January, 1972 🔲 75 cents

A HOWARD W. SAMS PUBLICATION

Electronic Servicing

Using Pencil-Size Test Instruments, page 12

RECORDINATION OF THE CORD SAFETY BOP CUE HI-FWC

460

Index of 1971 Content, page 60

TUNER SERVICE CORPORATION

PROVIDES YOU WITH A COMPLETE SERVICE FOR ALL YOUR TELEVISION TUNER REQUIREMENTS AT ONE PRICE.

TUNER REPAIR

VHF Or UHF Any Type \$9.75. UHF/VHF Combo \$15.00.

In this price all parts are included. Tubes, transistors, diodes, and nuvistors are charged at cost.

Fast efficient service at our 4 conveniently located service centers.

1 year guarantee backed up by the largest tuner manufacturer in the U.S.— SARKES TARZIAN INC.

All tuners are cleaned inside and out, repaired, realigned and air tested.

WEST.

TUNER REPLACEMENT

Replacement Tuner \$9.75.

This price buys you a complete new tuner built specifically by SARKES TAR-ZIAN INC. for this purpose.

The price is the same for *every* type of universal replacement tuner.

Specify heater type

Parallel 6.3V Series 450 mA Series 600 mA

All shafts have the same length of 12".

Characteristics are: Memory Fine Tuning UHF Plug In Universal Mounting Hi-Gain Lo-Noise

If you prefer we'll customize this tuner for you. The price will be \$18.25. Send in original tuner for comparison purposes to our office in INDIANAPOLIS, INDIANA.

TUNER SERVICE CORPORATION
FACTORY-SUPERVISED TUNER SERVICE
MIDWEST 817 N. PENNSYLVANIA ST., Indianapolis, Indiana TEL: 317-632-3493
(Home Office) EAST
SOUTH
SOUTH-EAST 1505 CYPRESS ST., TAMPA, FLA. 33606

SARKES TARZIAN, Inc. TUNER SERVICE DIVISION

10654 MAGNOLIA BLVD., North Hollywood, California . . TEL: 213-769-2720

Circle 1 on literature card

There's an Amperex replacement tube for any socket in any set you're likely to service...

TV, HiFi, FM or AM, House Radio, Car Radio, P.A. System or Tape Recorder. Imported or Domestic!

ELECTRON **UBE**

AMPEREX SUPPORTS THE INDEPENDEPT SERVICE DEALER

Amperex TOMORROW'S THINKING IN TCOM'S PRODUCTS A NORTH AMERICAN FHILI'S COMPANY

Circle 4 on literature card

AMPEREX ELECTRONIC CORPORATION, DISTRIBUTOR SALES, HICKSVILLE, NEW YORK 11802

January, 1972 • Volume 22, No. 1

Electronic Servicing

TEST EQUIPMENT

12 Pencil-Size Test Instruments-When, where and how to use small signal injectors and signal tracers (Forest H. Belt).

TELEVISION (GENERAL)

18 Clearing Up Poor Focus - A look at the three basic designs of focus circuitry used in today's television receivers-how they function and the best method of tracking down troubles in each (Dale's Service Bench/Allan Dale).

COLOR TV

- 28 Fundamentals of Troubleshooting Tint Problems-Careful analysis of the symptoms displayed on the screen plus a couple of waveform checks in most cases should localize the defect to a particular stage, if not to the defective component itself (Bruce Anderson/ ES Contributing Author).
- 36 New In Color For 1972, Part 2-Conclusion of a two-part series which analyzes the most revolutionary circuits used in the newest color TV receivers (Carl Babcoke).

AUTO ELECTRONICS

52 Auto FM-Peculiar Characteristics and Troubles Which Affect Operation and Servicing-Understanding the peculiarities of FM will enable you to determine more accurately whether or not a defect actually exists in the receiver or whether it is an "external" problem (Carr Electronics/Joseph J. Carr).

GUIDES AND REFERENCES

60 Index of 1971 Content-Detailed subject reference index of the editorial content of 1971 issues, including separate departmental and title sections.

DEPARTMENTS

Electronic Scanner 4
Symcure 8
Service Bulletin 10
PHOTOFACT BULLETIN 24
Test Equipment Report 33
Audio Systems Report 50

Book Review 5	1
Product Report 5	8
Catalog & Literature 5	9
Advertisers' Index 7	4
The Marketplace7	4

Second class postage paid at Kansas City, Mo. and additional mailing offices. Published monthly by INTERTEC PUBLISHING CORP., 1014 Wyandotte St., Kansas City, Mo. 64105. Vol. 22, No. 1. Subscription rate \$5 per year in U.S., its possessions and Canada; other countries \$6 per year. Copyright, 1972, Howard W. Sams & Co., Inc. All rights Reserved: Material may not be reproduced or photocopied in any form without written permission of publisher.

EDITORIAL

GEO. H. SEFEROVICH, Director J. W. PHIPPS, Managing Editor CARL BABCOKE, Technical Editor BARBARA L. BORDERS, Editorial Assistant **DUDLEY ROSE, Art Director**

> CONTRIBUTING AUTHORS Bruce Anderson Joseph J. Carr

> TECHNICAL CONSULTANT JOE A. GROVES

FOITORIAL ADVISORY BOARD LES NELSON, Chairman Howard W. Sams & Co., Indianapolis

> CIRCULATION **EVELYN ROGERS, Manager**

ADVERTISING SALES Kansas City, Missouri 64105 Tele: 913/888-4664 E. P. LANGAN, Director R. JACK HANCOCK, Manager JAKE STOCKWELL MIKE KREITER JOAN HIRES, Production

REGIONAL ADVERTISING SALES OFFICES Indianapolis, Indiana 46280 ROY HENRY 2469 E. 98th St Tele: 317/846-7026

> New York, New York 10019 CHARLES C. HORNER 3 W. 57th St. Tele: 212/688-6350

Los Angeles, California 90005 JOHN D. GILLIES 3600 Wilshire Blvd., Suite 1510 Tele: 213/383-1552

> London W. C. 2, England JOHN ASHCRAFT & CO 12 Bear Street Leicester Square Tele: 930-0525

Amsterdam C. Holland

JOHN ASHCRAFT & CO. W.J.M. Sanders, Mgr. for Benelux & Germany Herengracht 365 Tele: 020-240908

Tokyo, Japan INTERNATIONAL MEDIA REPRESENTATIVES LTD. 1, Shiba-Kotohiracho, Minatoku Tele: 502-0656

ELECTRONIC SERVICING (with which is combined PF Reporter) is published monthly by Intertec Publishing Corp., 1014 Wyandotte Street, Kansas City, Missouri 64105.

Subscription Prices: 1 year-\$5.00, 2 years-\$8.00, 3 years-\$10.00, in the U.S.A., its possessions and Canada.

All other foreign countries: 1 year-\$6.00. 2 years - \$10.00, 3 years - \$13.00. Single copy 75c; back copies \$1. Adjustment necessitated by subscription

termination at single copy rate.

Robert E. Hertel, Publisher

Intertec Publishing Corp. Subsidiary of Howard W. Sams & Co., Inc.

Where's the voltmeter

New Scope Measures Peak-To-Peak Voltage with Cali-Brain®

You're looking at it in this solid state oscilloscope. The new B & K Precision 1465 is a triggered sweep oscilloscope with CALI-BRAIN – a built-in feature for measuring voltages, automatically without computation in seconds. CALI-BRAIN will measure peak-to-peak voltage on waveforms of any complexity - and at voltage levels from 10mV to 600 V. Only B & K scopes have CALI-BRAIN a real advance in TV test equipment.

Servicing time goes down picture quality goes up – when you use this scope. Now, in one instrument, you get triggered sweep to eliminate those waveforms that won't lock in, a vectorscope for color TV servicing, 10 MHz response for high resolution analysis. A unique sync separator generates special sweep synchronizing pulses to let you analyze any portion of the TV waveform. For economical performance, use the B & K Precision 1465. About the Cali-Brain® System

The CALI-BRAIN system increases your efficiency because it lets you measure its peak-to-peak voltage without changing your test set-up. Now you can confirm the manufacturer's service data exactly checking out typical waveforms and peak-to-peak voltage readings at various test points.

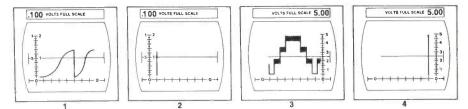
Cali-Brain® in Action

Use CALI-BRAIN when you want to measure peak-to-peak voltage of the waveform displayed on the scope screen. Here's what happens when the CALI-BRAIN switch is activated:

- A. The horizontal sweep collapses and the waveform under examination appears as a straight vertical line.
- B. A numerical indicator in the CRT bezel lights up to show the full scale voltage (including decimal point) corresponding to the Vertical Attenuator setting.
- C. A graduated scale on the graticule

See your local distributor or write us for more information

Circle 5 on literature card



overlay is illuminated on either side of the scope screen. The scale corresponds to the full scale voltage indicator in the bezel.

D. The vertical waveform line on the CRT moves to either side of the screen, to align itself with the illuminated scale.

The entire CALI-BRAIN action

is automatic – and takes less than a second. After you have read waveform voltage on the scale, you deactivate CALI-BRAIN system with a single switch, and the waveform is again displayed as before. One probe and one test instrument – lets you concentrate on trouble shooting, not the test equipment!

To read peak-to-peak voltages utilizing Cali-Brain, note the full scale voltage reading in the bezel above the screen (fig. 1–.100 volts full scale) (fig. 3–5.00 volts full scale). Pull out the Cali-Brain knob and you will notice that the 1st waveform in fig. 2. reads .067 volts P-P and the second waveform in fig. 4. reads 4.95 volts P-P.

Product of DYNASCAN CORPORATION 1801 W. Belle Plaine . Chicago, Illinois 60613

January, 1972/ELECTRONIC SERVICING 3

NOW ... YOU CAN ACCURATELY PREDICT IF REJUVENATION WILL LAST ... FOR AT LEAST SIX MONTHS !

The new EKG can reliably forecast a 6-month's life expectancy for a rejuvenated color tube with an accuracy exceeding 98%. Field tested for over four years on thousands of color duds, the EKG simply connects between the color tube and any standard CRT Tester/Rejuvenator. There are no dials to turn, no switches to throw and no meters to read. The EKG automatically checks all three cathodes **simultaneously** . . . and indicates in just 60 seconds whether the rejuvenation was good enough to provide at least six month's additional operating life. It's as easy as that!

Each EKG is provided with an unconditional 1-year money-back guarantee. If you're not satisfied, just return it and your full purchase price will be refunded.

The EKG will soon be available at your favorite distributor. To order one now, though, please send check or money order for \$39.95 (and please indicate your distributor's name) to:

electronic**scanner**

news of the industry

Massachusetts Issues New Consumer-Protection Regulations Which Establish Firm Service/Customer Procedures

A new Massachusetts regulation which reportedly standardizes appliance repair procedures became effective Nov. 1, according to a report in *Appliance Service News*.

The regulation reportedly requires repair services to supply in advance to all customers who request written estimates of the cost of servicing, including the total fees charged for parts and for labor and the estimated time for completion.

When the repaired appliance is returned to the customer, the serviceman reportedly must provide the customer an itemized list of the repairs accomplished and the reasons for the repairs. Replacement parts used and their condition—new, used or rebuilt—reportedly also must be included on the itemized repair bill, along with the hours of labor for which the customer was charged and the name of the technician who performed the service. The latter two items reportedly can be excluded if the customer is charged on a flat-rate basis.

Other stipulations of the new regulations reportedly also include the requirement that the homeservice technician notify the customer in advance if the customer will be required to pay for the service call whether or not repairs are made.

Federally-Funded Crime Insurance Protection Now Available For Electronics Shop Owners

Electronics service shop owners and other metropolitan businessmen in many areas where crime insurance has been broadly unavailable, unaffordable or both, reportedly can now buy burglary, robbery and vandalism protection at reduced rates through a federally funded insurance program.

New federal policies provide up to \$15,000 in commercial burglary, robbery and vandalism protection. Premium rates for the coverage are based on the gross receipts of the business and FBI crime statistics for each metropolitan area. A typical premium for \$1,000 coverage on an electronics service shop with annual gross receipts of \$150,000 in a medium risk area like Cleveland, Ohio would be \$250. Premium for the same coverage on the same electronics shop in highest risk areas, such as New York City, would be \$300.

Deductibles for the federal crime coverage hinge on the annual gross receipts of the business and can be either \$100, \$150 or \$200. If a loss should (continued on page 6)

4 ELECTRONIC SERVICING/January, 1972

TV TUNER SERVICE

VHF, UHF, FM or IF-Subchassis. All Makes

you get... Fast R hr. Service!

to try P.T.S. We are the fastest growing, oldest and now the largest tuner service company in the world. Here is what you get:

- 1. Fastest Service 8 hr. in and out the same day. Overnight transit to one of our six plants, for parts, tuners or IF-modules.
- 2. All tuners cleaned inside and out, repaired, realigned and air tested.
- 3. On IF-modules all stages checked, all traps set with high calibre test equipment.
- 4. Fine Quality! Your customers are satisfied and you are not bothered with returning your units for rework!
- 5. Lower Cost! Up to \$5.50 less than other tuner companies!
- 6. Friendly, helpful personalized service!

1 YEAR GUARANTEE

We offer you finer, faster... Precision Tuner Service

LIKE TO DO IT YOURSELF? PTS makes all tuner parts available to you. Send one dollar (redeemable) for our TUNER REPLACEMENT GUIDE AND PARTS CATALOG

60 pages of top information
 Blow-up of all tuners
 Largest
 exact tuner replacement guide
 Antenna Coil Replacement Guide
 Multi-fit Replacement Tuner Shaft Guide

COLOR—BLACK & WHITE—TRANSISTOR TUNERS—ALL MAKES GUARANTEED COLOR ALIGNMENT—NO ADDITIONAL CHARGE VHF-UHF-FM \$9.95

FIRST TO OFFER 365-DAY GUARANTEE!

UV-COMBO

IF-MODULE

\$ 9.95 \$16.95 \$12.50

Major Parts charged at Net Price CUSTOMIZED REPLACEMENTS A VAILABLE FOR \$12.95 UP (NEW OR REBUILT)

For fastest service, send faulty unit with tubes, shields and all broken parts to:

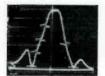
PTS ELECTRONICS, INC.

HOME OFFICE-	P. O. Box 2	272—Bloomington, Ind. 47401	Tel.	812/824-9331
EAST-	P. O. Box 3	3189—Springfield, Mass. 01103	Tel.	413/734-2737
WEST COAST-	P. O. Box 4	41354-Sacramento, Calif. 95841	Tel.	916/482-6220
MOUNTAIN-	P. O. Box 4	4145—Denver, Colo. 80204	Tel.	303/244-2819
SOUTHWEST-	P. O. Box 7	7332-Longview, Tex. 75601	Tel.	214/753-4334
SOUTHEAST-	P. O. Box 6	6771-Jacksonville, Fla. 32205	Tel.	904/389-9952

Circle 7 on literature card

Sharper, brilliant Jitter-Free intensity or pulse markers!

SMG-39 LECTROTECH sweeper marker generator


A precision sweeper with quality and features found only in high priced laboratory instruments. The SMG-39 utilizes post injection markers for fast, accurate alignment of any television receiver when used with any standard oscilloscope. The SMG-39 provides all needed bias' and linear sweeping signals for accurate alignment. Unique marker display enables accurate marker positioning for superior receiver alignment. VFO facility provides any additional marker from 39 MHz to 49 MHz for protection from future obsolescence, may also be used for spot alignment.

Exclusives

• Jitter-Free Intensity or Pulse Markers • VFO Variable Marker • 4 Bias Supplies including - 67 Volts

Marker Options

Pulse Vertical (Overall Chroma). Intensity (Typical I.F. response),

(Typical I.F. response). Benefits

Pulse Horizontal

• Clean, bright Jitter-Free pulse markers • All markers of equal amplitude regardless of position on response curve. • Adjustable marker amplitude • Marker location accurately determined with brilliant pulse or intensity markers (a must in AFT alignment) • All signals have blanking included for zero base line

FULL TWO YEAR PARTS WARRANTY

(continued from page 4)

occur, the policyholder is responsible for the amount of his deductible or five percent of the loss, whichever is greater.

Businessmen wishing to qualify for the new federal crime insurance protection need only give the correct information on their applications and meet the program's minimum standards for protection devices. Any casualty/property agent in the participating areas can provide detailed information about the protection standards, assist in filling out applications properly and help in filing claims.

Recently, Aetna Life and Casualty began administering the federally funded program, which makes crime insurance protection available at affordable rates, in Connecticut, Massachusetts, Missouri, New York, Ohio and the District of Columbia.

Any businessman in these areas reportedly can buy the federal protection through Aetna regardless of previous insuring experience and without fear of cancellation based on the number or size of losses. The only grounds for cancellation will be violation of the terms of the contract or illegal conduct of the policyholder.

Aetna will assume the responsibility of processing the applications and providing claim service to all federal crime insurance policyholders in the six areas where the company is administering the program.

Sylvania Appoints More Parts Distributors.

Sylvania has announced the addition of the following companies to its network of franchised parts distributors:

> Dealers Electronics, Inc. Ernest Caldwell, Manager 217 North Main St. Temple, Texas

Rutland Electronic Distributors Alan Milo, Manager 138 State St. Rutland, Vermont

Houston Radio Supply Co. Miss Frances Everage, Manager 2901 Telephone Rd. Houston, Massachusetts

Fairway Electronics, Inc. 2500 Georgetown Rd. Baltimore, Maryland (new branch of existing Sylvania franchised distributor)

These new distributors reportedly will offer Sylvania's line of monochrome and color TV picfure tubes, receiving tubes, replacement semiconductors and other Sylvania electronic components.

For all types of 1/4 x11/4" fuses and fuseholders:

Normal Blowing Fuses **AGC GLH MTH** From ¹₅₀₀ to 30 amps, for 32V, 125V, or 250V

Time Delay Fuses MDL MDX From $\frac{1}{100}$ to 30 amps, for 32V, 125V, or 250V

Visual Indicating Fuse **GBA** (Red Indicating Pin) From ³/₄ to 5 amps, 125V

Space-Saver projects only one inch behind panel

HTA (Solder Terminals) HTA-HH (1/4" Quick-Connect Terminals) HTA-DD (3/16" Quick-Connect Terminals)

HKP (Solder Terminals) HKP-HH (¼" Quick-Connect Terminals) The Fuseholder for All-Purpose Applications

(1/4" Quick-

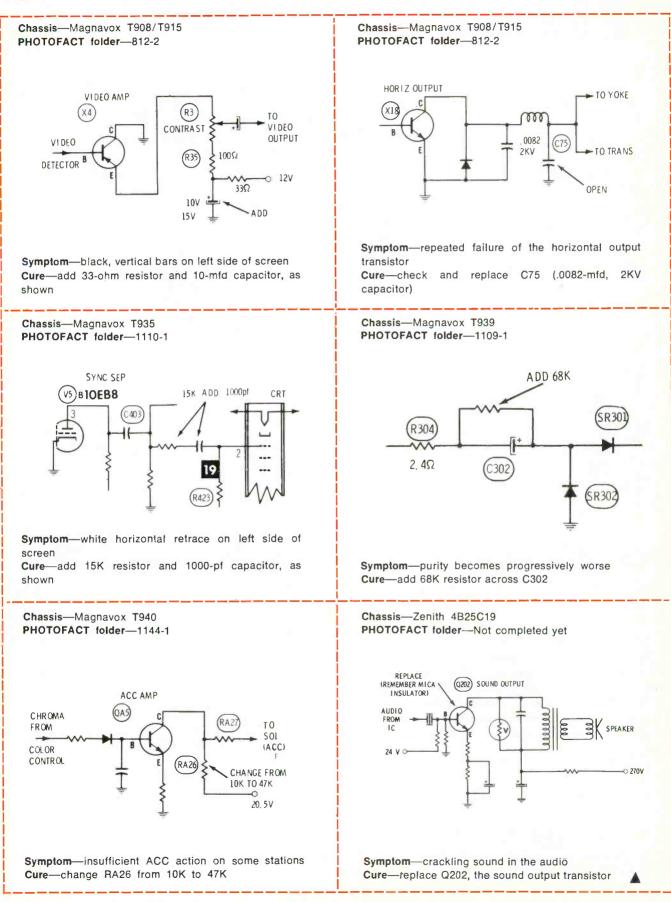
HLD-HH Connect Terminals) HKL (Octagon Knob) HKL-X (Flat-Sided Knob) Lamp Indicating Fuseholder Visual Indicating Fuseholder

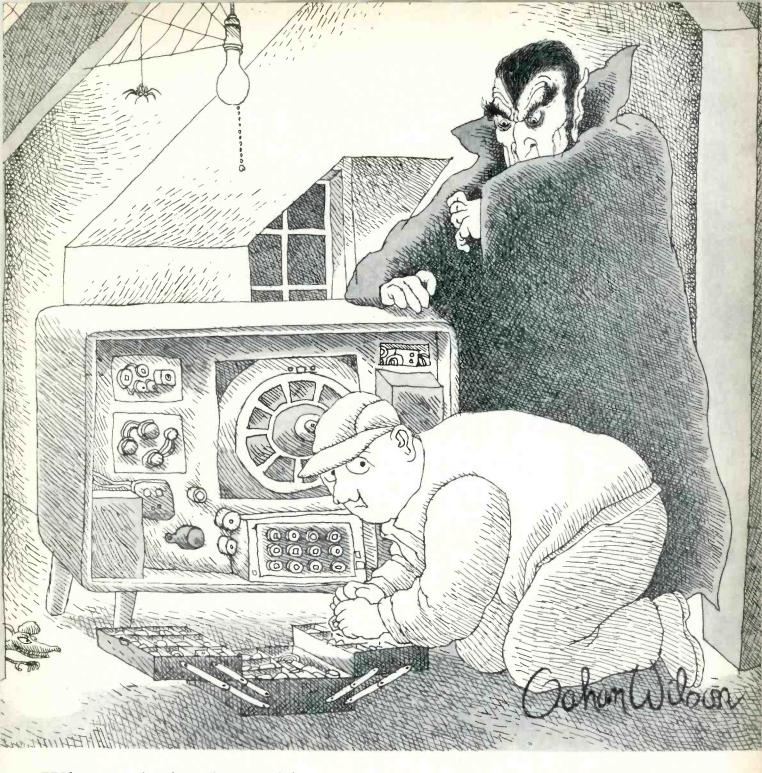
FUSEHOLDERS

HLD Terminals)

All Have These Features in Common • Rated for 15 amps at 250 volts • Dielectrically capable of withstanding 1500 amps a.c. between terminals and between terminals and panel • Bayonet-type knob grips fuse so that fuse is withdrawn when knob is removed; strong compression spring assures good contact .

Made for installation in D-hole to prevent turning in panel •Terminals are mechanically secured as well as soldered in holder


This is only a sampling — use the coupon below to get a full descrip-tion of the complete BUSS line of fuses and mounting hardware.


BUSSMANN MFG. DIVISION, McGraw-Edison Co. St. Louis, Missouri 63107

Name		
Title		
Company		
Address		
City	State	Zip

Symptoms and cures compiled from field reports of recurring troubles

When you're in a hurry, it's nice to know GTE Sylvania has the parts.

Only 15 tubes and ECG solid-state components will solve practically all of your damper replacement problems.

And they're all available from your Sylvania distributor.

Because tubes are tubes, we can't promise to reduce the number you'll have to carry. But, with the Sylvania line, chances are your distributor will have the tube you need when you need it.

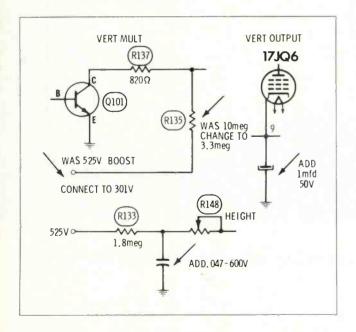
In semiconductors, the story is different. Just 124 ECG solid-state devices including transistors, diodes and integrated circuits will replace over 41,000 different types. In the damper section alone, only 3 ECG solid-state devices will take care of almost every job.

And they save a lot of space in your tube caddy. When your distributor is stocked with Sylvania receiving tubes and ECG semiconductors you'll have the parts you need. And you'll get them fast.

It's like having a complete warehouse built into your telephone.

And that can save you from a real pain in the neck.

Substitution of high-voltage regulation tube Magnavox color TV chassis


Magnavox recommends that 6EN4 high-voltage regulator tubes be used for replacement of 6BK4/6EL4 in all newer color chassis.

Do **NOT** use a 6EN4 to replace the 6BK4 in the T904 chassis or the 45 series chassis. The grid of the 6EN4 is connected internally to both pins 5 and 6. However, in the T904 and 45 series chassis, pin 6 is used as a cathode tie point. A 6EN4 plugged into these chassis would have its grid and cathode connected together. The resultant zero bias would cause the tube to draw excessive current, which would drastically reduce or eliminate the high voltage.

Vertical bounce or jitter Magnavox T936 color TV chassis

Make the following changes to minimize vertical jitter or bounce:

- Change the value of R135 from the original 10 megohms to 3.3 megohms.
- Connect the B+ end of R135 to the +301-volt supply instead of to the B-boost supply.

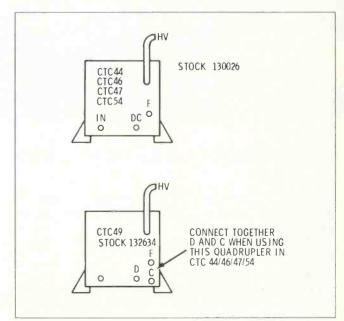
- Connect a .047-mfd, 600-volt capacitor between the junction of R133 and the height control and ground.
- Connect a 1-mfd, 50-volt electrolytic capacitor between the cathode (pin 9) of the verticaloutput tube and ground.

Yoke capacitor corona Magnavox T931 / T933 color TV chassis The 470-pf capacitor in the deflection yoke might become defective because of corona breakdown, if the diameter of the capacitor is 1/2 inch or smaller.

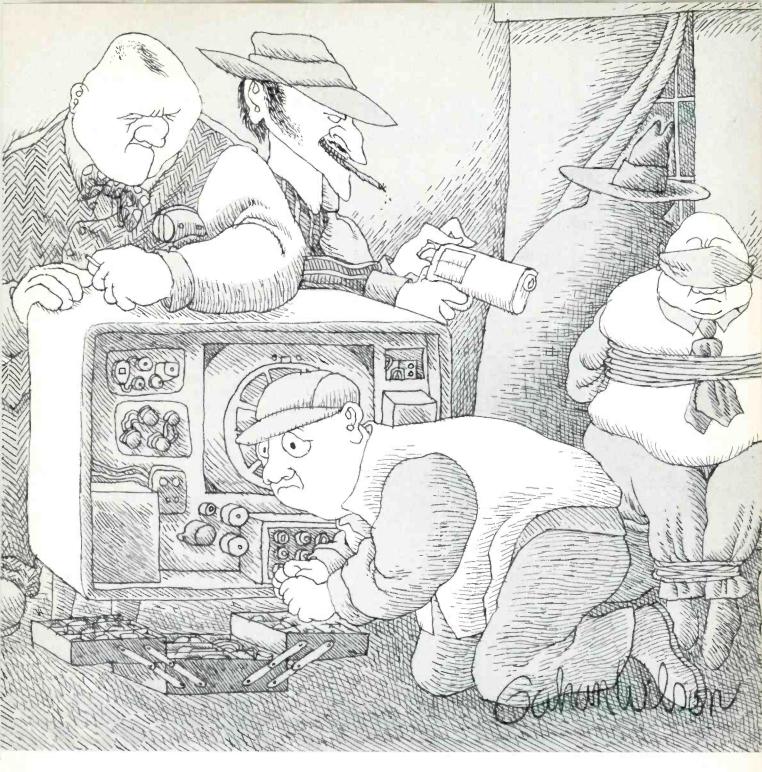
Replace any such capacitors with a 470-pf, 3000volt type that has a diameter larger than ½ inch. Magnavox supplies a replacement under part number 170903-1.

Impulse noise

Sony KV-1201, KV-1212 or KV-1710 color TV chassis


No vertical and horizontal sync, no picture or sound, or black streaks similar to that produced by high-voltage arcing can be caused by defective video IF transistors. The exact symptoms vary according to the severity of the defect.

To determine if the noise pulses originate internally turn the channel selector to a position between detents; the noise will continue if it is caused by the receiver.


If the symptoms seem to originate internally, replace both the 1st IF (Q201) and 2nd IF (Q202) transistors with type number 2SC1129.

High-voltage quadrupler interchangeability RCA CTC49 and CTC44/46/47/54 color TV chassis

The high-voltage quadrupler with stock number 132634, which is intended for use in the CTC49 chassis, can be used as a replacement in the CTC44/46/47/54 chassis, if a wire is connected between terminals "D" and "C". Use this point for the "DC" connection.

The quadrupler with stock number 130026 cannot be used in the CTC49 chassis.

When you're in a hurry, it's nice to know GTE Sylvania has the parts.

Only 34 tubes and ECG solid-state components will solve practically all of your high-voltage rectifier replacement problems.

And they're all available from your Sylvania distributor.

Because tubes are tubes, we can't promise to reduce the number you'll have to carry. But, with the Sylvania line, your distributor will have the tube you need when you need it.

In semiconductors, the story is different. Just 124 ECG solid-state devices including transistors, diodes and integrated circuits will replace over 41,000 different types. In the high-voltage section alone, only 8 ECG rectifiers and triplers will take care of almost every job.

And they save a lot of space in your tube caddy.

When your distributor is stocked with Sylvania receiving tubes and ECG semiconductors you'll have the parts you need. And you'll get them fast.

It's like having a complete warehouse built into your telephone.

And that should help you make a fast getaway.

January, 1972/ELECTRONIC SERVICING 11

Pencil-size test instruments

by Forest H. Belt

Practical applications and limitations of small signal injectors and signal tracers.

Nowadays, because test equipment generally has grown big, complex, and expensive, you might be surprised to find versatile instruments selling under \$25. But some are around. They generally fit into the "pocketsize" category.

Although most are signal injectors, at least two are signal tracers. Some can be described as miniature instruments, but are elaborate enough to sell for more than \$25. Regardless of the price or shape, most are valid troubleshooting tools which you can slip into a pocket or drop into a toolbox and which can save time and boost income.

Pushing In a Signal

Technicians disagree about which is most convenient: the signal injector or the signal tracer. Either is effective in the hands of someone who knows the respective advantages and limitations. Injection better suits some servicing situations; others are solved quicker by signal tracing. It depends on what type of equipment you are troubleshooting and what the trouble symptom is. Fundamentally, both methods are very similar.

The injector pictured in Fig. 1 is a combination instrument. It puts out a pulse signal at around 300 Hz. The pulse offers advantages over a sine wave. A pulse waveform is made up of harmonics of its basic frequency. The sine wave has few or none. A square wave also contains many harmonics, but its higher-frequency harmonics contain comparatively little power.

Because of the inherent harmonics, an audio-frequency pulse can be used to drive IF and RF stages. A sine or square wave at the same audio frequency is suited only to drive audio stages. The pulse type of signal also exhibits some characteristics as if it were an RF signal modulated with the basic audio frequency. An injection instrument like this, with no RF-AF switching necessary, greatly simplifies many troubleshooting jobs.

Another phenomenon also contributes to the usefulness of audio-pulse injectors in IF and RF stages: The relatively sharp pulse shock-excites any tuned circuit it encounters. Self-oscillation takes place. The tuned circuit passes on a signal at the frequency of the tuned circuit, carrying modulation at the pulse frequency that shock-excited it in the first place.

The signal waveform produced by the instrument in Fig. 1 is shown in Fig. 2A. The pulse is negative-going because of the internal wiring of the pulse generator; a positive-going pulse (Fig. 2B) would be equally useful. The trailing edge of the pulse is sharply differentiated, with the overshoot and decay that looks like a sawtooth. This sharp voltage collapse is what excites a tuned circuit into sympathetic oscillation.

Fig. 2C and 2D shows another kind of pulse. The instrument it comes from is pictured in Fig. 3. The waveshape could be termed a pulsed wave train. Its repetition rate is approximately 1000 per second. But, because of its complex waveshape, this signal is passed by RF, IF, and audio stages with almost equal ease.

The waveform in Figs. 2C and

2D cannot be viewed easily on an ordinary service-type scope, for two reasons: One, its complex shape, which you can see more clearly in Fig. 2D, has several frequencies "inside" the basic pulse rate. The sync characteristic of a recurrent-sweep scope make it difficult to lock such a scope to this type of signal. Two, the lack of a ground lead from the hand-held instrument permits 60-Hz hum to be introduced also, altering the waveform and making synchronization even more difficult. For these reasons, Figs. 2C and 2D were obtained with a triggeredsweep scope.

The preceding two are not the only signal injectors available. A half-dozen companies offer them, in both small and large sizes. Some models fit in a shirt pocket. Some are in kit form, but most are already built. Electronics distributors carry them in stock, or you can find them listed in catalogs.

Troubleshooting By Signal Injection

For what can you use an injector? Any audio stage, of course. Technicians use injectors in small radios, in amplifiers, and in the sound sections of TV sets. If you prefer troubleshooting in the home whenever possible, an injector can help. A few models (but seldom the little units) can be used to drive a video stage in a TV receiver.

A signal injector lends itself directly to stage-by-stage analysis. The technique is illustrated in Fig. 4A. Start injecting as near the speaker as you can, usually right across it. If that checks okay, move back to the input of the audio output stage. Next, try the audio amplifier input, and then on back through all the stages. Each audio, IF and RF

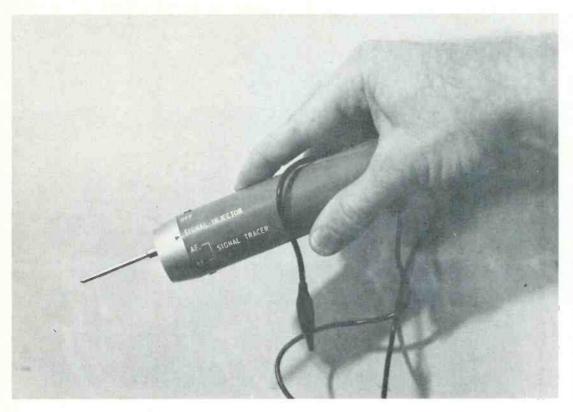


Fig. 1 The typical pulse-generating signal injector shown here produces a 300-Hz test signal. The pulse has so many harmonics it can excite-and pass through-IF and RF stages of most broadcast radios and some communications and CB receivers. This particular model also functions as a signal tracer.

stage should make the signal louder in the speaker. Remember, however, neither the detector nor the mixer amplify the signal, but they should pass it.

The technique works just as well inside each stage. Fig. 4B shows the test points in a typical audio-output stage.

Start at the speaker. If the injected signal is heard in the speaker, try injecting the signal at the top of the primary of the output transformer, which usually is the plate of the output tube or at the collector of the output transistor. In transformerless output stages of hi-fi amplifiers, the speaker might be connected directly to the emitters of the output transistors or to a collector and an emitter.

Next, move to the output tube grid, or the output transistor base(s). This stage of amplification should increase the volume level of the signal from the speaker. Moving to the other side of the input coupling capacitor

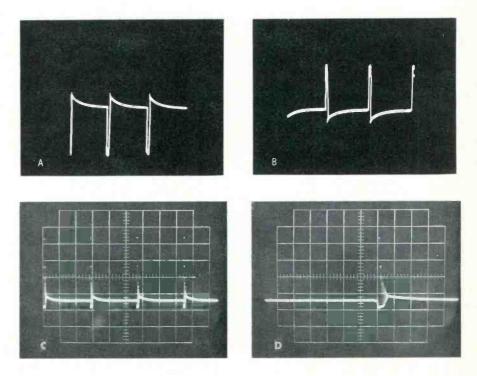


Fig. 2 Signal-injector outputs tend generally to pulse waveshapes. (A) shows a sharpsided pulse on a service scope, and (B) is the same signal if the battery and transistor were the other polarity. Waveform (C) was taken on a triggered scope because it is a series of little bursts of oscillation and isn't easy to see on a regular scope. (D) is one pulse, considerably magnified by the triggered scope.

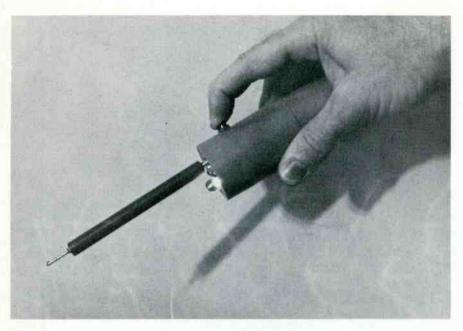


Fig. 3 Kit-form or factory-built, this imported injector puts out a pulse at audio frequency, but oscillatory harmonics extend far into IF and RF range. It requires no ground lead.

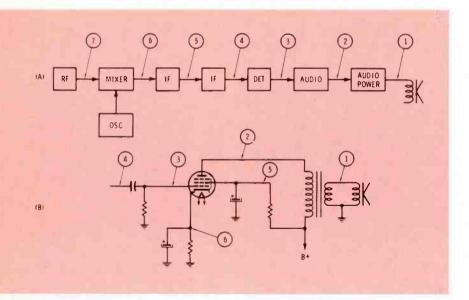


Fig. 4 Signal injection sequence. Follow it stage by stage. Trouble lies between the point where signal gets to speaker okay and the point where the symptom is reproduced.

should not reduce the volume of the signal at all. If it does, a defect exists.

Fig. 4B shows two other tests you can make with the signal injector. Most any signal injected across the screen bypass capacitor should be shunted to ground. The output from the speaker will sound weaker than when the signal was injected at the plate. It probably won't be completely eliminated, but definitely attenuated. The preceding also applies to bypassed cathode circuits.

If the cathode is unbypassed, touching the injector to it might produce a signal which is almost as strong as one produced by signal injection at the grid of that stage.

Don't be misled by stages that normally don't produce gain. For example, cathode followers and emitter followers add no voltage gain to signals. Consequently, they won't make an injected signal sound louder.

The pulse-type signal injector makes it possible to trace from the back to the front of the receiver without changing test instruments. You can test the IF sections of AM and FM radios, of CB rigs, in fact of almost any voice or music receiver. The highorder harmonics produced by most signal injectors are high enough to enable you to check the front ends of FM and communications radios. All signal injectors known by the author reach high enough to permit testing of the RF stages in AM broadcast radios.

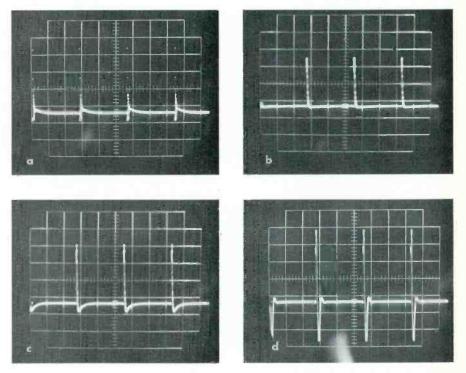
The difference in gain between the stages of the IF section might not be as noticeable as that in other amplifying sections, but you can definitely find where a signal is blocked or drastically reduced. **Caution:** The harmonics of pulse waveforms find their way through IF sections without much regard to transformer tuning; however, although the injector signal might push on through an open IF transformer, it usually will be attenuated to some degree.

When signal injecting in the front end of a radio, remember that the signal injector ignores a dead oscillator. Nevertheless, try this: Feed the injector signal to the antenna loop or terminals. Rapidly tune the receiver dial from one end to the other. If you hear some whistles or abrupt "ups and downs" in volume, the oscillator is operating. A vague or indefinite change of volume means the oscillator is dead.

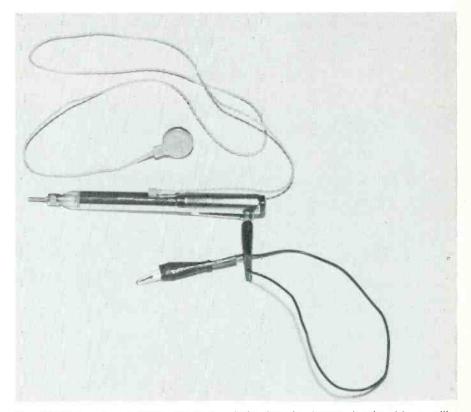
Quality vs Quantity

You seldom hear of a pulsetype signal injector being used for hi-fi servicing, but the instrument can be helpful, provided you recognize its limitations. The harmonics produced by the injector can test the high-end response of an amplifier, as demonstrated by the waveform photos in Fig. 5.

The shapes of the pulses in Fig. 5 are more meaningful than the size. Gain must be checked, but gain of the wrong kind is worse for hi-fi than no gain at all. Your wide-band scope, therefore, becomes a necessary complement to the injector.


You can inject stage by stage, working through the amplifier from back to front, with your scope across the speaker or dummy load. Or, you can feed the injector signal in at the input and trace from front to back with the scope. Either way is okay. When the shape of the pulse waveform is altered significantly, you've just passed a stage which is not properly amplifying the higher frequencies.

Unfortunately, the signal injector does not produce frequencies which are low enough to provide a reliable indication of the low-frequency response of the amplifier.


Don't trust your ear when signal injecting in a stereo amplifier. The scope is the only reliable indicator of some types of distortion. A little experience with your particular model of signal injector will familiarize you with which shapes are normal and which are abnormal. But the signal injector test should not be considered a substitute for a good squarewave test. Signal injection can help you isolate the causes of mid- and high-frequency troubles, but it cannot provide an accurate qualitative analysis of the overall frequency response.

The Tracing Technique

Some technicians prefer signal tracing to signal injection. A tracer includes a small amplifier, sometimes with a detector for tracing IF and RF. Starting at the front end of a radio, you trace stage by stage until you reach the point where the signal disappears

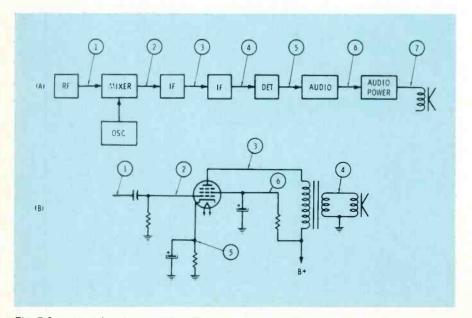
Fig. 6 Chip transistorization and integrated-circuit technology make signal tracers like this possible. The instrument in Fig. 1 also functions as a tracer, with AF and RF positions selected by a switch on the handle.

(or the distortion or other difficulty appears).

For tracing in a radio front end, you need a high-gain tracer amplifier. Modern IC and chip-transistor circuitry make high gain (1000X and 10,000X) possible in minute spaces. Such microminiaturization has made possible the pencil-size tracer shown in Fig. 6.

The basic method of signal tracing is illustrated in Fig. 7. You can see how closely it resembles the injection technique illustrated previously in Fig. 4. The numbers are merely reversed. You proceed from front to back instead of from back to front.

To signal trace in the front end and IF's, use the diode detector function. Once through the IF's and past the radio's own detector, only the bare amplifier is needed. For the front end of an FM radio or the sound-IF section of a TV (it uses FM), the regular diode detector that comes with the tracer does a fair job of "slope" demodulation.


Listening tests, such as signal tracing, can reveal only the most severe distortion. Almost all small tracers are limited by the frequency response of their tiny earphones. Shirt-pocket tracers like the one in Fig. 6 are okay for hi-fi troubleshooting only when a trouble symptom is readily evident. A dead or weak amplifier or one with bad distortion lends itself easily to this kind of simple tracing.

You should use caution in high-power stages. Keep the amplifier volume low or you'll overload, and maybe damage, the little tracer. However, with reasonable care, you can evaluate the gain and the quality of a signal in such stages, particularly with a voice-talking type of input signal. With music or a sine or square wave input, analysis might be more difficult—in most cases, beyond what you should expect of your ear.

The Best of Both

The instrument in Fig. 1 combines an injection pulse generator and a signal-tracing amplifier. Having both kinds of function at your fingertips offers a special advantage.

For example, consider the servicing of a tiny portable radio. You inject a signal at the speaker, output stage, driver, and audio amplifier. Each stage processes

Fig. 7 Sequence for signal tracing. This procedure indicates that the trouble is between the point where the signal gets through okay and the point where the trouble symptom is reproduced.

a normal signal through to the loudspeaker. However, injecting a signal in the IF proves fruitless - no signal is heard in the speaker. Before you jump in and troubleshoot the IF or detector, you should be able to determine if the front end of the radio is okay, because a cheap transistor radio with multiple troubles probably will not be worth wasting much diagnostic time on.

Switching to the tracer function of the tester, you signal trace through the mixer, 1st IF, and 2nd IF. If the signal is processed normally up to there, you know you have only one trouble to pinpoint—that in the IF. The set probably can be economically restored to normal operation.

Pencil-Size Testers for Television?

Yes, you can use these small injector and tracer instruments for some types of TV troubleshooting, but they're no substitute for conventional TV test equipment. However, in the home, they can save you some guesswork.

For example, although the small signal injectors are too weak for most video injection, when touched to the video detector output, the instrument puts noise on the screen—if the video amplifiers are okay. Injecting in the TV sound section, including the sound IF, is the same as in an FM radio.

Signal tracing in TV is possible, too. Outside the sound sections, you listen for vertical sync pulses. They come through as a crispsounding 60-Hz buzz. You can trace in the video IF's, if the station signal is strong enough. You can follow the sync buzz through the video stages right up to the picture tube. You can even track it to the sync and AGC stages. No vertical sync gets to the chroma section, so tracing there won't work. Experiment a bit with a working TV receiver and learn where you can follow video signal with your aural tracer. Obviously, a scope does the job better and easier, but the tracer can help when a scope isn't handy.

Finco will pay your first year's dues in either NEA or NATESA and give you a profit to boot!

A sensational "never before" contribution to the security, growth, and future of all independent television service.

YES! FINCO is offering

(Merchandise at Retail Price)

The Finney Company, in making this "never before" \$59,500 (unsolicited) offer - looks forward to continued close association and mutual support with INDEPEND-ENT SERVICE in the common cause of good product quality coupled with unquestioned, efficient "INDE-PENDENT TELEVISION SERVICE".

> This offer is limited to 1000 new affiliations (500 NEA - 500 NATESA)

FINCO SUPPORTS SIS

THE FINNEY COMPANY
34 West Interstate Street
Bedford, Ohio 44146
Circle 12

uch E.H.F.

FINCO's 1972 Objective:

1,000 TOTAL NEW MEMBERS! **500 NEW NEA MEMBERS! 500 NEW NATESA MEMBERS!**

- 1. MEMBERSHIP DRIVE STARTS: January 1, 1972 through March 31, 1972
- 2. All New Members must be signed up and approved by either NEA or NATESA. (\$35-First Year Dues Paid.)
- 3. Each approved NEW NEA or NATESA Member will receive from The Finney Company a GIFT CERTIFICATE good for \$35 worth of FINCO PRODUCTS at SERVICE DEALER WHOLESALE PRICE! When sold to your prospective customer at regular price (approx: \$59.50) you will have received back your original \$35 dues PLUS - a \$24.50 NET PROFIT! - THAT'S RIGHT! - FINCO is actually making it possible for each new affiliate to make a \$21.50 profit hy joining either NEA or NATESA!
- 4. FINCO MATV equipment and all FINCO Outdoor Antenna Models are included - Rabbit Ears (Indoor Antennas) ARE NOT IN-CLUDED IN THIS OFFER.
- 5. New affiliates should NOT contact The Finney Company for their free Gift Certificates - All questions and correspondence should be directed to NEA or NATESA Headquarters.
- 6 NEA and NATESA shall have the sole jurisdiction as to the prorating of FINCO Gift Certificates to their respective Districts, States or specific areas. Their decision shall be final.

	ion as to how you can take ac ut and send this coupon to eith	
🗆 NEA – 1309 West	Market St. — ITTA Bldg., Indiana	apolis, Ind. 46222
D NATESA - 5908 S	outh Troy Street, Chicago, Illino	ois 60629
Service Dealer		
Service Dealer Addresss		
	State	Zip

on literature card

Dale's service bench

by Allan Dale

Clearing up poor focus

□ Good focus depends on correct picture-tube voltages. A color CRT needs several DC voltages. If they stray far from normal - particularly those at the focus element and high-voltage anode - focus deteriorates.

The best way to determine whether or not the focus is normal is by examining the raster lines. Some technicians, particularly beginners, mistake video smear for poor focus. Fig. 1A shows an extreme case of video smearing which might be mistaken at first glance for bad focus. To tell the difference, you have to look closely at the raster lines.

Fig. 1B shows the well defined lines of the raster you should see up close on a properly focused color set. (If you look really close, perhaps through a magnifying glass, you can see the triad phosphor dots.) The raster lines, with or without video, should be clear and sharp.

The closeup view in Fig. 1C shows the raster produced by the same set but with it out of focus. The raster lines have blended together. That's the primary sign of poor focus.

Voltages and CRT Elements

The side view of the electron gun of a typical monochrome picture tube is sketched in Fig. 2A. The focus lens unit concentrates the rather loose stream of electrons into a fine, round beam that strikes the phosphor screen with more energy and in a more limited area. The beam-focusing is accomplished by the potential difference between the focus anode and the 2nd, or high-voltage, anode.

Because of electron-gun improvements, the range of focus voltages which will provide acceptable focus is exceptionally broad in modern black-and-white picture tubes. Controls to adjust the voltage at the focus anode are unnecessary. However, some b-w sets are equipped with a tap which lets you pick ground, Bplus, or even boosted B-plus for the focus element of a particular CRT. Once set, however, any need for readjustment is rare.

The focusing of a color picture tube, however, is more sensitive. The gun structure of a typical color picture tube is shown in Fig. 2B. For proper focusing, the focus plates normally require a voltage equal to about 20 percent of that applied to the 2nd anode. For example, a typical color picture tube, the 2nd anode of which usually is supplied about 24 kV, normally has about 4.8 kV applied to the focus anode. This focus voltage usually can be varied throughout a range of from 4 kV to about 5 kV.

So, whatever the focus problem, three primary factors influence it: 1) the picture tube itself (that is, its gun structure), 2) the focus voltage, and 3) the high voltage. The latter two are the first you should consider when troubleshooting, but don't overlook a picture-tube defect as a possible cause of poor focus.

Outside the Focus Circuit

When you encounter a focus problem in a black-and-white receiver, you can't avoid suspecting the CRT. Usually, however, other symptoms show up first. Symptoms caused by weak emission or a gassy bulb usually become obvious before the focus suffers. Fig. 3 shows the sparkly, overdriven look of a weak or gassy picture tube. If you suspect either disorder, a CRT tester can quickly confirm your suspicion.

However, the CRT tester won't reveal focus-element "fatigue", which spoils the ability of the CRT gun to form a fine beam. You can evaluate this condition

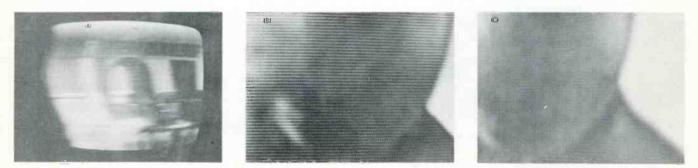


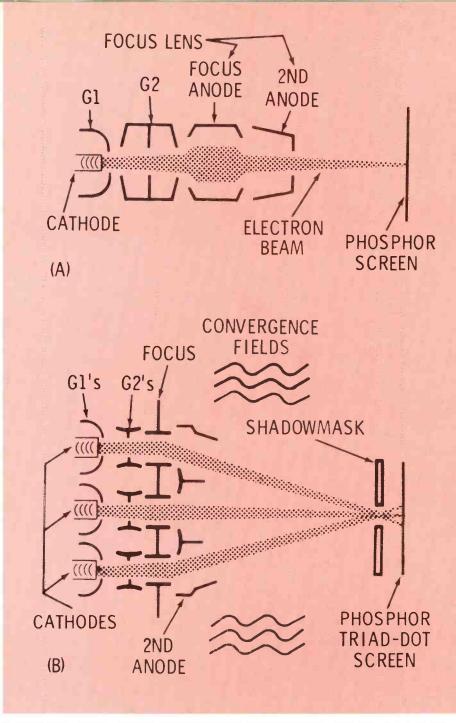
Fig. 1 Proper analysis of focus requires close-up examination of the raster. The blurred picture in (A) is actually caused by video smear, not by poor focus; you can tell the difference if you examine closely the raster lines, as in (B), which shows how the

raster lines should appear, if the set is properly focused. Actual out-of-focus raster exhibits raster lines which seem to blend together, as in (C).

only by varying the focus-anode voltage while monitoring the effects, if any, it has on the raster.

One out-of-focus set I recently serviced had the focus tap connected to 175 volts B-plus. The focus had degenerated to a general haziness that aggravated the eye. Moving the tap to the boost terminal made no difference at all. Neither did grounding it. The high voltage was okay.

I connected the positive lead from a variable B-plus supply to the focus lead, and the negative lead to ground. Varying the supply from 550 volts DC down to zero caused a vaguely noticeable change, but didn't clear up the focus. On a hunch, I reversed the leads from the variable supply. About -200 volts thinned the raster lines. Because the brightness was still relatively normal (although the tube warmed a bit slowly), the customer chose to put up with the fuzziness rather than buy a new picture tube.


Reduced high voltage can produce poor focus in monochrome and color tubes—which might point to other troubles. For example, weak horizontal output usually lowers high voltage sometimes, it reduces it a significant amount before you even notice the width narrowing.

Trouble in the low-voltage supply also can cause poor focus. Reduced G2 (accelerator grid) voltage broadens the width and reduces the velocity of the CRT beam. Reduced B-plus can, in turn, reduce the efficiency of the horizontal output, with the secondary effect of lowering high voltage. However, because of the broad focus tolerance of modern monochrome sets, the raster will shrink all around before the focus fails. Color screens, on the other hand, just as often, show focus deterioration first.

Conclusion: When the raster fuzzes up, first check the high voltage, then the low voltage, then the voltage on the focus anode. Check the picture tube as a last resort.

High-Voltage-Multiplier-Supplied Focus Circuit

Three basic types of focus cir-

Fig. 2 Electron gun in monochrome picture tube (A) includes focus "lens" that, in modern CRT's, assures good focus over very wide range of focus-anode voltages, sometimes even at ground potential. Color CRT is shown in (B).

cuits are used in modern color TV receivers. (Monochrome are sets focused without special stages.) The newest type, diagrammed in Fig. 4, also is about the simplest. A tap near the "low" end of a hermetically sealed, solid-state voltage multiplier provides a little over 8000 volts DC. A resistive divider drops this voltage to about 5200 volts at the top of the potentiometer and about 4000 volts at the bottom. This is an adequate range for a picture tube that requires 25 kV of second-anode voltage.

If a set equipped with this type of circuit displays poor focus, first make sure the high voltage and the low voltages—including boosted B-plus and boostedboost-B-plus—are within 10 percent or so of normal. Then, check the divider in Fig. 4. A high-voltage probe and your FET VOM are good for this; the type of highvoltage probe with a built-in meter is not satisfactory in this

case, because its low-scale accuracy probably will not be enough. Ohm's-law calculations will tell you what voltages should be at each junction of the divider. In Fig. 4 the voltage at the top of the 20 meg-ohm resistor should be 4 kV, the top of the pot should be 5.2 kV, and the voltage at the focus output of the multiplier should be 8.3 kV. Each of these voltages should be within 10 percent of normal, or slightly lower than normal if the high voltage happens to be a little less than 25 kV.

Next, put your meter probe on the slider terminal of the potentiometer. (If it is not readily accessible, you'll have to go to the associated pin in the picture-tube socket.) Twist the shaft of the pot and check for erratic voltage fluctuation. Also, listen for slight arcing, and feel for roughness in the control action.

Finally, pull the socket off the picture tube base. Inspect the focus pin (usually, pin 9) for blackening, the result of a poor contact arcing and smoking. If arcing has occurred, replace the socket. This might sound like a lot of trouble for one pin, but a permanent repair is more important than a few minutes saved, in this case. Also, polish the focus pin of the tube base.

Focus from Divider in the High-Voltage Stage

The circuit diagram of another simple focus circuit is shown in Fig. 5. For several reasons, this circuit, which involves a divider/ bleeder in the cathode circuit of the high-voltage rectifier, is not used in many sets. A potentiometer at the bottom of the bleeder chain varies the DC voltage at the divider junction which supplies the focus pin of the CRT.

Ohm's law again will help you determine what voltage you normally should expect. The total resistance of the bleeder with the focus-control slider at ground is 170 megohms. The 25 kV of high voltage makes about 0.15 mA flow in the bleeder. Consequently, the voltage at the focusvoltage junction is about 5.5 kV. Moving the slider to the high end of the potentiometer element changes the divider ratios, and the voltage at the junction shifts to about 4.2 kV. Again, the range of voltage variation is plenty for any normal color CRT. Troubleshooting this kind of stage is a little different from the other. Check high voltage. If it's reduced, check the low voltage, boost, boosted boost, horizontal output, and so on. If the high voltage is okay, check the focus voltage divider in Fig. 5. Shut the set down, temporarily, clip a grounding jumper across the high voltage, to make sure all residual charge is drained off

Fig. 3 Slow warmup and "sparkly" overload at high brightness and contrast characterize CRT with weak emission or gas. Focus may get bad as symptoms progress, but the main sympton usually annoys the viewer first.

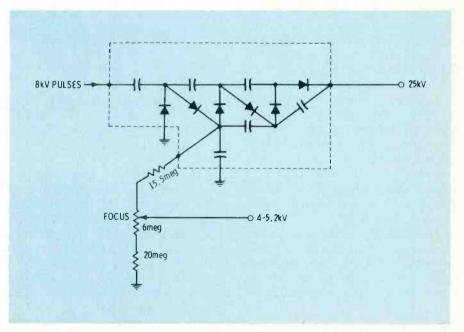
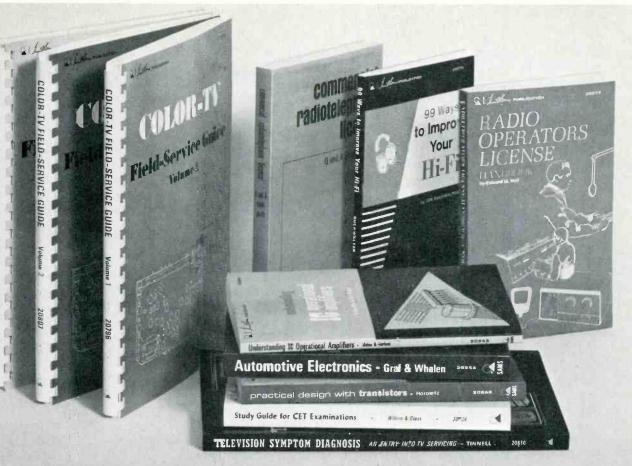



Fig. 4 High-voltage multiplier is the trend in color sets. It makes focus voltage easily accessible from a tap on the multiplier. Resistive divider steps down DC voltage to that needed by color CRT focus element.

Best Seller" Electronics Guides

34

011

Color-TV Field-Service Guides Invaluable for servicing color-tv in the cus-tomer's home. Each volume contains 80 dia-grams covering over 3,000 chassis ... sensibly organized with detailed chassis layout charts on one page and specific adjustment proce-dures on opposite page. Indexed for instant reference.

No. 20864	(3 Vol.	set)			 						\$14.85
No. 20796	(Vol. 1)						÷			.\$4.95
No. 20807	(Vol. 2										.\$4.95
No. 20847	(Vol. 3			÷							.\$4.95

Study Gulde for CET Examinations By J. A. Wilson, CET, and Dick Glass, CET A comprehensive review of the material cov-ered by the CET (Certified Electronics Tech-nician) examination. It's almost a "must" for gaining a CET designation, for passing a state or local Ilcensing exam, or for a "brushing-up" when applying for a position in the elec-tronics field. Includes guestion-and-answer sec-tions and a 50-question test in each chapter. No. 20834

99 Ways to Improve Your Hi-Fi By Len Buckwalter This book covers many methods — many of them simple, little- or no-cost adjustments— for improving your hi-fi and stereo sound sys-tems. All-inclusive coverage from the antenna to the speaker is divided into ten sections and supplemented, wherever necessary, by photos and illustrations. Basic or elementary knowl-edge, simple tools and equipment are all that is needed to make the most of the suggested innovations. No. 20876 \$3.50

Understanding IC Operational Amplifiers By Roger Melen and Harry Garland This book explains how IC op amps work and how they can be used in many practical cir-

When it comes to electronics, let a book in the modern Sams Technical Library be your guide. Send for our free catalog.

cuits. Discusses in detail basic semiconductor electronics, integrated op amp circuitry, prac-tical design considerations in circuits using IC op amps, blas current, offset voltage, fre-quency compensation, slew rate, and more. No. 20855

Commercial Radiotelephone License O and A Study Guide By Woodrow Smith and Robert Welborn This comprehensive study guide contains questions taken from the first four elements of past and present Government publications of "Study Guide and Reference Material for Commercial Radio Operator Examinations," and Thus presents questione used in ECC. and thus presents questions used in FCC ex-No. 24027\$5.95

Prectical Design with Transistors— 2nd Edition By Mannie Horowitz This new and updated edition provides engi-neers and technicians with enough factual material to complete independent circuit de-signs. With the ald of this book, anyone with a working knowledge of algebra and radio electronics should have no difficulty in de-signing a transistor circuit. No. 20868 \$6.95

signs. With the aid of this book, anyone with a working knowledge of algebra and radic electronics should have no difficulty in de- signing a transistor circuit. No. 20868	 Television System Diagnosis By Richard W. Tinnell A. completa training program providing the necessary job-entry skills for students without previous knowledge of electronics circuitry. Upon completion of the course, the student is qualified to efficiently repair an inoperative black-and-white or color receiver.
HOWARD W. SAMS & CO., INC. 4300 West 62nd Street, Indianapol	□ 20796 □ 20855 s, Indiana 4626≇
Order from your Electronics Parts District or mail to Howard W. Sams & Co., Inc.	utor, 🗌 20807 🗋 24027
Send books checked at right. \$ Please include sales tax where applicab	
Send FREE 1972 Sams Book Catalog	□ 20864 □ 20877
Name(Please Print	
Address.	20834 🖸 20856
CityState	Zip 20876 20810

Circle 13 on literature card

Automotive Electronics

(in case the bleeder is open), and measure the divider resistors with your ohmmeter. Then check the focus pot and the CRT socket, as already described.

Inductive Focus Control

A few color chassis still use the focus stage in Fig. 6. The rectifier might be a tube, but the configuration will be about the same. Several "middle-age" sets use this system.

The heart of the circuit is a focus transformer. While the horizontal-output stage feeds a pulse signal directly to the focusrectifier anode, the focus transformer feeds an out-of-phase pulse signal through the smallvalue capacitor to the cathode of the rectifier. Adjusting the core determines the amplitude and the phase of the signal applied to the cathode and, therefore, the amplitude of the focus voltage.

Don't be lured into using a scope in this kind of stage. The amplitudes of the pulses are too high. They'll "pop" the scope input capacitor and burn up the attenuator. Instead, concentrate on individual parts; there aren't many.

Check or substitute the focus rectifier. With power off, measure the resistances. Make sure the high voltage is sufficient. Reduced high voltage means the horizontal output pulses probably are low. Check B-plus and boosted B-plus. Tack a new focus-coupling capacitor in, just for a test; be sure it's a highvoltage type. Have a look at the CRT socket, as described previously, and make sure the wire from the socket back to the resistors (some sets omit one resistor or the other, or both) is continuous.

If all else seems okay, but the focus coil adjustment has little or no effect, concentrate on that. First make sure the core isn't broken off the adjustment slug. If the brass slug has a knob, be sure the knob isn't slipping and thus not turning a stuck core. Be sure the focus transformer hasn't been miswired to the flyback transformer by someone before you. Check the continuity of the focus transformer with it disconnected from the flyback.

Coming Soon

Looks like we're getting the **Service Bench** department back in gear again. Next month, I'll dig into high-voltage regulation for you. It's changed a lot since

the old 6BK4 days-yet, many sets still use parallel regulators. I'll write about some of the effects of poor high-voltage regulation and what causes it. You might get a surprise or two. There's more to high-voltage regulation than just a load across the high-voltage output.

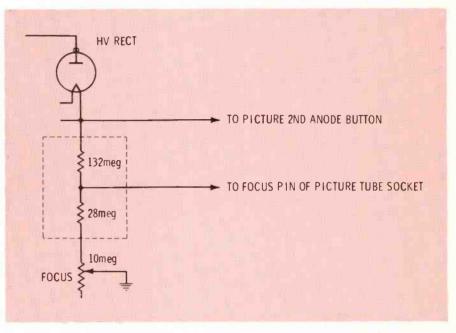
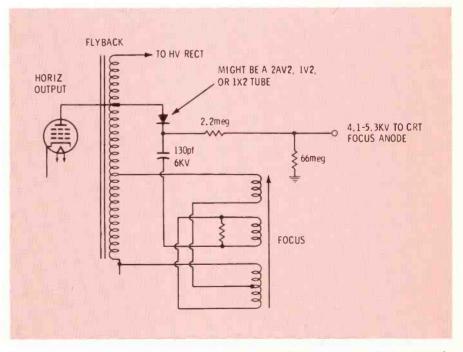



Fig. 5 Less-common focus system is supplied voltage from bleeder and divider across picture-tube high-voltage stage. Has same advantage as multiplier version: changes whenever high voltage changes.

Fig. 6 Inductive focus control in this circuit is a transformer which applies an out-ofphase pulse at the opposite side of the focus rectifier. Moving the inductance core varies how much DC is applied to CRT focus anode.

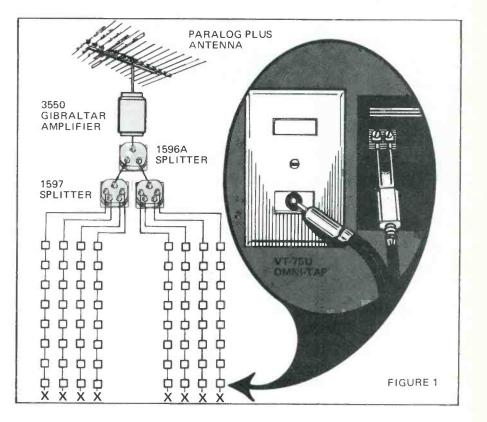
Universal tap simplifies MATV design

by Bert Wolf Manager Jerrold DSD/ECSD Division

Until now, MATV system design has been somewhat complex. You had to calculate losses in decibels and specify a fixed tap-off isolation value at each receiver location.

The new Jerrold OMNI-TAPs have changed all this. OMNI-TAPs are universal. That is, any OMNI-TAP can be used anywhere in any MATV system. The secret is adjustable isolation, which you can vary simply by turning a screwdriver after the system has been installed.

Aside from simplifying system design, OMNI-TAPs also reduce your inventory problems. Since OMNI-TAPs can be varied continuously over a 12 to 25 dB range, one type of OMNI-TAP replaces three types of conventional tap-offs.


Figure 1, for example, shows a typical 8 story apartment house, older school or hotel, with eight TV outlets per floor. OMNI-TAPs are used for every TV outlet. Because tap insertion loss is very low (average about 0.6 dB per tap at VHF), isolation is adjustable. and Jerrold CAC-6 cable loss is minimal, (3.2 dB/100' at VHF), your system calculations are greatly simplified. Just use a Jerrold Gibralter 3550 amplifier, fed by a Paralog Plus antenna. A new motel or school would be similar, except that trunklines would be run horizontally.

If your particular system is smaller, reduce the number of trunklines and tapoffs, but nothing else. The 3550 is economical enough even for small systems. If the system is bigger, add trunklines and tap-offs, but nothing else. The 3550 can easily handle up to 100 OMNI-TAPs. (For systems over 100 tap-offs, use the 3661 or 3880.)

Choose the antenna as you would an ordinary home TV antenna, except that it usually pays to choose the next larger model. If signals are weak, simply add a Powermate preamplifier.

Figure 1 is a VHF-only system. But adding UHF channels is no problem. Simply use a VU-FINDER PLUS antenna instead of the PARALOG PLUS, and a 4400 82 channel amplifier in place of the 3550. No other changes are required because the OMNI-TAPs.

the splitters and the cable can handle UHF frequencies with no difficulty.

Adjusting Omni-Tap Isolation

Once the system is installed, you have to make sure it works properly. In many cases, no adjustments will be necessary. The OMNI-TAPs will work fine in the system just as you receive them.

In large systems, however, you will have to adjust the OMNI-TAPs so that they provide more isolation near the Head End amplifier than they do at the ends of the trunklines.

There are two ways to adjust OMNI-TAP isolation:

1. With a Field Strength Meter. such as the Jerrold 747. You should have a Field Strength Meter for MATV work anyhow, and this is the easiest way to adjust OMNITAP isolation.

Start by turning all of the OMNI-TAPs fully clockwise, for

Circle 14 on literature card

maximum attenuation. Then, go to a tap in the middle of the trunkline and make sure you can read at least 1000 microvolts of picture carrier signal on the highest channel the system carries. If the reading is less than 1000 microvolts, turn the OMNI-TAP counterclockwise until you get 1000 microvolts. Repeat for each tap until you get to the end of the line.

2. With an Ohmmeter. Connect the Ohmmeter between the arm of the OMNI-TAP potentiometer and the center conductor of the tap output. Set the first four OMNI-TAPs in each trunkline (nearest the Head End) to 700 ohms. Set the next two OMNI-TAPs in each trunkline to 500 ohms. Then, reduce each tap-off in the line by 100 ohms until you get to the end of the line.

For help in laying out a system or solving specific system problems, contact Jerrold via your local Jerrold distributor.

Or, for more information on MATV systems, write Jerrold Electronics, P.O. Box A, Philadelphia, Pa.

Use the battery powered Solid State EICO 239 on your bench or in the field. Check semiconductor and vacuum tube circuits. 11 Megohm DC input impedance. Read AC rms and DC voltages in seven steps from 1 to 1000 volts on large 41/2" meter. Measure and read peak-to-peak AC to 2800 volts. Check resistance from 0.2 Ω to 1000M Ω on seven ranges. Provides a total of 28 useful ranges on 12 accurate scales. Automatic battery check. Includes exclusive DC/AC ohms Uniprobe™. Factory Assembled, \$59.95.

FREE 32 PAGE EICO CATALOG For latest catalog on EICO Test Instruments, Stereo, EICOCRAFT Projects, Environmental Lighting, Burglar/Fire Alarm Systems, and name of nearest EICO Distributor, check Reader Service Card or send 25¢ for First Class mail service. 14/4/

EICO, 283 Malta Street, Brooklyn, N.Y. 11207

Circle 15 on literature card

NARDA Schedules Electronic-Service-**Oriented Activities**

The following electronic-service-oriented conferences, seminars and trade shows have been announced by the National Appliance-Radio-TV Dealers Association (NARDA) and are open to all electronic technicians:

Jan. 29, 1972, 10:00 AM to 5:00 PM-National Electronic Service Conference (NESC). Sponsored by NARDA.

Jan. 30, 1972-NARDA Service Showcase 1972 Trade Show.

Jan. 30, 1972-NARDA School of Service Management.

Specific information about each of these activities can be obtained by writing:

Jules Steinberg Executive Vice President NARDA 318 W. Randolph St. Chicago, III. 60606

photofacthm

PHOTOFACT BULLETIN lists new PHOTOFACT coverage issued during the last three months for new TV chassis. This is another way ELECTRONIC SERVICING brings you the very latest facts you need to keep fully informed between regular issues of PHOTOFACT Index Supplements issued in March, June and September. PHOTOFACT Folders are available through your local electronic parts distributor.

Chassis V1662 20/ 21/

ADMIRAL

MGA

	Chassis K1663-30/-31/ -32/-34/-35, 1K1673-16/ -20/-22/-24, 2K1663-29, 3K1673-11/-14/-261204-1
AMBASSADO	R AM7112WD (Early Prod.)1206-1
AMCREST	5CP-3061203-1
BRADFORD	1004G42, 1004H42, 1004J421208-1
CRAIG	63051214-1
CORONADO	TV24-7115A1208-2
CROWN	9TV-301, 9TV-302 1204-2 CTV-12S 1215-1
DUMONT	18DT02W (Ch. 930)1202-1 16DP01W (Ch. T10K10-1C)1205-1 Chassis 4K1673-26, 5K1673-261214-2
ELECTROHO	ME Chassis C9, C9-B, C9-D1213-1
EMERSON	Chassis T7K3-1A/-1B/-2A/ -2B, T8K3-1B/-2B1202-2 9FP01W (Ch. T2L2-1A)
GENERAL EL	ECTRIC Changin N 1 1006 9

BT-150 (Ch. 1G-U1)1213-2

MOTOROLA

PANASONIC

TR-519, TR-519C, TR-529 .1206-3 CT-25P, CT-601P/PC, CT-602D1211-2

RCA

Chassis CTC53A/B, CTC53A1, CTC53XP1201-1 Chassis CTC55A/B/XP/XR1203-2 Remote Control Receiver, Transmitter CRK13B1203-2-A Chassis CTC52A/B/XP/XR1211-3 Remote Control Receiver, Transmitter KRT5B1211-3-A

SEARS SILVERTONE

528.43140000 thru 528.43140020, 528.43146000 thru 528.43146011, 528.43150000 thru 528.43150020, 528.43156000 thru 528.43156011, 528.43160000 thru 528.43160020, 528.43166000 thru 528.43166011, 528.43170000 thru 528.43170020, 528.43176000 thru 528.43176011, 528.43220000 thru 528.4322005. Remote Control1208-3-A 562.41660000, 562.41660001 1213-3 **Remote Control Receiver** CR-601. CR-602. Transmitter CT-6011213-3-A 528.51200000 Series, 528.51210000/01/02, 528.51220000/01/02, 528.51260000 Series,

SHARP

TU-95P1217-2

SONY

KV-1200U (Ch. SCC-08-A/-B, SCC-A01-AA/-BA, DA) ...1216-2

SYLVANIA

Chassis B14-1, B14-2 1202-3

TRUETONE

GEC1015A-27,

3 Instruments in One!

\$**99**95

EIGD

FACTORY WIRED \$149.95

Nobody but Eico makes the troubleshooting of solid state equipment so quick, easy, versatile and precise for the professional electronics technician and engineer—and at such low cost!

- Dynamically tests transistors in and out of circuit.
- Performs the 4 basic tests on all types of FETs including pinch-off.
- Performs the 3 basic tests on all types of bipolar transistors.
 Tests for true transconductance and AC Beta,
- in and out of circuit.
- Tests all types of diodes and measures zener voltage.
- Tests SCRs, TRIACSs, and UJTs.
- Incorporates easy-to use DC Voltmeter and Ohmmeter.
 50 uA taut band meter movement.

FREE 32 PAGE EICO CATALOG

Projects, Environmental Lighting, Burglar/Fire Alarm Systems, and name of nearest EICO Distributor, check Reader Service Card or send 25¢ for First Class mail service.

EICO, 283 Malta Street, Brooklyn, N.Y. 11207

Circle 17 on literature card

Source Guide To Imported Products – Address Change

The address of Lear Jet Stereo, Inc., listed on page 60 of the November, 1971, issue of ES, should be changed to:

Lear Jet Stereo 6868 S. Plumer Ave. Tucson, Arizona 85706

All requests for service information and/or parts for Lear Jet Stereo 8 equipment should be directed to Jim McEwan, National Service Manager, at the above address.

Troubleshooter Topics

If troubleshooting a particular type of circuit or section in a TV or other consumer electronic product has always seemed unusually difficult for you, let the Troubleshooter know about it and he'll discuss it in the Troubleshooter department. Send your suggestions to: Troubleshooter, ELECTRONIC SERVICING, 1014 Wyandotte Street, Kansas City, Missouri 64105.

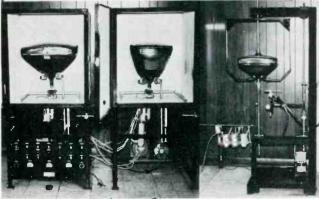
YOUR SUCCESS STORY!

You as a TV serviceman must have the necessary equipment to make repairs. A volt meter, oscilloscope, various generators, and etc. BUT, you cannot rebuild the picture tube! Why not investigate this opportunity. Being in the service business, you should take advantage of any piece of equipment that would be helpful to you. You should have your own picture tube rebuilding unit! You could rebuild any picture tube, be it black and white or color or 20mm, etc. ANY PICTURE TUBE! You could build the finest quality tube available. This tube would have the finest contrast and color definition. The building of the picture tube has been developed into a simplified process. It is easier to rebuild a picture tube than to repair the circuit on the average television set. We can offer you the most revolutionized compact unit on the market today. This unit will only require 4 x 8 ft. of space. The unit will not hinder your present business. While a picture tube is being processed, you will still be able to do your bench repairs or make service calls. Why not have your own tube rebuilding plant? Why not be a distributor? In some areas, the picture tube must be shipped and as a result, you must wait quite a period of time for the picture tube. With your own rebuilding unit, you could immediately rebuild the old tube and return it to the customer within a matter of hours!

Can you imagine rebuilding only four color tubes per day? You sell these tubes for \$60,00 each. Your total cost to rebuild these tubes would be \$7.00 each. This leaves a \$53.00 profit on each tube. This leaves you a net profit for the day of \$212.00. Not a bad day's pay. Let's cut this figure by one half. Build only two color tubes per day. Your net profit would be \$106.00 per day. Work a five day week. Your earnings would be \$530.00. Sound fantastic? Facts are facts!

Lakeside Industries invites you to visit our showrooms in Chicago. You will see the most revolutionized rebuilding unit of our modern times. You will see the unit in operation. You will see the picture tube it can rebuild. You will be amazed at the quality of the finished product.

The operation of the rebuilding unit is so simple that we can train you in a matter of hours. Upon your visit to our showrooms, and at the end of the day, you will have the knowledge and knowhow to operate this fine equipment and be able to rebuild any picture tube, be it black and white or color.


Equipment to operate your TV service business is necessary. Your own picture tube rebuilding plant should also be an absolute must. Why not realize all the profits instead of buying your picture tubes at costly prices.

For further information please write to

5234 NO. CLARK ST., CHICAGO, ILLINOIS 60640

PHONE: (312) 271-3399

P.S. No salesman will call.

Circle 19 on literature card

WARDS AIRLINE

GCI-1751A, GCI-17531A, GCI-17541A, GCI-17551A .1201-2 GCI-17821A, B/841A, B/851A, B, GCI-17921A, B/941A, B/951A, B1217-3 Remote Control1217-3-A

ZENITH

PRODUCTION CHANGE BULLETIN

ADMIRAL

6047PC-M (Ch. 1K10-B) ...1211-4

DUMONT

59T01WN, 59T02WN (Ch. 120976A, 120984A) ...1211-4

MOTOROLA

Chassis 22TS-599B1205-3

PENNCREST

2332, 23331205-3

PHILCO-FORD

B522AWH, B532AWA (Ch. 20P24, Run 7)1211-4

RCA

Chassis KCS171E/F/J/P/ R/T/AA/AB/AC1216-4

SEARS

562.40801000, 562.40801001 1216-4

Change of Address

To receive Electronic Servicing at your new address, send an address label from a recent issue and your new address to:

Electronic Servicing, Circulation Dept. 1014 Wyandotte St., Kansas City, Mo. 64105

If it's about servicing consumer electronic products, you'll find it in ELECTRONIC SERVICING

Your Dream Scope

One Scope for Every Servicing Need

You can make your dream come true for only one hundred dollars more than most conventional servicing scopes.

\$495 plus probes

PS163 DUAL CHANNEL DUAL TRACE

How often have you dreamed that you could see the gated AGC plate pulse and control grid keying signal to determine whether they are arriving at the same time? The dual trace, triggered PS163 will do it.

How often have you dreamed that you could see the flyback pulse and 9 cycle color burst at the same time to see if they are actually opening up the burst amplifier (gate)? The dual trace, triggered PS163 will do it.

These are only a few of the many

things you can do with the PS163.

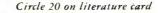
Don't keep on dreaming, the PS163 Dual Trace Triggered Oscilloscope will

be at your favorite Sencore distributor in

a few days. Why not get it on order first and be miles ahead

TRIGGERED OSCILLOSCOPE

How often have you dreamed that you could view color vector waveforms from the front of the scope and have amplifiers on each axis so you would not be restricted from viewing vectors in low level circuits or when the circuit is defective? The dual channel, triggered PS163 will do it.


How often have you dreamed that you could own a dual channel, dual trace scope which would operate either triggered or free-running?

And, have AC or DC coupled input with a bandwidth from DC to 8 MHz at 5 mv input sensitivity? And, a full sensitivity vectorscope with front connections? And, cost less than \$500 and all-American made? The dual channel, dual trace triggered PS163 fills your every desire.

> Still in doubt? The December SENC ORE NEWS explains the PS163 in detail. Also, shows you where it can be put to use. Your Sencore Distributor has the NEWS on his counter. Ask him for it.

of your competition? You can tell HIM that you own the Sencore Dual Channel, Dual Trace, Triggered or Free Running, Quality Made Oscilloscope. It will compare to lab scopes costing four times as much and he knows it.

3200 SENCORE DRIVE, SIOUX FALLS, SOUTH DAKOTA 57107

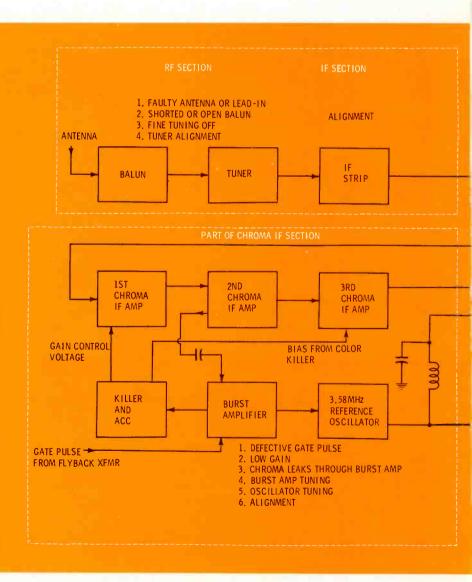
by Bruce Anderson ES Contributing Author

Analyzing the Visual Symptoms

One of the best test instruments available for TV troubleshooting is the one that looks out of the front of the TV cabinet. Before jumping to any conclusions, or digging into all the complicated circuitry inside the receiver, settle back for a couple of minutes and, by analyzing the trouble symptoms displayed on the screen of the receiver and by the effects of the various controls, decide exactly what is wrong with the color. This can save you an hour or so of diagnostic time.

While looking at the picture produced by the receiver, ask yourselfafew pertinent questions:

First, is the color temperature, or gray scale, correct? This should be obvious, but it can be overlooked. In some of the new models which have special circuits for enhancement of flesh colors. even a slight misadjustment of the screen and drive controls can seriously affect certain colors. These circuits inherently shift tints in the blue-cyan-green guadrant, and the symptoms of "blue grass and green sky" can sometimes be relieved simply by properly setting up the gray scale. And, be sure the purity is good. While checking the gray scale, notice if one screen control is set at or near its limit at either extreme, or if one drive control is positioned almost to the minimum setting. (One drive

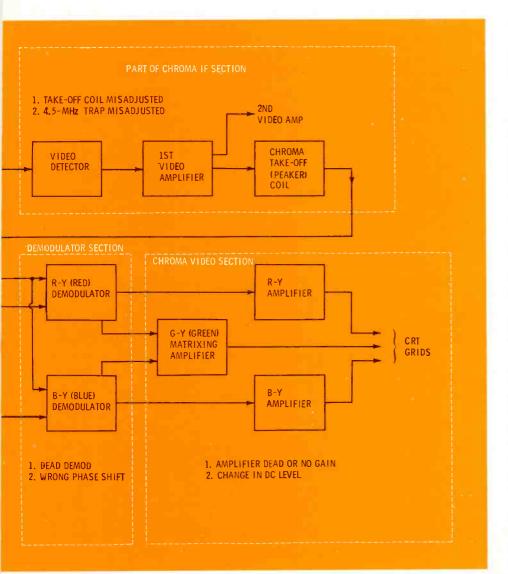

control normally will be maximum, and quite often two of them will be.) If the controls are "all over the place," it might be that they simply need readjustment, but it might mean that someone has readjusted them to mask a more serious fault.

• What is the general quality of the picture, with and without color? A generally poorquality black-and-white picture leads to suspicion about the antenna, lead-in, tuner, and IF amplifier. It isn't always true, but troubles in this part of the receiver which cause color shifts usually also affect the picture in other ways: Strong ghosts can completely upset color fidelity; standing waves in the lead-in almost surely will

Fundamentals of troubleshooting tint problems

Careful analysis of visual symptoms plus a quick look at the input and output waveforms of the section or stages related to the characteristic affected usually will pinpoint the circuit in which the defective component exists, or, in many cases, will pinpoint the defect itself.

Fig. 1 Block diagram of a typical color TV showing the possible causes of incorrect tint in each section.



change the tint-but they also cause fringing. Remember, the misalignment or antenna trouble that causes smearing or ringing probably also will produce bad color.

Does the color control have to be tuned to near maximum to get sufficient color saturation? If it does, there probably is a gain problem in the chroma bandpass amplifiers. Most receivers are designed so that excessive color is obtained at about the halfway point of the control. Unless you know that the model involved is difterent, be suspicious if the control has to be operated near maximum. Some of the newer models have restricted-range controls-"Instamatic Tuning," "Total Automatic Color," "AccuMatic," etc. In these, the user has only a limited range of color and tint control.

 Does it appear that one of the color primaries is completely missing (no red, for example); or, are all the primaries there, but in the wrong places? If some objects appear correctly in the picture (or some of the color bars are normal), it is safe to assume that the problem is in the demodulators or colordifference amplifiers. If all three primaries are visible somewhere in the picture, but all colors are wrong, the problem is most likely in the stages preceding the demodulators. (An exception: If one CRT control grid has a radically wrong DC level and the corresponding screen control has been reset to restore gray scale (usually not very successfully), it is unlikely that any primary color will be properly reproduced.)

• What effect, if any, does varying the horizontal-hold control have on color? Some receivers have the characteristic of changing hue or losing color completely when the horizontal-hold control is positioned near the point where the raster falls out of sync. Most receivers designed in the past five years do not display this trait, so if it appears in one of these, there might be a malfunction.

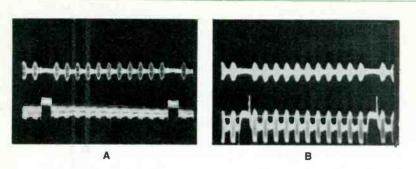

Troubleshooting Inside the Receiver

Fig. 1 shows a "composite" block diagram of a typical color TV receiving system, from antenna terminals to picture tube. For purposes of clarity, it has been divided into the following sections: RF, IF, chroma-IF (the 3.58-MHz section), the chromademodulator section, and the chroma-video (color-difference) section.

The burst-amplifier and 3.58-MHz reference oscillator are arbitrarily included in the chroma-IF section, although it would be just as reasonable to consider them as part of the demodulator section.

As pointed out earlier, the chroma-IF section should be suspected if the problem is a shift of **all** colors, rather than loss of a single primary. The reason is that, because the information for all three primary colors is contained in a single signal processed by the chroma IF section, a failure in it cannot normally discriminate against a single primary. Instead, all colors are affected equally.

Because space limitations in this article do not permit alignment problems to be discussed in detail, it will be assumed that the chroma-bandpass amplifiers

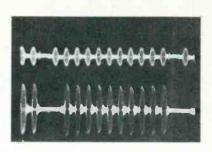


Fig. 2 Output waveforms of video detector (bottom) and 2nd chroma-bandpass amplifier (top). (A) Normal waveform (B) Result of tuning toward sound.

Fig. 3 Output of 2nd chroma amplifier (top) and 3rd chroma amplifier (bottom).

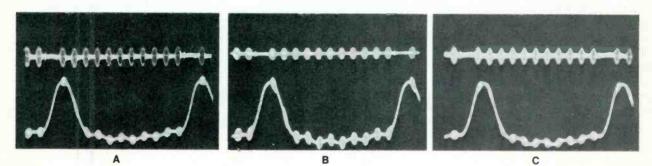


Fig. 4 Output of 2nd chroma amplifier (top) and input to burst amplifier (bottom). (A) Normal waveform (B) Gate pulse leads burst (C) Burst leads gate pulse.

are properly aligned. With this qualification, it is unlikely that a fault in the chroma-bandpass amplifiers will affect tint without also affecting color level. If the color amplitude is low, then these amplifiers probably are the trouble source. Signal tracing with the scope will confirm whether or not it is.

Servicing data might indicate the typical signal amplitudes at each of the chroma-bandpass amplifiers, but quite often they do not. In either case, it is possible to spot the trouble by observing at a few key points in the color circuits the signal produced by a color-bar generator. These waveform amplitudes will vary among different models of receivers, but, relative amplitudes and distortions of the **waveshapes** will tell the story.

When the receiver fine tuning is adjusted correctly, the waveform at the video detector or at the input to the chroma take-off coil should resemble the bottom one in Fig. 2A. The magnitude of the waveform might vary, depending on whether or not there is an amplifier between these two points, but the ratio of the sync pulses and the color bars should be nearly constant.

The bottom waveform in Fig. 2B shows the effect of fine tuning the receiver towards sound. This increases the amplitude of the color bars relative to that of the sync pulses. Tuning away from sound has the opposite effect.

Incidentally, the burst amplitudes produced at the video detector by the four TV channels available in the author's reception area often vary by a ratio of 2:1 or greater. For this reason, waveforms "off the air" are not included in this discussion.

The output of the 2nd chroma amplifier of the receiver is shown in the top waveforms of Fig. 2A and 2B. The output of the 1st chroma amplifier was too small to photograph well, even though the scope used has a sensitivity of 100 millivolts per centimeter. Notice that the amplitude of this waveform remained the same, regardless of the amplitude of the color-bar signal from the video detector. This indicates that the automatic gain system of the first chroma amplifier was operating normally.

The bottom waveform in Fig. 3 is the input to the demodulators. (The top waveform in Fig. 3 again is the output of the 2nd chroma amplifier, as in Fig. 2.) The color burst signal and associated color bar have been gated out of this waveform; otherwise, only the amplitude has changed. The 2nd chroma amplifier waveform is shifted slightly to the right in relation to that of the input to the demodulators, although this is hardly noticeable. It is caused by the delay imposed on the input signal by the 3rd chroma bandpass amplifier.

The input to the burst amplifier is the bottom waveforms in the photos in Fig. 4 and the output of the 2nd chroma amplifier is the top waveforms. Fig. 4A shows the proper time relationship between the burst and the burstgate pulse from the horizontaloutput transformer. Fig. 4B and 4C show mistiming produced by carefully setting the horizontalhold control as far towards its limits as possible without upsetting the sync. In both instances, a shift in the tint produced on the screen was noted. A change in the value of a coupling component between the flyback transformer and the burst gate tube or transistor can upset this critical timing and shift the tint in the same manner.

If the amplitude of the burst gate signal is barely sufficient to bring the burst amplifier into conduction, it also can shift the burst phase. Unless typical waveforms for the particular receiver are available, it is unlikely that this fault can be spotted directly; but any fault which attenuates the burst gate signal probably will also affect its timing-and waveform analysis will reveal this.

The output of the burst amplifier should contain nothing but the amplified burst signals. If any of the remaining chroma signal leaks through, it will "pull" the oscillator phase and produce wrong colors. If chroma is leaking through the gate, the most likely trouble is a leaky or belowvalue cathode-bypass (emitterbypass) capacitor, or a belowvalue cathode (emitter) resistor.

The waveform photographs in Fig. 5A and 5B show normal and abnormal outputs from the burst amplifier. In each photograph, the lower waveform is the input. In Fig. 5B, the fault was induced by shunting the emitter resistor and bypass capacitor with a 6.8Kohm resistor. The color bars are shifted about 60 degrees.

In almost every color receiver, the tint can be changed by "touching up" the tuned circuit which is the burst-amplifier plate (collector) load. If this circuit is mistuned, retune it to produce maximum amplitude of the output of the burst amplifier (top waveform in Fig. 5A). To keep the scope probe capacitance from shifting the tuning of the resonant circuit, use at least 100K of resistance between the probe and the plate (collector). This will isolate from the circuit the 10 pf or so of probe capacitance.

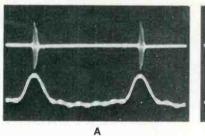
Fig. 6A shows the typical waveforms for the blue and red grids of the CRT. The blue grid waveform is at the bottom. The amplitudes are about equal, although in many receivers blue will be slightly larger. As shown, the sixth bar of the red (top) waveform would be null, and both the

New Heathkit Digital Multimeter ... lab precision for only 229.95*

Measures AC and DC voltage, current, and resistance, with automatic switching for DC polarity. Five overlapping ranges show voltage from 100uV to 1000V on DC; 5 ranges cover 100uV to 500V on AC; 10 ranges measure 100nA to 2A, AC or DC; 6 resistance ranges cover 0.1 ohm to 20 megohms. Input impedance is 1,000 megohms on the 2V range, 10 megohms on higher ranges, with overload protection on all. 31/2 digits for 100uV resolution on 200mV range, 1V on 1000V. Automatic decimal point. Panel light indicates over-range. DC calibrator, furnished assembled, and unique transfer method allow calibration to 0.2%. Unit can be lab callbrated to 0.1%. Kit includes standard banana jack connectors complete with test leads. Assembles in approximately 15 hours. For lab spec performance on a budget... order your IM-102 today!

Kit ID-1041, high-voltage probe accessory, 1 lb. 6.95*

New Heathkit Dual Trace Scope ... DC-15MHz for just 399.95*


Offers triggered sweep, DC-15MHz, x-y mode, on an 8 × 10cm flat-faced CRT... all for a price as low as many single trace instruments. Display separate signal in Channel 1 or Channel 2 mode, compare both signals in alternate or chopped modes, or both signals as a function of each other in x-y. Both input channels precision balanced for 5° or less phase shift to over 50kHz. Switch selected AC/DC coupling; automatic triggering; 18-position time base, 1, 2, 5 from 100msec/cm to 0.2us/cm; separate vernier control; 5x magnifler; DC-15MHz bandwidth with 24nsec rise time; flat-face CRT with mu-metal shield. Assembly time approximately 26 hours. Expand your analysis capability without stretching your budget...order your 10-105 now!

HEATHKIT		H	ATHKIT
	HEATH COMPANY, Dept. 25-1 Benton Harbor, Michigan 49022	Schl	umberger
47	Enclosed is \$ Please send model(s)		•
-33	Please send FREE Heathkit Catalo Name	og.	
ree - Your 1972	Address		
leathkit Catalog with he world's largest	City	State	Zip
election of nstrument kits.	Prices & specifications su *Mail order pr	bject to change wit ices; F.O.B. factory.	

Circle 21 on literature card

January, 1972/ELECTRONIC SERVICING 31

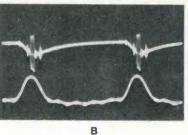


Fig. 5 Output of burst amplifier (top) and input to burst amplifier (bottom). (A) Normal waveform (B) Chroma leaking through amplifier distorts burst.

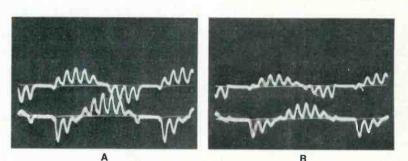


Fig. 6 Outputs of B-Y and R-Y amplifiers (bottom and top respectively). (A) Normal waveform (B) Nulls shifted to right.

third and ninth bars of the blue (bottom) should null. The green waveform is not shown; its nulls should be on the first and seventh bars, and its amplitude normally is about one third that of red.

Fig. 6B shows the result of slight misadjustment of the tint control. The nulls fall somewhat to the right of their normal positions. This, of course, is easily corrected by adjusting the tint control-unless you "run out of control." If this happens, try adjusting the burst-amplifier tuned circuit, as described previously, with the tint control at the center of its range.

If it should happen that one of the CRT grid waveforms is correct, but the nulls are out of place on another, suspect the phase shifting network between the oscillator and one of the demodulators. This network can be electrically located in either demodulator input. If three demodulators are used, two of them will use phase-shifted oscillator inputs.

Loss of amplitude of one of the CRT inputs can be caused by the corresponding demodulator, or by the color-difference amplifier which follows it, if one is used. A simple job of circuit tracing with the scope should uncover the fault. Just bear in mind that each common emitter (or common cathode) amplifier inverts the signal, and should increase its amplitude. The one which doesn't is the source of the trouble.

Summary

To troubleshoot tint problems, first analyze what you see on the picture tube. It may not pinpoint the trouble, but it **can** get you started in the right direction. When you have decided in which general area or section the trouble probably exists, check from stage to stage and circuit to circuit with the scope until you spot the actual trouble or circuit in which the trouble exists.

The servicing data available today for specific receivers probably is better than it has ever been, but the waveforms for each and every point in a receiver simply cannot be included in the space which is available. For this reason, the technician should acquire enough knowledge of basic circuits so that he can anticipate how each stage affects a signal and can predict what the output should look like.

test equipment Peporî

Mutual-Conductance Tube Tester

The B&K Division of Dynascan has added to their line the Model 747 "Dyna-Jet".

For fast tube testing, the Model 747 is said to have a "Jet Section" with 21 sockets pre-wired for the most often used tubes. Tube numbers are listed beside the sockets, and two switch settings; heater and sensitivity, are required according to the manufacturer.

The "Programmed Section" has 9 sockets for testing other tubes by operation of lever-action switches for each pin. A lever reportedly is provided to simultaneously clear the setting of all the switches.

Heater voltage is reduced by 10 percent for the LIFE test, and pushbuttons are provided for SHORTS and LEAKAGE tests. Pin straighteners and storage space are also provided.

The Model 747 measures $5^{5/16}$ inches x 20^{1/2} inches x 11^{1/2} inches with a weight of 12 lbs.

Price of the Model 747 is \$249.00.

Circle 50 on literature card

HI-LO Field-Effect Multimeter

Senior Hi-Lo Field Effect Multimeter Model FE160 has been introduced by Sencore. Pushbutton selection of all functions and ranges, including high/low voltage ohms scales, is featured. Eighteen pushbuttons are reported to select 112 different ranges.

DC volts function has 10 positive,

10 negative and 10 zero-center ranges with full-scale readings from .1 volt to 3000 volts. The input impedance is said to be 15 megohms shunted by 90 pf in the "norm" probe position or 10 pf in the 100K "Isolation" position.

AC volts function reportedly provides 9 rms ranges and 9 peakto-peak ranges with full-scale readings fron .1 volt to 1000 volts rms and .28 volt to 2800 volts P-P. The input impedance is rated at 12 megohm shunted by 90 pf.

DC current function has 10 positive, 10 negative and 10 zerocenter ranges with full-scale readings from 30 μ a to 3 amps. The internal voltage drop is said to be .1 volt for all ranges.

AC current function reportedly has 10 rms ranges with full-scale readings from 30 μ a to 3 amps. Internal voltage drop is .1 volt for all ranges.

The ohmmeter function has 8 "high-voltage" ranges which have a maximum voltage of 1.5 volts, and 8 "low-voltage" ranges which have a reported maximum voltage across the test leads of .08 volt, according to the manufacturer. Low ohmmeter voltages are said to permit accurate measurements in solid state circuits because the low voltage does not cause conduction in diodes or the junctions of transistors.

Power for the ohmmeter functions reportedly is supplied by an internal electronic source; no batteries are used.

The decibel function reportedly has 9 ranges referenced to 1 mw in 600 ohms with full-scale read-

COMPLETE SERVICE ON ALL MAKES OF TV TUNERS

Maximum Time In Shop 24 Hrs.

UV Combo's \$16.50

Price includes all labor and parts except Tubes, Diodes & Transistors. If combo tuner needs only one unit repaired, disassemble and ship only defective unit. Otherwise there will be a charge for a combo tuner. When sending tuners for repair, remove mounting brackets, knobs, indicator dials, remote fine tuning arrangements and remote control drive units.

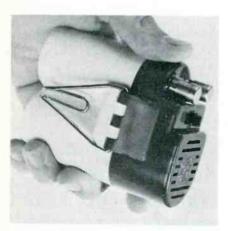
WE UNCONDITIONALLY GUARANTEE <u>All Tuners</u> FOR ONE FULL YEAR

All tuners are serviced by EXPERTLY TRAINED TECHNICIANS with years of experience in this specialized field. All tuners are ALIGNED TO MANUFACTURER'S SPECIFICA-TION on crystal controlled equipment and air checked on monitor before shipping to assure that tuner is operating properly.

ings from -20 dB to 60 dB.

Other features include: a seven inch mirrored-scale meter, and 1/2 percent deposited-carbon multiplier resistors.

Model FE160 weighs 6 lbs. and measures 9 inches x $7\frac{1}{2}$ inches x 6 inches.


Price of the Model FE160 is \$190.00. The accessory high voltage probe Model 39A30 is priced at \$12.00.

Circle 51 on literature card

Portable Continuity Tester

A new, solid-state, portable circuit continuity tester is announced by Reliable Electric Co.

Applications of Model R81A include tone and DC continuity tests of communication lines. The tester reportedly can be used in conjunction with a lineman's telephone to identify a cable pair; or it can be

used by itself to generate a 400-Hz tone when continuity exists between the terminals under test.

The tester measures 4 inches x $3\frac{1}{8}$ inches x 2 inches, is supplied with a folding belt clip and test-lead sets.

The R81A sells for \$18.07. The test-lead sets, R81B, sell for \$5.36. *Circle 52 on literature card*

Digital Multimeter

A new, solid-state digital multimeter which features 25 ranges and modes has been introduced by John Fluke Mfg. Co., Inc.

Model 8102A features AC and DC voltage ranges from 100 millivolts to 1,000 volts, current ranges from 100 microamperes to 1 ampere, and resistance ranges from 1,000 ohms to 10 megohms. Over-

range on all ranges is 20 percent, according to the manufacturer.

Other features reportedly include guarded circuits, push-button convenience, field-installable options and single-mainframe option structure.

The Model 8102A 4¹/₂-digit multimeter sells for \$795.00. Circle 53 on literature card

Semiconductor Curve Tracer

The CT71 semiconductor curve tracer, reportedly designed for displaying on a 10 x 10 cm CRT, the characteristic curves of a wide range of transistor, FET and diode semiconductor devices, has been announced by Tektronix, Inc.

Specifications of the CT71 are: Collector Supply

Voltage—0 to 1 kV; positive and negative polarity; twice line frequency or DC

Current—Peak to 2 amps (maximum 15 watts)

Series Resistances—0 ohms to 1.7 megohms in 11 steps

Base Step Generator

Current—0.2 μ A to 20 mA in 16 steps

Voltage—0.1/V to 2 volts in 5 steps

Steps/Offset—Adjustable from 0 to 10 steps in positive or negative direction

Vertical Amplifier

Collector current range—5 nA/ div to 0.2 A/div in 24 steps

Horizontal Amplifier

Collector voltage range—0.1 V/ div to 100 V/div in 10 steps Power requirements—voltage settings for 100-volts to 125-volts in 5-volt steps, 200-volts to 250volts in 10-volt steps; 48-Hz to 63-Hz.

The CT71 sells for \$795.00. Circle 54 on literature card

TV/FM Sweep/Marker Generator

Model LSW-250 has been introduced by Leader Instruments for use in sweep-frequency testing of TV, CATV and FM products.

The sweep-frequency oscillator has a single range that is continuously variable from 2 MHz to 260 MHz and frequency deviation at 60 Hz up to a maximum of 20 MHz, according to the manufacturer.

A marker oscillator, said to be of the post-injection type, is employed, and a control is provided to vary the amplitude of the marker. The marker oscillator is continuously variable in 4 bands, and reportedly has provision for crystalaccuracy calibration by means of a crystal socket mounted on the front panel.

Model LSW-250 is priced, with accessories, at \$299.50.

Circle 55 on literature card

High-Voltage Test Probe

Measurement of potentials up to 30,000 volts, and a sensitivity of 20,000 ohms per volt, reportedly are two features of the Model LHM-80 CRT high-voltage test probe manufactured by Leader Instruments Corp.

Complete with ground wire and heavy duty clip, the LHM-80 reportedly has a full-scale accuracy of ± 3 per cent and is equipped with a 600-megohm multiplier re-

sistor.

The LHM-80 is 14 inches long, weighs 1 pound, and is self-contained in a high-impact molded polystrene body.

The LHM-80 sells for \$19.95 Circle 56 on literature card

Audio Oscillator

A low-frequency oscillator, Model ORC-27A, has been announced by Kikusui Electronics. This RC-type oscillator reportedly has a frequency coverage in 4 ranges from 18 Hz to 200 KHz with a calibration accuracy said to be ± 2 percent +1 Hz.

A slide-rule type dial with mirrored-scale is provided to minimize parallax reading errors.

Three types of output waveforms are available: sine waves with a maximum output of 5 volts rms, square waves with an output of 10 volts P-P, or a complex wave with a minimum of 10 volts P-P.

Size of the oscillator is 1178 inches x 7¹/₁₆ inches x 7¹/₂ inches.

Price of the Model ORC-27A is \$85.00.

Circle 57 on literature card

For more information about above products use reader service card

Circle 24 on literature card

INJECTORALL'S HEAVY DUT TUNER CARE KI **CLEANS TUNERS** "the professional way"

INJECTORALL's new heavy duty TUNER CARE KIT has a double punch. It is a two-part system. Part one, ROYAL CLEAN Tuner Degreaser, pressure cleans contacts and part two, ROYAL LUBE Heavy Duty Lubricant, lubricates and keeps them clean.

It works better because **ROYAL CLEAN dissolves** dirt and grease instantly leaving no gum or residue. It is safe for plastics and leaves contacts shining new. ROYAL LUBE. the extra thick lubricant. protects, lubricates, and cleans contacts as the tuner is used

INJECTORALL's two part system in one package is called "TUNER CARE KIT '

Cat. no. 700-701 TUNER CARE KIT \$4.98 dealer net.

INJECTORALL ELECTRONICS CORP. Gien Cove, N.Y. 11542

In Canada: Dominion Tire and Radio Co., Brandon, Manitoba

Circle 25 on literature card

NOW A ONE STOP SHOPPING CENTER FOR YOUR AUTO RADIO AND **8 TRACK STEREO PARTS:** AT FACTORY DISCOUNTS

WE ARE AUTHORIZED PARTS DISTRIBUTORS FOR:

DELCO	PANASONIC
BENDIX	KRACO
MOTOROLA	PHILIPS
LEAR JET	BELLE WOOD
TENNA	WARD
METRA	QUICKMOUNT
AUTOMATIC	AC SPEEDO
ONGUARD	CRAIG
MEMOREX	VERITAS
INLAND	CHAPMAN CARLOCK
DYNATRONICS	EV GAME
STEREO	LOCK MOUNTS

AND MANY OTHERS

Send Your Order With Part Number and Description of The Part To

Laran Electronics, Inc. Dept. ES. 3768 Boston Road Bronx, N. Y. 10469

Circle 26 on literature card

January, 1972/ELECTRONIC SERVICING 35

New In Color For 1972,

Part 2

by Carl Babcoke

Continuation of the analysis of new and changed circuitry in the color TV chassis offered this year. Part 1 was published in the December issue.

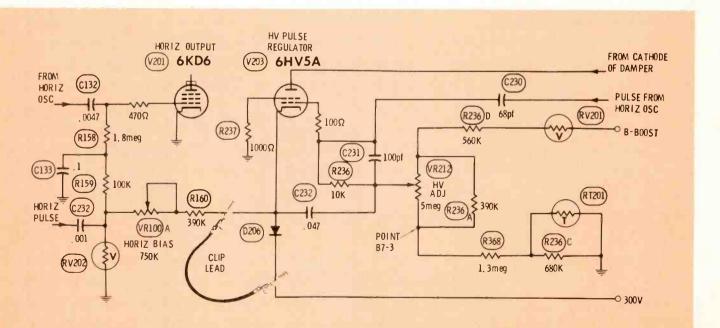
Philco Circuits

Double protection against excessive high voltage

Two regulators are used in the Philco 22ST80/81/91P color TV chassis, as shown in Fig. 1, to prevent excessive high voltage.

Pulse regulation, using a 6HV5A tube, is the primary method of high-voltage and sweep regulation. In addition, grid regulation of the 6KD6 horizontal-output tube, by rectification of horizontal pulses, is employed.

The third protective circuit consists of an interconnection between the two regulators. If current through diode D206 ceases,


Fig. 1 The Philco 22ST80/81/90P color TV chassis has two high voltage regulators. To adjust them, use the following procedure: (1) Point B7-3 should be grounded. (2) The HV ADJ control should be turned completely CCW, and a test lead connected

the diode becomes reverse biased (an open circuit). This causes a loss of the positive balancing voltage which normally enters the grid regulator circuit through R160 and RV100A, the HORIZ BIAS control. Without the positive voltage, excessive negative voltage is supplied to the grid of the output tube by rectification of pulses by RV202. The voltage at the output grid becomes too negative, and the width and high voltage are both drastically reduced.

Because each regulator has an adjustment control, a specific sequence of adjustment must be followed. The correct procedure, according to Philco, is to, first, disable the pulse regulator, then adjust the grid regulator, and, finally, adjust the pulse regulator. Use the following adjustment procedure:

- Connect a test lead across D206, ground point B7-3, and turn VR212 (HV ADJ) completely CCW.
- Turn down the brightness control, to produce a black raster, and connect a highvoltage probe and meter to the anode of the CRT.
- Adjust VR100A (HORIZ BIAS) to produce a meter reading of 29 kV.
- Remove both test leads and adjust VR212 for a meter reading of 26.5 kV.

across D206. (3) With the brightness turned down, adjust the HORIZ BIAS control for 29 kV, measured at the CRT. (4) Remove the two test leads and adjust the HV ADJ control for 26.5 kV.

Color indicator light

A bulb which lights when a color program is being received is a feature of the Philco 22LT45 color chassis. It is called a "Philcomatic Lite". A schematic of the circuit is shown in Fig. 2.

Resistor R129, the supply re-

sistor for the collector of the 2nd chroma amplifier, has a voltage dropped across it when color is received (the color killer permits Q94 to conduct). This voltage drop forward biases Q97 into conduction, and the indicator bulb is lit by the collector current.

Improved DC coupling

More accurate color reproduction reportedly is produced by the DC coupling circuit used in Philco 22ST80/81 and 21ST91P color chassis. Part of the circuit is shown in Fig. 3.

Rectification of horizontal

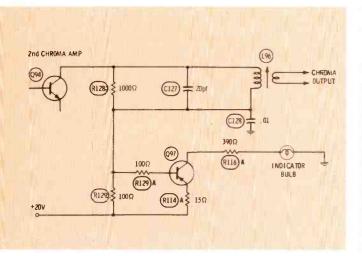
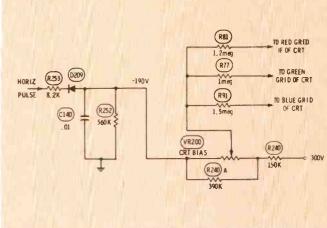



Fig. 2 Illumination of the Philcomatic Lite indicates that the color killer is inactivated and color should be received. When the 2nd chroma amplifier transistor conducts, the voltage dropped across supply resistor R129 forward biases Q97 into conducting, and the collector current lights the indicator bulb.

Fig. 3 Different ratios of DC coupling between the -Y amplifiers and the grids of the CRT are provided by this circuit in Philco 22ST80/81 and 21ST91P color TV chassis. Better reproduction of complementary colors is the primary function of this circuit.

Fig. 4 Use of a solid-state triac as an cn/off switch in RCA CTC54 color TV chassis permits remote control of this function without relays. Current from the remote receiver lights the bulb inside the PM100 assembly, and the illumination reduces the resistance of the cadmium-sulfide cell. Because the cell is connected between the anode and the gate of the triac, reducing its resistance triggers on the triac, which conducts in both directions, thus applying power to the TV chassis.

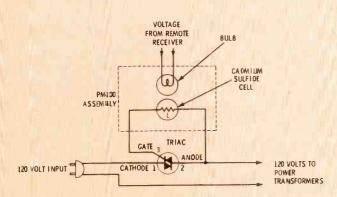
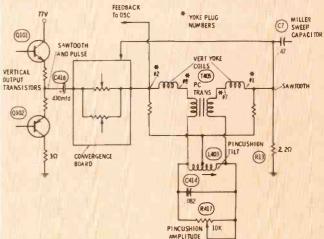
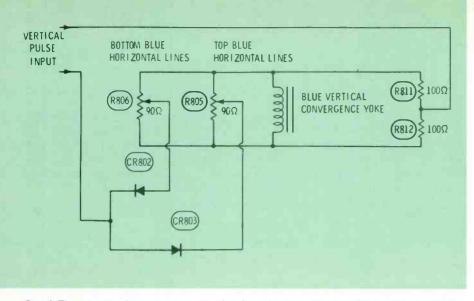
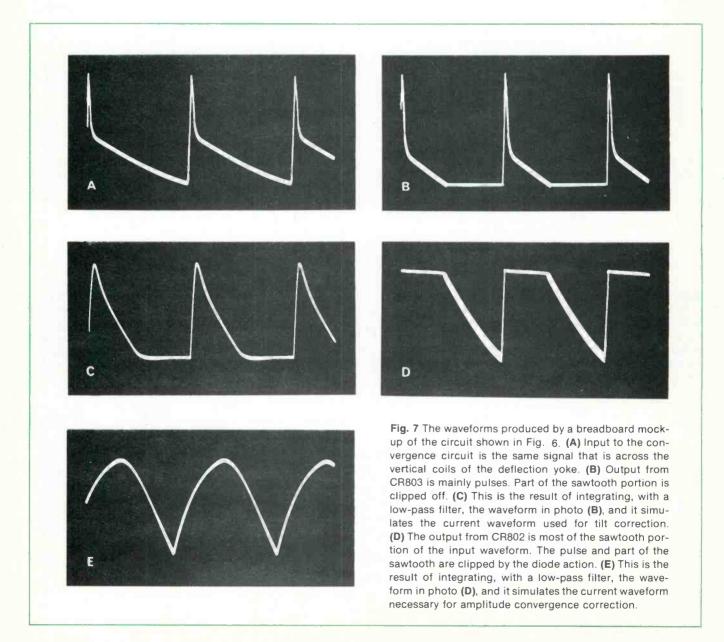




Fig. 5 The RCA CTC54 uses direct drive from the transistors, without a vertical-output transformer. Voltages for operation of the convergence circuit are obtained from series and parallel tapoffs of the sweep voltage and the yoke current. An open circuit in a winding of T405 or L403 will cause a trapezoidal picture, because one of the windings in the yoke will not receive current.



January, 1972/ELECTRONIC SERVICING 37

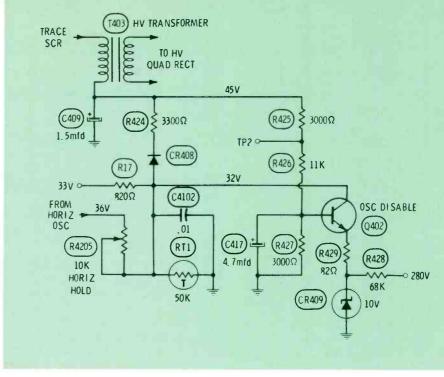
Fig. 6 The blue vertical convergence circuit varies both the amplitude and phase of the voltages applied to the blue vertical coil in the RCA CTC54 color TV chassis. The two diodes clip the deflection waveform into pulse and sawtooth, for correction of tilt and amplitude.

pulses by diode D209 produces about -190 volts, which is supplied to one end of the CRT BIAS control. Positive voltage is connected to the other end of the control. Three resistors, of different values, are connected from the center of the CRT bias control to the three control grids of the CRT. (These grids are also coupled through paralleled resistors and capacitors to the plates of the -Y amplifier tubes.) According to Philco, more natural complementary colors are reproduced by this unbalanced method of coupling.

RCA

Solid-state power switch

The RCA CTC54 color chassis might be called the first TV receiver to be designed without an on/off switch. More accurately, the conventional on/off switch has been replaced with a triac, as shown in Fig. 4. (Triacs are similar to SCR's except that they will conduct in both directions when triggered.)


Current from a transistor in the remote-control circuit lights the bulb in the PM100 assembly. Light from the bulb causes the resistance of the cadmium-sulfide cell to decrease to a few hundred ohms. The low resistance of the cell triggers on the triac, which becomes a low resistance to current flow of both polarities, and power is applied to the TV receiver.

Convergence circuitry used with transformerless vertical outputs

RCA CTC49, CTC46 and CTC54 color chassis are equipped with a transformerless vertical-output stage. Two transistors are stacked in series across the 77-volt power supply, and the output is taken from the emitters, as shown in Fig. 5. This type of circuit has been used for years in stereo amplifiers, and undoubtedly will provide good drive for the vertical yoke coils.

However, in the past, extra windings on the vertical-output transformers were used to supply pulses of both polarities to give "tilt" to the convergence action. This source of convergence voltage is not available when the transformer is missing.

Fig. 5 shows part of RCA's solution to this problem. Some of the convergence controls are paralleled, and this total resistance is in series with the vertical coils in the deflection yoke. The current in such a series circuit is a sawtooth, because the yoke current is a sawtooth. The voltages dropped across the convergence controls connected in series with the yoke are also sawtooths. However, the current in the convergence yoke coils,

Fig. 8 In the event of excessive high voltage in the RCA CTC54 chassis, the oscillator disable circuit forces the horizontal oscillator far off frequency. This is accomplished by Q402, which, when the high voltags is too high, conducts and reduces the 32 volts at one end of the horizontal-hold control to about 10 volts. See text for a more detailed explanation of the circuit operation.

produced by the sawtooth voltage across the coils, is a parabola. A parabola is nearly the ideal current for correction of dynamic misconvergence.

Tilt correction also is needed, and the voltage dropped across the vertical coils of the deflection yoke is used for that function.

Blue vertical convergence is achieved by a different circuit (shown in Fig. 6) than that used for the red-green convergence. The waveshape of the voltage used in this circuit is shown in Fig. 7A.

When R805 and R806 are both at the center of their resistances. the circuit is balanced and no current flows in the blue convergence yoke (there is no correction of the blue vertical misconvergence). Adjustment of either control away from the center position progressively increases the amplitude of signal applied to the convergence coil by the respective diode. Adjustment on one side of the center gives a positive-going waveform, and adjustment on the opposite side gives a negative-going waveform. Consequently, both the phases and the amplitudes of the

voltages from the two diodes are adjustable.

The waveform of the voltage at the cathode of CR803, shown in Fig. 7B, consists mainly of pulses, because the half-wave rectification by the diode has clipped off the bottom of the waveform. Because of the inductance of the convergence coil, these pulses integrate into approximate sawteeth of current, as shown in Fig. 7C. A sawtooth of current corrects for "tilt".

The waveform of the voltage at the anode of CR802, shown in Fig. 7D, consists mainly of sawteeth, because of rectification by the diode. Because of the inductance of the convergence coil, these pulses integrate into parabolic waveforms of current, as shown in Fig. 7E. A parabola of current corrects for "amplitude".

Horizontal oscillator disabling

Another trend is to circuits which disable some vital function of the color receiver in the event the high voltage becomes excessive. The oscillator-disable circuit of the RCA CTC54 chassis (Fig. 8) is one example of such a protective circuit. When the

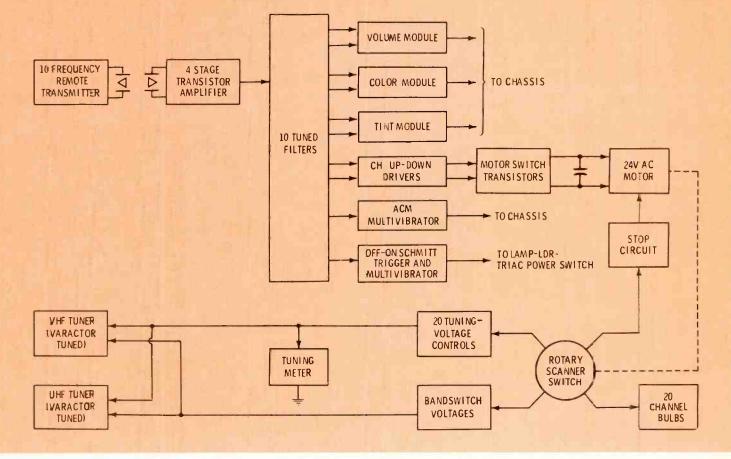
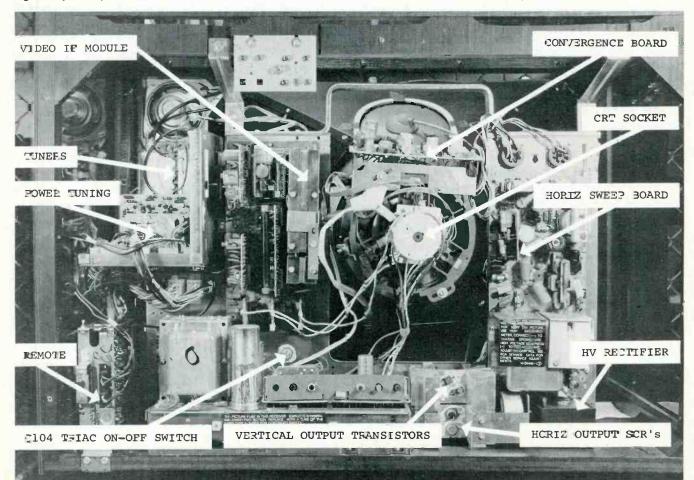



Fig. 10 Major components, modules, tuners and remote-control chassis on the RCA CTC54 chassis are pointed out here.

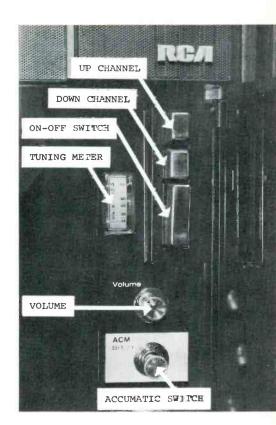
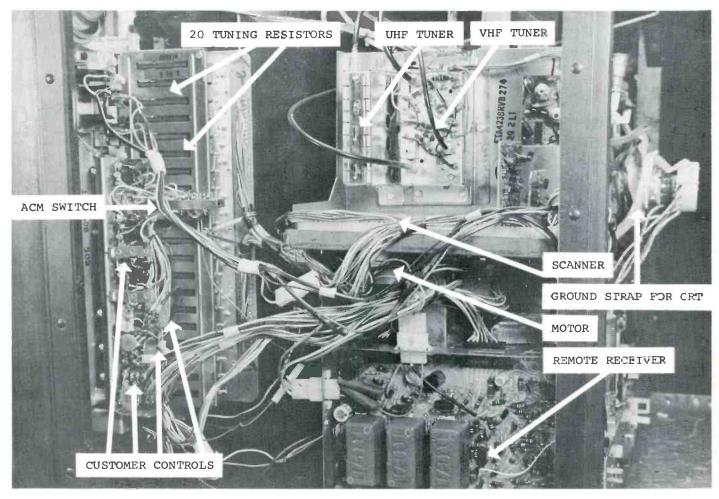
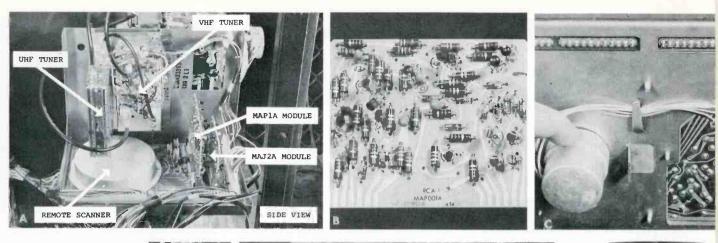
sweep and high voltage are excessive, the horizontal oscillator is driven off frequency.

The DC voltage on the emitter of Q402, the oscillator-disable transistor, is maintained at a fixed value by R428 and the zener diode, CR409. The DC voltage for the base of Q402 is obtained from

Fig. 9 Block diagram of the remote-control system used in the RCA CTC54 color TV chassis. The volume, color and tint modules each store in a capacitor the control voltage for the gate of a MOSFET transistor. The DC output voltage from the MOSFET controls the corresponding function in the chassis. A tiny relay in each module cancels the remote-control information when the receiver is turned on and when the AccuMatic function is turned on. DC voltages, selected by the scanner switch, bias diodes on or off, to select low-band VHF, high-band VHF or UHF. Tuning of the four stages in the VHF tuner is by varactor diodes. Precision potentiometers supply the tuning voltage for each programmed channel. AFT voltage is added to the tuning voltage. A tuning meter is provided to indicate the approximate channel selected during the adjustment process.

a winding of the high-voltage transformer, the other end of which is connected to the trace SCR and diode. This voltage supply becomes more positive when there is more sweep and more high voltage.

Conduction of Q402 occurs when the base voltage, which is determined by the voltage divider consisting of R425, R426 and R427, becomes more positive than the fixed voltage of the emitter. Conduction of Q402 reduces the DC voltage at one end of the horizontal-hold control from the original +32 volts to slightly above +10. Such a drastic voltage change drives the oscillator so far off frequency that adjustment of the horizontalhold control cannot bring it back. Because the color receiver is out of horizontal lock and cannot be adjusted back, the customer will turn it off and will call a technician. There is no reset provision included in the design. When the

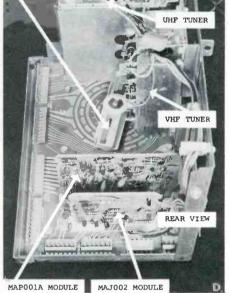
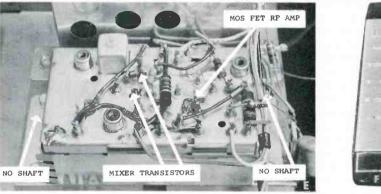
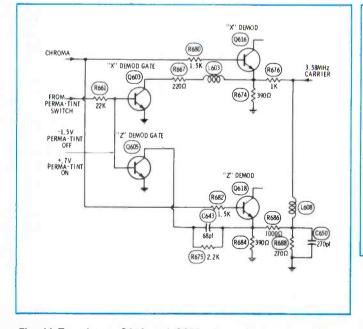
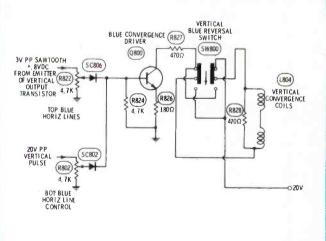
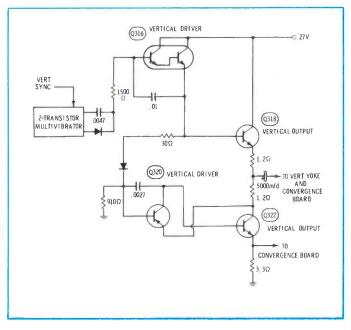

Fig 11 View of the top part of the frontpanel controls on the RCA CTC54 chassis.

Fig. 12 Side view of a display sample of the RCA CTC54 chassis showing locations of the major components in the remote-control and tuner system.

SCANNER WITH COVER REMOVED


Fig. 13 Closeup views of various parts of the tuner and remotecontrol system in the RCA CTC54 chassis. (A) Subchassis containing both tuners, the scanning switch (under the dust cover) and two plug-in modules of the motor-control circuit. (B) The MAP001A motor-control module removed from the chassis. (C) Small size of the motor is apparent in this comparison with a human hand. (D) Internal details of the scanner switch are shown with the dust cover removed. (E) No shafts or other moving components are used in the VHF tuner. (F) The tenfunction remote-control transmitter used with the RCA CTC54 chassis.

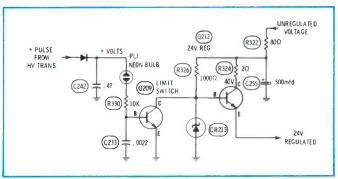


Fig. 14 Transistors Q603 and Q605, shown here, are used as switches in the Sylvania E01 color chassis, to add L603 and C643 to the circuit which determines the phase difference between the two demodulators.

Fig. 15 Three transistors are employed on the convergence board of the Sylvania D19 color chassis. They are amplifiers of the vertical convergence voltages. The schematic here shows the blue vertical convergence circuit. The amplitudes of the sawteeth and the pulse voltages are adjusted by R822 and R802, respectively. The combined signal is amplified by Q800 and is applied through a polarity reversing switch to the blue vertical convergence coil. Red and green convergence is accomplished in a similar way.

Fig. 16 No vertical-output transformer is used in the Sylvania D19 color chassis. A Darlington-type transistor, Q316, is the driver for Q318, the vertical-output transistor. Q320 is phase inverter and driver for the other vertical-output transistor, Q322. Output to the vertical coils of the deflection yoke is through a 5,000-mfd coupling capacitor. An unbypassed 3.3-ohm resistor, in the emitter circuit of Q322, supplies the small sawtooth voltage needed by the convergence circuit.

Fig. 17 Excessive high voltage and horizontal sweep in the Zenith 25CC55 color chassis activates a "limit switch" circuit which eliminates both video and sound. Thus, before the set can be operated service will be required to restore the high voltage to normal.

cause of the excessive high voltage is eliminated, the frequency of the oscillator will return to normal.

Varactor tuners with motor-driven presets

Both the VHF and UHF tuners in the RCA CTC54 chassis are tuned by varactor (variable-capacitance) diodes and the frequency bands are selected by switching diodes. These features are combined with motorized tuning, which can be operated from the console or by remote control. A block diagram of the tuners and the remote control is shown in Fig. 9.

The design of the remote receiver combines some of the features of the old types that used relays and motors to turn the shafts, and the CTC47 which had no motors or relays. One tiny motor, shown in Fig. 13C, is included in the CTC54, to rotate the scanning switch unit, and a small relay is included in each of the memory modules, to discharge the control capacitors when the AccuMatic functions are selected and each time the receiver is turned on.

A rear view of an RCA color receiver which uses the CTC54 chassis is shown in Fig. 10. Closeups of various features of the remote control and the tuners used with the CTC54 are shown in Figs. 11 through 13.

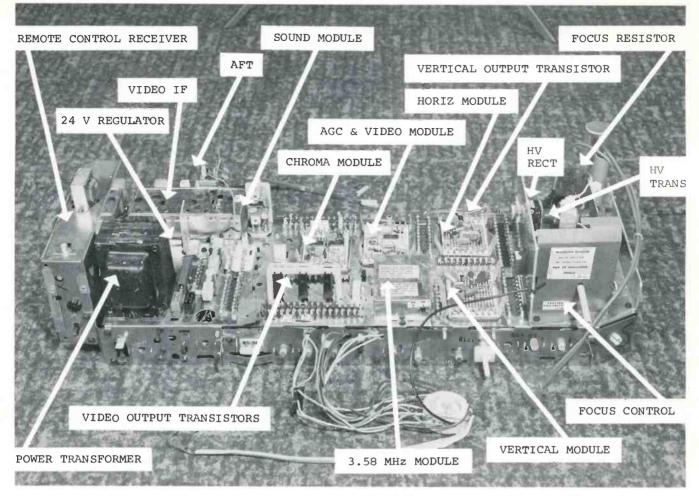
Sylvania

Transistor switches for perma-tint feature

Widening the phase angle between the X and Z demodulators in the all-solid-state Sylvania E01 chassis is accomplished by switching transistors, as shown in Fig. 14.

When a positive voltage from the Perma-Tint switch is applied to the base of Q603, the X demodulator gate transistor, it grounds phase-leading coil L603, and Q605, the Z demodulator gate transistor, which is also forwarded-biased by the positive voltage, grounds phase-lagging capacitor C643.

Transistors help convergence


Three transistors are used on

the convergence board of the Sylvania D19 chassis. This is another color TV chassis which does not have a vertical-output transformer. Sawtooth voltages for "amplitude" convergence correction are obtained from across a low-value resistor between the emitter of the verticaloutput transistor and ground. The same pulses that are found across the vertical coils of the yoke are used for "tilt" correction.

These sawtooth and pulse voltages are varied by potentiometers, to obtain the needed amplitudes, and then are applied, through diodes used for waveshaping and isolation, to the base of the transistors, as shown in the diagram of the blue vertical circuit in Fig. 15. A reversing switch is used also in the blue channel, for those receivers which might require correction voltage of opposite polarity.

Transformerless vertical sweep

As stated previously, no output transformer is used in the vertical-output stage of the Sylvania D19 color chassis; instead, it is

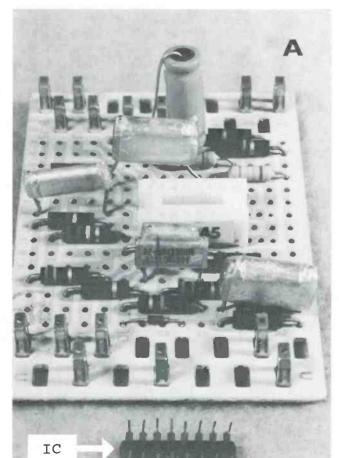
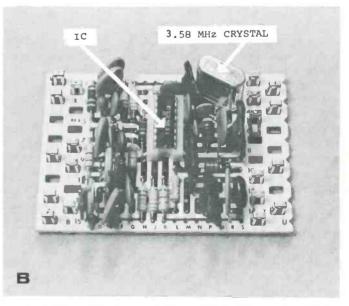
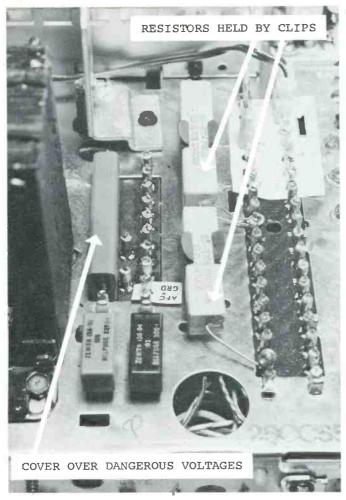
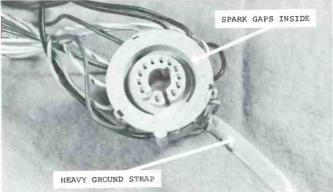


Fig. 18 Shown are the locations of the Duramodules and other major parts on the Zenith 25CC55 color receiver chassis.

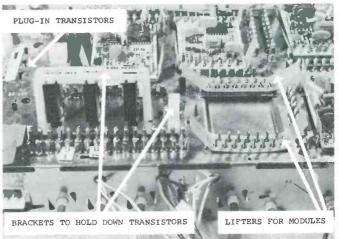

Fig. 19 Two of the Duramodules used in the Zenith 25CC55 color chassis. (A) One IC is used on the video and AGC module. (B) One plug-in IC is the only solid-state device used on the 3.58-MHz carrier module.

Fig. 20 Large resistors held by spring clips and an insulating cover over terminals having dangerous voltages are two safety and serviceability features of the Zenith 25CC55 color chassis.

Fig. 21 Spark gaps are often included in the CRT sockets of new TV's. This Zenith socket has a large, insulated, flat-ribbon ground strap.

Fig. 22 The larger transistors on the Zenith 25CC55 color chassis are held in their sockets by plastic hold-down brackets. Plastic strips are installed under the terminals at each end of the modules. Lifting up on the plastic strips safely removes the modules.

equipped with a circuit similar to that used in the output stages of many stereo amplifiers. Such a circuit makes a transformer unnecessary.

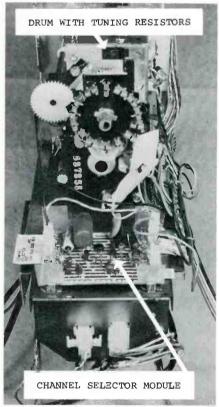
As shown in Fig. 16, a twotransistor vertical multivibrator supplies Q316, the vertical driver (a Darlington dual-transistor type), which, in turn, drives the vertical-output transistor Q318. A phase inverter, Q320, inverts the phase of the signal 180 degrees before it is applied to the base of the other output transistor, Q322. The 3.3-ohm resistor in the emitter circuit of Q322 provides stabilization and, also, a 3-volt PP sawtooth voltage, for the convergence circuit.

Zenith

Limit switch protects against excessive high voltage

Excessive sweep and high volt-

age triggers into conduction transistor Q209, called a "Limit Switch". Conduction of Q209 reduces the 24-volt supply to near zero and eliminates both sound and picture, which, hopefully, will prompt the set owner to call a technician.


The circuit, shown in Fig. 17, functions in the following manner: A pulse voltage from one of the windings of the high-voltage transformer is rectified by a peakreading rectifier circuit consisting of diode CR210, and capacitor C242. A voltage exists at the junction of these two components during normal operation, but it is not sufficient to trigger the neon bulb. The higher voltage produced by abnormal operation ionizes the neon bulb, NL1, which conducts and passes positive voltage to R330 and the base of Q209. The positive voltage at the base of Q209 causes conduction of sufficient current through the collector circuit of this transistor to reduce the voltage at the base of Q212, the 24-volt regulator. This, in turn, reverse biases Q212, reducing the voltage supplied by the 24-volt supply, so that the picture and the sound both are eliminated.

If the excessive high voltage exists for only a short time, the set should be switched off for a few seconds and then can be switched back on. During the short time the set is switched off, the neon bulb de-ionizes and normal operation is restored.

Two factors prevent this protective circuit from interfering with normal operation: 1) the neon bulb is an open circuit until it is ionized, and 2) the zener diode, CR213, attempts to maintain the nominal 24 volts at the base of Q212 until the current through it drops below its ava-

Fig. 23 The front of the varactor tuning assembly has a conventional-appearing drum. However, the drum is not connected to the tuner. The tuning meter reads the tuning voltage, to estimate the channel in use during the setup procedure.

Fig. 24 This rear view of the tuner assembly shows the box containing the precision tuning resistors, and the channel-selector module.

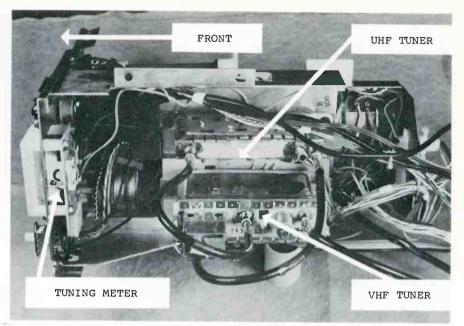


Fig. 25 Both tuners are mounted on the bottom side of the tuning assembly. There are no shafts or other moving parts on the tuners.

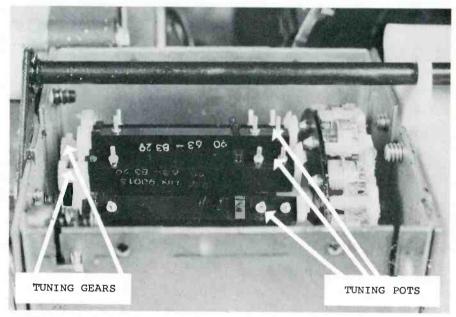


Fig. 26 The dust cover is removed here, to show the precision tuning potentiometers, which resemble the coil strips in some other tuners.

lanche point, at which time the voltage drops rapidly, because the zener action is lost.

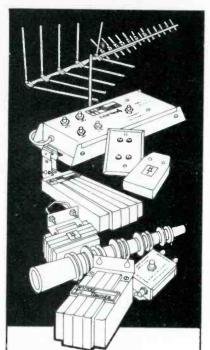
An easy test for any of these chassis which exhibit a trouble symptom of no picture and no sound, is to look at the neon bulb. If it is lighted, the limit-switch protective circuit is operating, to protect against excessive high voltage and the excessive radiation.

Varactor tuner

The Zenith 25CC55 is an allsolid-state color TV chassis which is the successor to the 40BC50 that didn't quite get off the launching pad last year. Many features of the varactor tuner were given in an article which begins on page 63 of the February, 1971 issue of ELECTRONIC SERVICING. For details about the tuner, please refer to that article.

The locations of the modules and major parts on the Zenith 25CC55 chassis are shown in Fig. 18. Pictures of various features of the chassis and the varactor tuners are shown in Figs. 19 through 26.

Jow The Photofact-of-the-Month Club


BUILD YOUR OWN UP-TO-THE-MINUTE SERVICE DATA LIBRARY

HERE'S HOW IT WORKS:

- Each month a sturdy, sealed P.O.M. carton will be delivered to you by your local Photofact distributor.
- This P.O.M. carton contains 6 Photofact sets in handy, ready-tofile folders. These 6 sets include the latest and most reliable service data on at least 50 new chassis—color TV receivers, black and white TV receivers, AM and FM radios, hi-fi's, stereos and record changers.
- Your P.O.M. carton also contains a bonus package of Advance Schematics – preliminary schematics on the very latest color, black and white chassis to fill your immediate servicing needs. (At a later date you'll receive a complete Photofact set on each of these)
- You will also receive a monthly service bulletin, *Photofact Servicer* offering inside troubleshooting advice and timely additional information.
- And, as a special feature, each P.O.M. carton contains 6 valuable certificates which you can save and redeem for a free metal file cabinet. (One-drawer model is free with 60 certificates – Fourdrawer model requires only 144 certificates and \$21.95)

The special advantage of subscription membership in the P.O.M. Club is measured in dollars and cents! You save \$54.00 each year over the individually purchased set price (regular price per set is \$3.00). Members receive this entire service package each month for just \$13.50 per month! Can you afford not to take advantage of this tremendous savings on the complete service data so vitally important in your industry?

From Antennas to Wall Outlets KAY-TOWNES Makes Everything!

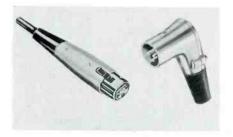
One supplier, one distributor can give you a complete line of high quality systems and components for better TV pictures and brighter sales pictures!

You can sell a complete line of

- All-Channel TV and FM Antennas
- Area Special Antennas for your location
- Hi-Carbon Golden Masts... telescoping or straight lengths
- Distribution Amplifiers and Systems
- Antenna Mounted Amplifiers and Couplers
- All related equipment including: Splitters, Couplers, Mixers, Wall-Taps and Drop-Taps.

Every Kay-Townes product is field tested, performance proved... and designed and manufactured in the U.S.A.

Circle 28 on literature card 50 ELECTRONIC SERVICING/January, 1972


audio systems pepopt

Audio Connectors

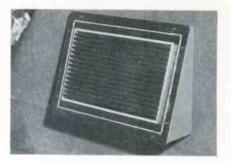
Two new audio connectors which accept cables with outside diameters of ¹/₄ inch and larger have been introduced by Switchcraft, Inc.

Two straight and two right-angle connectors (two male, and two female) reportedly have been designed to accept cables with outside diameters from .250 to .328-inches, providing strain relief for reduced wear at the cable entry point.

Two machine screws and two pressure plates immobilize the cable,

preventing pulling and twisting actions from being transmitted to the terminals, according to the manufacturer.

The new audio connectors reportedly offer: 100-percent grounding/shielding through the connector; a provision for additional circuit through the ground contactor; and a "captive-design" insert screw.


Prices for the audio connectors start at \$2.25.

Circle 60 on literature card

Auto Hi-Fi Speaker

A quick-mount high-fidelity speaker designed for automobile sound systems has been introduced by the Magitran Company.

The new Model A500 Poly-Planar speaker features a "super-thin" design characteristic which reportedly requires only ⁷/₈-inch mounting depth, making it ideal for custom flush mounting in the car ceiling, kick-panel or rear of seat and door. Brackets are provided which reportedly require no cutout of the mounting surface; the brackets themselves form a natural sound

chamber for richer tone, according to the manufacturer.

The Poly-Planar has a powerhandling capability of 5 watts, with a frequency response from 60 Hz to 20 KHz. The overall grille size is 6 inches X 10 inches.

Price is \$11.00.

Circle 61 on literature card

Attache Case Public-Address System

The Diplomat II, an Ampli-Vox battery-operated public-address system in an attache case, is now produced by Chamberlain Manufacturing Corp.

Designed for indoor/outdoor public-address systems, the Diplomat II reportedly covers groups of up to 500 people. The 40-watt (peak), all-transistor amplifier can be removed from its case, to serve as a microphone stand for table or lectern use. Removing the amplifier from the case enables the user to

place the loud-speaker farther from the microphone, reducing the possibility of feedback problems according to the manufacturer.

The Diplomat II reportedly can be used with extra speakers, tape recorders, radios, phonographs, and audience participation kits.

Diplomat II weighs 16¹/₂ lbs. and sells for \$139.95.

Circle 62 on literature card

Universal Tape Player Motor

A universal AC hysteresis synchronous motor, for use in tape players such as Pioneer, Toshiba, Columbia of Japan, Mecca, Bettex and Motorola Stellarsonic, has been introduced by Weltron.

Designated the 70-911, the single-phase motor reportedly can be operated on AC voltages from 107 to 127 volts or 90 to 110 volts. The 70-911 sells for \$15.42. ▲

Circle 63 on literature card

GET COMPLETE DETAILS

about the products advertised or described in this issue.

Use Free Reader Service Card.

Be sure to include your name and address

bookpeview

RCA Receiving Tube Manual

(Technical Series RC-28) Author: RCA Commercial Engineering Staff

- Publisher: RCA Electronic Components, Harrison, N.J.
- Size: 5¼ inches x 8 inches, 784 pages

Price: Softcover, \$2.50.

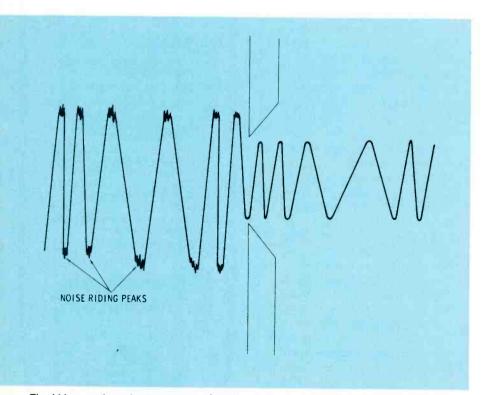
This completely revised and updated edition covers over 1600 tube types, including, for the first time, technical data on over 190 RCA industrial receiving tubes. Also included are data for more than 75 new RCA entertainment-type receiving tubes. Data about RCA black-and-white and color TV picture tubes are presented in chart form.

A thoroughly cross-referenced listing of multibranded types simplifies data access and an alphabetic listing of imported types shows the RCA domestic equivalent type for replacement purposes.

In addition to descriptive data about specific tube types, this manual also contains general information about the characteristics, construction, applications and testing of generic types. Contents: Electrons, Electrodes, and Electron Tubes -Electron Tube Characteristics - Electron Tube Applications-Electron Tube Installation - Safety Precautions-Interpretation of Tube Date-Electron Tube Testing-Application Guide For RCA Receiving Tubes-Technical Data For RCA Tube Types-RCA Types For Replacement Use-Terminal Diagrams For RCA Replacement And Discontinued Types-Picture Tube Characteristics Chart-Terminal Diagrams For RCA Picture Tubes-Resistance-Coupled Amplifiers-Circuits-Outlines-Index

Circle 29 on literature card 🛶

by Joseph J. Carr/ES Auto Electronics Editor


Auto FM – peculiar characteristics and troubles which affect operation and servicing

■ FM and Stereo FM are current hot movers in the automobile radio field. All car manufacturers as well as both foreign and domestic radio manufacturers have offerings that range from deluxe AM/FM/Stereo FM radio/tape combos down to low-cost FM-to-AM converters that mount beneath the dash board.

One headache that all of this activity has generated for technicians is the sometimes optimistic expectations of both customers and salesmen. There is no doubt that FM is, in many ways, superior to AM in automotive use. There are, however, certain peculiarities about FM of which the service technician must be aware so that he can accurately determine whether or not a problem really exists in any given system.

Noise Rejection

One claim frequently made by advertising and sales people is that FM is noise free. Without some qualification, this claim

Fig. 1 Man-made and natural types of static amplitude-modulate both AM and FM signals, as shown here. The limiter stage employed before the detector in most FM receivers effectively cuts off such noise peaks, provided the receiver signal strength is sufficient to produce adequate limiting action.

cannot be considered true. The truth is that FM is more free of noise than AM, but only under certain specific conditions can it be considered virtually noise free. It definitely is not true that the customer will never be bothered by noise. The FM receiver's limiter circuit is the key to this phenomena.

Fig. 1 illustrates graphically how an FM receiver reduces or eliminates noises. Notice that when a strong signal is passed through the limiter stage, it's amplitude peaks are clipped. Because most man-made and natural types of static amplitudemodulate the signal (true FM noise exists, but it is rare), it is removed along with the signal peaks. Under such conditions, during which the signal is subject to maximum limiting, little or no noise will get through to the detector.

Fig. 2 illustrates a situation in which noise will get through. Suppose the receiver is tuned to either a very low-power or distant station the signal of which is incapable of producing a strong signal across the antenna input terminals of the receiver. If the received signal is below the limit sensitivity of the particular receiver, the limiter circuit will have no effect. (A practical measure of limit sensitivity is the minimum signal strength, applied to the antenna terminals, which is necessary to begin clipping. It is usually stated as the signal strength, expressed in microvolts, required to produce a specific level or limiting, depressed

LIMIT SENSITIVITY

Fig. 2 Externally generated noise, such as static caused by lightning, can get through the limiter of the FM receiver if the received signal is too weak to produce adequate limiting. The minimum signal strength required to produce adequate limiting action is called "limit sensitivity". See text for a more detailed explanation.

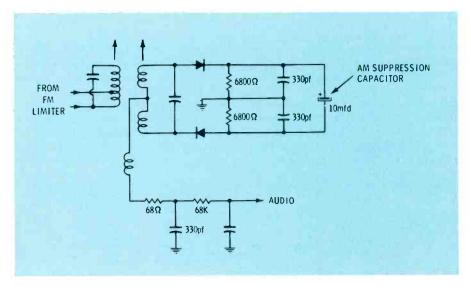
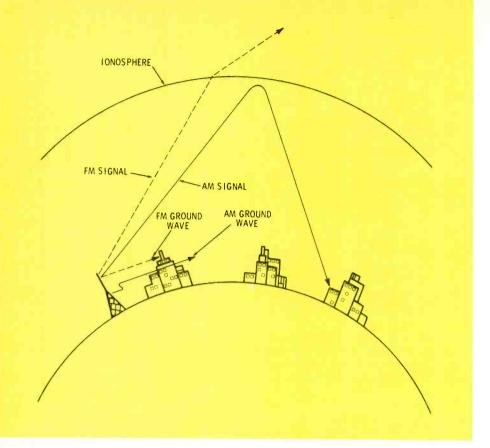


Fig. 3 Some FM receivers employ other noise-suppressing circuitry in addition to the limiter stage. For example, the ratio detector circuit shown here is equipped with a 10-mfd capacitor, to suppress, or filter out, noise impressed on the signal by amplitude modulation.

FM station located in a city some forty odd miles distant, if he would buy the FM Stereo car radio offered by that particular dealership. The fellow naturally was upset when he discovered that his super, two-hundred-dollar receiver simply was incapable of giving him "local" performance on signals received from a distance of forty miles.

The reliable range of most FM car radios is about twenty to thirty miles on monaural stations

and fifteen to twenty-five miles on stereo. One reason advanced to explain this difference is that the 19-KHz pilot and L-R encoded stereo signals modulate the FM transmitter only 10 percent each. Also, these "extra" signals associated with stereo FM do not have de-emphasis.


Mono FM reception is limited to such a relatively short distance because the VHF frequency spectrum used by FM is limited to "line of sight". At lower fre-

in dB.) When a signal is tuned in and has a strength less than this critical value, the limiter will simply fail to act or will function as another stage of IF amplification. Those noisy signal peaks will pass through the detector to the audio amplifiers.

Even when inadequate or no limiting occurs, the noise produced by an FM receiver may be less severe than that produced by an AM receiver. This is attributable to several factors which aid in reducing any noise which gets by the limiter. One such factor is the 75 microsecond deemphasis network, which usually connected between the detector and the audio amplifiers. This network acts on high audio frequencies in much the same manner as the scratch filters in phonograph amplifiers. Another factor is that the detector is more sensitive to frequency variations than to amplitude variations. Certain types of detectors have their own built-in AM suppression. The well-known ratio detector, for example, employs a relatively large-value capacitor for this purpose (see Fig. 3). Many receivers do not employ a limiter stage if such a detector is in use. Most of the better receivers, however, employ a limiter regardless of whether or not the detector is equipped for AM suppression. The Delco quadrature detector is a case where an IC is used to provide an exceptional degree of limiting even though the quadrature-type detector is considered to have a good degree of AM suppression.

Sensitivity

Inability of an FM receiver to receive distant signals is a problem that pops up on a regular basis in many car-radio shops. One of the author's recent customers, for example, had been told that he could easily listen to a favorite classical-music stereo-

Fig. 4 The distances over which AM and FM signals typically can be received with adequate signal strength is dependent, in part, on the effects of the ionosphere on the frequencies at which they are transmitted. The degree of refraction imposed on the relatively lower frequencies at which AM signals are broadcasted is sufficient to bend them back toward earth, as illustrated here. However, the relatively higher frequencies (VHF) at which FM signals are broadcasted are not refracted a sufficient amount to bend them back to earth. Consequently, only the "ground waves" propagated by the FM transmitting antenna are useful for transmitting from one point on the surface of the earth to another point on the surface.

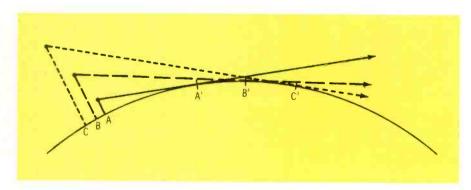


Fig. 5 How increasing the height of the transmitting (or receiving, or both) antenna increases the "line of sight" of the radio.

quencies, such as those occupied by the AM broadcast band, the ionosphere will bend the radiofrequency wave enough to reflect it back to earth some distance from the transmitter. VHF waves undergo the same type of refraction in the ionosphere as do the lower frequencies, but the degree of refraction is insufficient to reflect them back to earth. These waves, instead, travel on out into space. In the VHF spectrum, only the groundwave is useful for broadcasting. Fig. 4 illustrates these characteristics.

Because the useful propagation of FM signals is limited to the groundwave, the horizon effectively is the greatest distance that FM signals will travel. This is line-of-sight propagation, although the term itself is a little misleading. All of us know of stations beyond the line of sight which are audible on a relatively regular basis. Line of sight doesn't necessarily mean line of optical sight but line of radio sight. Fig. 5 illustrates how VHF signals frequently can be received at distances greater than actual line of sight. It is a function of antenna height. If the receiver and the transmitter antenna both are above ground level, then the actual distance that can be covered will be much greater than if one or both were lower. A rule of thumb is that if the antenna can "see" each other, good reception is possible.

Because most automobile antennas are close to ground level. reception of FM signals by a radio in an automobile requires a higher antenna at the transmitting station. Customers who have both an excellent home Stereo FM setup and a Stereo FM car radio often ask why the car radio is less sensitive than the home radio. Their home FM antenna probably is an elaborate, highgain unit mounted 50 feet in the air while the car radio must depend on that little guarter-wavelength whip antenna just a few feet off the ground. Very few people care to have a super-highgain FM array attached to their car via a fifty foot crank-up tower. (Don't laugh, I installed such an array on a customer's Dodge mobile home.)

A fair improvement in auto radio performance can be realized if the whip is tuned somewhere close to resonance. Fig. 6 shows a typical car radio antenna set to 32 inches, the optimum antenna length for the middle of the FM broadcast band. Some customers pull the telescoping antenna out to its full length. Although it works best that way on AM, the best overall performance on FM will be when the antenna length is approximately 32 inches. Optimizing for one extreme of the FM band is all right, if the user wishes to listen to a weak station in that range; the antenna should be slightly shortened for high-end reception and slightly lengthened for low-end reception. In any event, do not extend it too far from the limits of 30 to 34 inches.

Fading

One of the most popular claims for FM is that it will not fade in tunnels and in the downtown sections of large cities. The fact is that FM will fade as bad as AM. if the tunnel is long enough. The FM radio, however, usually will continue to play for a considerable distance after the AM radio has faded away. The downtown areas of big cities can disrupt any kind of radio or TV reception. TV technicians, for example, are only too familiar with dead zones and multipath reception, both of which are common in urban areas. (Multipath is a prime cause of ghosting in TV reception.)

A dead zone is an area where little or no signal exists. It can be caused by either multipath cancellation or by a phenomena known as "shadowing". One type of shadowing is shown in Fig. 7. If an omnidirectional transmitting antenna were located at point X, the radio waves would travel outward from point X in everexpanding, concentric circles. The longer waves in the AM broadcast band can bend around obstructions. The short any waves of the FM band, however, cannot. An obstruction, such as a tall building, therefore, would create a shadow zone for the FM signal. The shadow zone will be on the side of the building that is opposite the radio station. There can exist thousands of such zones in any downtown area.

Unfortunately, shadow zones tend to increase as the angle between the receiving and the transmitting antennas is reduced. This is similar to the effect of the setting sun on your own shadow. With the sun directly over head at noontime, there is little or no shadow. However, as the sun sets, your shadow tends to become both deeper and longer. Likewise, in a radio system, the shadow zones will become more severe as the distance between the transmitting and receiving antennas increases or the antenna heights decrease.

Multipath reception is illustrated in Fig. 8. It occurs when a signal bounces off an obstruction, such as a building or water tower, and arrives at the receiver antenna a few microseconds later than the direct signal. Because this late-arriving signal is out of phase with the direct signal, there is at least partial cancellation of both signals, and the listener hears a "fffft fffft fffft" sound as the car moves from one multipath zone to another. The audible symptom is very similar to the "picket fencing" caused by defects in the automatic frequency control (AFC) circuit. When such a symptom is encountered, the technician should satisfy himself that the AFC is operating properly before assuming that the symptom is caused by multipath.

Multipath conditions occur most often in cities and in builtup suburban areas, in which there exist tall structures off which VHF signals readily "bounce". Although this bouncing does give FM the edge over AM in downtown areas, it also leads to the intermittent operation described previously. The author knows of one main artery into a big eastern city which has so much multipath that FM is useless. An irate owner who just picked up his very first FM stereo car radio will find such conditions difficult to understand and accept.

Although most multipath and shadow zones are in what some people call over-civilized areas, it isn't unusual to encounter them in open countryside. The obstruction that causes either a "bounce" or a "shadow" can be located many miles from where the reflected and direct signals recombine at a receiver. Either type of zone can be located anywhere and might be only a few inches across. Police and other experienced users of VHF FM are familiar with these problems. On several occasions when local police responded to alarms at a bank near the shop, I have heard the officers ask for a radio check while they moved the patrol car a few feet to a more desirable radio zone. Apparently, a zone which is "dead" for VHF FM reception exists in the area of the parking lot of the bank. It is amazing how much difference a few feet can make.

Problems Caused by Weak Signals

A symptom which is sometimes called "popping" is frequently mistaken for picket-fencing or multipath reception. It occurs when a signal is very weak, well

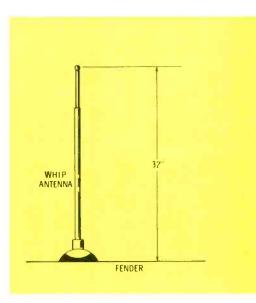
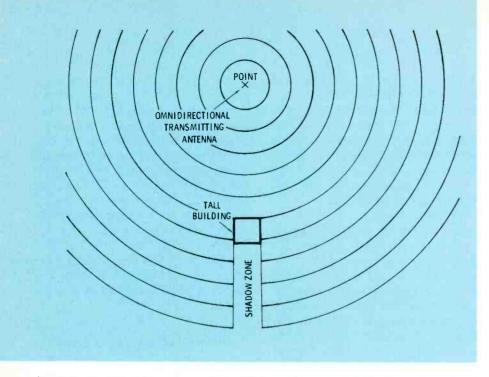



Fig. 6 For acceptable reception throughout the FM band, the auto whip antenna should be extended to about 32 inches. If the customer desires to receive a station or stations at the low end of the band, the antenna should be lengthened to about 34 to 35 inches; however, it should be remembered that "tuning" the antenna to either extreme of the band probably will compromise the signal strength at the middle and other extreme of the band. Improved reception on the high-end of the band can usually be achieved by decreasing the length of the whip, but, again, at the expense of the mid and low-band signals.

Fig. 7 The inability of the relatively short FM waves to bend around obstacles causes "shadow zones" in the propagation pattern of an FM transmitting antenna. Such zones of weak or missing signals are common in urban areas.

below the receiver's limit sensitivity, and noise bursts overpower the RF and IF amplifiers of the radio and get through to the detector. These noise bursts can unbalance the detector for a brief instant. Sometimes, however, the noise bursts last long enough to cause the AFC to lose its hold on the oscillator frequency. When the detector is once again in a balanced state, the AFC control voltage returns to zero and the capacitance of the varactor AFC diode returns to normal. When this chain of events occurs, the station will seem to drop out, then return with a popping sound as the AFC-local oscillator loop restabilizes.

One cure for this complaint is to instruct the user in the realities of FM reception. A technician of the author's acquaintance who lives in a fringe zone in which FM is almost unusable without massive outdoor antennas, sometimes increases the time constant of the AFC circuit in FM auto radios so that the station will not drop out on shorter noise bursts. This makes FM only a little more usable in that area. It also can cause the AFC circuit action to be too slow in strongsignal areas. For example, my

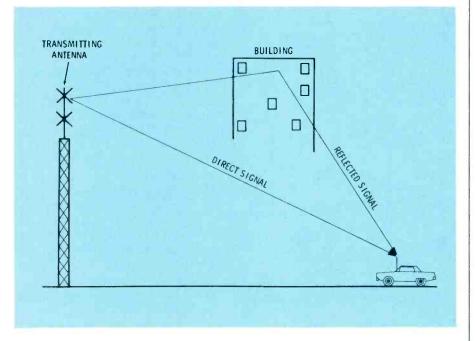
favorite FM station is at 105.9 MHz and is located some thirty miles away. Unfortunately there is a 50,000-watt station less than a mile from me which transmits on 105.1 MHz. I find that frequent and critical retuning is the only way to keep my little underdash FM radio on station.

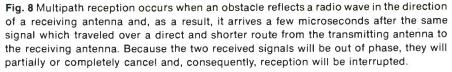
A situation like that just described can lead to the erroneous replacement of a receiver's AFC diode. When a customer complains that his receiver shifts station without even being touched, most technicians logically will conclude that the AFC diode is defective. Unless you are aware that the customer regularly attempts to listen to a distant station which is co-channel to a strong local one, you may inadvertently replace a good AFC diode when the real cause is weak-signal popping combined with a little co-channel capture effect.

There is, however, hope for improved reception of weak FM signals. That hope lies in the promise of great things from the Dolby noise-reduction system, which already is popular in some tape recording equipment. Experiments have been carried out using the Dolby type B system for FM broadcasts. Engineers have claimed as much as 10-dB reduction in noise levels. This should substantially increase the usable range of FM and stereo FM stations. One interesting claim by certain authorities is that the audio response curve of a "Dolbyized" FM transmitter is well within the limits established by the FCC and it is compatible with existing non-Dolbyized FM receivers. These are two requirements which the system will have to meet before the FCC gives its approval.

At present, however, weak signals can cause problems, particularly when a customer does not understand the limitations of FM and stereo FM. One common weak-signal complaint is "a flickering stereo-indicator lamp". If the signal strength of a distant station is rising and falling alternately above and below the stereo threshold level of a particular receiver, it will alternately turn on and turn off the stereo decoder section (along with the lamp). If you know the difference between what mono sounds like and what stereo should sound like, you can imagine just how weird it sounds when the radio shifts from mono to stereo every few seconds. The only effective cure for this "roller coaster" effect seems to be tuning in a more powerful station. If the set is equipped with a stereodefeat or mono/stereo switch, it might be better to switch to mono reception. Quite often, a signal which is strong enough to produce acceptable mono will produce only "roller coaster" stereo.

The FM antenna also can cause flickering of the stereo-indicator lamp and alternate mono stereo reception. If the center conductor of the coaxial antenna feedline opens, AM reception will be lost completely. The small capacitance which exists between the two broken ends, however, is enough to pass some of the VHF FM energy on to the receiver. It generally will be weaker than a normal signal but it will be able to produce good monaural FM reception. If the connection is intermittent, the stereo lamp will flicker on and off as the connection makes and breaks.


Antenna Directivity


Antenna directivity is another little quirk which occasionally will pop up to harass the hardworking car radio technician. Although it is easy to see how windshield-type antennas can exhibit directional characteristics, it is not so easy to see how the standard whip can.

Vertical antennas work best with a good counterpoise ground, or groundplane. On a car, they tend to favor the direction of the greatest amount of car body; an antenna mounted on the right front fender will favor signals arriving from across the left rear fender. This major lobe is much more noticeable on FM because the antenna is close to being in resonance. On AM, the effect is reduced because the whip then becomes a compensation antenna considerably less than a quarter wavelength long. Unless you find a car with a two or three hundred foot whip on it, you will not have to worry about this occurring on AM.

Inattention to Operating Controls

A rather hilarious problem on some FM sets is a complaint of poor FM reception when it is due to a sensitivity switch being placed in the less sensitive position. Many of the Motorola produced sets (they called their sensitivity switch an "acoustinator" several years ago), many of the Beckers and Blaupunkts as well as numerous Japanese imports use such a switch. If the customer has not bothered to read his instruction manual or if a careless installer failed to leave it for him, he might not be aware of the switch's function, or, for that matter, its very existence. These switches usually insert either a resistor or small RF choke in series with the antenna lead when placed in the less sensitive, or "town", position. Some of them, however, approach the problem in a different manner. Those radios have a sensitivity switch in the RF AGC network. In any event, the sensitivity switch causes a lot of false troubles.

"STAR-TRACK"™ the most Advanced Space-Age VHF/UHF/FM Color Antennas ever introduced!

New Messenger 323-M

Hottest CB idea since 23-channel operation! DRC lets operator work one channel while automatically monitoring another. 2 monitor channels are switch selectable. Indicator light flashes when call is received on monitored channel. Mode switch selects indicator light only or automatic switching to monitor channel audio. Separate squelch circuits, too.

You're going to hear more from... JOHNSON ® Waseca, Minnesota 56093

Circle 31 on literature card

for further information on any of the following items, circle the associated number on the reader service card.

Coaxial-Cable Stripper

A thermal stripper for use on coaxial and other cables, and reportedly for use in slitting as well as circumference-cutting of all types of cables up to 5/8 inch diameter, has been announced by Jensen Tools and Alloys.

A special fixture at the end of the stripper has two slots into which the cable is positioned. One of these slots provides circumference cutting. The other reportedly provides slitting action.

Any type of cable insulation may be stripped, including **Teflon**, **KAP**-**TON**, **KEL-F**, and a complete range of low-temperature cable coverings, according to the manufacturer.

Two models are offered. One, Model TW-6, has a reported fixed temperature of 1700-degrees F, for use on high-temperature insulations only. The other, Model TWC-6, reportedly features a solid-state temperature control adjustable from 100 degrees to 1700 degrees F.

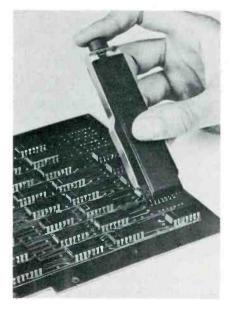
The basic TW-6 is priced at \$69.96. The TWC-6 model, with temperature control, is priced at \$99.95.

Circle 70 on literature card

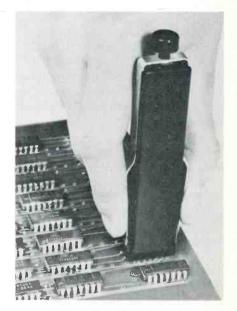
Color CRT Isolation/Booster

Perma-Power has made available two Color TV Tube Briteners which reportedly offer isolation to correct the effects of cathode/ heater shorts and a slide switch to provide a higher heater voltage for boosting brightness.

Model C-503 reportedly is for the 70-degree round color picture tubes, and Model C-513 is for the 90-degree rectangular color tubes. Price of either the Model C-503


or the Model C-513 is \$7.75.

Circle 71 on literature card


Slide-Grip Clip For IC Removal

A new slide-grip clip designed for inserting and extracting integrated circuits from printed-circuit boards has been introduced by the Solder Removal Co.

To insert an IC, the Pul-N-Sertic tool is loaded into the machined jaws of the tool, the lead pins on one side are lined up visually with circuit board holes and all pins are inserted simultaneously by rolling the tool. Pushing a button on top of the tool releases the component, according to the manufacturer.

To extract an IC, the tool reportedly is positioned over the component to be removed and the stainless steel spring removal clip is lowered until the clip jaws are under the IC base. Squeezing the clip securely grips the component. Lifting the tool pulls the IC free; pressing the top button ejects it from the tool.

The No. 885 Pul-N-Sertic sells for \$15.95.

Circle 72 on literature card

Replacement Picture Tubes

The new HI-LITE color television picture tubes and two Silverama type black-and-white replacement picture tubes have been introduced by RCA Distributor Products.

The two color picture tube types are the H-19VBQP22 and H-20-VAHP22. Both types reportedly are 90-degree, RIM band, Einzel gun tubes. The H-19VBQP22 is a **MA-TRIX** tube while the H-20VAHP22 has a standard color screen, according to the manufacturer.

The two black-and-white television picture tubes are the 12-VAGP4 and the 23FNP4. The 12VAGP4 reportedly is a direct replacement for the 310FCB4. The 12VAGP4 features a T-band imploshion protection system and has a high G2 and narrow neck design, reports the manufacturer.

H-19VBQP22 types sell for \$178.00 each; H-20VAHP22 types sell for \$190.00 each; 12VAGP4 types sell for \$46.20 each; and 23FNP4 types sell for \$63.75 each. *Circle 73 on literature card*

ANTENNAS

- 100. Vikoa, Inc. is making available a 64-page, illustrated catalog covering their line of wire and cables and IDS-MATV equipment. Hardware, accessories, connectors and fittings and an index also are included.
- 101. Jerrold Electronics Corp.— Catalog S, titled "Systems and Products for TV Distribution," lists specifications of this manufacturer's complete line of antenna distribution products, including antennas and accessories, head-end equipment, distribution equipment and components, and installation aids."

COMPONENTS

- 102. Precision Tuner Service announces a new tuner parts catalog, including a cross reference list of antenna coils and shafts for all makes of tuners.*
- 103. Sylvania Electric Products, Inc. — a 73-page guide which provides replacement considerations, specifications and drawings of Sylvania semiconductor devices plus a listing of over 35,000 JEDEC types and manufacturers' part numbers, Copies are \$1.00.*
- 104. Workman Electronic Products, Inc.—has released a 32-page, pocket-size cross reference listing for color TV controls. 105 Workman part numbers are listed in numerical order with specifications and illustrations of the part.
- 105. GTE Sylvania, Inc. has published an interchangeability guide listing 191

commonly used color TV picture tubes which can be replaced with 19 GTE Sylvania Color Bright 85[®] types.*

TV ACCESSORIES

106. Telematic — introduces a 14-page catalog featuring CRT brighteners and reference charts, a complete line of test jig accessories and a cross reference of color set manufacturers to Telematic Adapters and convergence loads.*

TECHNICAL PUBLICATIONS

- 107. Howard W. Sams & Co., Inc. — literature describes popular and informative publications on radio and television servicing, communications, audio, hi-fi industrial electronics, including their 1971 catalog of technical books about every phase of electronics.*
- 108. Sylvania Electric Products, Inc., Sylvania Electronic Components Div. — has published the 14th edition of their technical manual, which includes mechanical and electrical ratings for receiving tubes, television picture tubes and solidstate devices. Price of this manual is \$1.90.*
- 109. Tab Books has released their Spring, 1971 catalog describing over 170 current and forthcoming books. The 20-page catalog covers: schematic/servicing manuals, broadcasting; basic technology; CATV; electric motors; electronic engineering; computer technology; reference; television, radio and electronics servicing; audio and hi-fi stereo; hobby and experiment; amateur radio; test instruments; appliance repair, and transistor technology.

TEST EQUIPMENT

110. Dynascan Corp. — announces a new 24-page 2color catalog of B&K Precision Test Equipment. A total of 21 instruments are reportedly presented; from a Mutual Conductance Tube Tester to a new DC to 10 MHz Triggered Sweep Oscilloscope. *

- 111. Eico has released a 32page, 1971 catalog which features 12 new products in their test equipment line, plus a 7-page listing of authorized Eico dealers.*
- 112. Lectrotech, Inc. announces the 1972 catalog, "Precision Test Instruments for the Professional Technician". It contains specifications and prices on sweep marker generators, oscilloscopes, vectorscopes, color bar generators and other test equipment.*
- 113. Mercury Electronics Corp. —14-page catalog provides technical specifications and prices of this manufacturers' line of Mercury and Jackson test equipment, self-service tube testers, testers, test equipment kits and indoor TV antennas.
- 114. Tektronix, Inc. has announced a 4-page brochure describing the 54 Series oscilloscope manufactured by Tektronix English subsidiary, Telequipment.

TOOLS

- 115. Chapman Manufacturing Co. — offers a pamphlet containing their line of tools and tool kits. Kit No. 6320, the Midget Ratchet is featured along with other available tool kits.
- 116. Jensen Tools and Alloys has announced a new catalog No. 470, "Tools for Electronic Assembly and Precision Mechanics." The 72-page handbook-size catalog contains over 1,700 individually available items.
- 117. Xcelite, Inc. Bulletin N770 describes this company's three new socket wrench and ratchet screwdriver sets.
- *Check "Index to Advertisers" for additional information.

Index of 1971 content

The following code system is used to indicate department coverage of a subject: ASR, Antenna Systems Report; AUD, Audio Systems Report; CE, Carr Electronics; ES, Electronic Scanner; LE, Letters to the Editor; PR, Product Report; SB, Service Bulletin; ST, Shop Talk; SYM, Symcure; TER, Test Equipment Report; TS, Troubleshooter.

"Antenna Mate"..... ASR Oct 32

AGC

Overload with missing color, Zenith 12B14C50 SYM Dec 8

- Setting critical, Westinghouse
 - V2655 SYM Jan 47

 - -signal at video detector . . TS Apr 60 -troubleshooting keyer,
 - type AGC..... TS Apr 62 -voltages at detector, IF, RF
 - and AGC TS Apr 61

ANTENNA SYSTEMS

Amplifier, all-channel Gibraltar, Jerrold, Model 4330 ASR Feb 58 Antenna -CB, Pearce-Simpson, Models 1 To 1 Plus 4 and 1 To 1 Plus 6..... ASR Aug 47 -communication and accessories, Antenna Specialists, Models MON-21, MON-20 and MON-22 . . ASR Sep 44 -corner-reflector, Antenna Specialists, Model ASPB603 ASR Feb 58 -folding mobile TV, Antenna Corp. of America, Model AC-700K Travel-Tron ... ASR Sep 45 -log periodic, JFD, Model LPV-CTC ASR Jun 52 - marine, collapsible, Finney Co., Model RMA-1 ASR Apr 39 -mobile, Antenna Specialists, Model ASP 660 ASR Feb 58 -mobile communications, Antenna Specialists, Model Linebacker ASR Jun 53 -multicoupler, one antenna to 8 receivers, American Electronic Lab. Model AMC 2359 ASR Jun 53 -outdoor, TV/FM, RCA Parts and Accessories, Model 4BG23 ASR Apr 38 - TV, Antenna Corp. of America, Model AC-802 ASR Aug 47 -TV, smaller, JFD Electronics, Model STELLAR 2001 . . ASR Sep 44 Antenna tuner/SWR meter for CB, E. F. Johnson, Model

- Attenuator pads, Jerrold, PDA Series ASR Dec 49 Balun, Jerrold, ASR Dec 49 Model T-2000 CB, Antenna Specialist, Model M-189 ASR Dec 48 CATV cable splice block, Entron, Model SS/U ASR Oct 33 FM attenuator trap, JFD **Electronics** Model SL 8488 ASR Jun 52 MATV and CATV systems testing device without sweep equipment, Sadelco. Model PORTA-BRIDGE . TER Sep 40 Preamplifier, all-channel, Jerrold, Model 4287-S ASR Feb 58 -FM, CADCO, Model IPA-SCA-FM ASR Dec 48 Splitter, MATV, two-way, Jerrold, Model 1563 Coloraxial .. ASR Sep 45 -all-channel TV signal, Jerrold, Model 1572G ... ASR Jun 52 -all-channel signal, Jerrold, Model FS-1314-FM ..., ASR Apr 38 TV antenna -all-channel, GC "32" Series ASR Dec 48 UHF pre-amplifier, Jerrold, Model DSU-105 ASR Aug 47 UHF/VHF tapoffs, JFD, Model P-5117 ASR Apr 39 Universal stacking kit, Antenna Specialists, Model M-205 ASR Oct 32 **ASSOCIATIONS, SERVICE** Betz elected to Electronics
- - --electronic market data book
 publishedES Sep 6
 --service training program
- increased ES Sep 4 GE, TV service representatives

meet with ES Dec 6 ISCET

certification broadened ... ES May 4
 Crow appointed executive

-new officers elected ES Sep 4 -T. Bull elected vice chairman of ES Dec 6 Missouri Association, D. Taber elected president ES Dec 4 NARDA, NATESA and NEA form committee to discuss industry problems ES Jul 4 NATESA -national convention held in Arkansas, August 26-29. ES Jun 4 -Shumavon elected president ES Nov 4 -T.E.S.A. of Wisconsin hires Association Management firm ES Jan 8 NFA -annual convention agenda, Portland, Oregon ES Jan 42 -annual convention recommends changes for industry ES Oct 4 -award to GE tube department ES Jan 4 -Browne re-elected ES Sep 10 - FINCO contributes \$1000 for membership campaign ES Oct 4 prizes -"Special Recognition Award" to GE ES Nov 6 National Service Agents Council formed by Philco-Ford ES Mar 4 TSA of Delaware Valley gives award to TV station ES Jul 4 Women's TV servicing club formed ES Aug 6

director ES Jul 7

AUDIO SYSTEMS

- Amplifiers
- PA, 22-watt, Olson, Model AM-387 ASR Jul 48
- -solid-state, Fanon,
- Models TRI-50 and
- TRI-100 ASR Apr 28
- -solid-state, public-address, Bogen, Models C20, C35,
- C60 and C100 ASR Aug 17
- Audio sweep generator, Rameco, Model ASG-1...... TER Sep 40
- Buzz and distortion, occasional,
 - GE H-3..... SYM Sep 15

Cable and adapter display, North American AUD Oct 30 Connectors, audio, Switchcraft, Model T3F, receptacle . . AUD Oct 30 Cartridge for pre-record test, Robins, Model TBT-8... AUD Feb 50 Demagnetizer for tape heads. Robins, Models TD-12 and TD-15 AUD Feb 51 Grill cloth sagging, how to cure, all Magnavox sets SB Dec 20 Metal-encased cassette, Auricord, Models PRO 60, 90 or 120 AUD Nov 43 Microphones -acoustically equalized sound systems, Shure Brothers, Models ES-50 and ES-51 ASR Apr 28 -mixer for stereo, Shure Brothers, Model M688.. ASR Aug 17 Mixer, amplifier, 6 microphones, Sound-Craft, Model 6 MA ASR Aug 17 Motorboating, RCA CTC25.. SYM Jan 17 Servicing modern P-A systems -high-power amplifier - high-power speakers Sep 64 - mikes and acoustics Sep 64 - typical breakdowns Sep 60 Solid-state audio troubleshooting - biasing transistors Aug 38 -power amplifier designs Aug 39 - techniques Aug 42 Sound module damaged by incorrect speaker, RCA CTC46 color chassis SB Dec 20 Sound tracks, visible magnetic, Soundcraft, Magna-See AUD Feb 51 Speakers -horn speakers for intercommunication, Atlas Sound CJ, HU series ... AUD Feb 50 -mobile for CB use, E. F. Johnson AUD Feb 50 -outdoor, Argos Products AUD Feb 50 -paging and intercom, Fanon, Model HDA-30T ASR Apr 28 -sectoral horn, Atlas Sound, Model WCH-100 ASR Jul 48 -switcher for car stereo, GC Electronics, Model 30-3160, "Switch-O-Matic" PR Aug 51 -twelve-inch, Jensen, Models 9 and 10 AUD Nov 42 Speaker selector, Model 30-5004, GC AUD Dec 69 Stylus cleaner, anti-static liquid, Duotone, Formula ML-365 AUD Nov 42 "Y" jumper cables and plugs, Weltron, Model 44-339 ... PR Apr 63 **AUTO ELECTRONICS** Eight typical auto electronic problems

- Bendix output transistors CE Aug 54

-eject solenoids..... CE Aug 52

-intermittents in circuit boards CE Aug 56 - outboard voltage converters CE Aug 57 -output stages in imported players CE Aug 55 - 12FR8 replacements CE Aug 56 FM alignment with and without sweep -AM, phase modulation, characteristics CE Oct 52 -FM sweep alignment CE Oct 53 -non-swept alignment CE Oct 55 IC's in auto radios -definition CE Jan 32 -troubleshooting CE Jan 36 -typical circuit CE Jan 32 Philco-Ford's first AM/FM/stereo FM auto radio, analysis of CE Dec 50 - circuitry, analysis of CE Dec 50 -servicing CE Dec 56 RF amplifier troubles -dead AM caused by shorted coil CE May 25 -intermittent AM caused by bandswitch CE May 24 -oscillation CE May 26 -strong signal distortion ... CE May 25 -typical circuit CE May 20 -weak reception CE May 23 Radio designs for 1971 - Bendix circuits CE Apr 43 -Delco circuits CE Apr 42 - Ten-slide tuners CE Apr 48 Stereo, FM, servicing -bench testing CE Jul 47 -major circuits CE Jul 42 - troubleshooting CE Jul 44 Tape players, motor defects in -contamination from dirt.. CE Jun 34 -speed adjustments CE Jun 35 -speed tests CE Jun 32 -test jigs and setups CE Jun 30 -typical motor circuits CE Jun 30 12FR8 tubes -solid-state replacement for LE Dec 22 -sources of LE Dec 22

B-W TELEVISION

(Also see TV, General)	
GE discontinues production	
of b-w picture tubes S	SB Oct 62
Sound IC failure, RCA	
KCS176A b-w chassis S	SB Oct 62

BUSINESS

DOGINEOU	
Accounting and bookkeeping	
for electronic shops	
-accruals Apr	17
-assets Apr	18
-balance sheet Oct	: 45
-balancing the books Jun	23
-daily report sheets May	38
-debits and credits Oct	47
-definition of debit	
and credit Jun	22
-definition of double entry Jun	22
-financial statement Apr	17
-fundamental equation of	

accounting	Oct 44
- income and expense	lun 05
accounts	
- Ohm's Law of accounting	
- proprietorship	Apr 18
- recording transactions	
- suitability for business	
- systematic procedures - "T" account	. May 41
-transactions	
Admiral, sale of color CRT	
equipment to RCA	
discussed	ES Apr 4
Bulow International Audio	
specializes in repair of	50 lan 4
European audio equipment Business conditions, 1970	ES Jan 4
everything higher but profit	s Feb 30
-Packard-Bell uses rebuilt	
CRT's, charges retracted	
by Kevreson	ES Mar 4
-three reasons for higher	
hopes – wage/price spiral	
	Feb 32
Capacity of servicers, will need 65 percent more by '75, per	
Motorola executive	
Check your management IQ	20 000 1
-advertising, promotion,	
customer relations	
-insurance and taxes,	Nov 34
 inventory control and purchasing 	Nov 33
– miscellaneous	
-organization and shop	
efficiency as a second second	
-planning	Nov 32
FCC	
 rules for CATV explained to Congress 	
- Zenith subscription TV	LS Aug o
system approved	ES Jan 4
FINCO contributes \$1000 to NEA	λ
for membership campaign	
prizes GE to end radio production	ES Oct 4
by '72	ES Nov 4
Hitachi sales, service and	
parts facility open in	
Illinois	ES Sep 4
IRS permits faster write-off	
of new equipment cost I Insurance, selecting	ES Aug 8
-alternatives to "formal"	
insurance	. Dec 36
-coverag <mark>es</mark>	. Dec 37
-guidelines for buying	
and handling - recovering loss	
Licensing of both technicians	. Dec 30
and shops, Indiana bill	
to require	ES Apr 4
Magnavox produces first	
CATV receiver	ES Oct 7
Motorola - booklet suggests ways to	
conform with California	
warranty law I	ES Sep 6
-executive predicts TV	

receiver size of a clgarette pack ES Apr 4 modifies model WP581HW to stop possible shock hazard ES Nov 4 National Association of Service Managers, R. Normandy re-elected president of ES Dec 6 Panasonic -nationwide toll-free phone number for service location information ES Jun 6 -parts and service divided into two divisions ES Mar 7 -three new auto sound product distributors appointed ES Jan 4 Philco-Ford reduces number of shops franchised to service Philco products .. ES Feb 10 -color TV leasing to CATV subscribers, now testing ... ES Dec 4 **PHOTOFACT 25th-anniversary** -background of Howard W. Sams & Co., Inc. - coverage in 1946..... - coverage in 1971..... Sep 19 Sep 18 Sep 18 -origin Sep 20 -other services Sep 25 -picture story of production . . Sep 22 -production Sep 21 -replacement parts data Sep 24 Purchase of Admiral color CRT manufacturing equipment by RCA agreed to by RCA and Admiral ES Jun 8 RCA Adams appointed president of RCA Service Co. ES Nov 6 -Electronic Components announces 6.6 percent tube price increase ES Sep 4 -ends production of b-w CRT's ES Apr 6 enters car stereo market... ES Jan 8 Ratio analysis test business success -helpful ratios Aug 20 -profitability Aug 19 -what it can tell you Aug 18 Rise in bank interest rates predicted ES Nov 8 Sales to dealers in 1970 fall below 1969 ES Apr 4 Sales of color and b-w TV up first half of 1971 ES Sep 8 Sanyo Electric to market color TV in U.S..... ES Jan 8 Senator Bible urges smallbusiness-men to take part in "tax-writing" issues ES Aug 6 Shop efficiency improved means more profit -continued training Mar 41 -efficient shop layout Mar 40 - factors that affect Mar 23 -pre-use testing of components Mar 41 -technician isolation Mar 38 -type and brand specialization Mar 39

Summary, income and expense -good business practices promote survival Jul 55 -profit or loss Jul 52 -what the summary does not tell Jul 55 what the summary tells Jul 53 Svlvania - introduces 110 degree color CRT ES Sep 4 -opens service center in Detroit and Cleveland ES Oct 4 opens Texas warehouse to serve seven states Jan 45 Toshiba introduces color TV with 75 percent IC circuitry ES Apr 6 Wage increases are smaller for technicians than other workers..... ES Aug 8 CATV Light beam system distributes television signals ES Feb 13 Tape-Athon announces system to send stereo music over CATV cables ES Nov 4 Zenith urges FCC to set quality standard for CATV signals. ES Jan 6 COLOR TV ACC circuit, Magnavox T952-02.. Dec 10 All-electronic tuning -binary system Sep 46 -electronic sequencing Sep 48 -logic circuitry Sep 46 Arced across spark gap, Philco 19QT87 SYM Apr 14 Arcing between pins of pincushion tube socket, Magnavox T931 and T933 SB Oct 63 Audio output tube ruined by arcs, RCA CTC38 and CTC39 SB Oct 62 Beat pattern in picture, Magnavox T950 and T951 SB Dec 20 Bending and vertical jitter of picture, Packard-Bell 98C18 SYM Jan 46 Black, vertical bars on screen, Sylvania DO6-1 SYM Nov 10 Blooming of RCA brightness . . TS Feb 8 Blurred picture, critical vertical locking, Magnavox T938 SYM Jan 46 Bracket on replacement sound output transistors do not ground, Zenith lateproduction color chassis SB Nov 12 Brightener for color CRT's, single-gun, Model B-150, Chamberlain PR Jun 63 Brightness, excessive -RCA CTC40, CTC44, CTC47 color TV SB Nov 12 -RCA CTC44, CTC40.... SYM Sep 14 Brightness not variable through normal range and white compression, Zenith 12B14C50 SYM Dec 8 Buzz and distortion, occasional, GE H-3..... SYM Sep 15 Causes and cures of intermittent color

-diagram of chroma channel . Sep 34 -troubleshooting by clamping Sep 35 Zenith, Sylvania, RCA and Westinghouse case histories . Sep 38 CHROMA TILT, control, Magnavox T952-02..... Dec 10 Color circuit, Zenith 12B14C50 -automatic degaussing Jan 66 -automatic tint control Jan 67 -brightness range and limiter adjustments Jan 63 pincushion correction Jan 66 -pre-CRT matrixing Jan 65 -transistorized video amplifiers Jan 62 Color-difference amplification, Magnavox T952-02..... Dec 13 Color intensity, automatic, Motorola TS929..... Dec 14 Color killer circuit, Magnavox T952-02 Dec 11 Color missing -GE H-3 SYM Sep 15 - Motorola TS914 SYM Nov 10 -Packard-Bell 98C18 SYM Jan 47 Color missing and AGC overload, Zenith 12B14C50 SYM Dec 8 Color saturation changes with AccuMatic, RCA CTC46 SB Oct 63 Color and tint controlled by DC voltages -RCA CTC44..... ST Jan 51 - Sylvania E01 ST Jan 50 Color, weak - Admiral 6H10 SYM Mar 32 -GE C-1..... SYM Nov 10 - Magnavox T933...... SYM Sep 14 - Zenith 16Z7C50 SYM Jan 47 Degaussing circuits -JVC 7438, 7408, double thermistor bridge ST Feb 62 Packard-Bell 98C32, manual ICP switch ST Feb 63 Demodulation, color, Magnavox T952-02..... Dec 13 Diode failure, add capacitors to prevent, GE KE SB Nov 12 Dynamic convergence -current tracing Feb 27 -neck coil tests Feb 27 -quick tests..... Feb 26 - recognize need Feb 26 -sequence adjustment analysis Feb 28 -touchups Feb 29 Evaluate color TV quality by color-bar patterns - crosshatch to judge b-w quality TS Jun 26 -sources of poor picture . . TS Jun 26 -test color performance with keyed-rainbow pattern TS Jun 27 -test precautions TS Jun 29 Fuses discolored is normal, Delco SB Oct 63 Fuse failures repeated, Magnavox T940, T951 SB Oct 62 Sony KV1200 series SB Dec 20 **GE KC chassis**

-circuit modification TS Jan 43
-defective neon bulb TS Jan 42
- delective neon build 13 Jan 42
-intermittent or no color SYM Mar 32
-narrow picture and reduced
high voltage SYM Mar 32
- open transformer winding TS Jan 43
-wrong skin hues
-wrong skin hues TS Jan 42 Ghosts, Zenith 4B45C19 SYM Dec 8
Green screen color, RCA
receivers TS Feb 8
Grill cloth sagging, how to cure,
Magnavox, all models SB Dec 20
Height insufficient
- Admiral 6H10 SYM Jan 46
- Motorola TS915 SYM Jan 46
High voltage arcing to CRT
shield, GE KE SB Dec 20
High voltage
– missing, Motorola
TS914 SYM Jan 46
15914 STW Jan 46
-raster missing, GE H-3 . SYM Sep 15
- reduced, GE C-1 SYM Nov 10
-regulator tube, Magnavox
T958, T962 SB Nov 12
High-voltage regulation and
safety circuits
-grid regulation circuits Aug 60
-pulse regulator action Aug 60
- safety circuits Aug 60
-shunt regulators with
hold-down diode Aug 59
-troubleshooting Aug 62
Horizontal bending, line
voltage low, RCA
CTC55 SYM Sep 14
Horizontal black bars,
Horizontal black bars, RCA CTC25 SYM Apr 14
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical,
Horizontal black bars, RCA CTC25
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA
Horizontal black bars, RCA CTC25
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture,
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator,
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater windings for CRT
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater windings for CRT ''Instant-Pic''ST Feb 69
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits - RCA CTC44 uses two heater windings for CRT ''Instant-Pic''ST Feb 69 - Sylvania D-16 shunt-type
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater windings for CRT ''Instant-Pic''ST Feb 69 - Sylvania D-16 shunt-type AGC gateST Feb 68
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater windings for CRT "Instant-Pic"ST Feb 69 - Sylvania D-16 shunt-type AGC gateST Feb 68 - Sylvania E01 provides DC
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater windings for CRT "Instant-Pic"ST Feb 69 - Sylvania D-16 shunt-type AGC gateST Feb 68 - Sylvania E01 provides DC voltage to both ends of
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater windings for CRT "Instant-Pic"ST Feb 69 - Sylvania D-16 shunt-type AGC gateST Feb 68 - Sylvania E01 provides DC voltage to both ends of
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater windings for CRT "Instant-Pic"ST Feb 69 - Sylvania D-16 shunt-type AGC gateST Feb 68 - Sylvania E01 provides DC voltage to both ends of contrast controlST Feb 69
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater windings for CRT ''Instant-Pic''ST Feb 69 - Sylvania D-16 shunt-type AGC gateST Feb 68 - Sylvania E01 provides DC voltage to both ends of contrast controlST Feb 69 Motorboating in sound,
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits - RCA CTC44 uses two heater windings for CRT ''Instant-Pic''ST Feb 69 - Sylvania D-16 shunt-type AGC gateST Feb 68 - Sylvania E01 provides DC voltage to both ends of contrast controlST Feb 69 Motorboating in sound, RCA CTC25SYM Jan 47
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater windings for CRT ''Instant-Pic''ST Feb 69 -Sylvania D-16 shunt-type AGC gateST Feb 68 - Sylvania E01 provides DC voltage to both ends of contrast controlST Feb 69 Motorboating in sound, RCA CTC25SYM Jan 47 Narrow picture, Magnavox
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater windings for CRT ''Instant-Pic''ST Feb 69 - Sylvania D-16 shunt-type AGC gateST Feb 68 - Sylvania E01 provides DC voltage to both ends of contrast controlST Feb 69 Motorboating in sound, RCA CTC25SYM Jan 47 Narrow picture, Magnavox T933SYM Mar 32
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater windings for CRT ''Instant-Pic''ST Feb 69 -Sylvania D-16 shunt-type AGC gateST Feb 68 - Sylvania E01 provides DC voltage to both ends of contrast controlST Feb 69 Motorboating in sound, RCA CTC25SYM Jan 47 Narrow picture, Magnavox
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater windings for CRT ''Instant-Pic''ST Feb 69 - Sylvania D-16 shunt-type AGC gateST Feb 68 - Sylvania E01 provides DC voltage to both ends of contrast controlST Feb 69 Motorboating in sound, RCA CTC25SYM Jan 47 Narrow picture, Magnavox T933SYM Mar 32
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater windings for CRT ''Instant-Pic''ST Feb 69 - Sylvania D-16 shunt-type AGC gateST Feb 68 - Sylvania E01 provides DC voltage to both ends of contrast controlST Feb 69 Motorboating in sound, RCA CTC25SYM Jan 47 Narrow picture, Magnavox T933SYM Mar 32 New chroma circuits - Motorola TS929 has IC for
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits - RCA CTC44 uses two heater windings for CRT ''Instant-Pic''ST Feb 69 - Sylvania D-16 shunt-type AGC gateST Feb 68 - Sylvania E01 provides DC voltage to both ends of contrast controlST Feb 69 Motorboating in sound, RCA CTC25SYM Jan 47 Narrow picture, Magnavox T933SYM Mar 32 New chroma circuits - Motorola TS929 has IC for demodulation, one tuner
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater windings for CRT ''Instant-Pic''ST Feb 69 -Sylvania D-16 shunt-type AGC gateST Feb 68 - Sylvania E01 provides DC voltage to both ends of contrast controlST Feb 69 Motorboating in sound, RCA CTC25SYM Jan 47 Narrow picture, Magnavox T933SYM Mar 32 New chroma circuits - Motorola TS929 has IC for demodulation, one tuner has varactor diodes for
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits - RCA CTC44 uses two heater windings for CRT ''Instant-Pic''ST Feb 69 - Sylvania D-16 shunt-type AGC gateST Feb 68 - Sylvania E01 provides DC voltage to both ends of contrast controlST Feb 69 Motorboating in sound, RCA CTC25SYM Jan 47 Narrow picture, Magnavox T933SYM Mar 32 New chroma circuits - Motorola TS929 has IC for demodulation, one tuner has varactor diodes for tuningST Feb 63
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater windings for CRT ''Instant-Pic''ST Feb 69 -Sylvania D-16 shunt-type AGC gateST Feb 68 -Sylvania E01 provides DC voltage to both ends of contrast controlST Feb 69 Motorboating in sound, RCA CTC25SYM Jan 47 Narrow picture, Magnavox T933SYM Mar 32 New chroma circuits - Motorola TS929 has IC for demodulation, one tuner has varactor diodes for tuningST Feb 63 - Zenith has varactor tuning
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater windings for CRT ''Instant-Pic''ST Feb 69 -Sylvania D-16 shunt-type AGC gateST Feb 68 -Sylvania E01 provides DC voltage to both ends of contrast controlST Feb 69 Motorboating in sound, RCA CTC25SYM Jan 47 Narrow picture, Magnavox T933SYM Mar 32 New chroma circuits - Motorola TS929 has IC for demodulation, one tuner has varactor diodes for tuningST Feb 63 -Zenith has varactor tuning in VHF and UHFST Feb 63
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater windings for CRT ''Instant-Pic''ST Feb 69 -Sylvania D-16 shunt-type AGC gateST Feb 68 -Sylvania E01 provides DC voltage to both ends of contrast controlST Feb 69 Motorboating in sound, RCA CTC25SYM Jan 47 Narrow picture, Magnavox T933SYM Mar 32 New chroma circuits - Motorola TS929 has IC for demodulation, one tuner has varactor diodes for tuningST Feb 63 -Zenith has varactor tuning in VHF and UHFST Feb 63
Horizontal black bars, RCA CTC25SYM Apr 14 Horizontal locking, critical, Westinghouse V2655SYM Jan 47 Hum bars in color, RCA CTC44SYM Sep 14 Hum bars in picture, RCA CTC44 or CTC47SB Dec 20 Intermittent or no vertical sweep, Coronado TV2-6617 TV2-6618SB Oct 63 Intermittent starting of horizontal oscillator, GE H-3SYM Sep 14 Miscellaneous new circuits -RCA CTC44 uses two heater windings for CRT ''Instant-Pic''ST Feb 69 -Sylvania D-16 shunt-type AGC gateST Feb 68 -Sylvania E01 provides DC voltage to both ends of contrast controlST Feb 69 Motorboating in sound, RCA CTC25SYM Jan 47 Narrow picture, Magnavox T933SYM Mar 32 New chroma circuits - Motorola TS929 has IC for demodulation, one tuner has varactor diodes for tuningST Feb 63 - Zenith has varactor tuning

- Electrohome Dec 10
– Magnavox Dec 10
- Motorola Dec 13
Packaging of color TV
controls, Workman PR May 66
Picture dark with bright retrace
lines, Zenith 16Z8C50 SYM Dec 8
Picture dark with little
video and brightness
control not effective,
Zenith 16Z7C192 SYM Dec 8
Picture missing, raster
present, Zenith
4B25C19 SYM Sep 15
Picture narrow, GE KD SYM Mar 32
Piecrusting, GE H-3 SYM Sep 14
Pincushion circuits
– Packard-Bell 98C32, one
circuit to correct vertical
and horizontal ST Feb 61
-Zenith 12B14C50 uses
toroidal coil with internal
magnets ST Feb 61
Pincushion correction, in
Sony large-screen Trinitron
chassis Dec 34
Pulses clamp grids of CRT
- Electrohome C7 ST Jan 53
-GE KE ST Jan 54
– Panasonic CT98D ST Jan 55
Red in raster missing,
Neterale TCOOL SVM Apr 14
Motorola TS921 SYM Apr 14
Serviceability
-GE parts important to
safety ST Feb 60
– Motorola TS934, plug-in
particlet etter etter per
-RCA plug-in modules ST Feb 60
-Zenith 4B25C19, HV
tripler, no HV cage ST Feb 60
Servicing TV tuners
- AGC snow TS Oct 69
-alignment
-cleaning contacts TS Oct 64
-neutralization TS Oct 65
-oscillator frequency
problems TS Oct 66
-tips for repair TS Oct 70
-tools
color chassis
- AccuMatic circuit Jul 26
- CTC49 differences Jul 24
-chroma circuits Jul 25
-servicing economics Jul 32
- tuner, IF's and sound circuits Jul 24
uner, it's difusion deflection and 24
-vertical, horizontal deflection. Jul 30
-video circuits Jul 26
Signal subbing in hybrid color
receivers
- horizontal sweep Apr 55
-IC chroma circuits Apr 58
-signal injection in
vertical sweep Apr 54
-subbing other signals Apr 59
- sync, video and AGC Apr 56
Silicon hum bars, RCA CTC52 SB Oct 62
Snow in picture,
Westinghouse V2656 SYM Jan 47
Sound or picture missing
- Motorola TS921 SYM Apr 14

-RCA CTC24 SYM Apr 14
Sound module damaged by
incorrect speaker, RCA
CTC46
Thirty-eight percent of
American families own
color TV ES Mar 4
Tint circuit, automatic, Motorola
TS929 Dec 16
Tint control changes chroma phase, GE N-1 ST Jan 52
Tint control, Magnavox T952-02 Dec 11
Trinitron color TV receiver,
Sony's Dec 26
-CRT
-horizontal deflection/high
voltage Dec 30
-pincushion correction Dec 34
-vertical sweep Dec 32
VDR in sound output stage,
replace, Zenith 4B25C19,
19CC19
Varactor diode locks color, Sylvania D16 ST Jan 53
Vertical deflection missing,
Zenith 13Z13 SYM Jan 47
Vertical jitter and horizontal
bending, Zenith
12B14C50 SYM Dec 8
Vertical or horizontal
locking missing, GE C-1 SYM Nov 10
Vertical sweep intermittent,
RCA CTC36 SB Dec 20
Width narrow – RCA color receiver TS Feb 8
– RCA CTC24 SYM Apr 14
Wide, vertical color bar on b-w,
Admiral 6H10 SYM Jan 46
X radiation
-imported TV's to be tested
by Customs Bureau ES Feb 12
-reducing high voltage
measurement and control
is key concludes HEW ES Jun 14
FM RADIO
Stereo FM performance evaluation
-distortion and separation
tests Jun 59
- filters to reject SCA Jun 60
 IF alignment Jun 56 Imiting and frequency
response Jun 58
- necessary test equipment Jun 57
- test specifications Jun 54
- tests without equipment Jun 54
Stereo generator, Model
SMG-1, London
Company TER Jul 38
GUIDES
PHOTOFACT index supplement Jul 61
Oct 75
Source guide to imported
electronic products Nov 50

HIGH VOLTAGE

-missing, Motorola			
TS914	SYM	Jan	46
-raster missing, GE H-3.	SYM	Sep	15
-reduced, GE C-1 and			

GE KC SYM Nov 10
-regulator tube,
Magnavox T958, T962 SB Nov 12
Arcing to CRT shield, GE KE
color chassis SB Dec 20
Loss of, troubleshooting ST Dec 63
Regulator, Admiral 3K16 color
chassis Dec 10
Trinitron (Sony) color TV
chassis, in Dec 30
Troubleshooting
-direct and reciprocal
dependencies Jan 14
-feedback loop dependency Jan 15
- repairing defects Jan 16

HORIZONTAL SWEEP

Boost capacitor, how it affects
width and linearity
- open capacitor ST Dec 65
-size ST Dec 64
Compression on right side,
troubleshooting ST Dec 61
Damper plate glows red,
Motorola TS914 SYM Jan 46
Drive signal to horizontal-
output stage, truths and
fallacies about ST Dec 66
Expansion on left side,
troubleshooting ST Dec 62
Loss of horizontal drive,
protection against,
Motorola TS929B color
chassis Dec 18
High voltage or raster
missing, GE H-3 SYM Sep 15
Intermittent starting of
horizontal oscillator
GE H-3 SYM Sep 14
Narrow picture, GE KD,
GE KC
Narrow width
- Magnavox T933 SYM Mar 32
-RCA color receiver TS Feb 8
-RCA CTC24 SYM Apr 14
Nonlinearity, cause
-defects in direct-drive
circuits
- in auto-former circuits Mar 28
- solid-state circuits Mar 28
Piecrusting, GE H-3 SYM Sep 14
Screen voltage of
horizontal-output tube
low, effects of ST Dec 65
Symfact analysis in Zenith
1Y21B55
-drive line Apr 36
excessive width Apr 37
-horizontal foldover Apr 35
- narrow and compressed
raster Apr 36
-narrow raster Apr 35
-narrow raster with normal
linearity Apr 37
Trinitron (Sony) color TV
chassis, in Dec 30
Froubleshooting
-direct and reciprocal
dependencies Jan 14

-feedback loop dependency Jan 15
-repairing sweep defects Jan 16
Turns shorted in yoke or
horizontal-output
transformer, effects of ST Dec 65
Yoke open, effects of ST Dec 67
Yoke ringing, causes of
and cures for ST Dec 67

HORIZONTAL SYNC

Bending picture,	
Packard-Bell 98C18 SYM Jan 46	ò
Bending when line voltage	
is low, RCA CTC55 SYM Sep 14	ł
Locking critical,	
Westinghouse V2655 SYM Jan 47	,

LICENSING

New York, hearings to	
determine need for	
licensing in E	ES Dec 4
Virginia studies technician	
licensing	ES Jul 4

LOW-VOLTAGE POWER SUPPLY

High-frequency, electronically
regulated supply, Motorola
TS931 and TS938 color
chassis Dec 16
Hum bars in color,
RCA CTC44 SYM Sep 14
Hum bars in picture, caused
by 250-volt supply failure
RCA CTC44 or CTC47
color chassis SB Dec 20
IC regulated power supply,
Model LL-902-OV,
Lambda TER Jun 39
Inverter, solid-state, from
12-volt DC to 117-volt AC,
Model 12U-S6M, ATR PR Apr 64
– Model PS-60, Blulyne, TER Jan 49
Negative supply for master
brightness and CRT back-
ground controls, Admiral
3K16 color chassis Dec 10

MISCELLANEOUS

All-electronic clock, no
moving parts, uses LED's
for display ES Sep 10
Audio and adapter cables
display, Workman ASR Jul 48
Bureau of Radiological
Health reports no
radiation hazard to TV
technicians ES May 4
Bypass capacitor kit, No.
AK-115ET, Aerovox PR Mar 72
CES wrapup
-four-channel sound Oct 36
-new color TV developments
are scarce Oct 34
-power-rating battle Oct 42
Cable and adapter display,
North American AUD Oct 30
Ceramic capacitor assortment,
No. J-150 "Ceramicenter"
Sprague PR Jun 62
FCC Approves Blonder-Tongue

subscription TV ES Oct 6 FCC Assigns two unused UHF channels in 10 large cities for land mobile radio ES Apr 6 Low-voltage capacitors, TVA ATOM line, Sprague. PR Sep 66 Power converters for operation of automotive equipment in homes, Model 30-3090, GC PR Jul 56 Prototype TV CRT "freezes" picture on the screen ES Oct 4 Self-terminating antenna outlet patented by Jerrold . ES Sep 4 Sequential decoder, tow-tone, Model 201 DECODER. Dynacoustics PR Sep 65 Shrinkable insulating tape, Model TYT-100, Cole-Flex PR Sep 66 Slow-scan video modulating unused sub-carriers of an FM station to be tried in Michigan ES Jul 8 Stereo headphone, extension cable, Model SXC-15, Duotone ASR Jul 48 TV's in U.S. total 92.7 million. ES Sep 10 TV inventor Farnsworth dies March 11 ES May 4 Tube usage chart for 1970 Jun 40 Twelve-man advisory council

established by GE ES May 7

OSCILLOSCOPES

Bandwidth requirements
-features needed Jul 16
-makeup of complex
waveforms
-requirements for stable.
accurate waveforms Jul 16
- scope required Jul 20
B&K Model 1460, triggered-
sweep, solid-state TER Jul 38
Circuit operation
-functions of sections ST Apr 30
-maintenance
- theory ST Apr 30
Hickok
- Model CR05002,
triggered scope with
dual-trace and 25-MHz
response
- Model 5000A, 25-MHz
bandwidth TER Nov 22
Kikusui
– Model 5121, alignment,
large screen TER Apr 40
-Model 556A,
general-purpose
- Model 555G,
triggered-sweep TER Jul 39
Leader
– Model LB0-501,
triggered-sweep TER Jul 40
- Model LB0-301,
three-inch, triggered TER Aug 44
Lectrotech, Model T0-50 TER Jul 41
Sencore, Model PS163 TER Dec 40
Service-type, operation
-beam adjustment controls Apr 20
-horizontal control

adjustments Apr	21
- operation tips Apr	26
-probe information Apr	
-sequence for setting up Apr	22
-vertical control adjustments . Apr	20
Telequipment, Model D67,	
dual-trace	35

PICTURE TUBES

Arcing from aquadag to	
shield, GE KE color	
chassis SB Dec 20	
Trinitron one-gun color	
CRT, Sony's Dec 26	

PROTECTION DEVICES

Arrester, three-electrode-gas
type, Telecommunications,
Model 316 PR Apr 64
Radiation detection meter,
Victoreen, Model 499
VIC-CHEK PR Jul 56

RADIO

Auto radio noise elimination
- case histories CE Mar 53
-methods of finding CE Mar 50
- typical sources CE Mar 50
СВ
-modulation indicator,
Tuner, Model "Mod 1" PR Apr 64
-scanner, Commander,
Model Scanalyzer 23 PR Apr 63
EIA petitions FCC for 80 new
CB channels ES Jul 6
Radiotelephone, VHF/FM,
Pearce-Simpson, Model
CAPRI VHF PR Aug 48
UHF scanning monitor
receiver, Peterson,
Model 808 PR Apr 63

SERVICE AIDS

Cleaners
-foam spray tuner, GC,
"Magic Vista" PR Feb 70
-glass and plastic,
Chemtronics,
Mask-N-Glas PR Aug 48
Plastic repair kit,
Chemtronics, Plas-T-Pair PR Dec 70
Vacuum desoldering pump,
Techni-Tool, Model T-2 PR Mar 72
SHOP EQUIPMENT (General)

Extension cables, Ideas,
ELECTRIDUCT PR Jan 60
Low-voltage bell transformers,
Edwards, Models 592
and 590 PR Feb 70
Metal bin box, Bay Products . PR May 66
Parallel isolation plugs,
Pomona, Models 3501 and
3502 TER Sep 43

SIGNAL GENERATORS (General)

B&K – Model 1243, digital,

SOLID-STATE CIRCUITRY

SULID-STATE CIRCUTINT
IC's sent on film strip to
factories by GE ES Feb 12
IC's used in TV circuits
-applications Feb 20
-construction Feb 18
- replacing Feb 24
-troubleshooting
LDR's, testing TS Dec 42
Renewal/Replacement
semiconductors, GE
Tube Dept PR Dec 70
SCR's, testing and theory
or operation
-applications TS Dec 46
-characteristics TS Dec 42
- tester you can build TS Dec 43
Sylvania
-linear IC's for replacement,
type ECG PR Jul 57
-twenty-two semiconductor
replacements PR Nov 64
Triacs, testing and theory
of operation
- applications
- characteristics TS Dec 43
-tester you can build TS Dec 43
Troubleshooting, audio
- biasing transistors Aug 38
-power amplifier designs Aug 39
- techniques
Zener diode, testing
– actions
-clipping TS Sep 30
-clipping
– power supplies TS Sep 31
– variable-voltage

STEREO

Left and right channel
comparison
-cross-channel tracing May 47
-defect location May 44
-signal tracing May 46
-voltage comparison May 45
Recording comments ES May 12
Separation problems
-circuit defects Mar 20
-how achieved Mar 18
-speaker placement Mar 19
-test adapter Mar 22

TAPE RECORDERS

- Models PRO 60, 90, 120,
static reduction cassette AUD Nov 43
Auto cassette player drive system
-troubles and cures CE Nov 47
-typical cassette CE Nov 44
-typical player CE Nov 44
Cassette player, adjustment
and repair
-description Jan 20
-troubleshooting Jan 24
-typical drive systems Jan 24
Chemtronics
-Model THC-6, tape-head
cleaner PR Jul 56
Duotone
- Model SA-69, bulk tape
eraser ASR Apr 29
Hartak
-Model X-87 Torquette,
tape torque indicator ASR Apr 28
Information Terminals
-Model M-200, torque
tester TER Aug 45
- Model MC-300, tape-head
and guide gauge TER Oct 60
Mura Corp.
- Model Muradapter, 8-track
player adapter ASR Jul 48
Weltron
-Model 70-700, universal
cassette motor
 Model 70-912, motor, replacement AUD Dec 69

TELEVISION SERVICING (General)

AGC defect troubleshooting
-closed loop TS Apr 60
- keyer TS Apr 62
-signal at video detector TS Apr 60
-voltage detector analysis,
IF, RF, AGC TS Apr 61
Horizontal sweep, theory
and troubleshooting
-circuit "ringing" ST Nov 38
-operation of damper tube ST Nov 39
- requirements ST Nov 36
-sweep current ST Nov 36
-troubleshooting tips ST Nov 41
-waveforms ST Nov 39
Improved serviceability
-GE U-1 b-w TV chassis Oct 12
– MGA's color TV Oct 12
- NEA program Oct 10
 parts availability and
service data Oct 16
Sound bars and interference
-alignment equipment TS Mar 43
- "H" loss pads TS Mar 43
-pseudo sound bars TS Mar 42
-traps and sound bars TS Mar 42
Sweep alignment curve
troubleshooting
– data Jan 28
-effect of parts defects Jan 26
Sync troubles caused by
AGC defects Mar 56
Sync separators and AGC
problems

-noise cancellation action

and defects	TS May 28
-parts defects and	
	TOM
symptoms - rapid AGC tests	. 15 May 31
- rapid AGC tests	. IS May 30
- transistorized AGC	
keying	. TS May 32
-6BU8 triple-function	
circuits	. TS May 29
TV ghosts, causes and cures	
-eliminating propagation	
ghosts	Jul 35
-leading ghosts	Jul 36
-positive, negative or mul	tiplo Jul 34
	uple . Jul 34
TV repair cost dropped	
3.3 percent	. ES Mar 4
TV signal voltages	
-changes in sync stages.	. TS Aug 26
- changes in video stages.	. TS Aug 25
-errors from test	
equipment	. TS Aug 26
-estimate changes by AGC	C TS Aug 24
- reliable test signal	
"Technician's Aid Division"	. TO Hug LL
established by Tech Spra	ES lon 4
Troubleshooting defects	ay ES Jan 4
	TO A DO
-closed loop	. TS Apr 60
-signal at video detector	. IS Apr 60
-troubleshooting keyer,	
type AGC	. TS Apr 62
-voltage at detector,	
IF, RF, AGC	. TS Apr 60
Varistor, thermistor, testing	
-characteristics of	
varistors	. TS Nov 14
-HV regulator circuits	TS Nov 18
-rectification	TS Nov 14
 rectification rectification in color TV. 	TS Nov 17
-testing	TS Nov 14
-testing thermistors	TS Nov 20
Vertical sweep interpretation	. 13 100 20
	07.4
-deflection characteristics	
-functions of all parts	
-types of oscillators	ST Aug 28
-typical circuits	ST Aug 30
Video waveform defects	
-effects of hum	. ST Jun 47
-non-linearity	ST Jun 51
-normal changes	
-normal at video detector.	ST lun 44
-peaking circuits	
Zender diode testing	01 Juli 40
	TC Can 00
-actions	15 Sep 28
-clipping tests	TS Sep 30
- curve tracer tests	TS Sep 30
-ohmmeter tests	IS Sep 28
-power supply	
troubleshooting	
-variable-voltage tests	TS Sep 28
TEAT FOUNDATION	
TEST EQUIPMENT (Ge	neral)
41.00	

ALCO

-Model 2001, Meg-Chek, megohmmeter TER Feb 52 B&K Model 179, FET, VOM ... TER Apr 40 Bird -Thruline, directional RF wattmeter TER Feb 54 Blulyne -Model SG-1, waveform generator..... TER Aug 46 Coletronics Model TRA-1, adapter transistor tester TER Nov 23 Cushman Model CE-40, digital frequency counter TER Aug 45 **Electronic Tools** -Model DF-24, sine/square-wave generator TER Aug 46 Freed -Model 1620, AC operated megohmmeter TER Apr 41 - Model 1801-20101, shorted-turns tester TER Aug 45 Hickok -Model 3300, AC/batteryoperated digital multimeter TER May 35 Hochheiser -Model A-102, hi-pot tester, megohmmeter TER Aug 44 Hy-Tronix Model 900, transistor tester TER Mar 46 JFD Model 7500, CATV/MATV systems analyst TER Feb 54 Jerrold Model 747, solid-state, field-strength meter TER Oct 60 Kikusui - Model 5121, large screen, alignment oscilloscope . TER Apr 40 - Model 556A, generalpurpose scope TER Apr 40 Lateur Model 101, direct-reading. capacitance meter TER Nov 23 Leader - Model LAG-25, sine-/ square-wave generator . TER Sep 43 - Model LFM-36A, wow/flutter meter..... TER Dec 41 - Model LMV-87A, AC millivolt meter TER Aug 46 - Model LCT-910, CRT tester/rejuvenator TER Nov 22 Measurements -Model 940, intermodulation meter TER Jan 49 Mercury -Model 1700C, VTVM TER Mar 48 C. H. Mitchell -CONSCAN, solid-state component checker TER Feb 54 - Model Connection Verifier TER Apr 41 -resistance, capacitance and inductance measuring

bridge TER Jun 37

Ohmite -Models 3407, 3410, decade resistance boxes PR Feb 70 Olson -Model TE-244, diode and rectifier tester TER Feb 57 Pacer Model 705A, clamp-around ammeter TER Feb 57 Pomona -Model 358J, patch cords and jacks TER Mar 49 **RCA** Model WV-519A. 50K-ohm/volt VOM TER Apr 40 Model WV-520A 100K-ohm/volt VOM TER Mar 46 -Model WV-516A, VOM .. TER Aug 44 -Model WG-297. VOM with mirror scale ... TER Jun 37 -Model WV-517A. compact VOM TER Sep 42 Radiometer - Model MM2, RLC direct-reading meter TER Feb 57 Ramko -Model TT-7, battery operated semiconductor tester... TER Sep 42 Sadelco -Model PORTA-BRIDGE, CATV and MATV systems testing device without sweep equipment TER Sep 40 Sencore - Model PM157, current/power monitor meter TER Feb 52 -Model PS163, scope, triggered-sweep, dual-trace TER Dec 40 Simpson -Model 460, battery-operated, digital VOM TER Sep 41 -Model 2726, six-digit, frequency counter TER Jun 38 Special Instruments - Model 2103, fault-location Wheatstone bridge TER Nov 24 Triplett -Model 8035, digital, VOM TER Nov 24 Model 801, solid-state VOM TER Jul 40 Wayne -Model WT1, in-circuit, out-of-circuit. transistor tester TER Sep 40 Weltron -Model 51-100. portable multitester TER Oct 59 Weston - Model 1250, frequency counter, digital, counts to 32 MHz TER Oct 59 Jud Williams - Model A, dynamic curve tracer for transistors TER Mar 48 Hand-on method, permits technician to operate

equipment before buying.... Feb 48 Service-type scopes, operation

	-beam adjustments		Apr	20
	-circuit operation			
	-functions of sections			
	-horizontal control			
	-maintenance and repair .			
	-operation			
	-probe information			
	-sequence for setting			
	-vertical control			
r	ransistor curve tracers, appl			
'	-Jud Williams, Model A			64
	-solid-state components	. 01	ivitati	<u> </u>
		CT	Mor	66
	tested		Mar	
	tested		Feb	38
	tested - basic tests	. ST	Feb Mar	38 70
	tested	. ST . ST	Feb Mar Mar	38 70 66
	tested - basic tests	. ST . ST	Feb Mar Mar Feb	38 70 66 42
	tested - basic tests - circuit theory - circuit theory	. ST . ST	Feb Mar Mar	38 70 66 42
	tested - basic tests - circuit theory - circuit theory - comparison tests - defective transistors - Eico, Model 443	. ST .ST .ST	Feb Mar Mar Feb Feb Mar	38 70 66 42 42 68
	tested - basic tests - circuit theory - circuit theory - comparison tests - defective transistors - Eico, Model 443	. ST .ST .ST	Feb Mar Mar Feb Feb Mar	38 70 66 42 42 68
	tested - basic tests - circuit theory - comparison tests - defective transistors	. ST . ST . ST	Feb Mar Mar Feb Feb Mar Feb	38 70 66 42 42 68 39
	tested - basic tests - circuit theory - circuit theory - comparison tests - defective transistors - Eico, Model 443 - operation	. ST . ST . ST . ST	Feb Mar Mar Feb Feb Mar Feb	38 70 66 42 42 68 39 70

THEORY (General)

Frequency response on pulses and square waves, effects of peaking sharpens pulses ST May 59 pulses vs HF lesponse ... ST May 58 souare waves vs high-frequency -square waves vs low-frequency..... ST May 56 -waveform composition ... ST May 59 TOOLS Chemtronics - rosin-core solder PR Nov 64 Duotone -Model SA-75, tape head demagnetizer PR May 67

Edsyn

-Model Ersa Varius,

- heat control.
- soldering iron PR Nov 64
- GC
- Model H3-378,
 7-piece tool kit PR Jul 56

General Electric

-desoldering tool, solder

catcher and hose

connection PR Oct 70

-heat gun, three-temperature,

flameless PR Aug 48 Jensen

-Model JTK-16, tool kit,

multi-purpose PR Jul 56 Klaus Schlitt

-Model L2000, soldering

gun, solder dispenser.... PR Feb 70 Pomona

- Models 3780, 3781, 3782,

3783, mini test clip PR Oct 71 Techni-Tool

- cutting pliers, carbide jaws..... PR Jun 63 Model Pike #55, wiring plier...... PR Apr 63
Model #300, long-reach gripper tool PR Jan 60

Vaco

- miniature drivers PR Dec 70 - Model 70081, three-way
- ratchet magnetic driver.. PR May 67 - Model 70110, miniature
- nut drivers, 10 in set PR Oct 71 - Model S-818, S-1018,

long-reach nut drivers . . . PR Aug 48 Weller

- -Model DS-40, desoldering
- tool, vacuum and

hollow tip PR Sep 65

- Xcelite - Model 100, wire
 - stripper/cutters...... PR Sep 66 - Model 1001, socket
 - wrench set, 14 pieces PR Oct 70 - Model XL-70, midget ratchet screwdriver, 19 pieces ... PR May 66
 - Model "99", ratchet hundles,
 - for over 60 blades PR Apr 63

TRAINING

Audio-visual product servicing clinics in 16 cities, 3M/Wollensak May 64 Audio-visual service training programs, RCA Commercial Engineering No. 1D144... PR Jun 62 Aviation electronics -audio-visual training in shop May 48 automatic troubleshooting equipment May 50 -fault indicators in equipment May 48 module speed servicing May 49 -technician specialization May 51 EIA sells one-millionth servicing textbook ES Jun 6 -summer workshop, Northern Illinois University May 64 workshops for high school instructors ES May 7 Electronics trade school established, Sylvania Jan 45 Service training meetings for 1971, Jud Williams and Sylvania Apr 53 Sylvania training center, Batavia, N. Y. May 64

TRANSISTOR TESTERS

Applications	
-circuit theory	ST Mar 66
-circuit theory	ST Mar 70
-Eico Model 443,	
testing transistors	ST Mar 68
-Jud Williams Model A,	
in-circuit	ST Mar 64
-others tested	ST Mar 66
-testing diodes	ST Mar 70
Curve tracer tests	
-basic operation	Feb 39

	-comparison tests	Fel	o 42
	-defective transistors	Fel	o 42
	- review	Fel	o 38
	-typical waveforms	Fe	b 40
H	y-Tronix		
	-Model 900, transistor		
	tester1	FER Ma	r 46
W	/ayne		
	- Model WT1, in-circuit or		
	out-of-circuit 1	FER Se	p 40
Ju	d Williams		
	Model A oursis tracor	FR Ma	r 48

- Model A, curve tracer ... TER Mar 48

TUBES

12FR8 tubes	
-solid-state replacement	
for LE	Dec 22
-sources of LE	Dec 22

TUBE TESTERS

(night-Kit				
- Model	KG-600C.	 TER	Mar 49	•

TUNERS, TV

Castle		
-cleaning and lubricating		
kit	. PR	Jan 58
- replacements	PR	Feb 70
- universal replacements	PR	Mar 72
Chemtronics		
-TUN-O-BRITE, spray	. PR	Jan 60
FCC proposes 70-channel		
detent	ES	S Oct 6
Injectorall		
-cleaner/lubricant	PR	Dec 71
Servicing		
-AGC snow	. TS	Oct 69
-alignment	. TS	Oct 69
-cleaning contacts	. TS	Oct 64
-neutralization		Oct 65
-oscillator frequency		
problems	. TS	Oct 66
-tips on repair		Oct 70
- tools		Oct 69
Snow in picture,		
Westinghouse V2656	SYM	Jan 47
Varactor, operation and servi		
-AGC and AFT	•	Nov 30
-controls		Nov 28
-features		Nov 26
- servicing		
-switching diodes		Nov 27
-UHF tuner		Nov 28
– VHF tuner		Nov 27
- vnr tuner		1404 21

TURNTABLE

VERTICAL SWEEP

Insufficient height,

Admiral 6H10	. SYM Jan 46
- Motorola TS916	
Intermittent height,	
	OVAL Courte
Zenith 26KC20	STM Sep 15
Intermittent, during station	
switching or no-signal	
reception, RCA CTC36	
color	SB Dec 20
Jitter, GE H-3	
	o i ili oop i o
-horizontal bending,	
-horizontal bending, Zenith 12B14C50	
 horizontal bending, Zenith 12B14C50 Linearity controls, two, 	. SYM Dec 8
 horizontal bending, Zenith 12B14C50 	. SYM Dec 8
 horizontal bending, Zenith 12B14C50 Linearity controls, two, 	. SYM Dec 8
 horizontal bending, Zenith 12B14C50 Linearity controls, two, Electrohome C9 Magnavox T936 hybrid colo 	. SYM Dec 8
 horizontal bending, Zenith 12B14C50 Linearity controls, two, Electrohome C9 Magnavox T936 hybrid colo chassis, circuitry in 	SYM Dec 8 Dec 10 r Dec 13
 horizontal bending, Zenith 12B14C50 Linearity controls, two, Electrohome C9 Magnavox T936 hybrid colo 	SYM Dec 8 Dec 10 r Dec 13
 horizontal bending, Zenith 12B14C50 Linearity controls, two, Electrohome C9 Magnavox T936 hybrid colo chassis, circuitry in Missing, Zenith 13Z13 	. SYM Dec 8 Dec 10 Dec 13 . SYM Jan 47

Т	roubleshooting	
	-additional information ST Oct	28
	- case histories ST Sep	55
	-deflection theory ST Oct	24
	-oscillator grid	
	voltage analysis ST Oct	
	-preliminary diagnosis ST Sep	
	-schematic ST Sep	56
	-schematics and	
	waveforms ST Oct	
	-waveform analysis ST Oct	22

VERTICAL SYNC

Jitter, Packard-Bell 98C18 . . SYM Jan 46 Locking, critical

- Magnavox T938 SYM Jan 46 - Westinghouse V2655 ... SYM Jan 47 Locking, poor

-Sears 562.10130 SYM Nov 10

WARRANTIES

GE, direct payment of
warranty TV service ES Apr 4
Motorola, guarantee labels
on color sets ES Jun 4
RCA, second-year warranty on
replacement tubes offered . ES Jul 6
Sylvania, one- or two-year
warranty replacement of
color picture tubes,
offered ES Jun 6
-two-year on
long-life tubes ES Jan 4
Zenith, 90-day free labor
to b-w warranty added ES Sep 8

Index of departments

ANTENNA SYSTEMS REPORT

Ant	ennas
-----	-------

- CB, Antenna Specialist,
- Model M-189 ASR Dec 48
- Pearce-Simpson ASR Aug 47

- communications and accessories, Antenna

Specialists ASR Sep 44 -corner reflector, Antenna Specialists.

Model ASPB603 ASR Feb 58

- -integrated color/b-w, JFD
- STELLAR 2001 ASR Sep 44 -marine, Finney,
- Model RMA-1 ASR Apr 39
- -mobile (UHF), Antenna Specialists,
- Model ASP660 ASR Feb 59 -mobile communications,

Antenna Specialists, Linebacker ASR Jun 53

- -TV, all-channel, GC, "32" Series ASR Dec 48
- -TV, Antenna Corp., Model AC-802 ASR Aug 47
- TV/FM outdoor, RCA,
- Model Permacolor ASR Apr 38 Amplifier, all-channel Gibraltar,
- Jerrold, Model 4330 ASR Feb 58 Attenuator pads, Jerrold,
- Model PDA Series ASR Dec 49 Balun, Jerrold,
- Model T-2000 ASR Dec 49 CATV cable splice, Entron . . ASR Oct 33 CB antenna tuner/SWR meter.

E. F. Johnson,

- Antenna Mate ASR Oct 32 CTC log periodic, JFD,
- Model LPV-CTC ASR Jun 52 FM attenuator, JFD,
- Model 8488 ASR Jun 52 Folding TV/FM antenna, Antenna

Corp., Model AC-700K .. ASR Sep 45 Multicoupler, American Electronics,

Model AMC 2359 ASR Jun 53

- Preamplifier
- -all-channel, Jerrold, Model 4287-S ASR Feb 58 -FM, CADCO, Model IPA-SCA-FM ASR Dec 48 Signal Splitter, all-channel, Jerrold.
- Model FS-1314-FM ASR Apr 38 Splitters
 - -all-channel TV, Jerrold,
- Model 1572G ASR Jun 52 -two-way, MATV, Jerrold,
- Model 1563 ASR Sep 45 UHF "De-snower", Jerrold,
- Model DSU-105 ASR Aug 47 UHF/VHF tapoffs, JFD,
- Model P-5117 ASR Apr 39 Universal stacking kit,

Antenna Specialists,

Model M-205..... ASR Oct 32

AUDIO SYSTEMS REPORT

- Amplifiers
- -solid-state, Bogen AUD Aug 17 -solid-state, Fanon,
- Model TRI-50 AUD Apr 28 Audio and adapter cable display,
- Workman AUD Jul 48 -North American AUD Oct 30
- CB accessory speaker,
- E. F. Johnson AUD Feb 50 Cassette
- -adapter, Mura Corp. ... AUD Jul 48 -bulk tape eraser,
- Duotone.
- Model SA-69 AUD Apr 29 -universal motor, Weltron,
- Model 70-700 AUD Oct 30 Connectors, Switchcraft ... AUD Oct 30

Headphone extension cable, Duotone.

Model SXC-15 AUD Jul 48 Intercommunications system,

Loudspeakers, 12-inch, Jensen, Model 9 and 10 AUD Nov 42 Magna-See, Soundcraft AUD Feb 51 Metal cassette, Auricord, X-R PRO 6..... AUD Nov 43 Microphones, acoustically equalized sound systems, Shure. Model ES-50, ES-51 AUD Apr 28 Multi-Tap paging and intercom speaker, Fanon, Model HDA-30T AUD Apr 28 Outdoor extension speakers, Argos AUD Feb 50 PA amplifier, 22-watt, Olson, Model AM-387 AUD Jul 48 Pre-record test cartridge, Robins, Model TBT-8... AUD Feb 50 Sectoral horn, Atlas, Model WCH-100 AUD Jul 48 Soundette mixer-amplifier, Sound-Craft, Model 6MA AUD Aug 17 Speaker selector, GC, Model 30-5004 AUD Dec 69 Stereo microphone mixer, Shure, Model M688 . . . AUD Nov 42 Stylus cleaner, Duotone, Formula ML-365 AUD Nov 42 Tape-head demagnetizer, Robins, TD-12 AUD Feb 51 Torque indicator, Hartak, Model X-87 AUD Apr 28

Atlas, Model CJ-30N AUD Feb 50

BOOK REVIEW

ABC's of FET's	BR Jan 44
Color-TV Case Histories	BR Jan 44
Color-TV Field-Service Guide,	
Volumes 1 and 2	BR Feb 46
Color TV Servicing	BR Jun 61
How To Repair Solid-State	
Imports	BR Apr 52
How To Use Test Instruments	
in Electronic Servicing	BR Jan 44

How To Use Vectorscopes, Oscilloscopes and Sweep-Signal Generators BR Jun 61 Laboratory Manual For Electronic Shop Practices BR Jan 44 Radio Receiver Servicing Guide..... BR Apr 52 TV Servicing Made Easy BR Apr 52 Transistor Audio Amplifiers . . BR Jun 61 Transistor Substitution Handbook, Vol. II BR Jun 21 Tube Substitution Handbook, 14th Edition BR Feb 46 Understanding Oscillators ... BR Sep 16 Understanding Solid-State Circuits..... BR Sep 16

ELECTRONIC SCANNER

Admiral -sale of color CRT production equipment to RCA discussed ES Apr 4 -service and training activities under one head.. ES Jun 4 All-electronic clock, no moving parts ES Sep 10 Appliances/TV, No. 2 on consumer complaint list ... ES Jan 4 Average annual pay of service workers in '60's increased at slower pace than white and blue collar workers... ES Aug 8 Bank interest rates charged independent business on rise ES Nov 8 Betz elected to Electronics Hall of Fame ES Jul 4 Bureau of Radiological Health study reports no radiation hazard to TV technicians.. ES May 4 CATV, first receiver introduced by Magnavox ES Oct 7 CSEA requests assistance to defeat Consumer Bill ES Aug 6 Charge that Packard-Bell uses rebuilt CRT's in new receivers retracted ES Mar 4 Color TV, who and how many own ES Mar 4 Color and b-w TV sales up in first half of '71 ES Sep 8 Cost of TV repairs drops, other services increase ... ES Mar 4 Distributor-to-dealer domestic sales fall below '69 totals.. ES Apr 4 EIA -FCC petitioned for 80 new CB channels in 220-MHz bank ES Jul 6 - to boost Service Training Program ES Sep 4 -workshops for high school instructors to reach 15,000 young men ES May 7 -'71 Electronic Market Data book published ES Sep 6 Equipment write-off program adopted by U.S. Treasury ES Aug 9 European audio equipment,

specialized service ES Jan 4 FCC -Blonder-Tongue subscription TV system approved ES Oct 6 -informs lawmakers about forthcoming cable TV rules..... ES Aug 8 -70-channel UHF detent tuner ES Oct 7 -reassigns two unused UHF TV channel to land mobile radio users ES Apr 6 GE -direct, per-call warranty service reimbursement program ES Apr 4 -ends radio production ES Nov 4 -12-man independent dealer council ES May 7 -IC's cheaper, new process ES Feb 12 -NEA award for image building service dealer/ technician aids ES Jan 4 -NEA "Special Recognition Award" ES Nov 6 -TV service representatives meet with ES Dec 6 HV measurements and adjustments to reduce color TV x radiation, HEW. ES Jun 4 Hitachi opens new sales, service and parts facility for Midwest ES Sep 4 Home Electronics Product Service Center, established Penney ES Apr 12 IC's contain 75 percent of circuitry in Toshiba solid-state color chassis ES Apr 6 ISCET - Crow appointed executive director ES Jul 7 - new certification program ES May 4 - new officers..... ES Sep 4 -T. Bull elected vice ES Dec 6 chairman ITT donates teleprinters to aid deaf ES Jan 45 Independent business to get involved in tax-writing process ES Aug 6 Indiana bill calls for licensing of technician and shop ES Apr 4 Light beams for distributing TV signals in cities..... ES Feb 13 MGA appoints regional service engineers ES Jan 8 Missouri association, D. Taber elected president ES Dec 4 Motorola -booklet on conforming to Song-Beverly Warranty ES Sep 6 -guarantee label on color sets ES Jun 4 -inspection and service modification of one portable color TV for possible shock hazard ES Nov 4

-services' capacity must increase 65 percent by '75. ES Oct 4 NATESA -annual convention ES Jun 4 -Shumavon elected president ES Nov 4 NEA - Browne re-elected president ES Sep 10 -FINCO contributes \$1000 to membership campaign prizes ES Oct 4 - industry self-regulation, FCC control of CATV, resolutions ES Oct 4 NESA re-elects Hyde president ES Apr 4 National Association of Service Managers, R. Normandy re-elected president of ES Dec 6 National Electronic Service Week, Portland, Orogon, July 14-July 18, Mayor proclaims ES May 4 N. Y. Attorney General tells servicemen to police industry ES Feb 10 New York, hearings to determine need for licensing in ES Dec 4 One Millionth ElA-sponsored servicing textbook observed, sale of ES Jun 6 Packard-Bell -southwest field engineer, named ES Apr 4 - midwest field engineer, appointed ES Feb 10 Panasonic -parts and service divided into two divisions ES Mar 7 -three auto sound product distributors named ES Jan 4 Philco-Ford -color TV leasing to CATV subscribers, now testing . . ES Dec 4 -National Service Agents Council formed ES Mar 4 -number of shops "franchised" to service products, reduced ES Feb 10 Phillip's service manager elected VP of N.Y. chapter of NASM ES Feb 12 Precision adds sixth service center ES May 8 Precision moves to Sacramento, California branch ES Aug 9 RCA - Adams named president . . ES Nov 6 -and Admiral agree for purchase of color picture tube equipment ES Jun 8 -announces price increases on receiving tubes ES Sep 4 -enters car stereo market ... ES Jan 8 -production of b-w TV picture tubes, ends, convert to color CRT's ES Apr 6

January, 1972/ELECTRONIC SERVICING 69

-second-year warranty on all
Colorama and HI-LITE
color picture tubes sold for
replacement use ES Jul 6
-sixty-five percent of color
is solid-state ES Sep 4
Sanyo to market color TV
in U.S ES Jan 8
Self-terminating antenna system
signal outlet, patent
issued ES Sep 4
Service is problem with
Japanese-made home
entertainment products,
per survey ES Feb 10
Stereo music over existing
CATV lines, developed ES Nov 4
Sylvania
-adds new distribution
point, Dallas, Texas ES Jan 45
-appoints distributors ES Jul 8
- color CRT could reduce depth
of cabinets by 41/2 inches ES Sep 4
-established electronics
trade school ES Jan 45
-names distributor in
Jackson, Miss ES Aug 9
-parts distributors named ES Jun 8
-one- and two-year
replacement picture tube
warranties offered ES Jun 6
-opens service centers in
Cleveland and Detroit ES Oct 4
-two-year warranty on new
long-life tubes, offered ES Jan 4
T.E.S.A., Wisconsin, hires
T.E.S.A., Wisconsin, hires association management
association management
association management firm ES Jan 8
association management firm ES Jan 8 TSA, Philadelphia, gives
association management firm ES Jan 8 TSA, Philadelphia, gives "Service Award" to TV
association management firm ES Jan 8 TSA, Philadelphia, gives "Service Award" to TV station
association management firm

b-w warranty ES Sep 8
-awarded Industrial Science
Award ES Mar 6
-FCC to prescribe broadcast-
quality standards for CATV
signals ES Jan 6
-research director cited for
contributions to
consumer electronics ES Feb 10
-STV system wins FCC
approval ES Jan 4

LETTERS TO THE EDITOR

LETTERS TO THE EDITOR		
	12FR8 tubes	
	-solid-state replacement	
	for	LE Dec 22
	-sources of	
	Audio amplifiers revisited	
	Castigation of RCA	. LE OUT TO
	ServiceAmerica	LE lan 12
	-comments	
	Ethical business practices	
	Legislation, answer to	LE Aug 15
	servicing ills	LE Mar 9
	Licensing – morality,	. LE Mar o
		LE May 10
	competence	LE May 10
	Money in servicing TV	. LE JUI 15
	NATESA attitude on	
	part-time technicians	. LE Jul 15
	NATESA leader proposes	
	changes to contribute to	
	problem solving	LE Aug 15
	National service association	
	reaction to	121.00
	part-time servicers	LE Apr 12
	Parts distribution system	. LE Feb 4
	Permanent and clear labeling	
	of chassis	LE Jun 18
	RCA's ServiceAmerica	LE Apr 12
	Reaction to Duncan Hines	
	commercial	
	— —	
	-NEA VP reacts	LE Feb 6
	Removing load increases	
	voltage	LE Mar 10
	Repair of mainsprings in	
	old phonos	LE Apr 12
	ServiceAmerica and	
	licensing	LE Jan 12
	Servicing of older and	
	newer sets	
	Speed up parts distribution	
	Stereo recording	LE May 12
	The servicer and the law	LE Jun 18

PRODUCT REPORT

Audiovisual Service Training		
Programs, RCA	. PR Jun	62
Bin boxes, metal, Bay	PR May	66
Capacitor kit, bypass,		
Aerovox	. PR Mar	72
Capacitors		
-ceramic, Sprague,		
Model J-150	. PR Jun	62
-low-voltage, Sprague,		
Model TVA ATOM	PR Sep	66
CB		
-modulation indicator,		
Turner, Mod 1	. PR Apr	64

- scanner, Commander,
Model 779 PR Apr 63 Cartridges, snap-in,
Pickering PR Jan 58
Cleaners
-contact.overhaul kit,
Castle PR Jan 58
-glass and plastic,
Chemtronics.
Mask-N-Glas
-tape-head, Chemtronics PR Jul 56 -tuner, GC.
"Magic Vista" PR Feb 70
-tuner, lubricant,
Chemtronics,
TUN-O-BRITE PR Jan 60
Clip, mini-test, Pomona,
Model 3781, 3782, 3783 PR Oct 71
Color gun control,
Chamberlain,
Model B-150 PR Jun 63
Color TV control packaging,
Workman PR May 66
Converters for home use,
power, GC,
Model 30-3091 PR Jul 56
Decade boxes, Ohmite,
Model 3407 PR Feb 70
Demagnetizer, tape head,
Duotone, SA-75 PR May 67
Detection meter, radiation,
Victoreen, Model 499
VIC-CHEK PR Jul 56
Electrical tape, shrinkable,
Cole-Flex
Model TYT 100 PR Sep 65
Electrode gas arresters,
Telecommunications,
Model 316 PR Apr 64
Floor-hugging extension cord,
Ideas, Electriduct PR Jan 60
Integrated circuits, linear,
Sylvania PR Jul 57
Inverter, solid-state, ATR,
Model 12U-S6M PR Apr 64
Replacement tuners, universal
and TV, Castle
PR Feb 70
Scanning receiver, Electra,
Bearcat III PR Nov 64
Semiconductor replacements,
Sylvania PR Nov 64
Sequential decoder, two-tone,
Dynacoustics,
Model 201 PR Sep 65
Solder, rosin-core,
Chemtronics PR Nov 64
Switcher, stereo/radio
speaker, GC PR Aug 51
Tools
-combination, Techni-Tool,
Plike #55 PR Apr 63
-desoldering pump,
vacuum,
Techni-Tool, T-2 PR Mar 72
-desoldering, Weller,
Model DS-40 PR Sep 65
-desoldering, GE PR Oct 70
-drivers, miniature, Vaco,
Model 70110 PR Oct 71

-grippers, long reach,	
Techni-Tool, #300	. PR Jan 60
-heat gun, 3-temperature,	
Ideal	PR Aug 48
-hot knife and soldering	
iron, Weller,	
Model SP23KH	. PR Sep 65
-nut drivers, long reach,	
Vaco	PR Aug 48
-ratchet handles, Xcelite,	
Series ''99''	. PR Apr 63
-ratchet magnetic driver,	
3-way, Vaco, No. 70081	PR May 67
-ratchet screwdriver, mide	
Xcelite, No. XL-70	PR May 66
-shear cutter, carbide,	· · · · · ·
Techni-Tool	PR Jun 63
-socket wrench, Xcelite,	
Model 1001	PR Oct 70
-soldering gun, Klaus	
Schlitt, L2000	PR Feb 70
-soldering iron, heat contr	rol,
Edsyn, The Loner	PR Nov 64
-soldering iron, industrial,	
Edsyn, Ersa Varius	PR Mar 72
-tool kit, Jensen,	
Model JTK-16	PR Jul 56
-GC	PR Jul 56
-wire stripper/cutters,	
Xcelite, No. 100	PR Sep 66
ransformers, low-voltage,	
Edwards, Model 592	PR Feb 70
HF monitor receiver,	
Petersen, Model 808	PR Apr 63
HF/FM radiotelephone,	
Pearce-Simpson,	
CAPRI VHF	PR Aug 48
jumper cables and plugs,	
Weltron	. PR Apr 63

SERVICE BULLETIN

Ti

U

V

Arcina

Arcing
-between pins of pincushion
tube socket, Magnavox
T931/T933 SB Oct 63
-to CRT shield, GE KE
color chassis
-from aquadag to shield
GE KE color chassis SB Dec 20
Audio output
-transistors changed, Zenith,
late-production color
TV chassis SB Nov 12
-tube failure caused by
arcs, RCA CTC38,
CTC39 SB Oct 62
Beat pattern in picture,
Magnavox T950, T951 SB Dec 20
Color saturation in "on" position
of AccuMatic control not
the same as in "off" position,
RCA CTC46 SB Oct 63
Discolored fuses, Delco SB Oct 63
Discontinued picture tube,
GE b-w portable TV SB Oct 62
Excessive brightness, RCA
CTC40, CTC44 or CTC47
color TV chassis SB Nov 12
Failure of power supply diodes,
GE KE color TV chassis SB Nov 12

Fuse failures - Magnavox T940/T951 SB Oct 62 -repeated, Sony KV 1200 series SB Dec 20 Grill cloth sagging, cure, all Magnavox sets SB Dec 20 High voltage -arcing to CRT shield, GE KE chassis SB Dec 20 -regulator tube, Magnavox T958 and T962 SB Nov 12 Hum bars -caused by 250-volt supply failure, RCA CTC44 or CTC47 color chassis SB Dec 20 -in picture, RCA CTC44 or CTC47 SB Dec 20 -silicon-diode type, RCA CTC52..... SB Oct 62 Intermittent -during station switching or no-signal, RCA CTC36 color chassis SB Dec 20 -no vertical sweep, Coronado, TV2-6617 or TV2-6618 SB Oct 63 -vertical sweep, RCA CTC36 chassis SB Dec 20 Sound IC failures, RCA KCS176A SB Oct 10 - Module damaged by incorrect speaker, RCA CTC46 SB Dec 20 VDR replacement, Zenith 4B25C19, 19CC19 TV SYMCURE AGC and sync critical, Westinghouse V2656 ... SYM Jan 47 Arcing across spark gap of C102, Philco 19QT87 . . . SYM Apr 14 Black, vertical bars on left of

screen, Sylvania D06-1 . SYM Nov 10 Blurred picture, weak contrast, critical vertical locking, Magnavox T938 SYM Jan 46 Brightness not variable through normal range and white compression, Zenith 12B14C50 SYM Dec 8 Buzz and distortion in audio, GE H-3..... SYM Sep 15 Color missing -AGC overload, Zenith 12B14C50 SYM Dec 8 -GE H-3..... SYM Sep 15 -intermittent, GE KC SYM Mar 32 -no place voltage on pin 6 or V14, Motorola SYM Nov 10 TS914 - Packard-Bell 98C18 . . . SYM Jan 47 Excessive brightness, RCA CTC44 and CTC40 SYM Sep 14 Ghosts, Zenith 4B45C19 SYM Dec 8 High voltage missing, damper plate glows red,

Motorola TS914 SYM Jan 46

Height missing, foldover or
weak locking, Motorola TS915 SYM Jan 46
Admiral 6H10
Horizontal bending when line
voltage low, RCA
CTC55 SYM Sep 14
Horizontal oscillator intermittent,
GE H-3 SYM Sep 14 Hum bars, degaussing not
shut off, RCA CTC44 SYM Sep 14
Intermittent height,
Zenith 26KC20 SYM Sep 15 Jitter and horizontal bending,
Zenith 12B14C50 SYM Dec 8
Low brightness and no
picture or sound, RCA
CTC24 SYM Apr 4
Motorboating in sound,
RCA CTC25 SYM Jan 47
Narrow picture and reduced
high voltage, GE KD SYM Mar 32 Narrow width
-decreased high voltage,
Magnavox T933 SYM Mar 32
- reduced high voltage,
RCA CTC24 SYM Apr 14 Overload with missing color,
Zenith 12B14C50 SYM Dec 8
Picture
-bending and vertical jitter,
Packard-Bell, 98C18 SYM Jan 46 – dark with little video and
brightness control not
effective, Zenith
16Z7C192 SYM Dec 8
-dark with bright retrace lines, Zenith 16Z8C50 SYM Dec 8
-smeared and poor vertical
locking, Sears
562.10130 SYM Nov 10
Piecrusting, GE H-3 SYM Sep 14 Raster
-dim, reduced high voltage,
GE C-1 SYM Nov 10
-displayed, no sound or
picture, Motorola TS921 SYM Apr 14 - high voltage missing,
GE H-3 SYM Sep 15
GE H-3 SYM Sep 15
GE H-3
GE H-3SYM Sep 15 no picture, Zenith 4B25C19SYM Sep 15 Red missing in color picture or raster, Motorola TS921SYM Apr 14 Sharp, black horizontal bars on some channels, RCA CTC25SYM Apr 14 Snow in picture, Westinghouse V2656-1.SYM Jan 47 Vertical or horizontal locking missing, GE C-1SYM Nov 10 jitter, GE H-3SYM Sep 15 jitter and horizontal bending, Zenith 12B14C50SYM Dec 8
GE H-3
GE H-3SYM Sep 15 no picture, Zenith 4B25C19SYM Sep 15 Red missing in color picture or raster, Motorola TS921SYM Apr 14 Sharp, black horizontal bars on some channels, RCA CTC25SYM Apr 14 Snow in picture, Westinghouse V2656-1.SYM Jan 47 Vertical or horizontal locking missing, GE C-1SYM Nov 10 jitter, GE H-3SYM Sep 15 jitter and horizontal bending, Zenith 12B14C50SYM Dec 8

-critical hue adjustment,

Zenith 14B7C50	. SYM Jan 47
-missing, GE C-1	SYM Nov 10
-voltage on plate of	
V14A low,	
Admiral 6H10	SYM Mar 32
- Magnavox T933	SYM Sep 14
– no color,	
Admiral 6H10	SYM Mar 32
Wide, vertical color bar on	

b-w, Admiral 6H10..... SYM Jan 46

TEST EQUIPMENT REPORT

AC bridge, miniature, transistorized, C. H. Mitchell TER Jun 37 Ammeter, clamp-around, Pacer, Model 705A TER Feb 57 CATV/MATV -systems analyst, JFD, Model 7500 TER Feb 54 -systems measurement device, Sadelco, PORTA-BRIDGE..... TER Sep 40 CRT tester/rejuvenator, Leader, Model LCT-910 . TER Nov 22 Capacitance meter, direct-reading Lateur, Model 101 TER Nov 23 Component checker, solid-state, C. H. Mitchell, CONSCAN TER Feb 54 Connection verifier, C. H. Mitchell TER Apr 41 Current/power monitor, Sencore, Model PM157 . TER Feb 52 Curve tracer, dynamic transistor, Jud Williams, Model A., TER Mar 48 Field-strength meter, solid-state, Jerrold, Model 747 TER Oct 60 Frequency counter -Cushman, Model CE-40..... TER Aug 45 -portable, digital, Weston, Model 1250 TER Oct 59 -six-digit, Simpson, Model 2726 TER Jun 38 Generators -audio sweep, Rameco, Model ASG-1 TER Sep 40 -FM multiplex, signal, Leader, Model LSG-230. TER Oct 59 -function, Blulyne, Model SG-10..... TER Aug 46 -IC-equipped color, B&K, Model 1246 and 1243 ... TER May 35 - Leader, Model LAG-25.. TER Sep 43 -sine/square-wave, C. H. Mitchell, Model DF-24 TER Aug 46 - stereo, The London Co., Model SMG-1..... TER Jul 38 -sweep-marker, RCA, Model WR-514A TER May 35 -post-injection, sweep-marker, Leader, Model LSW-330 TER May 37 -sweep-marker, Sencore, Model SM158 TER Jan 49 Intermodulation meter,

Measurements,
Model 940 TER Jan 49
Isolation plugs, parallel,
Pomona, Model 3501 TER Sep 43
Megohmmeter
-Associated Research,
Model 2001 TER Feb 52
- Freed Transformer,
Model 1620 TER Apr 41
–Hochheiser,
Model A-102 TER Aug 44
Millivolt meter, AC, Leader,
Model LMV-87A TER Aug 46
Multimeter, AC/battery-operated
digital, Hickok, Model
3300
Multitester, Weltron,
Model 51-100 TER Oct 59
Oscilloscopes, triggered sweep
-DC- to 25-MHz, dual-trace,
Hickok, Model 5002 TER Jun 37
-dual-trace, Telequipment,
Model D67 TER May 35
– general-purpose, Kikusui,
Model 556A TER Apr 40
-large-screen, alignment,
Kikusui, Model 5121 TER Apr 40
Kikusui, Model 5121 TER Api 40
-Kikusui, Model 555G TER Jul 39
-Leader, Model LB0-501 TER Jul 40
 Lectrotech, Model
T0-50 TER Jul 41
-solid-state, B&K,
Model 1460 TER Jul 38
-three-inch, Leader,
Model LB0-301 TER Aug 44
Model LB0-301 TER Aug 44 – 25-MHz, Hickok,
Model LB0-301 TER Aug 44
Model LB0-301 TER Aug 44 – 25-MHz, Hickok, Model 5000A TER Nov 22
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks,
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda,
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - low-voltage, Blulyne,
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - low-voltage, Blulyne,
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - low-voltage, Blulyne, Model PS62C TER Jan 49
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - Iow-voltage, Blulyne, Model PS62C TER Jan 49 RLC meter, direct-reading,
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - Iow-voltage, Blulyne, Model PS62C TER Jan 49 RLC meter, direct-reading, Radiometer TER Feb 57 Scope, triggered-sweep,
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - Iow-voltage, Blulyne, Model PS62C TER Jan 49 RLC meter, direct-reading, Radiometer TER Feb 57 Scope, triggered-sweep, dual-trace, Sencore,
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - Iow-voltage, Blulyne, Model PS62C TER Jan 49 RLC meter, direct-reading, Radiometer
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - low-voltage, Blulyne, Model PS62C TER Jan 49 RLC meter, direct-reading, Radiometer
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - Iow-voltage, Blulyne, Model PS62C TER Jan 49 RLC meter, direct-reading, Radiometer TER Feb 57 Scope, triggered-sweep, dual-trace, Sencore, Model PS163 TER Dec 40 Semiconductor checker, Ames, Model 170 TER Feb 54
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - Iow-voltage, Blulyne, Model PS62C TER Jan 49 RLC meter, direct-reading, Radiometer TER Feb 57 Scope, triggered-sweep, dual-trace, Sencore, Model PS163 TER Dec 40 Semiconductor checker, Ames, Model 170 TER Feb 54
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - low-voltage, Blulyne, Model PS62C TER Jan 49 RLC meter, direct-reading, Radiometer
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - low-voltage, Blulyne, Model PS62C TER Jan 49 RLC meter, direct-reading, Radiometer TER Feb 57 Scope, triggered-sweep, dual-trace, Sencore, Model PS163 TER Dec 40 Semiconductor checker, Ames, Model 170 TER Feb 54 Tape-head and guide gauge, Information Terminals,
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - Iow-voltage, Blulyne, Model PS62C TER Jan 49 RLC meter, direct-reading, Radiometer TER Feb 57 Scope, triggered-sweep, dual-trace, Sencore, Model PS163
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - Iow-voltage, Blulyne, Model PS62C TER Jan 49 RLC meter, direct-reading, Radiometer
Model LB0-301TER Aug 44 - 25-MHz, Hickok, Model 5000ATER Nov 22 Patch cords and jacks, Pomona, Model 358-JTER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0VTER Jun 39 - Iow-voltage, Blulyne, Model PS62CTER Jan 49 RLC meter, direct-reading, RadiometerTER Feb 57 Scope, triggered-sweep, dual-trace, Sencore, Model PS163TER Dec 40 Semiconductor checker, Ames, Model 170TER Feb 54 Tape-head and guide gauge, Information Terminals, Model M-300TER Oct 60 Testers - diode, rectifier, Olson, Model TE-244TER Feb 57
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - Iow-voltage, Blulyne, Model PS62C TER Jan 49 RLC meter, direct-reading, Radiometer
Model LB0-301TER Aug 44 - 25-MHz, Hickok, Model 5000ATER Nov 22 Patch cords and jacks, Pomona, Model 358-JTER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0VTER Jun 39 - Iow-voltage, Blulyne, Model PS62CTER Jan 49 RLC meter, direct-reading, RadiometerTER Feb 57 Scope, triggered-sweep, dual-trace, Sencore, Model PS163TER Dec 40 Semiconductor checker, Ames, Model 170TER Feb 54 Tape-head and guide gauge, Information Terminals, Model M-300TER Oct 60 Testers - diode, rectifier, Olson, Model TE-244TER Feb 57
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - Iow-voltage, Blulyne, Model PS62C TER Jan 49 RLC meter, direct-reading, Radiometer
Model LB0-301TER Aug 44 - 25-MHz, Hickok, Model 5000ATER Nov 22 Patch cords and jacks, Pomona, Model 358-JTER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0VTER Jun 39 - Iow-voltage, Blulyne, Model PS62CTER Jan 49 RLC meter, direct-reading, RadiometerTER Feb 57 Scope, triggered-sweep, dual-trace, Sencore, Model PS163TER Dec 40 Semiconductor checker, Ames, Model 170TER Feb 54 Tape-head and guide gauge, Information Terminals, Model M-300TER Oct 60 Testers - diode, rectifier, Olson, Model TE-244TER Feb 57 - in- and out-of-circuit transistor, Wayne, Model WT-1TER Sep 40
Model LB0-301TER Aug 44 - 25-MHz, Hickok, Model 5000ATER Nov 22 Patch cords and jacks, Pomona, Model 358-JTER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0VTER Jun 39 - Iow-voltage, Blulyne, Model PS62CTER Jan 49 RLC meter, direct-reading, RadiometerTER Feb 57 Scope, triggered-sweep, dual-trace, Sencore, Model PS163TER Dec 40 Semiconductor checker, Ames, Model 170TER Feb 54 Tape-head and guide gauge, Information Terminals, Model M-300TER Feb 57 - diode, rectifier, Olson, Model TE-244TER Feb 57 - in- and out-of-circuit transistor, Wayne, Model WT-1TER Sep 40 - semiconductor, battery
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - low-voltage, Blulyne, Model PS62C
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - low-voltage, Blulyne, Model PS62C TER Jan 49 RLC meter, direct-reading, Radiometer TER Feb 57 Scope, triggered-sweep, dual-trace, Sencore, Model PS163 TER Dec 40 Semiconductor checker, Ames, Model 170 TER Feb 54 Tape-head and guide gauge, Information Terminals, Model M-300 TER Oct 60 Testers - diode, rectifier, Olson, Model TE-244 TER Feb 57 - in- and out-of-circuit transistor, Wayne, Model WT-1 TER Sep 40 - semiconductor, battery operated, Ramko, Model TT-7 TER Sep 42
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - low-voltage, Blulyne, Model PS62C
Model LB0-301TER Aug 44 - 25-MHz, Hickok, Model 5000ATER Nov 22 Patch cords and jacks, Pomona, Model 358-JTER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0VTER Jun 39 - low-voltage, Blulyne, Model PS62CTER Jan 49 RLC meter, direct-reading, RadiometerTER Feb 57 Scope, triggered-sweep, dual-trace, Sencore, Model PS163
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - low-voltage, Blulyne, Model PS62C
Model LB0-301TER Aug 44 - 25-MHz, Hickok, Model 5000ATER Nov 22 Patch cords and jacks, Pomona, Model 358-JTER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0VTER Jun 39 - low-voltage, Blulyne, Model PS62CTER Jan 49 RLC meter, direct-reading, RadiometerTER Feb 57 Scope, triggered-sweep, dual-trace, Sencore, Model PS163
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - low-voltage, Blulyne, Model PS62C TER Jan 49 RLC meter, direct-reading, Radiometer
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - low-voltage, Blulyne, Model PS62C TER Jan 49 RLC meter, direct-reading, Radiometer
Model LB0-301 TER Aug 44 - 25-MHz, Hickok, Model 5000A TER Nov 22 Patch cords and jacks, Pomona, Model 358-J TER Mar 49 Power supply - IC regulated, Lambda, Model LL-902-0V TER Jun 39 - low-voltage, Blulyne, Model PS62C TER Jan 49 RLC meter, direct-reading, Radiometer

	Model 900	TER	Mar	46
	-tube, Allied Radio,			
	Model KG-600C	TER	Mar	49
V	OM			
	-adapter converts to			
	transistor diode tester,			
	Coletronics, Model			
	TRA-1	TER	Nov	23
	-compact, RCA, Model			
	WV-518A	TER	Jun	37
	-compact, RCA, Model			
	WV-517A	TER	Sep	42
	-DC digital, ALCO,			
	Model DVM-110	TER	Mar	46
	-digital AC or battery			
	operated, Simpson,			
	Model 460	TER	Sep	41
	-digital, Triplett,			
	Model 8035	TER	Nov	24
	-FET, B&K, Model 179	. TER	Apr	40
	- RCA			
	-solid-state, Triplett,			
	Model 801	. TEF	Jul	40
	- 50K ohm/volt, RCA,			
	Model WV-519A	TER	Apr	40
	-100K ohm/volt, RCA,			
	Model WV-520A	TER	Mar	46
V	TVM, Mercury, Model			
	1700C	TER	Mar	48
V	oltmeter, electronic analog			
	Abphot, Model 1001	. TER	Apr	40
M	attmeter, directional, RF,			
	Bird	TER	Feb	54
M	heatstone fault location			
	bridge, Special			
	Instruments, Model			
	2103	TER	Nov	24
M	/ow/flutter meter, Leader			
	Model LFM-36A	TER	Dec	41

-transistor, Hy-Tronix,

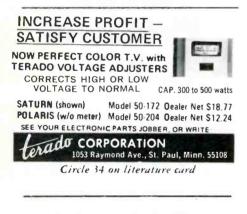
Index of titles

Auto Cassette Players – Drive	
Systems and Related	
Common Troubles No	ov 44
1971 Auto Radio Design-	
Changes That Affect	
Servicing Ap	or 42
Avionics and the Increased	
Complexity Problem Ma	ay 48
Bookkeeping – A Review Oc	ct 44
Business Management	
Checklist No	ov 32
CES Wrapup Oc	ct 34
Common Causes of	
Horizontal Nonlinearity Ma	ar 26
Double-Entry Bookkeeping	
Simplified Ju	in 22
Dynamic Convergence:	
Troubleshooting and	
Touchup Fe	b 26
Eight Prime Problem	
Areas In Auto Radio Au	g 52
FM Alignment With and	

Without Sweep Oct 52
Finding and Eliminating Sources
of Auto Radio Noise Mar 50
Guidelines For Troubleshooting
Vertical Sweep Defects,
Part 1 Sep 52
Guidelines For Troubleshooting
Vertical Sweep Defects,
Part 2 Oct 18
High-Voltage Regulation
and Safety Circuits Aug 58
Horizontal Deflection and
High Voltage Jan 14
Horizontal Sweep – Operation
and Troubleshooting,
0.
Part 1 Nov 36
Horizontal Sweep-Operation
and Troubleshooting,
Part 2 Dec 60
How Circuit Defects Affect
Video Waveforms Jun 44
How Frequency Response
Affects Square & Pulse
Waveforms May 56
How to Service RCA's Modular
Color ChassisJul 24
IC's In Auto Radio Jan 32
IC's in TV Feb 18
Improved Serviceability:
Easing the Technician's
Burden Oct 10
Improved Shop Efficiency:
The Way to Bigger Profits Mar 34
In-Circuit Testing With a
Transistor Curve Tracer Mar 64
Transistor Curve Tracer Mar 64
Income and Expense Summary:
Income and Expense Summary: The Scorecard of Your
Income and Expense Summary: The Scorecard of Your Business
Income and Expense Summary: The Scorecard of Your
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes,
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting Techniques Sep 34
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting Techniques Sep 34
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting Techniques Sep 34 Interpreting Vertical
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting Techniques Sep 34 Interpreting Vertical Sweep Conditions Aug 28
Income and Expense Summary: The Scorecard of Your BusinessJul 52 Index of 1970 ContentJan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting TechniquesSep 34 Interpreting Vertical Sweep ConditionsAug 28 Introduction to Practical
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting Techniques Sep 34 Interpreting Vertical Sweep Conditions Aug 28 Introduction to Practical Bookkeeping and Accounting
Income and Expense Summary: The Scorecard of Your BusinessJul 52 Index of 1970 ContentJan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting TechniquesSep 34 Interpreting Vertical Sweep ConditionsAug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service
Income and Expense Summary: The Scorecard of Your BusinessJul 52 Index of 1970 ContentJan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting TechniquesSep 34 Interpreting Vertical Sweep ConditionsAug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service ShopsApr 16
Income and Expense Summary: The Scorecard of Your BusinessJul 52 Index of 1970 ContentJan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting TechniquesSep 34 Interpreting Vertical Sweep ConditionsAug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service
Income and Expense Summary: The Scorecard of Your BusinessJul 52 Index of 1970 ContentJan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting TechniquesSep 34 Interpreting Vertical Sweep ConditionsAug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service ShopsApr 16 Left/Right Channel Comparison:
Income and Expense Summary: The Scorecard of Your BusinessJul 52 Index of 1970 ContentJan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting TechniquesSep 34 Interpreting Vertical Sweep ConditionsAug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service ShopsApr 16 Left/Right Channel Comparison: Another Approach to Stereo
Income and Expense Summary: The Scorecard of Your BusinessJul 52 Index of 1970 ContentJan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting TechniquesSep 34 Interpreting Vertical Sweep ConditionsAug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service ShopsApr 16 Left/Right Channel Comparison: Another Approach to Stereo TroubleshootingMay 44
Income and Expense Summary: The Scorecard of Your BusinessJul 52 Index of 1970 ContentJan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting TechniquesSep 34 Interpreting Vertical Sweep ConditionsAug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service ShopsApr 16 Left/Right Channel Comparison: Another Approach to Stereo TroubleshootingMay 44 Minimum Scope Vertical Bandwidth
Income and Expense Summary: The Scorecard of Your BusinessJul 52 Index of 1970 ContentJan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting TechniquesSep 34 Interpreting Vertical Sweep ConditionsAug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service ShopsApr 16 Left/Right Channel Comparison: Another Approach to Stereo TroubleshootingMay 44 Minimum Scope Vertical Bandwidth RequiredJul 16
Income and Expense Summary: The Scorecard of Your BusinessJul 52 Index of 1970 ContentJan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting TechniquesSep 34 Interpreting Vertical Sweep ConditionsAug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service ShopsApr 16 Left/Right Channel Comparison: Another Approach to Stereo TroubleshootingMay 44 Minimum Scope Vertical Bandwidth
Income and Expense Summary: The Scorecard of Your BusinessJul 52 Index of 1970 ContentJan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting TechniquesSep 34 Interpreting Vertical Sweep ConditionsAug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service ShopsApr 16 Left/Right Channel Comparison: Another Approach to Stereo TroubleshootingMay 44 Minimum Scope Vertical Bandwidth RequiredJul 16 National Electronic Associations'
Income and Expense Summary: The Scorecard of Your BusinessJul 52 Index of 1970 ContentJan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting TechniquesSep 34 Interpreting Vertical Sweep ConditionsAug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service ShopsApr 16 Left/Right Channel Comparison: Another Approach to Stereo TroubleshootingMay 44 Minimum Scope Vertical Bandwidth RequiredJul 16 National Electronic AgendaJun 42
Income and Expense Summary: The Scorecard of Your BusinessJul 52 Index of 1970 ContentJan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting TechniquesSep 34 Interpreting Vertical Sweep ConditionsAug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service ShopsApr 16 Left/Right Channel Comparison: Another Approach to Stereo TroubleshootingMay 44 Minimum Scope Vertical Bandwidth RequiredJul 16 National Electronic Associations' Annual Convention AgendaJun 42 New and Changed Circuitry in
Income and Expense Summary: The Scorecard of Your BusinessJul 52 Index of 1970 ContentJan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting TechniquesSep 34 Interpreting Vertical Sweep ConditionsAug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service ShopsApr 16 Left/Right Channel Comparison: Another Approach to Stereo TroubleshootingMay 44 Minimum Scope Vertical Bandwidth RequiredJul 16 National Electronic Associations' Annual Convention AgendaJun 42 New and Changed Circuitry in '71 Color TV, Part 2Jan 50
Income and Expense Summary: The Scorecard of Your BusinessJul 52 Index of 1970 ContentJan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting TechniquesSep 34 Interpreting Vertical Sweep ConditionsAug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service ShopsApr 16 Left/Right Channel Comparison: Another Approach to Stereo TroubleshootingMay 44 Minimum Scope Vertical Bandwidth RequiredJul 16 National Electronic Associations' Annual Convention AgendaJun 42 New and Changed Circuitry in '71 Color TV, Part 2Jan 50 New and Changed Circuitry in
Income and Expense Summary: The Scorecard of Your BusinessJul 52 Index of 1970 ContentJan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting TechniquesSep 34 Interpreting Vertical Sweep ConditionsAug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service ShopsApr 16 Left/Right Channel Comparison: Another Approach to Stereo TroubleshootingMay 44 Minimum Scope Vertical Bandwidth RequiredJul 16 National Electronic Associations' Annual Convention AgendaJun 42 New and Changed Circuitry in '71 Color TV, Part 2Jan 50
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting Techniques Sep 34 Interpreting Vertical Sweep Conditions Aug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service Shops Apr 16 Left/Right Channel Comparison: Another Approach to Stereo Troubleshooting May 44 Minimum Scope Vertical Bandwidth Required Jul 16 National Electronic Associations' Annual Convention Agenda Jun 42 New and Changed Circuitry in '71 Color TV, Part 2 Jan 50 New and Changed Circuitry in '71 Color TV, Part 3 Feb 60
Income and Expense Summary: The Scorecard of Your BusinessJul 52 Index of 1970 ContentJan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting TechniquesSep 34 Interpreting Vertical Sweep ConditionsAug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service ShopsApr 16 Left/Right Channel Comparison: Another Approach to Stereo TroubleshootingMay 44 Minimum Scope Vertical Bandwidth RequiredJul 16 National Electronic Associations' Annual Convention AgendaJun 42 New and Changed Circuitry in '71 Color TV, Part 2Jan 50 New and Changed Circuitry in '71 Color TV, Part 3Feb 60 New in Color for 1972Dec 10
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting Techniques Sep 34 Interpreting Vertical Sweep Conditions Aug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service Shops Apr 16 Left/Right Channel Comparison: Another Approach to Stereo Troubleshooting May 44 Minimum Scope Vertical Bandwidth Required Jul 16 National Electronic Associations' Annual Convention Agenda Jun 42 New and Changed Circuitry in '71 Color TV, Part 2 Jan 50 New and Changed Circuitry in '71 Color TV, Part 3 Feb 60 New in Color for 1972 Dec 10 Noise Cancellers, Sync
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting Techniques Sep 34 Interpreting Vertical Sweep Conditions Aug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service Shops Apr 16 Left/Right Channel Comparison: Another Approach to Stereo Troubleshooting May 44 Minimum Scope Vertical Bandwidth Required Jul 16 National Electronic Associations' Annual Convention Agenda Jun 42 New and Changed Circuitry in '71 Color TV, Part 2 Jan 50 New and Changed Circuitry in '71 Color TV, Part 3 Feb 60 New in Color for 1972 Dec 10 Noise Cancellers, Sync Separators and
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting Techniques Sep 34 Interpreting Vertical Sweep Conditions Aug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service Shops Apr 16 Left/Right Channel Comparison: Another Approach to Stereo Troubleshooting May 44 Minimum Scope Vertical Bandwidth Required Jul 16 National Electronic Associations' Annual Convention Agenda Jun 42 New and Changed Circuitry in '71 Color TV, Part 2 Jan 50 New and Changed Circuitry in '71 Color TV, Part 3 Feb 60 New in Color for 1972 Dec 10 Noise Cancellers, Sync Separators and AGC Systems May 28
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting Techniques. Sep 34 Interpreting Vertical Sweep Conditions Aug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service Shops Apr 16 Left/Right Channel Comparison: Another Approach to Stereo Troubleshooting May 44 Minimum Scope Vertical Bandwidth Required Jul 16 National Electronic Associations' Annual Convention Agenda Jun 42 New and Changed Circuitry in '71 Color TV, Part 2 Jan 50 New and Changed Circuitry in '71 Color TV, Part 3 Feb 60 New in Color for 1972 Dec 10 Noise Cancellers, Sync Separators and AGC Systems May 28 Philco-Ford's New Varactor-
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting Techniques Sep 34 Interpreting Vertical Sweep Conditions Aug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service Shops Apr 16 Left/Right Channel Comparison: Another Approach to Stereo Troubleshooting May 44 Minimum Scope Vertical Bandwidth Required Jul 16 National Electronic Associations' Annual Convention Agenda Jun 42 New and Changed Circuitry in '71 Color TV, Part 2 Jan 50 New and Changed Circuitry in '71 Color TV, Part 3 Feb 60 New in Color for 1972 Dec 10 Noise Cancellers, Sync Separators and AGC Systems May 28
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting Techniques Sep 34 Interpreting Vertical Sweep Conditions Aug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service Shops Apr 16 Left/Right Channel Comparison: Another Approach to Stereo Troubleshooting May 44 Minimum Scope Vertical Bandwidth Required Jul 16 National Electronic Associations' Annual Convention Agenda Jun 42 New and Changed Circuitry in '71 Color TV, Part 2 Jan 50 New and Changed Circuitry in '71 Color TV, Part 3 Feb 60 New in Color for 1972 Dec 10 Noise Cancellers, Sync Separators and AGC Systems May 28 Philco-Ford's New Varactor- Tuned AM/FM/FM Stereo
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting Techniques Sep 34 Interpreting Vertical Sweep Conditions Aug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service Shops Apr 16 Left/Right Channel Comparison: Another Approach to Stereo Troubleshooting May 44 Minimum Scope Vertical Bandwidth Required Jul 16 National Electronic Associations' Annual Convention Agenda Jun 42 New and Changed Circuitry in '71 Color TV, Part 2 Jan 50 New and Changed Circuitry in '71 Color TV, Part 3 Feb 60 New in Color for 1972 Dec 10 Noise Cancellers, Sync Separators and AGC Systems May 28 Philco-Ford's New Varactor- Tuned AM/FM/FM Stereo Auto Radio Dec 50
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting Techniques Sep 34 Interpreting Vertical Sweep Conditions Aug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service Shops Apr 16 Left/Right Channel Comparison: Another Approach to Stereo Troubleshooting May 44 Minimum Scope Vertical Bandwidth Required Jul 16 National Electronic Associations' Annual Convention Agenda Jun 42 New and Changed Circuitry in '71 Color TV, Part 2 Jan 50 New and Changed Circuitry in '71 Color TV, Part 3 Feb 60 New in Color for 1972 Dec 10 Noise Cancellers, Sync Separators and AGC Systems May 28 Philco-Ford's New Varactor- Tuned AM/FM/FM Stereo Auto Radio Dec 50 PHOTOFACT Documents a
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting Techniques Sep 34 Interpreting Vertical Sweep Conditions Aug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service Shops Apr 16 Left/Right Channel Comparison: Another Approach to Stereo Troubleshooting May 44 Minimum Scope Vertical Bandwidth Required Jul 16 National Electronic Associations' Annual Convention Agenda Jun 42 New and Changed Circuitry in '71 Color TV, Part 2 Jan 50 New and Changed Circuitry in '71 Color TV, Part 3 Feb 60 New in Color for 1972 Dec 10 Noise Cancellers, Sync Separators and AGC Systems May 28 Philco-Ford's New Varactor- Tuned AM/FM/FM Stereo Auto Radio Dec 50 PHOTOFACT Documents a Quarter Century of
Income and Expense Summary: The Scorecard of Your Business Jul 52 Index of 1970 Content Jan 70 Inside The Service-Type Scope Apr 30 Intermittent Color – Causes, Cures and Troubleshooting Techniques Sep 34 Interpreting Vertical Sweep Conditions Aug 28 Introduction to Practical Bookkeeping and Accounting For Electronic Service Shops Apr 16 Left/Right Channel Comparison: Another Approach to Stereo Troubleshooting May 44 Minimum Scope Vertical Bandwidth Required Jul 16 National Electronic Associations' Annual Convention Agenda Jun 42 New and Changed Circuitry in '71 Color TV, Part 2 Jan 50 New and Changed Circuitry in '71 Color TV, Part 3 Feb 60 New in Color for 1972 Dec 10 Noise Cancellers, Sync Separators and AGC Systems May 28 Philco-Ford's New Varactor- Tuned AM/FM/FM Stereo Auto Radio Dec 50 PHOTOFACT Documents a

into a Service Shop May 38
Practical Repair of
TV Tuners Oct 64
RCA's All-Electronic Tuning-
How Channels Are Selected . Sep 46
RF Amplifier- and AGC-Related
Troubles In Auto Receivers May 20
Ratio Analysis: Your Measurement
of Business Success Aug 18
SCR's and Triacs-Testing and
Theory of Operation Dec 42
Selecting Insurance For Your
Business – A Primer Dec 36
Service-Type Scopes Apr 20
Servicing Cassette
Player/Recorders
Servicing Today's P-A Systems Sep 60
Signal Subbing In Hybrid Color Apr 43
"Signal" and "No-Signal"
Voltages In TV Aug 22
Simplifying Stereo Separation
Problems
Small Independent Business,
1970 and 1971 – An
NFIB Synopsis
Solid-State Audio
Sony's Large-Screen Trinitron
Color Receiver
Source Guide To Imported
Consumer Electronic
Products Nov 50
Stereo FM Radio Servicing-A
General Review
Stereo FM Tuner Performance
Evaluation and Adjustments . Jun 54
Supplement to 1971 Sams
PHOTOFACT Annual Index
(January thru June)
Supplement to 1971 Sams
PHOTOFACT Annual Index
(January thru September) Oct 75
"Sync" Troubles Caused by
AGC Defects Mar 56
TV Ghosts-Causes and Cures Jul 34
Techniques For Troubleshooting
AGC Defects Apr 60
The Curve Tracer: Another
Method of Testing
Transistors, Part 1
The Lighter Side of
Service Pricing
Troubleshooting Motor Circuits
In Auto Tape Players Jun 30
Troubleshooting Video IF With
Sweep Alignment Gear,
Part 2
Tube Usage in 1970 Jun 40
Tubes Used Most in 1970 Aug 37
A A A A A A A A A A A A A A A A A A A
"Use It Before You Buy It":
"Use It Before You Buy It": Another Approach to Selecting
"Use It Before You Buy It": Another Approach to Selecting Test Equipment
"Use It Before You Buy It": Another Approach to Selecting Test Equipment
"Use It Before You Buy It": Another Approach to Selecting Test Equipment
"Use It Before You Buy It": Another Approach to Selecting Test Equipment
"Use It Before You Buy It": Another Approach to Selecting Test Equipment
"Use It Before You Buy It": Another Approach to Selecting Test Equipment
"Use It Before You Buy It": Another Approach to Selecting Test Equipment
"Use It Before You Buy It": Another Approach to Selecting Test Equipment
"Use It Before You Buy It": Another Approach to Selecting Test Equipment
"Use It Before You Buy It": Another Approach to Selecting Test Equipment
"Use It Before You Buy It": Another Approach to Selecting Test Equipment
"Use It Before You Buy It": Another Approach to Selecting Test Equipment

Chicago, Illinois 6	an Avenue 0611	
Please send me full Program.	details on the D	efensive Driving
I am interested for	r: Myself	
A civic organizatio	on or club	
My company	_ Number of e	nployees
Name		
Title	_	
Title	ion	


REPLACEMENT PARTS & ACCESSORIES WELTRON'S GOT'EM! DOYOU?

plugs & jacks * stereo switches * universal replacement antennas & bases * volt meters * cables * microphones * power supplies * auto stereo accessories * high precision motors * synchronous motors * shaded 4-pole motors *

COMPLETE CATALOG AVAILABLE. CALL YOUR DISTRIBUTOR NOW!

Circle 36 on literature card

GET COMPLETE DETAILS

about the products advertised or described in this issue.

Use Free Reader Service Card.

Be sure to include your name and address

advertisers' index

Amperex Electronic Corp 1
B & K Division, Dynascan Corporation
Bussmann Mfg. Division McGraw Edison 7
Castle Television Tuner Service, IncCover 4
Centralab, Globe Union Inc 51
Eico Electronic Instrument Co24-25
Electronic Kits Unlimited, Inc 4
The Finney Company 17
Gem City Tuner 33
General Electric Co. Tube Products DeptCover 3
Heath Company 31
Injectorall Electronic Corp 35
Jerrold Electronics 23
E. F. Johnson Co 57
Kay Townes Antenna Co 50
Lakeside Industries 26
Laran Electronics Corp 35
Lectrotech, Inc
Perma Power Div. Chamberlain Mfg 35
Precision Tuner Service 5
RMS Electronics, Inc 57
Howard W. Sams & Co., Inc 21
Sencore, Inc
GTE Sylvania Electronic Components
Telematic Div. UXL Corp 32
Terado Corporation 74
Tuner Service Corporation Cover 2
Weltron Co., Inc
Yeats Appliance Dolly Sales Co

The MARKETPLACE

This classified section is available to electronic technicians and owners or managers of service shops who have for sale surplus supplies and equipment or who are seeking employment or recruiting employees.

Advertising Rates in the Classified Section are:

- 25 cents per word (minimum \$3.00)
- "Blind" ads \$2.00 additional
- All letters capitalized— 35 cents per word

Each ad insertion must be accompanied by a check for the full cost of the ad.

Deadline for acceptance is 30 days prior to the date of the issue in which the ad is to be published.

This classified section is not open to the regular paid product advertising of manufacturers.

HELP NEEDED

Need service manual, schematic for transistor cumera-GBC "KOWA" Model AB-50, John Bylin, 3407 Jennings, Sioux City, Iowa 51104. 1-72-14

EQUIPMENT FOR SALE

B&K Analyst, Model 1077, B&K CRT Tester-Rejuvenator. Conar Scope & Probe set, Conar Color Gen., Isolation Transformer, Absolutely new condition, \$350 for everything. Stephen Ames, Irvona, Pa. 16656. 1-72-1t

It takes time to replace a color picture tube...

GE ULTRACOLOR[®]

works to cut back the need of replacing the replacement sustained brightness and color purity are assured through use of advanced getter material. Gases generated by the tube's operation are removed, providing longer life and sustained color purity.

reliability and quality assurance are built in. Only the highest quality replacement components are used... and they're still expected to prove themselves. First during the manufacturing process, through continuing in-line inspections, and extensive life testing of the finished product, afterwards.

GE ULTRACOLOR[®] picture tubes provide the service and dependability that guarantee customer satisfaction. (*Made by professionals, for professionals.*)

TUBE PRODUCTS DEPARTMENT • GENERAL ELECTRIC COMPANY OWENSBORO, KENTUCKY 42301

GENERAL 36 ELECTRIC

WHY REPAIR TV TUNERS? **CASTLE REPLACEMENTS** start at .

Select by part number below. Write, phone or wire order. No mailing ... no waiting ... no nonsense!

These Castle replacement tuners are all equipped with memory fine tuning and UHF position with plug input for UHF tuner. They come complete with hordware and companent kit to adapt for use in thousands of popular TV receivers.

Supplied with max, length selector shoft (measured from tuner front apron to tip) ... you cut to suit.

Pr) EXACT REPLACEMENTS

ADMIRAL

94E210-94E210-

94 E227 -94E228-94E229-94E229-8 94 0257 -94 0257 94D257-7 94D257-49 94E260-8H 94E260-11 94E261-1B 94E261-1C 94E261-1D 94D261-4 94C273--946273-94C273-1 94 CZ73-9 94 CZ73-10 94C273-10 94C273-13 94C273-15 94C281-1K 4C286-1D 94C286-1J 94C286-1L 94C286-4J 94C286-4J 94C286-5 94C286-12 94C286-16 94C286-1

CURTIS MATHES

7A11 7A17 7A38 7A48

7A53-001 7A55-001 7A55-001 7A59-001

Purchase outright ... no exchange needed. \$15.95 ea.

STOCK

No.

CR6P

CR75

CR9S

CR6XI

CR7XL

CR9XI

HEATERS

Parallel 6.3v

Series 600mA

Series 450mA

Parallel 6.3v

Series 600mA

Series 450mA

Castle replacements made to fit exactly in place of original tuner. Available in the following popular numbers.

EMERSON	340042-1	LOPTT 399Y								
	340052-1	LOPTT399YA	76-13955-1	KRK133BC	470V030H01	175-424	175-721	175-1133	MISC. INCLUDING	G
471351	340053-1	OPIT399YA	76-13955-2	KRK133BC	470V049H01	175-426	175-722	175-1134	PRIVATE LABEL	s
471512	340066-1	OPTT402	76-13955-5	KRK133U	470V149H01	175-431	175 - 731	175-1135		9
471515	340067-1	LOPT T402	10-13993-3	KRK 1350	470V151H01	175-454	175-732	175-1136	TA82	
471678	340069-1	CPTT403			470V15HD03	175-601	175-733	175-1137	TA124	
471682	340078-1	OPTT404			470V161D03	175-602	175-734	175-1138	TA129	
471700	340078-2	OPTT404A	RCA	SEARS	470V188D01	175-604	175-735	175-1139	TA131	
	340095-2	CPTT405	KRK103A	95-75	470V188D02	175-621	175-736	175-1140	TA133	
		OPTT414A	KRK103C	95-141-0D	470V190D01	175-622	175-737	175-1141	TA136	
GE	340130-1		KRK103F	95-358-0	470V191D01	175-640	175-738	175-1142	TA138	
	310130-1		KRK103L		470V191DC2	175-641	175-739	175-1143	TA147	
ET86X188		MUNTZ	KRK104A	95 - 137 - OA	470V191D03	175-642	175-740	175-1144	TA150	
ET86X208	MOTOROLA	1101112	KRK104C			175-643	175-741	175-1145	TA157	
ET86X212		PR0352-1	KRK104C	95-480-3D	TENUTLI	175-6-14	175-742	175-1146	25A1241-002B	
ET86X213	OPTT123C	PR6364	KRK104L		ZENITH	175-645	175 - 743	175-1147	25A1241-004B	
ET86X214	OPTTIZID	PR0376	KRK107A*	95-500-0A		175-646	175-744	175-1148	25A1241-005B	
ET86X215	TTI33A	PR9021	KRK107B*	95-500-1A	175-167	175-647	175-745	175-1150	25A1241-006B	
ET86X221	TTIBBA	PR9044	KRK107C*	95-500-1B	175-168	175-660	175-746	175-1151	25A1245-005D	
ET86X224	LTT307A	PR9045			175-170	175-661	175-747	175-1152	25A1245-006D	
ET86X227	RTTJZZA	PR 9050	KRK107D*		175-201	175-662	175-748	175 - 1153	25A1245-009	
ET86X230	CPTT332A	PR 90 58	KRK107E*	SYLVANIA	175-202	175-663	175-750	175-1154	25A1245-011	
ET86X231	CPTT338B	PR9058	KRK107F*		175-202A	175-666	175-751	175-1155	25A1246-001	
ET86X232	DCPTT338B		KRK108A*	54-11644-3	175-203A	175-667	175-752	175-1156-	25A1246-003	
ET86X236	CMTT340A	OLYMPIC	KRK108B°	54-11702-1	175-204	175-668	175-753	175-1157	25A1246-004	
ET86X242	CMTT340B		KRK108C*	54-17234-1	175-204A	175-669	175-754	175-1160	25A1246-005A	
ET86X244	TT348B	CL4692-1	KRK10+D*	54 - 17 4 36 - 2	175-206	175-671	175-755	175-1161	25A1247-002	
ET86X255	MTT348A	CL5220-1	KRK108E*	54-17436-3	175-212	175-680	175-756	175-1162	25A1249-0C1A	
ET86X256	VTT 48B	CL28874-1	KRK108F*	54 - 17 4 36 - 4	175-213	175-681	175-757	175-1163	25A1249-001E	
ET86X265	VTT349B	CL29554	KRK113B	54 - 17436 - 5	175-214	175-682	175-758	175-1164	25A1253-001	
ET86X277	CPTT350B	CL29566	KRK116B	54-17778-1	175-216	175-683	175-759	175-1165	25 A 1 25 3- CO1B	
ET86X281		C129650	KRK118A *	54-23853-3	175-220	175-684	175-760		25A1253-001D	
LICOALOI	CPTT 356 YA	CL33579	KRK118C*	54-23857-2	175-222	175-685	175-761		25A1256-0C1C	
	TT361Y	CL33858	KRK118D*	54-78093-1	175-228	175-686	175-762	175-1168	25A1258-001A	
HEATHKIT	OPTT361YB	CL34190		54-88847-3B	175-230	175-687	175-763		25A1258-001C,	
11 A 14	CPTT366Y	CL34835	KRK123D	54-89093-1	175-232	175-688	175-764		25A1263-001	
110-17	CPTT366YD	K24013USA-IC	KRK124AA	54-89720-1A	175-254	175-689	175-1101	175-1172	25A1264-001B	
110-24	OPTT366YD	K50013USAH-3	KRK124U	54-89720-3	175-256	175-690	175-1102	175-1175	25A1265-001B	
110-25	NCPTT376YA		KRK127AA	54-89840-2A	175-262		175-1103	175-1176	25A1268-001	
66-011	CPTT378YA		KRK127AB	54-94689-3	175-264	175-708	175-1104	175-1177	25A1270-001	
110-38	NCPTT378YA	PHILCO	KRK127B	54-97948-6	175-266		175-1105		006-014700	
	OPTT385Y		KRK127BA	54-97948-7	175-268	175-711	175-1106		006-015000	
	OPT T385YA	76-12405-4	KRK127E		175-272	175-712	175-1108		006-015700	
MAGNAVOX	OPTT386YA	76-13579-5	KRK127L		175-402	175-713	175-1118		006-016500	
	OPTT388YA	76-13579-7	KRK127T	WESTING -	175-405	175-715	175-1119		006-017300	
340009-1	CPTT396YA	76-13579-8	KRK127U	HOUSE	175-406	175-716	175-1120		006-017700	
340610-1	OPTT390YB	76-13579-9	KRK127W		175-412	175-717	175-1121		006-018600	
340017-1	OPTT394	76-13851-2	KRK128AB	470V007H03	175-416	175-718	175-1122		006-020100	
340038-1	SCPTT394	76-13871-1		470V019H05	175-418	175-719	175-1131		006-020900	
340040-1	AOPTT399	76-13945-1	KRK128U	470V019M01	175-420	175-720	175-1132		006-021000	

*Supplied with new channel indicator skirt knob, original illuminated dial is not used.



Dealer Net \$5.50 kit of chemicals.

CASTLE TV TUNER SERVICE, INC.

MAIN PLANT: 5701 N. Western Ave., Chicago, III. 60645 • Ph. 312-561-6354 EAST: 130-07 89th Rd., Richmond Hill, N.Y. 11418 • Ph. 212-846-5300

Circle 3 on literature card

I.F. OUTPUT

Pic.

45.75

45 75

45.75

45.75

45.75

45.75

PRICE

8.95

9.50

9.50

10.45

11.00

11.00

Snd.

41.25

41.25

41.25

41.25

41.25

41.25

SHAFT

Max.*

3"

3"

3"

12"

12"

12"

Min.*

13/4"

13/4"

13/4"

21/2"

21/2"

21/2"