. 65
12-1070		Wavemagnet Mtg. Brkt.	. 25
14-1273		Plastic Cabinet for H724Z1	5.50
16-657		Packing Carton	
43-165		Handle Housing	1.00
49-689	SP1	. $51 / 4^{\boldsymbol{n}}$ PM Speaker	6.00
		ZC 5091 Cone \& Voice Coil	1.73
		TS2035 Output Trans.	1.40
54-129			. 01
54-279		3/8-32x1/2" Hex Nut Steel St. Br.(used on	
57-1717		Chassis Bottom Plate	. 30
57-1721		Emblem Plate	. 25
58-200		Two Prong A.C. Plug	
78-806		Miniature Tube Socket	. 15
78-850		Miniature Tube Socket	. 35
78-869		Miniature Tube Socket	. 20
78-870		Miniature Tube Socket (3 used)	. 15
78-871		Miniature Tube Socket	. 15
80-884		Ground Spring	
83-1056		Wavemagnet Mtg. Strip	. 03
83-1789		Handle Strip (Rubber) (1/2 used)	. 07
83-1829		Insulator Strip	. 07
83-1931		Handle Strip (Rubber)(1/2 used)	. 10
85-516	Sl	Band Switch	
93-94		Ins, Shoulder Washer (used with 85-516)	. 01
93-487		1/16x.144x3/8 Washer ( 2 used on 43-165)	. 01
93-1097		Insulating Washer (used with 85-516)	
94-485		Insulating Bushing (used with 85-516)	. 03
97-293		Chassis Mtg. Stud (2 used) .	. 18
110-180		Grill Cloth	
112-281		\#10×3/4 Truss Hd. ST St. Br (2 used on	
114-297		\#6xl/4" Hex. Hd. S.T. (6 used on 571717)	. 01
114-356		\#6x1 1/4 ${ }^{\text {n }}$ Hex.Hd.S.T.(used on 212-7)	. 02
114-366		\# $6 \times 3 / 8$ Hex. Hd. S.T. (2 used on 43-165)	. 02
126-618		Tube Shield	. 02
139-98		Speaker Baffle	
149-64		Iron Core \& Spring (2 used)	. 40
159-69		Plug Button (4 used on S-17366)	. 01
196-153		Speaker Gasket	. 40
199-103		Flexible Handle Sleeve	. 35
202-697		F.M. Inst. Book	. 10
202-897		Instruetion Book	
212-7	SE1	Selenium Rectifier	1.80
S-13210		Strap \& Rivet Assem. (Handle)	. 20
S-14957	L5	Wavemagnet Assem.	1.25
S-17366		Cabt. Back Assem (complete)	1.50
S-18434		Band Switch Ext. Shaft Assem.	

DIAG.

The 7H0?Z2 chassis incorporates a superheterodyne circuit with two stages of IF, on the FM Band, and two stages on the AM Band. There is one stage of RF amplification on the FM Band.

When adjustments are made on the 7 H 02 Z 2 or any $\mathrm{AC}-\mathrm{DC}$ chassis, a line isolation transformer ( $110-\mathrm{V}$ input to $110-\mathrm{V}$ output) is recommended in order to avoid a "hot" chassis. If an isolation transformer is not available, check the AC voltage between chassis and bench ground, and if there is any indication of voltage, reverse the plug before handling the set.

The I.F. transformers and the discriminator transformer are the new permeability tuned type. The advantage of an IF transformer of this type is its extreme stability under various humidity and temperature conditions. The upper coil is the secondary and the lower the primary. When adjusting these IF and discriminator transformers, tuning wrench 68-19 can be inserted into the top slug, rotated until maximum output is obtained and then dropped down to the lower slug and the same operation repeated. The tuning wrench is so designed that turning one slug does not affect the adjustment of the other.
FM IF Alignment: Reasonably accurate alignment can be made by following the proce dure outlined in this service note.
FM Discriminator Alignment: When the secondary of the discriminator is aligned (operation 5) use sufficient signal input to get a good positive and negative indication before setting the slug for zero reading. A center zero indicating meter is recommended for this adjustment, but is not absolutely necessary. Reversing the leads of a non-zero center meter, or observing closely when the meter starts to go to the left (negative) of zero will give the same results.

Alignment of this chassis will, in most cases, be unnecessary unless an IF or RF transformer is replaced or the adjustments have been tampered with.

Correct alignment can only be made if the following procedure is followed:

A vacuum tube voltmeter with an isolation resistor of $2,000, \cup 00$ ohms in series with the hot lead will serve for FM adjustments. This lead should be shielded.

An AC output meter connected across the primary or secondary of the output transformer will be satisfactory for all AM adjustments.

The signal generator output should be kept just high enough to get an indication on the meter.
(a) Vacuum Tube Voltmeter Lug 7 on discriminator transformer to chassis (half discriminator load).
(b) Vacuum Tube Voltmeter Lug 5 on discriminator transformer to chassis (full discriminator load).
(c) Vacuum Tube Voltmeter from Limiter Grid to Chassis.
(d) Loosen Slugs by applying a hot iron to the cement.

PAGE 23-14 ZENITH
MODEL H724Z2,
Ch. 7H02Z2

MODEL H724Z2 CHASSIS 7H02Z2


PAGE 23-16 ZENITH
MODEL H724Z2,
Ch. 7H02Z2


## PARTS LIST


Prices shown are suggested list prices, and are subject to change without
notice.
2/18/52
top slug，rotated until maximum output is obtained and then dropped down to the lower slug and the same operation repeated．The tun－ ing wrench is so designed that turning one slug does not affect the adjustment of the other．
FM IF Alignment：Because of the wide band pass，it is desirable to use a FM signal generator and a cathode ray oscilloscope when aligning the FM IF channel．The instruction book for the Zenith Model 800 Signal Generator（Form Z8001）covers complete FM a－ lignment procedure．If visual alignment equipment is unavailable， reasonably accurate alignment can be made by following the pro－ cedure outlined below．
FM Discriminator Alignment：When the secondary of the dis－ criminator is aligned（operation 5）use sufficient signal input to get a good positive and negative indication before setting the slug for zeroreading．A center zero indicating meter is recommended for this adjustment，but is not absolutely necessary．Reversing the
leads of a non－zero center meter，or observing closely when the meter starts to go to the left（negative）of zero will give the same results．
The 8 H 20 Z chassis incorporates a superheterodyne circuit with two stages of IF，on the FM Band，and one stage on the AM Band． There is one stage of RF amplification on all Bands．
When adjustments are made on the 8 H 20 Z chassis，a line isola－ tion transformer（ 110 V input to 110 V output）is recommended in
 available，check the AC voltage between chassis and bench ground and if there is any indication of voltage，reverse the plug before handling the set．
FM RF Alignment：The tunning slugs are attached to threaded shafts and the slugs are varied in the field of the coils by turning the shafts clockwise or counter－clockwise．After adjustment the shafts must be secured with a drop of speaker cement．
AM and FM IF Alignment：The AM and FM IF transformers in this receiver are of the new permeability tuned type．The advan－ tage of an IF transformer of this type is its extreme stability un－ der various humidity and temperature conditions．The upper coil is the secondary and the lower the primary．When adjusting these IF transformers the tuning wrench 68－19 can be inserted into the


 19T8

NOTE $\div$ $\qquad$ TUBE AND TRIMMER LOCATION我荡
 1为 0 VONOMF a
 ．
 10.7 mc

L－TONE CONTROL
$\qquad$
0

4


ALIGNMENT PROCEDURE

Operation	$\begin{gathered} \text { Connect } \\ \text { Oscillator To } \end{gathered}$	Dummy   Antenna	Input Signal   Frequency	Band	Set Dial To	Adj. Trimmers	Purpose
1	Pin 212 AT 7 Converter	. 05 Mid .	455 Kc . Modulated	BC	600 Kc .	$\begin{gathered} L 9,10,12 \\ 15 \& 16 \\ \hline \end{gathered}$	Align I. F. channel for maximum output.
2	2 turns loosely cpld. to wavemagnet		1600 Kc . Modulated	BC	1600 Kc .	C4	Set oscillator to dial scale.
3	2 turns loosely cpld. to wavemagnet		1400 Kc . Modulated	BC	1400 Kc .	C 3, C2	Align detector and antenna stage.
4 (a)	Pin 1 (grid) on 12AU6 limiter.	. 05 Mfd .	10.7 Mc . Unmodulated	$\begin{aligned} & \text { FM } \\ & 100 \end{aligned}$		L17 coil slug Primary discr.	Align primary of discriminator for maximum reading.
5 (b)	Pin 1 (grid) on 12AU6 limiter.	. $05 \mathrm{Mfd}$.	10.7 Mc . Unmodulated	$\begin{aligned} & \text { FM } \\ & 100 \\ & \hline \end{aligned}$		LI8 coil slug sec. of discr.	Adjust secondary of discriminat or for zero reading.
6 (c)	$\begin{aligned} & \text { Pin } 1 \text { (grid) on 12BA6 } \\ & \text { 2nd. } \mathbb{I} \text {. } \end{aligned}$	. 05 Mfd .	10.7 Mc . Unmodulated	$\begin{aligned} & \text { FM } \\ & 100 \\ & \hline \end{aligned}$		L13 and Ll4 Pri.   \& Sec. of 3rd. IF trans.	Align 3rd. IF transformer for maximum reading.
$7 \quad$ (c)	$\begin{aligned} & \text { Pin } 1 \text { (grid) on 12BA6 } \\ & \text { 1st. IF. } \end{aligned}$	. 05 Mfd .	10.7 Mc. Unmodulated	$\begin{aligned} & \text { FM } \\ & 100 \end{aligned}$		Adjust Lll for maximum reading.	Align 2nd IF transformer for maximum reading.
8 (c)	Pin 2 (grid) on 12AT7 converter tube socket.	. 05 Mfd .	10.7 Mc .   Unmodulated	$\begin{aligned} & \text { FM } \\ & 100 \\ & \hline \end{aligned}$		L7 and L8 Prim. and Sec. of 1 st . IF transformer.	Align 1st. IF transformer for maximum reading.
$9 \quad \text { (c) }$	nna Post F	270 ohms	98 Mc . Unmodulated	$\begin{aligned} & \text { FM } \\ & 100 \end{aligned}$	98 Mc .	L5 Osc. Coil Slug.	Set Oscillator to dial scale.
10 (c) (d)	move line ant.)	270 ohms	98 Mc . Unmodulated	$\begin{aligned} & \text { FM } \\ & 100 \end{aligned}$	98 Mc.	L3 Det. Coil Slug	Align det. stage to maximum reading.

IMPORTANT

Alignment of this chassis will in most cases be unnecessary have been tampered with.
Correct alignment can only be made if the following procedure is followed:

A vacuum tube voltmeter with an isolation resistor of $2,000,000$
ohms in series with the hot lead will serve for $F M$ adjustments. This lead should be shielded.

An AC output meter connected across the primary or secondary
of the output transformer will be satisfactory for all AM adjust- ments.


## MODELS J880, <br> J880R, Ch. 8H20Z

PARTS LIST



PAGE 23-22 ZENITH
MODELS J1083E Wilshire, J1083EZ,
J1086 Westchester, J1086R, J1086RZ, J1087 Picardy, J1087Z, Ch. 10H20Z

The 10 H 20 Z chassis incorporates a superheterodyne circuit with two stages of IF, on the FM Band, and two stages on the AM Band. There is one stage of RF amplification on all bands.

FM RF Alignment: The tuning slugs are attached to threaded shafts and the slugs are varied in the field of the coils by turning the shafts clockwise or counter-clockwise. After adjustment the shafts must be secured with a drop of speaker cement.

AM and FM Alignment: The AM and FM IF transformers in this reciever are of the new permeability tuned type. The advantage of an IF transformer of this type is its extreme stability under various humidity and temperature conditions. The upper coil is the secondary and the lower the primary. When adjusting these IF transformers the tuning wrench 68-19 can be inserted into the top slug, rotated until maximum output is obtained and then dropped down to the lower slug and the same operation repeated. The tuning wrench is so designed that turning one slug does not affect the adjustment of the other.

FM IF Alignment: Because of the wide band pass, it is desirable to use a FM signal generator and a cathode ray oscilloscope when aligning the FM TF channel.

If visual alignment equipment is unavalıable, reasonably accurate alignment can be made by following the procedure outlined below.

FM Discriminator Alignment: When the secondary of the discriminator is aligned (operation 5) use, sufficient signal input to get a good positive and negative indication before setting the slug for zero reading. A center zero indicating meter is recommended for this adjustment, butis not absolutely necessary. Reversing the leads of a non-zero center meter, or observing closely when the meter starts to go to the left (negative) of zero will give the same results.


TUBE AND TRIMMER LOCATION

ZENITH PAGE 23-23



ZENITH PAGE 23-25

## PARTS LIST

PART   NO.	$\begin{aligned} & \text { DIAG. } \\ & \text { NO. } \end{aligned}$	- DESCRIPTION P	PRIC
	MISCELLANEOUS (CONT ${ }^{\text {'D.) }}$		
93-965		Rubber Washer (used on S-13800)	. 02
93-1039		Gang Cond. Mtg. Cup Washer (2 used)	. 01
95-1252	T5	Speaker Output Trans.	2.50
95-1253	T6	Pwr. Trans. 12	12.50
113-43		6-32 $\times$ /16 Hex Hd. S.T. (used on S-17258)	. 03
114-39		$8-32 \times 1 / 4 \mathrm{lg} . \times 1 / 4 \mathrm{Hex}$ Hd. (2 used on S-17258	
		\& 4 used on 57-1736)	. 60
126-618		Miniature Tube Shield	. 02
148-122		Tuner Arm	. 20
149-95		Iron Core \& Spring (2 used)	. 30
S-17257		Speaker Cable \& Eyelet Assem.	. 35

CABINET PARTS J1083E

2-260
14-1343
16-134
17-12
Cabinet Back (Phono Section)
Packing Carto
Cable Clamp
Cable Clip
Record Changer Handl
Tuning Control Knob
46-899
Band Switch Knob
12" PM Speaker
ZC1216F Cone \& Voice Coil
Strike Plate ( 2 used)
Escutcheon Clamping Plate (4
Radio Dial Esc.
Chas is Bottom Plate
(used on 19-9 \& 2 used 83-1220)
70-86 \#6 5 5/8'' Washer Hd. Wood Screw St. Br.
\#6 x 5/8' Washer Hd. Wood Screw St. Br
$(8$ used to Mt. Back \& 1 used on $17-121$ )
Pilot Light Socket \& Wire
80-604 Hinge Spring (2 used)
80-830 Record Changer Mtg. Spring (4 used)
80-865 Ground Spring
80-868 Ground Spring
83-728 Chassis Mtg. Spring (2 used)
Pilot Light Socket Mtg. Strip.
Pilot Light Tube
Rubber Shoulder Washer (4 used on Chassis Mtg.)
Rubber Shoulder Washer (4 used on Cha
$93-96$
93-96
100-6
\#8 $\times 1 / 4^{\prime \prime}$ Hex Hd. S.T. (4 used on 57-1736)
\#6 x l/4' Hex Hd. S.T. (6 used on Esc. Mtg.)
Chassis Mtg. Screw (4 used)
Bullet Catch (2 used)
159-50
165-13
3 Metal Glide (4 used)
166-57 Tack Bumper (4 used)
Pilot Light Lens
188-54 Knob Clamping Ring (46-876)
192-138 Dial Glass
202-697 F.M. Instruction Book
Radio-Phono Instruction Book
S-14029 Variable Speed Record Changer
S-15780 Cobra Tone Arm Cartridge
S-16419 Record Adapter Plug \& Envelope Assem.
S-17060
S-17167
S-17328 L2
S-17917 L1
S-18215

Wire \& Terminal Assem. Loop Loading Coil Assembly Low Impedance Loop, Clip \& Strip Assem. Record Changer Mtg. Frame Assem.

PART DIAG
NO. NO.
DESCRIPTION

## CABINET PARTS J1083EZ

J1083EZ is the same as J1083E except the following:
S-18560 Record changer slide assembly (2 used)
S-18563 Record changer mtg. frame.
14-1364 Console Combination Cabinet
70-178 \#8 x 1" R.H.W.S Steel Shipping bolt for changer (2 used)
72-102 \#6 x 1/2' Phillips F.H.W.S. Steel black zinc ( 6 used)
72-103 \#10 $\quad 21 / 2^{\prime \prime}$ F.H.W.S. Steel black zinc (2 used)
112-846 \#8 $\times 3 / 8^{\prime \prime}$ Phillips Pan Hd. Self tapping screw type
"A" Cad. or Zinc (5 used)
152-208 Record Changer stop block.
203-422 Phono Caution Tag.
CABINET PARTS J1086
Model J1086 is the same as J1086R except the following:

2-267	Cabinet Back (Phono \& Record Storage Section)	2.2:
14-1349	Cabinet for J1086 Console Combination Model	
	CABINET PARTS J1086R	
Model J1086R is the same as Jl083E except the following:		
2-266	Cabinet Back (Phono \& Recerd Storage Section)	2.25
14-1349R	Cabinet for J1086R-Console Combination Model	---
16-737	Facking Carton	---
57-1284	Strike Plate (2 used)	. 05
156-35	Bullet Catch (2 used)	. 05
166-57	Tack Bumper (4 used)	. 03

166-57 $\quad$ Tack Bumper (4 used)
CABINET PARTS J1086RZ

J1086RZ is the same as J1086R and uses the same cabinet parts as J1083Z, except:

14-1366R Console Combination Cabinet
CABINET PARTS J1087
Model J 1087 is the same as $\mathrm{Jl083E}$ except the following:
2-262 Cabinet Back (Phono \& Record Storage Section) 14-1345 Cabinet for J1087 - Console Combination Model
16-731
2.00
2.00

CABINET PARTS J1087Z
J1087Z is the same as J 1087 and uses the same cabinet parts as J1083Z, except:

Console Combination Cabinet
RADIORGAN ESCUTCHEON ASSEM
76-444 Radiorgan Knob Shaft
114-297 \#6 x 1/4'" Hex Hd. S.T. (2 used on S-17252 S-17253)
S-17246 Radiorgan Knob \& Eyelet Assem. (Treble)
S-17247 Radiorgan Knob \& Eyelet Assem. (Voice)
S-17248 Radiorgan Knob \& Eyelet Assem. (Alto) S-17249 Radiorgan Knob \& Eyelet Assem. (Bass) Radiorgan Knob \& Eyelet Assem. (Lo Bass)
S-17251 Radiorgan Knob \& Eyelet Assem. (Normal)
Radiorgan Esc. \& Knob Assem. (R.H.)
S-17253 Radiorgan Esc. \& Knob Assem. (L.H.)
S-17255 Radiorgan Cable Assem.
Radiorgan Cable Assem.


ZENITH PAGE 23-27 MODELS K510, K510W, K510Y, Ch. 5K02


MODELS K510, K510W,
K510Y, Ch. 5K02


The I.F. transformers incorporated in this receiver are of the new permeability tuned type. The advantage of an I.F. transformer of this type is its extreme stability under various humidity and temperature conditions. The upper coil is the secondary and the lower the primary. When adjusting these I.F. transformers the tuning wrench $68-19$ can be inserted into the top slug, rotated until maximum output is obtained and then dropped down to the lower slug and the same operation repeated. The tuning wrench is so designed that turning one slug does not affect the adjustment of the other.

In the event the receiver oscillates during phono operation, adjust C $164-80 \mathrm{mmf}$. capacitor to a point at which the oscillation ceases.

This position of no oscillation will sometimes vary with different cartridges, and in th: s case readjustment of C 16 must be made.



TUBE AND TRIMMER LOCATION


ALIGNMENT PROCEDURE

OPERATION	CONNECT OSCILLATOR TO	DUMMY ANTENNA	INPUT SIG. FREQUENCY	$\begin{aligned} & \text { SET } \\ & \text { DIAL AT } \end{aligned}$	TRIMMERS	PUR POSE
1	Converter   Grid	. 5 Mfd .	455 Kc .	600 Kc .	L3, 4, 5, 6	For I. F. Alignment
2	One Turn   Loop Coupled   Loosely to   Wave Magnet	--	1600 Kc .	1600 Kc .	C-3	Set Oscillator to Dial Scale.
3		--	1400 Kc .	1400 Kc .	C-2.	Align Antenna Stage

PAGE 23-30 ZENITH
MODELS K666R,
Ch. 6K02



## John F. Rider



ZENITH PAGE 23-33

© John F. Rider

## MODEL L507，Ch．5L42



迺		º̛oboto		º	\％	$\stackrel{\square}{\square}$	$\stackrel{\rightharpoonup}{0}$	¢0．0．	$\cdots$	
									  © $\stackrel{\circ}{-}$ 앙 or 웅 $\stackrel{\square}{6} \stackrel{\rightharpoonup}{6}$	
$\left.\begin{aligned} & \dot{0} \\ & \dot{z} \\ & \dot{\Delta} \\ & \dot{\Delta} \end{aligned} \right\rvert\,$	べひ	$\cdots$								氙 9
$\left.\begin{aligned} & \dot{0} \\ & z_{1} \\ & \Delta \\ & 0 \end{aligned} \right\rvert\,$							～		$\begin{aligned} & \stackrel{0}{\overrightarrow{0}} \\ & \underset{-}{2} \end{aligned}$	



## $\frac{\text { Description }}{\text { CHASSIS PARTS }}$

 mer \＆bracket \＆bracket
Ceramic single section trim－
mer（ 6 used）

 $6-32 \times 1 /$ hex nut（ 1 speaker
mitg．）
$3 / 8-32 \times 9 / 16$ palnut（ 1 mt ． vol．control）
$3 / 8-32 \times 9 / 16$ hex nut（ 1 mt ．

$$
\begin{aligned}
& \text { 宫宫 }
\end{aligned}
$$


IST. I.F. TRANS PRIMARY $3 \vee 4$

2ND.I.F. TRANS.
105
SECONDARY
TUBE \& TRIMMER LOCATION
ALIGNMENT PROCEDURE


PAGE 23-36 ZENITH
MODELS L401,G, R,
SG, Y, Ch. 4L40


TUBE, TRIMMER LOCATION, DIAL CABLE DRAWING
AND DETAILED VIEW OF I. F. TRANSFORMERS. The I.F. transformers incorporated in this receiver are of the new permeability tuned type. The advantage of an I. F. transformer of
 temperature conditions. The upper coil is the secondary and the

 maximum output is obtained and then dropped down to the lower slug and the same operation repeated. The tuning wrench is so designed that turning one slug does not affect the adjustment of the other.


PAGE 23-38 ZENITH
MODELS K526W,
Y, Ch. 5K04


ZENITH PAGE 23-39



TUBE AND TRIMMER LOCATION


		MODELS L622F，   G，W，Ch．6L03				
			-漕			
				品	回	苼
			$\begin{aligned} & \dot{4} \\ & \stackrel{y}{0} \end{aligned}$			－
		菏			－	
		䐴				
		－	$\sim$			

PAGE 23-42 ZENITH
MODELS L622F,
G, W, Ch. 6L03


ZENITH PAGE 23-43


PAGE 23-44 ZENITH
MODELS L518, F,
G, W, Y, Ch. 5L03




Clock and Timer Note:
The clock and timer assemblies used in this receiver are
Clock and Timer Note:
The clock and timer assemblies used in this receiver are manufactured by Telechron. Face parts, such as hands, knobs, scales, bezel, etc., are not available through local timer assemblies complete (less the rear cover and bushing) be returned to your local Zenith Distributor for repair or replacement. Be sure to pack all clock and timer assemblies i
MODELS L520, F,

 VILUME CONTROL



مٌ nọ nọ
DESCRIPTION
Chassis Parts

$\qquad$ .00047 mfd ceramic disc
250 mmid ceramic 500V
Electrolytic $80 / 150 \mathrm{~V} 40 / 150 \mathrm{~V}$
Two section variable
Palnut ( 1 mt. 63-2393)
Palnut ( 1 mt. ea. $95-1101,95-1102$ ) Palnut ( 1 mit. ea. $95-1101$
K ohm 1 W ins. $10 \%$ 1 K ohm 1 W ins. $10 \%$
22 ohm WW ins. $20 \%$
$6 \mathrm{ohm} 1 / 2 \mathrm{~W}$ ins. $20 \%$ $22 \mathrm{~K} \mathrm{ohm} 1 / 2 \mathrm{~W}$ ins. $20 \%$
470 K ohm $1 / 2 \mathrm{~W}$ ins. $20 \%$ (2 used) 4.2 meg ohm $1 / 2 \mathrm{~W}$ ins. $20 \%$.
4.7 meg ohm $1 / 2 \mathrm{~W}$ ins. $20 \%$
150 W . 150 ohm 1 W ins. $10 \%$.
Volume control Socket, electroiytic
Socken, min. tube (4 used)
Socket, min. tube Socket, min. tube
Socket, two contact
Dial cord tension Disl cord tension spring
Line cord terminal strip
Line cord insulating Brass washer (2 mt. 95-1354)
Gang mtg. bushing (3 used) lst. IF transformer
2nd IF transformer
Output transformer Output transformer
$6-32 \times 7 / 16$ hex hd mach screw ( 2 mt. gang )
$6-32 \times 7 / 16$ hex hd mach screw ( 1 mt .gang ) $6-32 \times 7 / 16$ hex hd mach screw ( 1 mt .gang)
Rubber grommet ( 3 mt . gang) Rubber grommet ( 3 mt . gang)
Rubber bumper (gang)
Retaining ring (for S-18514)
Dial Retaining ring (for S-18514)
Dial cord \& eyelet
Tuning shaft \& pulley The
Cabinet Parts
Cabinet, plastic table model L520
Cabinet, plastic table model L520W
Cabinet, plastic table model L520G
 Cabinet, plastic table model L520R
Packing carton Cable clamp
Radio dial scale Radio dial scale L520, W, G, F
Clock dial scale L520, W, G, F




F~M


PAGE 23-46 ZENITH
MODELS L520, F,
G, R, W, Ch. 5L07


John F. Rider

XSIST Iวpour әโqeq ว!̣se!d

## 

${ }^{84}$

$$
2989
$$

$$
\begin{aligned}
& 22 \mathrm{Kohm} 1 / 2 \mathrm{~W} \text { ins. } 20 \% \\
& 470 \mathrm{~K} \mathrm{ohm} 1 / 2 \mathrm{~W} \text { ins. } 20 \%(2 \mathrm{used}) \\
& 2,2 \mathrm{meg} \text { ohm } 1 / 2 \mathrm{~W} \text { ins. } 20 \%
\end{aligned}
$$

$$
\begin{aligned}
& 68 \mathrm{ohm} 1 / 2 \mathrm{~W} \text { ins. } 20 \% \\
& 22 \mathrm{~K} \mathrm{ohm} 1 / 2 \mathrm{~W} \text { ins. } 20 \% \\
& 470 \mathrm{~K} \mathrm{ohm} 1 / 2 \mathrm{~W} \text { ins. } 20 \%(2 \text { used) }
\end{aligned}
$$



- $\bar{i}$


$$
\begin{aligned}
& 470 \mathrm{~K} \text { ohm } 1 / 2 \mathrm{~W} \text { ins. } 20 \% \text { (2 us } \\
& 2,2 \mathrm{meg} \text { ohm } 1 / 2 \mathrm{~W} \mathrm{ins.} 20 \% \\
& 4,7 \mathrm{meg} \text { ohm } 1 / 2 \mathrm{~W} \text { ins. } 20 \% \\
& 150 \mathrm{ohm} 1 \mathrm{~W} \text { ins. } 10 \%
\end{aligned}
$$

```
\[
\begin{array}{r}
.65 \\
.26 \\
.26 \\
.20 \\
.20 \\
.25 \\
2.40 \\
3.00 \\
.01 \\
.01 \\
.24 \\
.24 \\
.21 \\
.21 \\
.21 \\
.21 \\
.21 \\
.24 \\
1.20 \\
.03 \\
. .55 \\
.5 \\
.03 \\
.3 \\
.01 \\
.04 \\
1.60 \\
1.60 \\
3.00 \\
.02 \\
.01 \\
.03 \\
.02 \\
.02 \\
.06 \\
.35 \\
.70 \\
.25 \\
\end{array}
\]
```

?

$$
\begin{aligned}
& \text { Prices shown are suggested list prices and are subject to change } \\
& \text { without notice. }
\end{aligned}
$$






$$
\begin{aligned}
& \text { Palnut (used on volume control) } \\
& \text { Palnut (1 mt.ea. } 95-1101,1102 \text { ) } \\
& 1 \mathrm{~K} \mathrm{ohm} \mathrm{~W} \mathrm{~W} \mathrm{ins.} 10 \% \\
& 22 \text { ohm } 1 \text { WWW ins. } 20 \%
\end{aligned}
$$

$\qquad$会

min
in in
in


F~N
L2


PAGE 23-48 ZENITH
MODELS L515, F,
G, W, Y, Ch. 5L06



[^0]:    $\dagger$ Part of Diode Filter 63A3-1. This unit consisting of Cl1, Cl2 and R3 may be replaced with individual components.

[^1]:    $\dagger$ Part of couplate, part of number 63B 6-6. Numbers on schematic correspond to lead numbers on couplate.

[^2]:    * An output meter across the speaker voice coil will also indicate maximum amplitude. It should not be used in place of

[^3]:    Connect generator lead to a Standard Hazeltine Test Loop, Model 1150, place two feet from the set loop, or three turns of wire about six inches in diameter, placed about one foot from the set loop.
    The alignment procedure should be repeated in the original order for greatest accuracy. Always keep the output from the signal generator at its lowest possible value to make the A.V.C. action of the receiver ineffective.

[^4]:    * Adjust while rocking gang condenser.

[^5]:    * Consists of entire front portion of cabinet complete.

[^6]:    * Adjust coil winding on right end of rod antenna (see sketch above). Twist the winding about the rod to loosen and then slide either to left or right.

[^7]:    Prices subject to change without notice.

[^8]:    Repeat alignment procedure as a final check.

[^9]:    John F. Rider

[^10]:    This receiver contains the following tubes:
    
    1-35W4 ...)

[^11]:    * Used on previous receivers.

[^12]:    * Step 2 is usually unnecessary. Adjustment should be made ONLY if a weak beat note is obtained on strong CW signals indicating lack of coupling between wire lead E and pins 4 and 8 of the 12SG7.

[^13]:    John F. Rider

[^14]:    *The part number of the loop antenna assembly changes with different cabinets. It is therefore important that you specify the Style Number of the instrument

[^15]:    IMPORTANT-All prices in this literature are subject to change without notice and are subject to an additional charge to cover any applicable sales tax, use, occupation, or other tax affecting our purchase or sale of merchandise.

[^16]:    IMPORTANT: All prices in this literature are subject to change without notice, and are subject to

[^17]:    PRICES SUBJECT TO CHANGE WITHOUT NOTICE *Plus Federal Excise Tax At Current Rate

[^18]:    PRICES SUBJECT TO CHANGE WITHOUT NOTICE ＊Plus Federal Excise Tax At Current Rate

[^19]:    PRICES SUBJECT TO CHANGE WITHOUT NOTICE
    *Plus Federal Excise Tax At Current Rate

[^20]:    RADIATING LOOP: Make up a six-to-eight turn, 6 -inch-diameter loop, using insulated wire; connect to signal-generator leads, and place near radio loop aerial.

[^21]:    PR-2419

[^22]:    John F. Rider

[^23]:    NOTES:
    ALL RESISTOR VALUES IN OHMS AND ALL CONDENSER VALUES IN MLF UNLESS OTHERWISE MARKED.

[^24]:    | Reference | Description |
    | :--- | :--- |
    | Service |  |

     Transformer, oscillator ..................................................................74 Transformer, output ...............................................................-82-8628 Transformer, 1st i-f ..........................................................-160-13A Transformer, 2nd i-f .............................................32-4454-1A S1
    S2 S 2
    T 1
    T 2 Nํํ

    MISCELLANEOUS

    | Description | Service <br> Part No. | | | | |
|---|---|---|---|---|---|
    | Cabinet, cherry ...................................................................................1006-3 |  |
    | Back, cabinet, cherry | 54-6077-3 |
    | Handle, cabinet, cherry | ..54-6078-3 |
    | Cabinet, sand ..............................................................................................1006-1 |  |
    | Back, cabinet, sand | ..54-6077-1 |
    | Handle, cabinet, sand | ..54-6078-1 |
    | Cabinet, colonial green | ...11006-2 |
    | Back, cabinet, colonial green | ..54-6077-2 |
    | Handle, cabinet, colonial green | 54-6078-2 |
    | Cable, battery | 41-3988-3 |
    | Dial scale | 54-6083 |
    | Handle, battery-saver switch ....................................................54-6081 |  |
    | Knob, volume ......................................................................................-6082 |  |
    | Knob, tuning ..................................................................................-64-6082-1 |  |
    | Socket, tübe (2), 1U5, 3V4 | .27-6265-6 |
    | Socket, tube (2), 1R5, 1U4 | 27-6265-7 | | Reference | Sescription | Service |
    | :--- | :--- | :--- |
    | Symbol | Part No. |  |

    

    Part of C 7
    ©
    U
    H

    H. | Part of C7 |
    | :--- |
    | Part of C7 |

    
    $30-1224-46$
    $32-4600$
    $\begin{array}{r}\text { 66-4108340 } \\ \hline \mathbf{3}\end{array}$
    
    0ஜ๕8¢Iを-99
    $0 \mathrm{c}-99 \mathrm{cs}-88$
    
     Resistor, plate load, 1 megohm ..................66-5108340 융
    
    

    Condenser, a-v-c by-pass, $.03 \mu \mathrm{f}$.
    Condenser, $\mathrm{d}-\mathrm{c}$ blocking, $47 \mu \mu \mathrm{f}$. Condenser, screen by-pass, $005 \mu \mathrm{f}$. Condenser, grid by-pass, . $005 \mu \mathrm{f}$. . .

    Condenser, audio coupling, . $001 \mu \mathrm{f}$. Condenser, screen by-pass, $01 \mu \mathrm{f}$. Condenser, d-c blocking, . $002 \mu \mathrm{f}$. .

    Condenser, plate by-pass; $220 \quad \mu \mu \mathrm{f}$
    Condenser, tone compensation, $.004 \mu \mathrm{f}$.
    Condenser, electrolytic, filter, $10 \mu$
    Condenser, plate by-pass, $8 \mu \mu \mathrm{f}$. Coil, antenna Loudspeaker
    Resistor, grid leak, 100,000 ohms
     Resistor, screen dropping, 15,000 Resistor, a-v-c load, 3.3 megohms .....
    Resistor, volume control, 1 megohm
    
    

[^25]:    NOTE: Make up a six-to-eight-turn, 6-inch diameter loop using insulated wire; connect to signal-generator leads and place near radio loop.

    * For proper adjustment of the oscillator trimmer, fully open the tuning gang and insert a .006 -inch, non-metallic shim between the heel of the' rotor and the top of the stator plates. Close the tuning gang sufficiently to hold the shim in place, and then remove the shim without disturbing the gang setting.

[^26]:    NOTE 1: Make up a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads and place near radio loop antenna. The loop antenna must be connected to the radio.

    NOTE 2: To set the tuning gang to 1620 kc ., place a piece of 6 -mil flat shim stock beneath the heel of the rotor, and turn the rotor until it holds the shim firmly in place. Then remove the shim.

[^27]:    世 Stock No. 72953 is a reel containing 250 feet of cord.

[^28]:    * Rock gang while adjusting.
    $\dagger$ Extend rod antenna to full height.

[^29]:    * The correct adjustment of the Osc. (T10) core is that peak obtained with core furtherest away from the coil mounting clips. R.F. (T9) core should be set to the peak obtained (2 peaks are seldom obtainable) with core closest to the mounting clips.

[^30]:    *If necessary for accurate peaking, the winding in the same transformer not being pealed should be loaded with a 580 ohm resistor. former not being peased should be loaded with a 680 ohm resistor. TConnect VoltOhmyst to pin 1 of V5 through a 220 K isolating resistor with $1 / 4$ inch maximum exposed lead at grid terminal end Output adjusted for 1 volt d.c. Dress Voltohmyst lead away from
    Oscillator frequency is above signal frequency on both AM and FM

[^31]:    *Prices subject to change without notice

[^32]:    Should it be desired to replace any other parts than those listed in the receiver parts list, they may be obrained by writing to: Telechron Dept.
    General Electric Co.
    Ashland, Mass.
    Please specify that unit for which parts are wanted is a C57g107 Switch Timer.

[^33]:    - New part number listed for the first time in Westinghouse radio or television service information.
    * Price includes Federal Excise Tax.
    * Price furnished on request.

