Electronic Servicing

PROVIDES YOU WITH A COMPLETE SERVICE FOR ALL YOUR TELEVISION TUNER REQUIREMENTS.
REPAIR

VHF Or UHF Any Type $\$ 9.75$. UHF/VHF Combo \$15.00.

In this price all parts are included, tubes, transistors, diodes, and nuvistors are charged at cost.

Fast efficient service at our 5 conveniently located service centers.

All tuners are cleaned inside and out, repaired, realigned and air tested.

REPLACE

Replacement Tuner \$9.75.
This price buys you a complete new tuner built specifically by SARKES TARZIAN INC. for this purpose.

All shafts have a maximum length of $12^{\prime \prime}$ which can be cut to $11 / 2^{\prime \prime}$.

Specify heatér type parallel and series 450 mA or 600 mA .

CUSTOMIZE

Customized tuners are available at a cost of only $\$ 15.95$.

Send in your original tuner for comparison purposes to:

TUNER SERVICE CORPORATION
 FACTORY
 TUNER SERVICE

Backed by the largest tuner manufacturer in the U.S.Sarkes Tarizan, Inc.
HOME OFFICE . 817 N. PENnSYLVANIA ST., Indianapolis, Indiana TEL: 317.632-3493
EAST 547-49 tonnele AVE., Jersey City, New Jersey tel: 201-792-3730 (On U.S. Highway 1 \& 9)
SOUTH 938 GORDON ST., S. W., Atlanta, Georgia TEL: 404-758-2232
SOUTH-EAST . . 1505 CYPRESS ST., TAMPA, FLA. 33606 TEL: 813-253-0324
WEST 10654 MAGNOLIA BLVD., North Hollywood, California . . TEL: 213-769-2720

Electronic Servicing

GENERAL ELECTRONICS

16 Phase-The Relationship Of Electronic Signals To Time—Phase can be understood by the use of scope waveforms, and without mathematics (Shop Talk/Carl Babcoke).

SERVICE ASSOCIATION ACTIVITIES

14 Joint Convention By Service Associations-NEA and TESA to hold joint convention in New Orleans.

SHOP MANAGEMENT

26 Flat-Rate Pricing-The Hourly Rate, And Starting An Incentive Plan-Part three tells you how to start an incentive-pay plan for your technicians, and gives a method of calculating the hourly rate you should charge to make the profit you need (Better Management Guides/Robert G. Amick).

AUDIO SYSTEMS

34 New In Home-Cassette Machines . . . The Bi-Peripheral DriveGetting acquainted with a new type of drive (Forest H. Belt).

ANTENNA SYSTEMS

40 Decibels In MATV Systems-Practical characteristics of decibels, and the reasons they should be used in MATV system calculations (MATV Systems, Part 2/John Rogerson).

COLOR TV

42 How Color Bars Are Produced-Color-bar generators are so commonplace we might overlook their ingenious operation. This article explains the frequencies and waveforms of the generator, and how they are used in the receiver to produce color bars (Troubleshooter/Carl Babcoke).
49 Find Chroma Troubles With Sweep Alignment Techniques-Veteran technician Allen gives helpful hints about chroma alignment, and explains how to use the curves obtained to spot the stage or part causing the trouble (Larry Allen).

AUTO ELECTRONICS

54 Understanding Signal-Seeker Car Radios-ES's Auto Electronics Consultant describes the operations of the electrical and mechanical components of signal-seeking car radios, and gives tips and case histories of typical defects. (Carr Electronics/Joseph J. Carr).

GUIDES

69 Supplement to 1972 Sams PHOTOFACT Annual Index (April thru June)-A complete listing of new models of entertainment electronic products covered in PHOTOFACT since the 1972 PHOTOFACT Annual Index was published in April.

DEPARTMENTS

Electronic Scanner	4	Antenna Systems Report ... 48
Symcure	8	Reader Service Card 57
Service Bulletin	10	Product Report 61
Test Equipment Report	30	The Marketplace 64
Book Review	31	Advertisers' Index 64
Audio Systems Report	46	Catalog \& Literature 65

Second class postage paid at Kansas City, Mo. and additional mailing offices. Published monthly by INTERTEC PUBLISHING CORP.. 1014 Wyandotte St., Kansas City, Mo. 64105. Vol. 22, No. 7. Subscription rate $\$ 6$ per year in U.S., its possessions and Canada; other countries $\$ 7$ per year

Copyright, 1972, Howard W. Sams \& Co., Inc. All rights Reserved: Material may not be reproduced or photocopied in any form without written permission of publisher

ELECTRONIC SERVICING (with which is combined PF Reporter) is published monthly by Intertec Publishing Corp., 1014 Wyandotte Street, Kansas City, Missouri 64105.

Subscription Prices: 1 year $-\$ 6.00,2$ years$\$ 10.00$, 3 years $-\$ 13.00$, in the U.S.A., its possessions and Canada.

All other foreign countries: 1 year $-\$ 7.00$, 2 years $-\$ 12.00,3$ years $-\$ 16.00$. Single copy 75 c ; back copies $\$ 1$.
Adjustment necessitated by subscription termination at single copy rate.

Introducing the expensive curve tracer that doesn't cost a lot.

The B\&K Model 501A.
It's a lab-quality instrument that provides fast analysis of all semiconductors including J-FET's, MOS-FET's, signal and power bipolar transistors, SCR's, UJT's and diodes.

You can test transistors in circuit for GO/NO GO condition. Badly distorted curves will indicate the stage where a defective transistor or other faulty component exists.

The 501A is complete - with scope graticule and FP-3 probe for fast, one-handed in-circuit testing. It generates true current and voltage steps, with 3% accuracy, for measuring beta at all current levels. And it has a sweep up to 100 volts and 100 milliamperes.

With the 501A, curves are displayed on an auxiliary scope screen. And you can hook it up to any scope-

$$
\$ 12995
$$ old or new.

All three controls can be set in quick-test positions to test and evaluate 90% of all solid-state devices without manufacturer's data sheets.

The 501A won't burn out either the semiconductors or itself.

With all these features, you'd think the 501A was an expensive curve tracer. But look at the price.

For complete technical data, call your B\&K distributor. Or write Dynascan Corporation.

Very good equipment at a very good price.

Product of Dynascan Corporation
1801 West Belle Plaine Avenue, Chicago, Illinois 60613
news of the industry

Carl Babcoke To Managing Editorship

Carl Babcoke is the new Managing Editor of Electronic Servicing. You're probably already familiar with his test bench articles, but did you know that Carl was an RCA service and training manager for 14 years? Before that, he built test equipment and worked in inspection for another manufacturer.

But it was over 30 years ago when our new editor opened his own radio repair shop. So except for during the war years, he has seen both sides of the industry. He brings his vast experience to the editorship at a time when it is important to find perspectives that are meaningful to the industry. Carl has been a regular full-time staff member since July, 1969.

Sharp Electronics will feature new-type color TV picture tubes in their 1973 line. Two color television receivers equipped with 9 -inch and 13 -inch Linytron picture tubes have been introduced, according to Home Furnishings Daily. The guns of the picture tubes are arranged horizontally in-line. More accurate color registration and brighter pictures are claimed for this new type of picture tube.

A $\mathbf{2 5}$-inch color TV with the Cartrivision system of recording and reproducing video tapes has been announced by the Admiral Corporation. Although the model 5 VT5608 has an open list price, it is said to retail for about $\$ 1700$. The deck of the VTR is manufactured by Cartridge Television, Inc., according to Home Furnishings Daily, and will playback pre-recorded cartridges or record off-the-air programs in either b-w or color. A b-w camera is included also for "live" recording in b-w.

Better Business Bureau and TESA of Memphis join in seeking a city ordinance that would require TV technicians to be licensed. An article in Radio \& Television Weekly quotes J. B. Myers, the executive vice president of the Memphis BBB, as saying that the majority of TV servicemen are reliable and honest, but that the bureau had received more than 1,000 complaints during 1971 about the servicing of TV receivers. The president of the Memphis chapter of TESA. James E. Beck, replied that the members of his organization had worked for years to obtain such an ordinance and objected only to any possible connection with politics.

BUILD YOUR OWN UP-TO-THE-MINUTE SERVICE DATA LIBRARY

HERE'S HOW IT WORKS:

- Each month a sturdy, sealed P.O.M. carton will be delivered to you by your lacal Photofact distributor.
- This P.O.M carton contains 6 Photofact sets in handy, ready-tofile folders. These 6 sets include the latest and most reliable service data on 2 : least 50 new chassis-color TV receivers, black and white TV receivers, AM and FM. radios, hi-fi's, stereos and record changers.
- Your P.O.M. carton also contains a bonus package of Advance Schematics - preliminary schematics on the very latest color, black and white chassis to fill your immediate servicing needs. (At a later date you'll receive a complete Photofact set on each of these)
- You will also receive a monthly service bulletin. Photofact Serrizar offering inside troubleshooting advice and timely additional information.
- And, as a special feature, each P.O.M carton contains 6 valuablo certificates which you can save and redeem for a free retal file cab net. (One-drawer model is free with 60 certificates-Fourdrawer model requires only 144 certificates and \$21.95)

The sjecial advantage of subscription membership in the F.O.N Club is measured in dollars and cents! You save $\$ 54.00$ each year over the individually purchased set price (regular price per set is $\$ 3.00$). Members receive this entire service package each month for just $\$ 13.50$ per month! Can you afford not to take advantage of this iremendous savings on the complete service data 50 vitallv important in your industry?

 news of the industry

Electronic tennis, anyone? Yes, tennis and 11 other games can be played on the screen of any TV receiver larger than 18 inches. Magnavox has introduced "Odyssey", an all-electronic simulator of games, as reported in the Wall Street Journal and Home Furnishings Daily. The master-control unit is connected to the antenna terminals of a TV receiver, and is programmed for the game desired by insertion of one of the programming cards that are supplied. Mylar overlays are placed on the screen of the TV (which is tuned to an unused channel), and the contestants operate vertical and horizontal controls of the player units to move spots of light to the required areas of the screen. Most of the games are intended to be played by two persons, but some games can be played by more than two. The Odyssey game simulator is powered by six size " C " batteries, which are supplied, and the retail price is said to be under $\$ 100$.

Xerox course trains service representatives to work with people. A new course, entitled "Customer-Management Skills" developed for the Xerox company by behavioral psychologists has been released for use in other industries. This course is self-contained and can be given in half-day units over a period of several weeks, or it could be given during an intensive three-day session. It includes written instructions and taped interviews with role-playing and case-study. Further information can be obtained by contacting: Roberta T. Waldman, Stamford, Connecticut by phone at (203) 329 0951, or Donald S. Hammalian, New York at (212) 7587100.

TV technicians might be called on to repair film cameras, if the present trend to automatic, electronic cameras continues. Transistors have been used to set the aperture for some time. In other cameras, transistorized circuits time the shutter closing. Now, a new Polaroid camera has been announced, as reported in the Wall Street Journal, which contains integrated circuits to adjust automatically the exposure, and control the in-camera film developing.

A slide/cassette teaching aid in three parts covering transistor servicing is offered by RCA Electronic Components. Each of the three lessons has a Carousel-type slide tray containing color slides, a pre-recorded cassette tape (keyed to the slides) and booklets for use by the instructor and students. These are the titles: Part 1, Basic Techniques For Transistor Servicing; Part 2, Identifying The Defective Stage; and Part 3, Identifying And Replacing The Defective Component. Each part is about 25 minutes in duration and can be obtained for $\$ 39.95$ from the distributors of RCA parts and accessories.

TV TUNER SERVICE

You owe it to yourself

to try P.T.S. We are the fastest growing, oldest and now the largest tuner service company in the world. Here is what you get:

1. Fastest Service - 8 hr . - in and out the same day. Overnight transit to one of our six plants, for parts, tuners or IF-modules.
2. All tuners cleaned inside and out, repaired, realigned and air tested.
3. On IF-modules all stages checked, all traps set with high calibre test equipment.
4. Fine Quality! Your customers are satisfied and you are not bothered with returning your units for rework!
5. Lower Cost! UP to $\$ 5.50$ less than other tuner companies!
6. Friendly, helpful personalized service!

1 Year guarantee

FIRST TO OFFER 365-DAY GUARANTEE! COLOR-BLACK \& WHITE-TRANSISTOR TUNERS—ALL MAKES GUARANTEED COLOR ALIGNMENT-NO ADDITIONAL CHARGE

We offer you finer, faster... Precision
 Major Parts charged at Net Price

For fastest service, send faulty unit with tubes, shields and all broken parts to:

LIKE TO DO IT YOURSELF?

PTS makes all tuner parts available to you.
Send one dollar (redeemable) for our TUNER REPLACEMENT GUIDE AND PARTS CATALOG

- 60 pages of top information Blow-up of all tuners Largest
- Multi-fit Replacement Tuner Shaft Guide

PTS ELECTRONICS, INC.
HOME OFFICE-P. O. Box 272-Bloomington, Ind. 47401 Tel. 812/824-9331 EAST- P. O. Box 3189-Springfield, Mass. 01103 WEST COAST- P. O. Box 41354 -Sacramento, Calif. 95841
MOUNTAIN- P. O. Box 4145-Denver, Colo. 80204 SOUTHWEST- P. O. Box 7332-Longview, Tex. 75601 SOUTHEAST- P. O. Box 6771-Jacksonville, Fla. 32205

Tel. 413/734-2737 Tel. 916/482-6220 Tel. 303/244-281s Tel. 214/753-4334 Tel. 904/389-9952

Chassis-Sylvania E01 PHOTOFACT-Not yet available Symptom-Vertical foldover Cure-Check diode SC312, and replace, it shorted	Chassis-Sylvania E01 PHOTOFACT-Not yet available Symptom—Red bars on left side of screen Cure-Check the value of C636 and replace, if higher than 150 pf
Chassis_RCA CTC46, CTC54, CTC59 PHOTOFACT-Not yet available Symptom-Excessive or insufficient vertical height Cure-Check zener diode CR303 and replace, if leaky or open	Chassis-RCA CTC24 PHOTOFACT-912-3 BURST AMP (116) B 6GH8A Symptom-No locking of the color Cure-Check cathode-bypass capacitor, C104, and replace, if open
Chassis-Magnavox T950 PHOTOFACT-1189-1 Symptom-Silicon-diode radiation bars moving up screen Cure-Add a capacitor across SR303; do not use value larger than 01	Chassis-Magnavox T946 b-w PHOTOFACT-1182-3 Symptom-Erratic displacement of some horizontal lines Cure-Test C66 by replacement

Our 28 ICs replace...

and hundreds more.

Integrated circuits are still pretty new in TV and stereo equipment.

But Sylvania's ECG Semiconductor program really has those applications pinned down.

Today, just 28 of our ICs will replace over 300 type numbers.

We don't do it by magic, or by offering an "almost as good" replacement.

We do it by assigning our own part number to just one high quality IC that can be used to replace dozens of others.

And to make it easy for you,
we've put together a replacement guide that tells you which of our ICs to use where.

Your customer won't know that you're not carrying 300 different ICs.

All he'll know is that you fixed his set fast, and fixed it right.

The fact that you only needed 28 IC replacements is your secret.

And ours.
In servicing, that can be the secret of success.

Sylvania Electronic Components, Waltham, Mass. 02154.

Build your own test equipment and save!

Your free Heathkit catalog describes the entire Heathkit test equipment line - meters, scopes, counters, generators, everything you need to make your business easier, more profitable. Send for it.

NEW Heathkit 8-Digit Calculator - \$129.95*

Feature for feature, the new Heathkit Desktop Electronic Calculator is your best buy. It adds, subtracts, multiplies, divides, in chain or mixed functions, and includes use of a constant. Floating or selectable decimal position. Overflow and plus or minus
 indicators. Overflow protection of 8 most significant figures. Clear display key permits removal of last entry without losing problem. Bright, red, $1 / 2^{\prime \prime}$ 7 -segment display tubes. Dependable American LSI circuitry. Standard keyboard configuration. Operates on 120 or 240 VAC. Black \& white cabinet, $31 / 2^{\prime \prime} \times 6^{\prime \prime} \times 101 / 4^{\prime \prime} \mathrm{d}$. Kit IC-2008, 11 lbs.

NEW Heathkit Solid-State FET VOM — \$79.95*

This new dual FET portable multimeter has lab-grade accuracy, high (10 megohm) impedance input, and the ranges you really need. .. at a price you can easily afford. 9 DCV and ACV ranges from 0.1 to 1000 V . at $\pm 2 \%$ accuracy. 6 DC and AC current ranges from 10 microamps. to 1 amp. 7 resistance ranges, $\times 1$ (10 ohm center) to $x 1$ Megohm. 9 dB ranges, -40 to +62 . 1% precision metal-film dividers. $41 / 2^{\prime \prime}, 100 \mathrm{uA}$ ruggedized taut-band meter, diode and fuse protected. Battery check switch provided. Kit IM-104, less batteries, 4 lbs.

NEW Heathkit 8-Digit 120 MHz Counter \$349.95*

Measures 1 Hz to over 120 MHz . Overrange, gate, and two range indicators. Preassembled TCXO time base. 1 megohm FET input. Automatic triggering level. Sensitivity 125 mV or less to 120 MHz . ECL logic. Builds in 15 hours. Kit IB$1102,12 \mathrm{lbs}$.

NEW Heathkit Digital Multimeter $\$ 229.95^{*}$

$31 / 2$ digits. 100 uV to 1000 VDC, 5 ranges; 100 uV to $500 \mathrm{VAC}, 5$ ranges; 10 current ranges, 100 nanoamps. to $2 \mathrm{amps}, A C$ \& $D C ; 6$ resistance ranges, 0.1 ohm to 20 megs. 10 megohm or higher input. Overload protected. Calibrator inc. Kit IM-102, 9 lbs.

smiceinuly

a digest of info from manutacturers

Safety modification
Magnavox T952 color TV chassis
Magnavox has requested removal of C208 in the following color receivers: models 1C6270 and 7C6270, runs 1 through 6; models 1 C 6272 and 7C6272, runs 1 through 3; models 1C6274, runs 1 through 4; models 1 C6276 and 7C6276, runs 1 through 6; models 1 C 6277 and 7C6277, runs 1 through 4; models 1 C6278 and 7C6278, runs 1 through 5; model 10T972, runs 1 through 5; model 20T972, runs 1 and 2.

This modification should be done for reasons of safety, according to Magnavox.

Excessive failure of fuses
Magnavox television receivers
Repetitive failure of fuses can be caused by defective fuse clips. Poor contact between the fuse and the clip can cause excessive heat, which can cause premature failure of fuses.

Magnavox advises against bending the sides of the fuse clips to tighten the contact. Instead, replacement of the fuse-holder block is recommended. New, one-piece fuse holders reportedly are available from Magnavox parts division branches.

Cleaning the edge connectors of modules
RCA color chassis
RCA advises that salt or sulphur compounds in the atmosphere can cause corrosion of the edge connectors on plug-in modules. This corrosion can cause intermittent operation or it can simulate a defective component.

According to RCA, these edge connectors should be cleaned by applying isoproply alcohol with cotton swabs. Do not use spray chemicals.

After the modules are replaced in the sockets, be sure that they are seated correctly and that the spring-clip locks are in place.

Insufficient or excessive height
Magnavox T936 and T956 color-TV chassis
The screen grids of both the vertical-output tube
(Continued on page 12)

DIRECT FROM ZENITH: Up.todate information for technicians!

All the information you need to service any Zenith product: color TV, B\&W TV, radio, stereo, tape players/recorders, and record players. All from one convenient, dependable source, Zenith... all for you to keep in compact, durable binders in one handy place.

Zenith will send you:

1. SERVICE MANUALS

Regular mailings with everything you need to know about new Zenith products or modification of existing circuits. Complete with charts, diagrams, exploded views, photographs and other helpful information for easier servicing.

2. "TECH TOPICS"

Twelve monthly technical bulletins with latest news about circuitry changes and improvements, short cuts in service and other valuable information, all designed to help you work more effectively and faster.

MAIL THE COUPON WITH YOUR CHECK TODAY

TO: ZENITH RADIO CORPORATION Attention: Service Department B 1900 N. Austin, Chicago, Illinois 606391973 Service Manuals, including
12 monthly copies of "Tech Topics" and two
durable binders for the publications.
$\$ 19.95$ per year1973 Service Manuals, including 12 monthly copies of "Tech Topics."Durable bindersonly $\$ 2.95$ each

Check or money order enclosed for \$
Name
Address
City State Zip
r
\square

AT LAST solid state triggered sweep, wide-hand at a price you can afford!

$5 "$ oscilloscope/vectorscope

Triggered Sweep: Easy to use. Positive sync results in absolute stability of patterns.
Solid State: For reliability and performance.
Wide Band: 10 MHz -for increased use in all servicing, industrial and educational applications.
D.C. Amplifiers: Eliminates pattern bounce. Permits viewing A.C. signals and D.C. level simultaneously. Use as a sensitive D.C. voltmeter.
plus . . . Calibrated vertical attenuator. - Calibrated horizontal time base. - Automatic sync mode. . TV sync selector. - Vectorscope input for color TV servicing. - External horizontal amplifier. - 60 cycle horizontal sweep (sine wave) with phasing control. Compatible with all sweep generators. - Edge lit calibrated scale. - All solid state (tube protected input).

ONE YEAR WARRANTY
T0-50-oscilloscope / vectorscope \qquad 33950

5810 N. Western Avenue • Chicago, Illinois 60659

Circle 11 on literature card
12 ELECTRONIC SERVICING/July, 1972
and the horizontal-output tube are supplied from a 160 -volt supply regulated by a zener diode.

Leakage in zener diode Z 102 reduces the voltage supplied to these two grids. However, a reduction of height is the symptom which is the most notice-

able. This zener diode should be tested when the 160 -volt supply is either excessively high or low.
A shorted zener diode eliminates the raster and the high voltage. An open zener diode produces excessive height and increases the dissipation of the horizontal-output tube, which can cause early failure of the tube.

Troubleshooting focus problems RCA CTC46 and CTC54 color chassis

A leaky or shorted spark gap which is connected to the focus pin inside the CRT socket can cause poor focus or loss of the raster.

To test for this leakage, disconnect from the chassis the ground strap of the CRT socket. Measure the voltage between the chassis and the strap. The presence of any voltage indicates leakage inside the socket, and the socket should be replaced. New sockets, including the lead wires, are stocked by the distributors of RCA parts and accessories (stock number 135506).

Caution: If there is severe leakage across the spark gap of the focus pin, up to 6 K volts of focus voltage can appear at the ground strap. Use a highvoltage probe for the first test. If no voltage is measured, for greater accuracy, change to the normal meter probe and test again for voltage.

If the socket is not leaky, and the focus problem remains, test the quadrupler assembly.
A defect in the resistive element of the focus control can cause poor or intermittent focussing. A crack in the substrate portion of the control also will cause poor focussing.

> If it's about servicing consumer electronic products, you'll find it in ELECTRONIC SERVICING

it's new!

THE BUSS KOLOR KIT OF REPLACEMENT FUSES

FOR COLOR TV SETS, DOMESTIC and FOREIGN

Just what you've been waiting for, a compact assortment of replacement fuses to service all popular domestic and foreign color television sets!

Packaged in a sturdy and durable plastic box, the BUSS Kolor Kit is the ideal way to carry along a properly proportioned and organized stock of fuses. On the inside of the lid is a listing of many of the domestic and foreign sets covered by the assortment, plus an inventory list to make restocking easy and quick.

The No. 140 Kolor Kit contains 120 fuses of 14 different types, and the larger No. 240 Deluxe Kolor Kit holds 240 fuses of 32 different types plus two pairs of 4121 Twin Clips and two pairs of 3434 Insulated Twin Clips for paralleling blown fuses. They're a technician's dream come true!

The BUSS Kolor Kits are available now. Check with your local BUSS distributor for more information.

Joint industry convention set for August

The joint convention of NEA, NATESA, ISCET and ETA is to be held at the Jung Hotel in New Orleans August 7 through 13.

The following schedule of events has been supplied to $E S$ by the sponsoring organizations.

MONDAY and TUESDAY - AUGUST 7 and 8

Vacationing families and "Early Bird" arrivals; Get together with old friends, sight-seeing, tour the Vieux Carre, eat in world famous restaurants, drive across the world's longest bridge (Lake Ponchatrain Causeway) drink cajun coffee and eat French donuts at the French Market Coffee House; paint the town and have a grand time. All on your own.

WEDNESDAY - AUGUST 9

8:00 AM Breakfast (dutch)
9:00 AM Registration
10:00 AM EIC Meeting
CET Tests - ISCET
Noon Luncheon (dutch)
5:00 PM Registration NEA Business Management School
6:00 PM Dinner (dutch)
8:00 PM Early-arriving Committee Chairmen meet to finalize past year reports and convention arrangements
Singing fun - Hospitality Room

THURSDAY - AUGUST 10

8:00 AM Breakfast (dutch)
Registration for Convention and Business Management School
9:00 AM NEA NATESA "Open" Golf Tournament. Gene Decker: Chairman
NEA Business Management School. Les Nesvik: Coordinator
10:00 AM Coffeebreak

12:15 PM	Luncheon (sponsored)
1:15 PM	NEA Business Management School
4:00 PM	Coffeebreak
5:00 PM	Convention Official Call to Order
5:15 PM	Keynote Addresses:
	Leo Shumavon, President - NATESA
	Norrís Browne, cet, President - NEA
6:00 PM	Dinner (sponsored)
8:00 PM	NATESA Executive Council Meeting
	NEA Executive Committee Meeting
	M\&M Business Forms Bowling Tournament. Pete
	Fabbri: Chairman
	CET Tests - ISCET
	All Hospitality Rooms Open. *Attendance Awards
* All attendance awards to be drawn in Hospitality Rooms	

FRIDAY - AUGUST 11
8:00 AM ETA of Louisiana Breakfast Sponsored by RCA Registration
9:00 AM NEA Business Management School (continued from Thursday - concludes noon)
Hospitality Room for Teen \& Sub-Teens (Sponsored by The Finney Company) Adult Supervision by ETA of Greater New Orleans.
Note: - Off Limits to All Adults
Electronic Trade Show Opens (open until noon) Sixth Floor Terrace Suites
9:15 AM NATESA Executive Council Meeting
9:15 AM NEA Board of Directors Meeting
Technical Seminars - ISCET (subjects and rooms to be announced)
10:15 AM Coffeebreak

10:30 AM	Publications Editors Seminars. Directed by: Phil Dahlen, Editor Electronic Technician/Dealer Magazine
	ISCET Technical Seminars (subjects to be announced)
Noon	NEA Luncheon, Sponsored by Magnavox
1:30 PM	National Electronic Service Conference. Sponsored by NATESA
	Electronic Trade Show Open. Sixth floor Terrace Suites
3:00 PM	Coffeebreak
3:30 PM	Electronic Trade Show open
6:00 PM	Cocktail Hour. Sponsored by Howard W. Sams
7:00 PM	NATESA Dinner. Sponsored by Zenith Radio Corporation

8:30 PNI ISCET Annual Meeting and Election of Officers Hospitality rooms open. Drawings for Attendance Awards.

SATURDAY - AUGUST 12

8:00 AM Registration
ISCET Breakfast Sponsored by Sylvania. Feature film on Hawaii
9:00 AM Teen \& Sub-Teen Hospitality Room Open. Sponsored by the Finney Company
NATESA Annual Corporation Meeting
NEA Annual Corporation Meeting
Electronic Trade Show Open until noon.
9:15 AM ISCET Technical Seminars (subjects to be announced)
Symposium for License Board Executives
10:30 AM Coffeebreak
Noon Hall of Fame Banquet. Sponsored by Amperex Electronic Corporation. Mr. M. L. Finneburgh, Sr., EHF, Speaker

1:30 PM NEA Election of Officers NATESA Election of Officers ISCET Technical Mini-sessions:

1) Tape-deck servicing 2) Transistor testing and servicing 3) Testing stereo $\& \mathrm{Hi}-\mathrm{F}$ to specifications 4) Alignment - IF, Color \& AFPC 5) Scope usage 6) CET Test Review

CET Tests - ISCET
Coffeebreaks
3:00 PM Electronic Trade Show Open
4:00 PM Louisiana State Radio \& TV Technicians Board Meeting
6:00 PM Cocktail Hour. Sponsored by Howard W. Sams
7:00 PM ETA of Louisiana Fais Do-Do Banquet \& Dance. until?? Sponsored by General Electric

SUNDAY - AUGUST 13

8:00 AM Louisiana State Board Meeting continued
9:00 AM NATESA Breakfast (Sponsored)
10:00 AM ISCET Annual Meeting continued
Meeting for all State Presidents (presidents only, please)
NEA Meeting continued
NATESA Meeting continued
ETA of Louisiana meeting
Noon Planning Meeting for new NATESA Executive Council
Planning Meeting for new NEA Board of Directors
3:00 PM Adjournment for All Check out time
All Coffeebreaks are sponsored by The Finney Company

Phase, the relationship of electronic signals to time

Abstract

Authors Notes I believe that electronic theories and circuit actions, even complex ones, can be understood without mathematics, if voltages and scope waveforms of the right kind are analyzed. Read the following article and then determine if you agree with that assertion.

Don't let the textbook appearance of the article mislead you; this is not the usual approach to the subject. Although some traditional material is included to make the subject complete, there is also much that is new.

These are the general subjects discussed

- How phase can be changed,
- Proof by scope waveforms that phase actually is made "leading" or "lagging,
- A theory supported by scope waveforms of why phase is changed by the time-constant action of filters.
- The connection between the action of time-constant filters and the analysis of frequency response by the effects on square waves.

Next month in Shop Talk, actual scope waveforms taken from the operation of various basic chroma demodulators will be shown and explained. Practical information about methods of troubleshooting chroma demodulators also will be included.

By Carl Babcoke

Phase describes the leading or lagging positions, relative to one another, of two or more AC signals. Alternately, phase values can be assigned, according to a standard of reference, to various portions of one signal.

An AC signal of any waveshape can have a phase relationship. However, because they have only one frequency, sine waves are used most often in explanations of phase. For convenience in calculations, the 360 degree calibration of a compass has been adopted universally to identify the phases of sine waves.

The change from a circle to a sine wave can be illustrated by dividing a circle in half, and flipping over the lower half, as shown in Fig. 1. Of course, the resulting waveform is not a sine wave, but it does show the principle.

For use in color TV theory, a sine wave is often assigned the degrees shown in Fig. 2.

Phase can be changed by several methods

A tube or transistor operating in a common-cathode or com-mon-emitter amplifier circuit produces an output signal which has been changed in phase by 180 degrees from that of the input signal. Signals which have a 180 degree relationship can be obtained from two windings of a transformer. For example, the two outputs from a push-pull audio transformer are 180 degrees out-of-phase.

Phase can be changed (or
shifted) by smaller amounts than 180 degrees when an AC signal passes through filters which use resistance/capacitance, resistance/inductance, or capacitance/inductive elements. Resistances without inductances or capacitances cannot change phase. Only capacitances and inductances can change phase. Each capacitance and inductance in a circuit can change the phase of a signal by a maximum of 90 degrees. However, these components do not always cause a measurable phase change. Some circuits, because of the values of the components relative to the frequency of the signal, produce virtually no change of phase.

To shorten the explanations, only resistance/capacitance filters will be analyzed here. However, inductances can be visualized conveniently as having characteristics which are exactly opposite to those of capacitances.

Two signals are required

Two or more signals are required for a phase relationship to be real, rather than mathematical. These signals might come from entirely different sources. They might be the voltage and current from just one signal. Or, they might be the same signal before and after a phase change has occurred.

Low-pass filters cause lagging phase

A simple, low-pass, high-fre-quency-rolloff filter, such as the one shown in Fig. 3A, can produce (at some frequencies) as much as 90 degrees of delay to the phase. In this type of circuit,

Fig. 1 The degree markings of a compass can be transferred to a sine wave by this method.

(A)

(B)

Fig. 2 For use in the theory of color TV, the various phases of a sine wave usually are designated by degrees as shown here.

(C)

Fig. 3 Attenuation according to frequertcy, and phase shift are proportional in simple filters. (A) The schematic of a low-pass, high-frequency-attenuation circuit used to demonstrate lagging phase. (B) This is the frequency response curve of a low-pass filter
showing the amount of lagging phase shift at various points of attenuation. (C) Four amounts of lagging phase shift are shown here by the positions of the sine waves.
loss of amplitude and the degree of phase shift occur in the same proportion, as shown on the frequency response curve in Fig. 3 B . Before a 90 degree phase shift occurs, increased phase shift by the filter also increases the attenuation. Beyond the point of the 90 degree phase shift, the attenuation continues with an increase of the frequency, but the phase shift remains at 90 degrees.

A picture of lagging phase
A demonstration of laggirg phase is shown by multiple camera exposures in Fig. 3C. The combined waveform was made by connecting a sine-wave generator to the input of the filter shown in Fig. 3A, and connecting a scope to the output of the filter. The horizontal sweep of the scope was locked (by means of the external/sync input) to the signal from the generator. Therefore, any change of the phase
moved the waveform laterally on the screen. The value of the capacitance was increased in four steps, and the position of the sine wave photographed each time. It was possible to achieve one-fourth cycle (90 degrees) movement to the right. No further movement was possible regardless of the increased value of the capacitance.

This demonstration proves that a low-pass filter can produce up to 90 degrees of lagging phase shift. However, it does not show why the phase changed. That explanation is given later.

High-pass filters cause leading phase

A high-pass, low-frequencyattenuation filter, such as the one shown in Fig. 4A, can produce up to 90 degrees of leading phase shift. The multiple-exposure waveform in Fig. 4B shows four different amounts of leading phase. The amplitude of the $90-$ degree sine wave was less than 5
percent of the input amplitude; a very large attenuation.

As the resistance value (shown in Fig. 4A) was decreased, the amplitude of the sine wave decreased, and the sine wave moved to the left. It was impossible to move the sine wave more than one-fourth cycle (90 degrees) to the left regardless of the value of the resistance. This demonstration proves that a phase shift up to 90 degrees can be produced by a high-pass filter. Again, as in the example of the low-pass filter, no reason for this action is indicated by these results.

Can a signal arrive before it starts?

Can a voltage arrive before it starts? Can a current flow before the voltage arrives to apply the force?

In the preceding demonstration of leading phase, the output voltage reached its maximum peak before the input voltage

Fig. 4 Leading phase is produced by high-pass filters. (A) The schematic of a high-pass, low-frequency-attenuation circuit used to demonstrate leading phase. (B) Four amounts of leading phase are shown here by the positions of the sine waves in this multiple-exposure photograph.

Fig. 5 Phase shift produced by filters is caused by the actions of time-constant circuits. (A) This is the schematic of the circuit used to display the charging and discharging voltage curves of capacitances. It produces lagging phase. (B) Most textbooks show a graph like this to illustrate the voltage curve during the charge and discharge of capacitances. This curve was photographed from the screen of a scope. (C) A graph similar to this one is often used to illustrate the capacitance current during charging and discharging cycles.
reached maximum peak. This statement was phrased very carefully so it would be correct, and not be misleading. However, the condition of leading phase appears illogical.
Fortunately, there is a reasonable explanation for this paradox. A part of the answer is this: The circuit shown in Fig. 4A causes the current of the capacitance to be the output signal which is observed on the scope. The remainder of the explanation can be found in a study of time-constant networks.

Time Constants: The Cause of Phase Changes

The charge/discharge switch and the low-pass filter shown in Fig. 5A are often used to illustrate the actions of a time-constant circuit which uses resistance/capacitance (RC) components. Also, most textbooks accompany this schematic with graphs drawn to show the capacitance voltages and currents obtained during a charge time of 5 RC time constants, and 5 RC time constants of discharge time. Figures 5 B and 5 C show similar graphs. However, these curves are unique, because they are not drawings. They originated as photographs taken from the screen of a scope. The graph lines were added by an artist.

Basic facts about time constant

Time constant, expressed in seconds, equals the resistance in Ohms multiplied by the capacitance in Farads. The formula is T=RC. This is easier to use if it is expressed as: The time in seconds equals the resistance in megohms multiplied by the capacitance in microfarads.

One time constant represents the amount of time necessary for a capacitance to charge to 63.2 percent of the applied voltage. Also, it is the amount of time necessary for a charged capacitance to discharge to 36.8 percent of the fully-charged voltage. A capacitance is considered to be charged or discharged completely after 5 time constants.

How to stay in shape without getting your wallet out of shape.

We've shaped up a plan ir at lets you mix businese with pleasure. The program is simp e: you buy Sylvania recenir.j tubej, you get merchandise award poir :s. 'Vhen you have enough soint joı just pick O It what you want from the catalog that 'sylvania's dist -itutrs will be glad to give you. (Ask him for the "Take Stock with GTE Sy var as" book.)

To keep you in shape there are things like galf frishing equipment a nd shop tools. And if wh ttling is yo r sport, there's even a <nife for that.

If you'd rather keep yor.s wife in good shape there are fages of kitchen a nd household equipmert t - at will ma ie her workload a lat ligt ter

Or if you are interested in really lising the good life, tt erき is every thing from clothing to $c z n \in r a s$.

And then there are the Sylvania zolor talevision 泡. They take a lot of points, but they delive "a lot of pioture.

Buying Sylvania rece ving tubes can keep you business in gooc shape.

And if you buy enoush Sylvania tubes, you can kэep the whole family in shape.

But, we have to warn , ol, your w= llet w II get c lat fatter.

Sylvania Electronic Components, 100 First Avenue, Waltham, Mass. 02:54

Fig. 6 Square waves can be used to produce quickly the voltage charge and discharge curves of capacitances. The circuit shown in Fig 5A is used, with the square wave generator replacing the switch and battery, and a scope used for a readout. The time constant of the filter by steps was increased in microseconds, as shown, and the repetition rate of the square wave was 1000 Hz . (A) The input square wave, shown for comparison with the other waveforms. (B) A low-pass filter of 25 -microseconds time con-
stant produced a rounding of two corners of the square wave. (C) More rounding of the corners was produced by a 50 -microsecond filter. (D) This waveform represents $10-R C$ time constants of the 100 microsecond filter to a 1000 Hz switching rate, and will be explained later in this article. (E) A 200 microsecond filter produced a near-triangular waveform. (F) A triangular waveform of only 20 percent of the amplitude of the input was produced by a 500 microsecond fitter.

The charging and discharging of capacitances

Current cannot flow without voltage to supply the force, although the graphs shown in Figs. 5B and 5C appear to imply this by showing maximum current flow when the voltage is near zero. When voltage to the circuit is initially applied by operation of the switch shown in Fig. 5A, the current through the capacitance is maximum, although the voltage across the capacitance is small. This condition has been called: "current leading the voltage"'. However, such a phrase can be misleading. The previous statement about maximum current and minimum voltage is more appropriate.

Any capacitance can store DC voltage. However, a capacitance appears reluctant to accept a voltage charge, and is equally reluctant to release the charge.

At the beginning of a charge cycle, an uncharged capacitance passes a large flow of current,
although the applied voltage is very small. Immediately, the current begins to decrease, and, in the same proportion, the voltage charge across the capacitance increases. At the end of 5 time constants, the voltage is maximum and the current is zero. This action is the same for high-pass as it is for low-pass filters. The difference is that the voltage charge is measured at the output of a low-pass filter, and the capacitance current is measured at the output of a high-pass filter.

Capacitance current reverses

Although the capacitance voltage in the circuit of Fig. 5A changes only from zero to a maximum positive value, and returns to zero, the capacitance current reverses direction (polarity) during the discharge portion of the cycle.

During the charge time, electron current flows from the negative terminal of the battery to the grounded terminal of the capaci-
tance, through the capacitance, the resistance and the switch, and returns to the positive terminal of the battery. During the discharge time, the electron current flows from the grounded terminal of the capacitance, through the switch and resistor to the positive terminal of the capacitance. In high-pass filters, the voltage drop across the resistor, caused by the capacitance current, is the output signal.

Capacitance actions during slow switching

Variations of the voltage across the capacitance shown in Fig. 5A will be traced as they occurred when the circuit was switched to charge position, permitted to remain there for 100 time constants, and then switched to discharge position for another 100 time constants.

By the end of the first time constant, the voltage across the capacitance had increased to 63.2 percent of the battery volt-

Sams guides you through the highways and byways of electronics

COLOR TY TRAINING MANUAL 3rd Edition
by the Howard W．Sams Editorial Staff
A step－by－step education in the intricacies of color－tv．Its explanation of the besic prin－ ciples of each circuit leads to a clear understanding of the overall function of the set．A widely used text for schools and self study，it embraces modern developments in color－tv circuitry．
No． $20736 \quad \$ 6.95$

REFERENCE DATA FOR RADIO ENGINEERS

 5th EditionCovers transistors，electro－ acoustics，microminiature electronics，space commu－ nication，navigation alds， quantum electronics，relia－ bility and life testing．Com－ pletely revised by over 100 experts． 50% more data than previous edition．Over 400，000 copies in use． 1696 pgs．， 1350 illustrations． No． $20678 \quad \$ 20.00$

ABC＇S OF ELECTRONICS

2nd Edition

by Farl J．Waters
Clearly explains the prin－ ciples of electricity；func． tions of atoms and elec－ trons；magnetic forces and their relationship to elec－ tronics；basic components and their applications；fun－ damental electronic circuits and how they work．Latest information on solid state devices．
No． 20865
\＄3．95

MODERN DICTIONARY OF ELECTRONICS 4th Edition
by Rudolf F．Graf
Completely updated definitions of approximately 18,500 terms used in the fields of communi－ cations，microelectronics，fiber－ optics，semiconductors，reliabil－ ity，computers，and medical electronics．Over 2000 terms have been added，and hundreds of definitions have been updated An invaluable reference．

SAVE！SPECIAL

PREPUBLICATION PRICE！

No． 20852

Only $\$ 11.95$ if ordered betore Aug．1，1972．After Aug．1，1972， regular price will be $\$ 12.95$ ．

AUDIO CYCLOPEDIA

2nd Edition

by Dr．Howard M．Tremaine The most comprehensive and authoritative reference text on audio ever pub－ lished． 1758 pages，over 3500 topics，and 1800 illus－ trations devoted to the fields of acoustics，record－ ing and reproduction．Com－ pletely updated．
No． $20675 \quad \$ 29.95$

TRANSISTOR TV TRAINING COURSE 2nd Edition by Robert G．Middleton This training course in solid－state tv circuitry is a valuable guide for both the technical student and the experienced tv technician． It includes such late devel－ opments as integrated cir－ cuits，dual－gate MOSFETS and SCR sweep circuits， and the most recent inno－ vations in solid state color tv circuitry
No． 20882
$\$ 4.50$
\qquad
age. At the end of the first five time constants, the voltage was virtually 100 percent. During the additional 95 time constants, the voltage remained at 100 percent.

When the circuit was switched to discharge, the capacitance voltage decreased to 36.8 percent by the end of the first time constant, was zero percent at the end of the first five time constants, and remained at zero voltage for the additional 95 time constants.
If these voltage changes were plotted on a graph, the result would be a near-perfect square wave. Of course, the corners would be slightly rounded. However, for most practical purposes, the output voltage would be a duplicate of that at the junction of S1 and R1.

Because the filter did not appreciably change the waveform of the input voltage, it can be concluded that a sine wave of the same low frequency as the repetition rate of the switching would not be changed in amplitude, waveshape or phase by passage through the filter.

Capacitance actions during rapid switching

Again using the circuit shown in Fig. 5A, the variations of the voltage across the capacitance will be traced when the circuit was switched rapidly to provide one time constant each of charge and discharge.
At the end of the time constant of the charge cycle, the voltage at the capacitance would be 63.2 percent of the battery voltage. At the end of the time constant of the discharge cycle, the voltage at the capacitance would be 36.8 percent. (There is some approximation here, for the voltages rise in steps to a point of equilibrium; however, these figures will serve as an example.) Because the rate of charge and discharge of the capacitance voltage during the first time constant is nearly linear, the output voltage from the filter will be in the shape of a small triangle.

Square waves produce the effects of switching a DC voltage

Checking the performance of time-constant filters by graphing
the voltages is very time consuming. There is an easier method. Square waves from a generator are used to replace the charge/discharge switching voltages, and a scope is used to give an instantaneous readout.

Square waves can produce timeconstant curves

The series of waveforms shown in Fig. 6 were produced by a square wave of fixed frequency which was channeled through a low-pass filter whose time constant was changed in steps.

The waveform of Fig. 6B illustrates the previously-described condition in which the DC charging and discharging voltages were cycled very slowly relative to the time constant of the filter. Because there was such an insignificant change in the appearance of the square wave, it can be concluded that a sine wave having the frequency of the repetition rate of the square wave would be relatively unchanged in amplitude or phase by passage through the same filter.

Also, the triangular waveform shown in Fig. 6F is similar to that obtained by rapid operation of the charge/discharge switch shown in Fig. 5A.

A double-trace picture showing a 1000 Hz square wave at the input and output of a 500 microsecond filter is shown in Fig. 7.
Maximum voltage at the input to the filter occurred at the beginning of the charging time. However, maximum voltage at the output of the filter occurred at the end of the same charging time. This indicates that the output voltage was lagging in phase. Also, the difference between the average input voltage and the maximum output voltage is $1 / 4$ cycle (90 degrees). A sine wave, of the same frequency as the repetition rate of the square wave, emerged from the same filter with greatly decreased amplitude, and a lagging phase of 90 degrees.

One cycle is required for a change of phase

The first cycle of a sine wave, which has the phase delayed by
passage through a low-pass filter, is stretched laterally. Figure 8 shows by means of an artists touchup how this elongated cycle would appear, if it could be seen on a scope.

Capacitive current in a high-pass filter during slow switching

The output voltage from the high-pass filter shown in Fig. 9A is actually the current of the capacitance which causes a voltage drop across the output resistor.

Variations of the voltage at the output of the high-pass filter will be traced as they occur when the circuit is switched to the charge position, permitted to remain there for 100 time constants, and then is switched to the discharge position for another 100 time constants.
When the circuit was switched first to the charge position, electron current from the negative terminal of the battery flowed through R1, C1 and S1 to the positive terminal of the battery. At the beginning of this action, the capacitance current (and the output voltage) was maximum. However, the current immediately started to decrease. At the end of the first time constant, the output voltage was 36.8 percent of the input voltage. After 5 time constants, the output voltage was zero. The capacitance was completely charged. Therefore, the full voltage is developed across the capacitance; no voltage is developed across the resistance. During the additional 95 time constants, the output voltage remained at zero.

When the switch was changed to the discharge position, the total battery voltage, which had been stored in the capacitance, was connected through S1 to the output resistor. Electron current, from the capacitance, flowed from the negative terminal of the capacitance, through the resistor to ground, and from ground through the switch to the positive terminal of the capacitance. Notice that the current flow through the output resistor during the discharge time was opposite in direction (reversed polarity) from the current which flowed during
the charge cycle. Therefore, the output voltage which appeared instantaneously when the circuit was switched to discharge was negative in polarity.
At the end of the first time constant, the output voltage was 36.8 percent of the previous maximum negative voltage. After the first 5 time constants, the output voltage was zero, and it remained zero for the additional 95 time constants.
Therefore, the output of a highpass filter, when the input voltage is switched slowly, consists of very narrow, alternately positive and negative pulses.
Because the average voltage at the output becomes maximum before the average voltage at the input, a leading phase of the output signal is indicated.
A sine wave of the same frequency as the repetition rate of the voltage switching was greatly reduced in amplitude and changed to a 90 degree leading phase by passage through the same filter.

Ohmmeter testing of capacitance

The pulses of voltage from the charge and discharge of the capacitance of a high-pass filter are of the same nature as the quick, short-duration bounces of the pointer of an ohmmeter when the test leads are connected to an uncharged capacitance.
Starting on page 34, the July 1970 issue of ELECTRONIC SERVICING gave the details of a quick test of fair accuracy for checking the capacitance of large electrolytic capacitors.

Capacitive current in high-pass filters during rapid switching

Variations of the output voltage from a high-pass filter, such as the one shown in Fig. 9A, were traced during charge and discharge cycles of only $1 / 10$ time constant.

When the circuit was first switched to charge, capacitance current and output voltage both were maximum. Instantly, they started to decrease. However, at the end of the $1 / 10$ time constant, they both remained nearly at maximum.

The time was insufficient for a

Fig. 7 A double exposure of the input waveform and the triangular waveform produced when the filter had a $500-\mathrm{mi}$ crosecond time constant shows that the arrival of the voltage of the square wave has been delayed. This indicates a lagging phase change.

Fig. 8 The slow charging of the capacitance of a low-pass filter delays the arrival of the maximum voltage peak of a sine wave; therefore, the first cycle of a series of sine waves is elongated by this action.

Fig. 9 Leading phase caused by high-pass filters is produced by the action of the timeconstant components. (A) The schematic of the high-pass filter used to demonstrate by graphs the waveform of capacitance current during the charge and discharge cycles. (B) This graph of the output voltage of the filter is similar to those in many textbooks which illustrate capacitance current in time-constant circuits. In this case, the curve originated as a photograph taken from the screen of a scope.
voltage charge to build up in the capacitance. Therefore, all the voltage appeared across the output resistor. Also, there was no voltage stored in the capacitance which could be discharged, when the switch was changed. Both the voltage across the output resistance, and the capacitance current decreased rapidly to zero.

When tnis circuit is switched
rapidly, the output waveform is nearly the same as the input switching voltage at S1 and C1.

A sine wave of the same frequency as the repetitive frequency of the switching emerged from the same filter with no discernible change of amplitude, waveform, or phase.

Capacitance current during moderate switching speeds

When the circuit is cycled

Fig. 10 Square waves can be used to produce quickly the output voltage curves from high-pass filters. A generator of $1000-\mathrm{Hz}$ square waves was connected to C 1 (S1 was disconnected) in the circuit shown in Fig: 9A, and the value of R1 was changed to produce the time constants listed. (A) The waveform of the input square wave is shown for comparison with the following waveforms. (B) A high-pass filter having a time constant of 1000 microseconds tilted slightly the top and bottom of the square wave. (C) Tilting of the top and bottom lines was increased, and the lines showed a slight amount of bending, when the time constant was decreased to 500 microseconds. (D) A change to 200 microseconds produced increased tilting and bowing of the top and bottom of the square wave. (E) A 100 microsecond filter provides $10-R C$ time constants at 1000 Hz ; this will be explained further along. (F) A time constant of 50 microseconds changes the square wave into the beginning stages of positive and negative pulses. (G) Recognizable pulses are produced by a time constant of 10 microseconds. Amplitude was not decreased very much. (H) Narrow positive- and negative-going pulses of decreased amplitude are produced by a time constant of only 1 microsecond. The phase shift at this point was 90 degrees leading.
more slowly than stated in the previous example (or when the time constant is made shorter and the same switching cycle retained), the output voltage decreases more before the next switching. However, the rate of decrease is linear. Therefore, a graph of the output voltage would show a square wave whose top and bottom lines are straight, but tilted. This is the classic symptom, when square wave analysis is used, of loss of frequencies below the repetition rate of the square wave.

Square waves and high-pass filters produce capacitance current waveforms

In Fig. 10 are shown the changes to a $1000-\mathrm{Hz}$ square wave produced by a high-pass filter when the time constant was decreased in steps.

Glance along the row of waveforms and notice that the square waves first tilt at the top and bottom. Then the tilt becomes a parabola, and finally, the parabola becomes a sharp pulse.

A visual illustration of leading phase

The double trace waveform in Fig. 11 shows the input square wave in relationship to the positive and negative output pulses which resulted when the highpass filter had a very short time constant. The pulses of the output signal are $1 / 4$ cycle (90 degrees) to the left (leading phase) of the center (average) of the input voltage. This is an indication that the output pulses have a leading phase of 90 degrees relative to the input signal.

When a sine wave of the same frequency as the repetition rate of the square wave was channeled through the same filter, the amplitude was reduced to less than 5 percent, and the phase measured a leading 90 degrees.

One cycle is required for a change of phase

The first cycle of a sine wave which passes through a highpass filter is narrowed by the leading phase action so that it is narrowed laterally, as shown by an artists touchup in Fig. 12.

One Proof Of The Time Constant Theory

The output waveform produced by the charging and discharging of a high-pass filter, such as the one shown in Fig. 9A, usually is graphed as shown in Fig. 9B. One question arises: How does such a curve relate to frequency? An experiment and the use of some simple mathematics answered the question.

A $1000-\mathrm{Hz}$ signal requires 1000 microseconds for the completion of each complete cycle. Also, one complete charge-and-discharge period of a time-constant circuit requires 10 time constants.

Therefore, 1000 microseconds divided by the 10 time constants. equals 100 microseconds. This is the time constant required, according to theory, to produce the classic graph-type display of one charging and one discharging cycle.
A 100 microsecond high-pass filter, using the circuit shown in Fig. 9A with a .01 capacitance and a 10 K -ohm resistance, was constructed and supplied with a 1000 Hz square wave. The resulting waveform is shown in Fig. 9B, complete with the graph lines as proof of the performance. One time constant is the amount of time necessary for the output of a high-pass filter to decrease to 36.8 percent of the input voltage. Also, at the end of the first 5 time constants, the output voltage should be zero.
In this case, theory and practice were in agreement.

Square wave analysis

Analysis of the frequency response of video and audio amplifier circuits wy the change of waveform of square waves passed through the circuit is an old and time-tested technique. Refer to the May, 1971 issue of ELECTRONIC SERVICING starting on page 56 for a complete discussion of that subject.

If you noticed some similarity of the waveforms in the previous article and the ones here, you have a good memory.

Square-wave analysis actually

Fig. 11 This double-exposure photograph shows the input square wave and the pulses produced by a time constant of 1 microsecond. Considering the portion of the cycle which represents the average voltage, the average pulse voltage occurs at nearly 0 degrees, and the average square wave voltage occurs at the center of the top line, or 90 degrees. Therefore, a leading phase of 90 degrees of the output waveform relative to the input waveform is indicated.

Fig. 12 The first cycle of a series of sine waves which has the phase made leading by passage through a high-pass filter is narrowed by the action of the short time constant. If this action could be seen with a scope, it would appear somewhat similar to the artists touchup of the first cycle.
is a rapid method of graphing the composite of all the time-constant filters in the circuit under test. The graph of the time-constant, in turn, indicates the approximate frequency response and the phase response.

Comments

Time-constant filters appear to affect sine waves and square waves differently. A low-pass filter which greatly decreases the amplitude of a sine wave and delays its phase, seems merely to round the corners of a square wave without changing either the amplitude or phase.

The explanation for this paradox can be found in the composition of the frequencies in these two waveforms.

A pure sine wave has only one frequency, the fundamental, which is also the repetition rate.

A square wave is very different. It is composed of a fundamental (also called the repetition rate) and dozens of odd harmonics. The even harmonics, 2nd, 4th, etc. are missing. The following is a partial listing of the harmonics and their percentages of amplitude relative to the fundamental - fundamental 100 percent - 3rd harmonic 33 percent - 5th harmonic 20 percent - 7th harmonic 14 percent - 9th harmonic 11 percent - 11th harmonic 9 percent -99th harmonic 1 percent - higher harmonics are present also in proportional amounts.
A filter affects differently the amplitude and phase of each individual harmonic. The higher harmonics are affected the most.
Consider a low-pass filter of 100 microseconds (which produced the square wave shown in Fig. 6D). The amplitude of the square wave is unchanged, but a sine wave of the same frequency was attenuated about 15 per cent. Also, the higher harmonics of the square wave are greatly attenuated and moved to the right because their phase has been delayed.

Use the analysis of square waves to estimate frequency response. But just remember that the change in waveform is due to the action of the time constant (the charging and discharging of the capacitance). The change of frequency response is the byproduct of the time constant, not the reverse.

Next Month

Addition and subtraction of sine waves having various phase relationships, and a description of the actions in chroma demodulators will be discussed next month in Shop Talk. For the first time, we believe, actual waveforms obtained from various types of chroma demodulators will be featured.

FLAT-RATE PRICING

The hourly rate, and starting an incentive plan

In previous parts of this article, the ES Business Consultant explained the reasons why pricing service by the hour limited potential profits, and why shop owners should switch to a flat-rate pricing system.

Part 3 tells you how to start an incentive-pay plan for your technicians, and gives a method of calculating the hourly rate you should charge to provide the profit you need and desire.

Starting An Incentive-Pay Plan

An incentive-pay plan for your employees means that your technicians will earn according to how they produce. Such a plan is essential to encourage them to spend less time on each job, and that is necessary if you are to profit from using a flat-rate system.

Most incentive-pay plans compensate each technician with a percentage-usually 45 to 50 percent —of the gross labor income he produces. This percentage covers labor income only. Many consum-er-protection groups disapprove of any incentives which might lead to the excessive sale of parts.

If your business activity is seasonal, or subject to large fluctuations, you also might guarantee a minimum wage. This minimum could be 75 to 80 percent of his average earnings.

Details of any incentive plan you develop must be set by your shop conditions: cost of doing business, required profit margin, and similar factors. And, of course, it must meet current requirements of federal and state labor laws.

As a general rule, direct labor costs (compensation to technicians) should not run higher than 60 percent of the total service labor sales. Fifty percent is probably ideal. This percentage represents his total compensation for the settlement period (week, month, or quarter, as best suits your operation). You deduct whatever he's drawn under his guarantee, and pay him the difference. If slack busi-
ness means his guarantee isn't met, or is barely met by his percentage of gross, you pay the guaranteed amount and forget it. After all, it is a guaranteeand your situation is no different than it would be if you were paying him a salary during a slack period.

Since direct compensation is tied to service labor sales, direct service labor cost does not rise as your shop performs more work. Productivity rewards you with higher net income from labor sales, and also rewards your technicians.

Some of these previous points need to be clarified by additional details. First, the incentive-pay plan.

Your payroll records should include a worksheet (similar to the one shown in Fig. 1) in which the service labor sales of each technician (jobs performed and labor charged) are listed. At the end of the settlement period, you compute his earned share of labor sales, and pay the excess over his guarantee. His worksheet also should include the normal accounting record of total compensation, withholdings and net pay as it does in the case of a regular hourly-wage worker.

Two points are worth special attention. A job record is necessary to furnish a check against errors, and to keep track of callbacks. Naturally, an incentive pay program includes a penalty for callback work, to discourage loss of work-quality for the sake of faster work. If the same job must be redone at no charge and is assigned to the same technician, he certainly can't be paid for the rework. However, if the rework must be assigned to someone else, this second technician should not be penalized for the failure of the other.

Whatever formula is evolved should take into consideration that the shop loses money on rework; therefore, the first technician must be penalized. This is the reason some shops have an inverse relationship between incentive pay versus the callback rate. That is, the penalty for a callback is larger than was the original incentive reward. This en-

PAYROLL WORK SHEET-Fred Ohm, April
-SERVICE LABOR SALES-

Summary of Fred Ohm's Payroll and Earnings Record:

April	DEDUCTIONS						Amount Paid
	Guarantee	Social Security	Fed. Income Tax	State Income Tax	Group Insurance	Total	
1st week	140.00	6.72	21.00	2.80	1.90	32.42	107.58
2nd week	140.00	6.72	21.00	2.80	1.90	32.42	107.58
3rd week	140.00	6.72	21.00	2.80	1.90	32.42	107.58
4th week	140.00	6.72	21.00	2.80	1.90	32.42	107.58
Total Guarantee	560.00	26.88	84.00	11.20	7.60	129.68	430.32
Earned share of service labor sales*	807.75						
Difference owed Ohm	247.75	11.89	37.16	4.95	54.00	193.75

NOTE: $\$ 807.75$ (45% of labor sales) has been earned during period. Against these earnings technician has drawn his guarantee. If earnings should be less than guarantee, technician retains guarantee drawing and does not owe shop anything.

Fig. 1 Above, sample of a payroll work sheet to be made out for each technician.

1) Techrician Wages and related payroll expenses		Shop Operating Expenses		and trative s	Total Cost to $=$ Produce Service Labor
2) Total Cost To Produce Service Labor	Desired Profit			$=$	Total Service Labor Revenue Required
3) Manhours available during period	\times		of labor ecovered for direct sale to ustomers	$=$	Manhours available for direct sale
4) Total Service Labor Revenue Required		M av for	Manhours available for sale	$=$	MINIMUM HOURLY RATE REQUIRED TO PRODUCE DESIRED PROFIT

Fig. 2 Left, method for computing hourly service labor charge.

Fig. 3

Fig. 3 A comparison of the variable and constant factors affecting profit in hourly versus flat-rate pricing systems.

FACTOR	UNDER HOURLY RATE
1. Hourly Yield	
(Total Labor Sales	
per Hour)	

hourly rate, which it

cannot exceed\end{array}\right]\)| 2. Labor | |
| :--- | :--- |
| Recovery Rate | Variable, but immaterial since it
 penalizes customer for your
 inefficiency, or rewards him
 for your efficiency |
| 3. Direct | Constant where it hurts you-
 variable where it hurts you.
 Up to point where all available
 hours are sold, it is constant.
 Rises with overtime to
 reduce profit |
| | |

4. Profit

Variable. When all hours are not sold it is low, rises to maximum when all hours are sold Drops again, above this point

UNDER FLAT RATE
Variable. Limited only by productivity, it exceeds hourly rate with high productivity

Variable. Bears directly on profit; rewards or penalties accrue to the worker and shop

Constant at low volume (because of workers' guarantees) and a constant percentage of sales at high productivity levels

Variable. Once productivity exceeds level needed to meet guarantees, profit rises directly with productivity
courages better work, as well as faster work.
The other point applies to shops which also sell merchandise. If you recondition and sell trade-ins, your technicians should be compensated for this work at the same rate as that for outside labor sales. Otherwise, the low-paying jobs (internal labor sales) will log-jam and be neglected.

The uniform price for external and internal labor sales also applies to maintaining sales and service departments as separate profit centers. Neither should subsidize the operation of the other.

Figuring The Hourly Rate

Your hourly service charge should be determined by your costs, your labor recovery rate, your desired level of profit, and your market conditions.

This means you'll be using your previous year's records to furnish part of the data upon which your hourly rate is to be based.

In turn, you must review cost and productivity data periodically and adjust your rate, if necessary, to keep it up to date.

Most of the steps necessary to figure your hourly service labor charges are fairly simple. However, the calculation cannot be made without your past expense records.

The total cost of producing service labor is the total of: the technician's wages plus your related payroll expenses; shop operating expenses and administrative expenses. This is shown as Item 1 in Fig. 2. Your annual summary for the previous year provides this information.

Next, you compute the total service revenue required, by adding the total cost to produce service labor to your desired profit, as shown in Item 2 of Fig. 2. Desired profit can be derived by computing return on investment, or by using industry averages for your type of business. Return on investment ish't too desirable for small businesses with small
total investments. It doesn't produce much return. Industry averages usually give you a profit figure as a "percentage of total labor sales receipts before taxes". Some figures, published by industry associations or business data services, classify individual businesses by size. That is, they give data on groups within each category on the basis of annual volume, number of employees (or payroll), or other factors, to make the data more useful. In other words, you must make allowances for the differences between your shop and the "average".

Next you determine the manhours available for direct sale. From your payroll records, you figure how much time you bought last year. Not all of this time, as pointed out earlier, is productive time. It must be reduced for vacations, which are predictable. Then again it must be reduced for lost time such as sickness, coffee-breaks, parts chasing, phone calls, time-card keeping, and other time lost in non-productive activities. These are all variables and not very predictable.

The variables can be averaged out by using the ratio of hours actually sold to the hours available for sale. The easiest way to figure hours sold is to use your last year's records, and divide your total annual labor receipts by your hourly service labor charge. Then dividing what you sold by what you had available to sell gives you the percentage of the total labor time that actually was used. This is known as the labor-recovery rate, and is expressed as a percentage of the total time for sale. Total hours for direct sale (productive work-hours) is the product of total hours available times the labor recovery rate. This is covered by Item 3 in Fig. 2.

You know the total service labor revenue required. Also, you know the work-hours required to produce it. So the final step, as shown in Item 4 of Fig. 2, is to figure the minimum hourly rate you must charge to cover your costs and produce the

Here is an example showing the complete computation of a profitable hourly labor charge.

WAGES	STEP 1 A-Computing Service Labor Costs for Ohm's TV and Radio			TOTAL
Technician	Bob	Joe	Sam	
Hours per year	2496	2496	2496	
Multiply by hourly wage	$\times \$ 4.00$	$\times \$ 3.50$	$\times \$ 3.00$	
Annual wages	\$9984	\$8736	\$7488	\$26,208
Other paykoll cosis				
Social Security	\$317	\$317	\$317	
Life \& Medical				
Insurance	120	120	120	
Unemployment	299	262	224	
	\$736	\$699	\$661	\$2,096
Total Service La	bor Costs			\$28,304

1B-Computing Total Operating, General and Administrative Expenses for Ohm's TV and Radio

OPERATING EXPENSES	
Owner's salary (including all payroll costs)	$\$ 13,114$
Vehicle operating and maintenance	1,400
Vehicle depreciation	1,600
Shop equipment depreciation	900
Expendable items, shop	350
Service literature	75

GENERAL AND ADMINISTRATIVE EXPENSES		
Secretary wages	5,200	
Lease	3,600	
Utitities	1,000	
Telephone	550	
Office equipment depreciation	100	
Office supplies	450	
Advertising/Promotion	600	
Legal, Audit fees	300	
Insurance lall other than employee)	250	
Taxes lother than Fed. and State income)	600	
Interest and Bank Charges	500	
Dues. subscriptions, license fees, etc.	250	
Misc. (bad debts, etc.)	250	
	-	13,450
Total Operating. General and Administrative Expenses		$\$ 30,889$

1C-Computing Total Cost of Producing
Service Labor-Ohm's Radio \& TV
Service Labor
\$28,304
30,889
$\$ 59,193$

STEP 2-Computing Total Annual Service Labor Revenue Required to Produce Desired Profit For Ohm's TV and Radio

Total Cost of Producing Labor	$\$ 59,193$
Profit Desired (20\% of Labor Sales before Taxes)	$\times .20$
	$\$ 11,838$
Total Expenses	$\$ 59,193$
Desired Profit	$+11,838$
Service Labor Revenue Required	$\$ 71,031$

STEP 3-Labor Recovery Rate: Computing Service Labor Manhours That Actually Will Be Available For Direct Sale

Hours worked per year per technician	2496
Number of techniciañs	$\times 3$
Shop service labor manhours per year	7488
Minus manhours lost to vacations (2 weeks per technician)	-288
Manhours on job	7200
Labor recovery rate (80%)	$\times .80$
Total service labor manhours available for direct sale	5760

STEP 4-Computing Minimum Hourly Rate Required to Produce Desired Profit

Total Service Labor Revenue Required
Service Labor Manhours Available for Direct Sale (Fig. 6)
:---
Labor Charge

Minimum Hourly Service Labor Charge Varies With Labor Recovery Rate* Minimum Hourly Service Labor Charge
Labor Recovery Rate (\%)
70
80
85
90

profit you want and need. This minimum hourly rate is the revenue-producing hours divided into the service revenue that is required.

When you think about these factors, you'll see that some are constants, or are variable only up to the fixed limit under an hourly-rate labor charge plan. But, under flat-rate pricing, some of the key factors become variables which you can manipulate so they favor you. This change is charted in Fig. 3.

Good management, constant improvement in productivity, careful cost control, and aggressive advertising and promotion can push profits up near the maximum potential of your market. By contrast, hourly-rate pricing clamps a limit on the variables you want to control. Just when you'd like them to rise, they're turned back at the low ceiling.

It's not a case of "the sky's the limit" with flat-rate pricing. But the system will get you out from under that low ceiling. from your Centralab Distributor

KITS AVAILABLE:

- Fastatch II ${ }^{(1)}$ Controls
- Miniature Wirewound Controls
- Miniature Trimmer Controls
- Axial Lead Electrolytics
- PC Lead Electrolytics
- General Purpose Capacitors
- High Voltage Capacitors
- Packaged Electronic Circuits

KIT FEATURES:

- Rugged steel frames with. high impact plastic drawers.
- Stackable or wall mounted.
- Portable, with convenient handles.
- All contain assortment of the most popular and widely used Centralab components.
- All control units (KIT-10F, -20W -30T) include latest edition of H. W. Sams Replacement Control Guide.
- All components are functionally arranged in drawers by value, type, etc.
- All drawers are pre-labeled clearly showing contents.
- All kits are completely set up. ready to use.

By Centralab, your Parts-Time Helper

Features andlor specifications
listed are obtained from manufacturers reports. For more information about any product listed, circle the associated number on the reader service card in this issue.

Miniature FET Multimeter

Product: Little Henry Model FE23 Manufacturer: Sencore, Inc. Function and/or Application: Measures voltages, currents and resistances.
Features: Pushbutton selection of functions and ranges, meteroverload protection, a lead compartment with an interlock switch

to turn off all batteries, a lighted meter scale with on-off switch, durable plastic case, and a highsensitivity of 15 megohms on the DC voltage ranges.
Specifications: Not available.
Price: Model FE23 sells for \$80.00.

Circle 50 on literature card

Transistor/Diode Checker

Product: Model WC-528A Quicktracer
Manufacturer: RCA Electronic Components
Function and/or Application: Checks diodes and transistors (except FET's) either in- or out-of-circuit, when a scope is used as a read-out.
Features: Checks the base-emitter or base-collectorjunctions

for diode characteristics, includes a built-in transformer and test leads, the case is impact-resistant plastic, and the power applied to the transistors is limited to prevent damage. An instruction book is included. Also enclosed is an extensive application section prepared by the RCA Consumer Electronics group which gives in-circuit waveforms for the RCA CTC44, 51, 52, 53 and 54 solid-state receivers.
Specifications: Not available.
Price: The WC-528A Quicktracer sells for $\$ 14.75$.

Circle 51 on literature card

Test Clip For Integrated Circuits

Product: Model 3916 Test Clip Manufacturer: Pomona Electronics Co., Inc.
Function and/or Application: Provides elevated test points for testing of the 14 - or 16 -lead integrated circuits.
Features: Works similarly to a clothes pin: you squeeze the top together to open the jaws, then position the clip over the IC and release. Body of the clip is molded of high-density acetal copolymer, and the contact wires are of gold-plated phosphor bronze.
Specifications: Not available.
Price: Price of each Model 3916 Test Clip is $\$ 4.95$.

Circle 52 on literature card

[^0]

Fire \& Theft Security Systems
Author: Byron Wels
Publisher: Tab Books, Blue Ridge Summit, Pa.
Size: $55 / 8 \times 83 / 4$ inches, 176 pages
Price: Softcover $\$ 4.95$; hardcover $\$ 8.95$.
All basic systems of fire and theft protection from simple door and window switches to elaborate microwave sensing systems are described in extensive detail. Other related facts ranging from how to develop your own system, or obtain a patent on your security invention, to installation tips also are covered. Electronic technicians will find enough solid information here to enable them to protect their own shops, or to enter the field of installing and repairing security systems.

Contents: Personal \& Property Security Sys-tems-Selling Protection-"Rolling Your Own"-Service \& Maintenance-DetectorsControl Units \& System Considerations-How Much Must You "Pay"?-Commercial Equipment.

Transistor TV Training Course

Author: Robert G. Middleton
Publisher: Howard W. Sams \& Co., Inc., Indianapolis, Indiana
Size: $81 / 2 \times 11$ inches, 136 pages
Price: Softcover $\$ 4.50$.
This second edition of a popular training manual for transistorized television receivers has been revised to include: integrated circuits; dual-gate MOSFETS, SCR sweep circuits, and other new developments of the sol-id-state field. All sections of television receivers are explained, and many illustrations are included. Review questions are included at the end of each chapter.

The training course is intended for use by television technicians and technical schools.

Contents: Transistor Applications In Television Receivers-Tuners-Video IF And Detector Sections-Video Amplifiers-AGC Sys-tems-Horizontal- And Vertical-Sync Sections -Vertical-Sweep System-Horizontal-AFC And Oscillator Sections-Horizontal-Output And High-Voltage Sections-Transistor ColorTV Receivers-Low-Voltage Power Supplies.

BnstrumentsinOnet

Nobody but Eico makes the troubleshooting of solid state equipment so quick, easy, versatile and precise for the professional electronics technician and engineer-and at such low cost!

- Dynamically tests transistors in and out of circuit.
- Performs the $\mathbf{4}$ basic tests on all types of FETs including pinch-off.
- Performs the 3 basic tests on all types of bipolar transistors.
- Tests for true transconductance and AC Beta, in and out of circuit.
- Tests all types of diodes and measures zener voltage.
- Tests SCRs, TRIACSs, and UJTs.
- Incorporates easy-to-use DC Voltmeter and Ohmmeter.
- 50 UA taut band meter movement.

FREE 32 PAGE EICD CATALOG
For latest catalog on EICO Test Instruments, Stereo, EICOCRAFT Projects, Environmental Lighting, Burglar/Fire Alarm Systems, and name of nearest EICO Distributor, check Reader Service Card.
EICO, 283 Malta Street, Brooklyn, N.Y. 11207
Circle 16 on literature card

"Experience? Yes, I've worked at four different shops this month. That shows how much in demand I'm in."

PTC Please The Customer with "around-the-corner" From Mallory.

Here's Mallory's answer to today's replacement parts problem.
Our own broad line of high-quality entertainment replacement semiconductors-transistors, zener diodes, diodes, high-voltage components, color crystals, integrated circuits, field-effective transistors.
You'll find them nearby . . . everywhere Mallory parts are sold now. So you can spend more time working instead of scrambling around to find what you need. And you won't have to keep a lot on hand either because they give you all the functions, ratings and specifications you want.
And they're from Mallory . . . so you can be sure each one has all the quality and reliability you find in all our products.
See your Mallory distributor today. And ask him for our Semiconductor Product Guide . . . the most complete, up-to-date catalog and cross-reference in the industry.

Semiconductors availability.

Mallory .. . lets you do more with less.

New in home cassette machines . . . The bi-peripheral drive

by Forest H. Belt

There is no mystery about the bi-peripheral drive system for tape cassette machines. But it is new enough that the following descriptions of the mechanical actions might save you hours of trying to analyze a defective unit.

Cassette tape players are gaining popularity, there's no doubt about it. Microgap heads, Dolby circuitry, and chromium-dioxide tapes extend the high-frequency response and reduce the hiss. And these features, along with increased programming in stereo, have attracted even the "golden ear" hi-fi buffs to cassettes. So much consumer interest stimulates the manufacturers to make continual improvements.
One of the latest improvements is in tape-speed control. This one was engineered by the Wollensak Division of the 3 M Company. They have designed a different type of drive mechanism for home cassette machines. -
Many cassette mechanisms

Fig. 1 This simplified drawing of the patented Wollensak bi-peripheral drive mechanism shows the $A C$ motor, rimdriven flywheel, and the positioning of the spindles relative to the flywheel.
use a flywheel to hold the capstan speed constant. But compact unit designs prevent the use of large, heavy flywheels, and that slow $17 / 8$ inches-per-second tape speed might vary just enough to annoy critical music listeners.

Cassette decks for use in homes have more interior space than do portables. Their ACpowered motors and larger, more-precisely-balanced fly-
wheels help to stabilize the tape speed. Less than 25 per cent wow and flutter are claimed for some machines.

From Belts To Tires

The basic mechanical operation of the Wollensak tape recorder is shown in Fig. 1. An AC motor friction drives a rubberrimmed idler wheel. In turn, the rubber tire of the idler wheel presses against the outside of the flywheel and rotates it. This type of drive has the potential for producing a more even speed than has the type with a DC motor and a belt drive.

That unique flywheel is the big difference. It is called bi-peripheral. The periphery has inside and outside beveled edges that are used in the operation of the mechanism. Hence, the term biperipheral.

One action not shown in Fig. 1 is that of the large center hub of the flywheel. Also there is a pulley groove on the underside of the flywheel which can't be seen in the sketch. These features will be shown in pictures.

A Typical Cassette Mechanism

Abstract

If you have worked on cassette machines, you're familiar with the typical drive mechanism shown here. A DC motor with a pulley on its shaft drives a rubber belt. The belt goes around a pulley that is part of the flywheel. When the motor runs, the flywheel turns. The capstan, an extension of the flywheel shaft, rotates to drive the tape.

A third pulley is driven by the same rubber belt. This pulley is a part of the Play And Advance Assembly, and it is rotated by side pressure of the rubber belt. A fourth pulley on top of the assembly rotates the Play And Advance Spindle which winds the tape inside the cassette. To accommodate the changing size of the diameter of the wound tape, slippage occurs between the Advance Drive Assembly and the Advance Spindle

When the capstan is disengaged during Fast Forward operation, the friction between the Play And Advance Drive Assembly and the Play And Advance Spindle is sufficient so there is no slippage between them, and the tape is transported rapidly forward.

During tape rewind, the flywheel rim-drives another (not shown) and it belt-drives the Rewind Drive Assembly. Contact between the top wheel of the Rewind Drive Assembly and the wheel of the Rewind Spindle rapidly rotates the Rewind Drive Assembly to provide Fast Rewind.

Normal tape movement

Stereo cassette decks that use this patented drive (only Wollensak and Advent do, as of this writing) have all the usual functions. They include Play, Record, Fast Forward, Rewind, Pause, and Stop.

The motor, the drive idler, and the bi-peripheral flywheel turn constantly while the machine is on. Install a cassette and push down the Play button (shown in Fig. 2A) to start the tape motion and turn on the amplifier.

The Play button rocks a Teflon pivot arm. A flat metal lever, pushed by the pivot arm, moves a flat metal arm that connects to the play slide. You can see them all in Fig. 2A. The movement of this lever assembly shoves the play slide backwards.

Fig. 2B shows the long, narrow
plate on which the heads and pinch roller are mounted. A cassette has been inserted to illustrate relative positions, and the Play button has been pushed down. The heads are against the tape and the pinch roller is pressing the capstan. With the motor running, the tape is moving at a steady $17 / 8 \mathrm{ips}$.

Something else is happening down inside. Remember the enlarged hub at the base of the capstan? A rubber-tired idler (not shown in Fig. 1) has moved over to that hub. You can see the top of the idler in Fig. 2C. Pushing the idler against the hub also places it in contact with a rubber tire on the base of the play spindle (in most machines is called a takeup spindle). The revolving flywheel spins the idler, which
turns the spindle to wind the tape inside the cassette.

Stereo Recording

The tape drive is the same for recording as for playback. You merely hold down the Record button (shown in Fig. 3A) before you push the Play button. Notice the large shift plate the Record button pushes down.

Of course, if you've inserted a prerecorded cassette, the automatic lockout system prevents you from depressing the Record button. Fig. 3B shows the antirecord feeler pushed back by the tab in a blank cassette. As you probably know, the tabs are removed from an already-recorded cassette. In that case, the feeler fits into the hole and is not pushed backwards. Fig. 3C

Fig. 2 The location of the parts used in the play function.

(A) When the play button is depressed, the play slide, play lever and the pivot arm move to release the brakes, apply drive to the wind assembly and move the capstan roller.

(B) A mounting plate contains the erase head, playback/record head and the capstan pinch roller.

(C) This picture shows the take-up idler which was not included in Fig. 1.
shows the block that prevents downward movement of the re-cord-shift plate.

When a non-recorded cassette is used, the shift plate goes down and is locked down by the Play button. Then a below-deck slide switch transfers the connections of the record/playback head from the input to the output of the amplifiers. The same switch connects the input jacks. The unit obtains recording signals from external hi-fi amplifiers. Mechanically, the Play button has moved the heads and pressure roller into position and activated the takeup-drive idler. The tape moves the same as it does for playback

Fast forward and rewind

Here's where the bi-peripheral characteristic of the flywheel comes into play. The shifting of fast-speed drives shows no resemblance to the action in other machines.

Fig. 4A pictures the fast-speed lever, the spindle-shift bars, and a play-lockout lever. You can see the advance and rewind spindles, and the brake assemblies. You have to look closely to see that the shift bars each have an arm reaching underneath the visible part of the spindles. These arms act as brakes, when they touch the tires of the spindles. A still photo can't illustrate the spindles' actions, so l'll describe them.

You push the fast-speed lever to the left for Rewind (refer to Fig. 4B). The lockout lever is blocked if the Play button is down. But a little extra pressure on the fast-speed lever causes it to move the Teflon pivot arm (at the Play button), which releases the playback function.

The fast-speed lever pushes the left spindle-shift bar outward. A feeler from the rewind brake is pushed back, and the interlocking construction causes the other brake to move away from the advance spindle. A shift-bar arm down inside pivots, pulling the rewind spindle down into the machine about $1 / 8$ inch. You can see in Fig. 4B that the rubber rim of the spindle contacts the out-

Fig. 3 Additional actions düring recording.

(A) 'Pressure on the recording button pushes the shift plate flat against the deck.

(B) However, the shift plate cannot move unless the tab of a blank cassette pushes the anti-record feeler backwards.

(C) Motion of the shift plate actuates the recording switch.

Fig. 4 Fast-speed wind and rewind actions operate from a shift lever which has shift bars.

(A) Before the fast-speed action is started, the brakes lock the spindle assemblies, and the tires of the spindles do not touch the bevels on the flywheel.
side of the beveled flywheel periphery. When the flywheel revolves, the spindle rotates and rewinds the tape. The flywheel is large and the spindle circumference is small; therefore, the spindle rotates rapidly in a CW direction.

You push the fast-speed lever to the right for fast forward operation. (See Fig. 4C.) Lockout works the same, preventing playback (or recording) simultaneously with fast speed. The right shift bar moves outward at the top, pivoting the arm underneath. The arm pulls the advance spindle down so its rubber rim contacts the inside bevel of the flywheel. The spindle rotates opposite in direction to the rewind spindle, but just about as fast. The shift bar pushes back the takeup brake which, in turn, also pushes back the other brake.

Auxiliary operations

The Pause function operates only during recording or playback. The black-plastic lever is pictured in Fig. 5. Pull the lever

(B) When the lever is moved to the left, the brakes are withdrawn by the spindleshift bars, and the tire of the rewind-spindle assembly contacts the outside bevel of the flywheel causing fast rewind of the tape.
toward you to stop movement of the tape. Then move the lever to the left to lock it in Pause position, if desired
Here's what the lever does. It's mounted on the play slide. Pulling it moves the play slide forward to the Stop position, but without affecting the play pivot or lever (Fig. 2A). The amplifier stays on. But the heads and pinch roller move away from the tape and capstan, and the take-up-drive idler moves back from the takeup spindle. Both brakes move in against their spindles. Tape movement stops until you're ready to end the pause. Release the Pause button, and the recording (or playback) continues.

The bi-peripheral machine also has an unique, automatic shutoff mechanism. It's wholly mechanical, whereas the Staar-type cassette machines use an electronic/electromechanical shutoff system.

The shutoff mechanism consists of three major assemblies. One, a large white Teflon sensing lever, is shown clearly in Fig. 6A

(C) When the lever is moved to the right, the brakes are unlocked, and the tire of the wind-spindle assembly contacts the inside bevel of the flywheel causing fastforward winding of the tape.

Fig. 5 To stop movement of the tape without causing a popping noise to be recorded on the tape, pull the Pause control towards the front of the machine. Move it sideways to lock it in the pause position. During this function, the play slide pulls back the heads and the pinch roller and stops the takeup spindle, but doesn t shut off the amplifiers.

Fig. 6 Details of the all-mechanical automatic shutoff.

(B) But the large, white, felt wheel turns only so long as the takeup spindle turns.
(A) The two spider gears turn all the time the flywheel runs.

(C) When the tape comes to the end, the felt wheel stops, the driven spider gear "climbs" the felt wheel and pushes the shutoff lever.
at the resting position. It connects by a metal link to the metal play lever.

The second assembly also can be seen in the same photo. A large felt wheel, called the mo-tion-sensing wheel, is rotated by a rubber belt from the takeup spindle. During play or record operation, this felt wheel turns continuously as the tape winds on the takeup reel in the cassette.

The third assembly of the shut-

(D) A connecting link moves the play lever to shut off the mechanism.
off mechanism consists of a set of spider gears, a pulley and shaft to turn them, and a belt to rotate the pulley. The spider gears can be seen in Fig. 6A, but the pulley and belt are underneath the chassis; they're pictured in Fig. 6B.

Now, study Fig. 6C. The play button is down, and the machine is operating. The shutoff-sensing lever remains near the two spider gears. They and the motionsensing wheel are turning the left
spider gear (drive gear) counterclockwise, the other gear clockwise, and the felt wheel counterclockwise. In addition, the drive gear, which is the one farthest from the felt wheel, is attempting to swing counterclockwise around itself the bracket holding the other wheel. When the driven gear touches the felt wheel, its circular motion around the driving gear is halted. Whenever a moderate force is encountered, slippage between the driving

Fig. 7 Tips to help in the reassembling of the top.

(A) Align the switch handle with the on-off switch.

-
(B) Slip the top down from the front over the cassette-pressure spring.

(C) Hold the Rewind/Fast-forward knob forward while you lower the top, then align it so the set screw fits the handle.
gear and its shaft permits the driven gear to stop. Because they are rotating in complementary directions, the driven gear and the felt wheel do not mesh.

When the end of the tape is reached, both spindles stop because the tape is firmly anchored in the casette. The felt wheel stops when the takeup spindle stops. The driven gear is still rotating, so it "climbs" the motionless felt wheel and the entire gear moves in a counterclockwise direction around the drive gear, as shown in Fig. 6D. Quickly, the driven gear encounters the sensing lever and pushes it towards the rear of the mechanism. The sensing lever moves the metal linkage, and in turn, the linkage moves the play button to the Stop position.

The driven spider gear continues on around CCW and positions itself ready for the next sequence of operations.

Reassembling The Machine

Several models of Wollensak cassette machines now use this bi-peripheral drive. In case you work on one, or on an Advent or other brand licensed by 3 M to use the mechanism, here are a few hints on getting it apart and back together.

The round knobs, and the flat knob on the Fast Forward/ Rewind lever (Fig. 7C), are setscrew types. Don't try to pull the FF/R knob completely off, however, leave it with the top. Once the top is removed, screws at the four corners hold the chassis to the wooden base.

When reassembling, put the chassis in the base, clearing the line cord through its hole in the bottom. Install the four chassis screws. Fig. 7 illustrates three aids for getting the top back on correctly. (A) Align the on-off switch handle with the position of the slide switch on the chassis. (B) Slip the top down from the front over the cassette-pressure spring. (C) Hold the Fast Forward/Rewind knob all the way forward while you work the top down into place; afterwards you can align it so the set screw fits into the lever handle.

Decibels in MATV systems

MATV Systems, part 2
by John Rogerson
Technical Director, MATV
Channel Master Div. of AVNET, Inc.

Measurements of the signal levels obtained from antennas usually are expressed in millionths of a volt (microvolts). However, if readings in microvolts were used in the calculation of gains and losses in the various sections of MATV and CATV systems, it would be necessary to multiply or divide numbers having as many as seven figures. This is not an easy task.

Therefore, calculations of the gains or losses encountered in MATV work are made most often by the addition or subtraction of decibels. There is another reason for the use of decibels in the rating of these signals: The visible effect of the signal strength on the picture quality more closely follows the rating in decibels than it does the rating in microvolts.

The Decibel

A decibel is $1 / 10$ of a bel, a term used by pioneering telephone and telegraph engineers when measuring the amplitudes of audible and electrical signals.

Decibels are the logarithmic ratios between two quantities of voltage, current, or power.

Fig. 1 These are typical calibrations in both dB's and microvolts found on the face of a field-strength meter:

Therefore, they have no absolute values. The number of decibels merely shows how much greater or lesser is the amplitude of a signal relative to a pre-established reference.

As a result, decibels do not express this change in the strength of the signal in a linear fashion. For example, a signal of 40 dB is not twice the voltage of a signal of 20 dB . Notice the relationships between voltage and decibels shown by the dual calibration of the meter scale in Fig. 1.

For use in MATV work, zero dB has been chosen as 1000 microvolts across 75 ohms of impedance. The reason this arbitrary figure was selected dates from the early years of television when a signal of approximately 1000 microvolts was necessary to produce steady, snow-free pictures.

The figures in Chart 1 should be used when it is necessary to change from microvolts to decibels, or from decibels to microvolts. For convenience, the microvolts readings have been made approximate.

Decibels To Remember

Some convenient decibel ratios are the following:

- A voltage change of about 11 percent is 1 decibel,
- A voltage change of 1 to 2 , or 2 to 1 is 6 dB ,
- A voltage change of 1 to 3 , or 3 to 1 is about 10 dB ,
- A voltage change of 1 to 10 , or 10 to 1 is 20 dB .
We recommend that you memorize these few decibel ratings for use in situations where an approximation is sufficiently accurate, and the figures shown in Chart 1 are not available.

dBmV	uV	dBmV	uV	dBmV	uV
-40	10	0	1,000	40	100,000
.. 39	11	1	1,100	41	110.000
. 38	13	2	1,300	42	130,000
-37	14	3	1,400	43	140,000
-36	16	4	1,600	44	160,000
-35	18	5	1,800	45	180,000
-34	20	6	2,000	46	200,000
-33	22	7	2,200	47	220,000
-32	25	8	2,500	48	250,000
-31	28	9	2,800	49	280,000
-30	32	10	3,200	50	320,000
29	36	11	3.600	51	360,000
28	40	12	4,000	52	400,000
27	45	13	4,500	53	450,000
26	50	14	5,000	54	500,000
25	56	15	5,600	55	560,000
- 24	63	16	6,300	56	630,000
-23	70	17	7,000	57	700,000
-22	80	18	8,000	58	800,000
-21	90	19	9,000	59	900,000
-20	100	20	10,000	60	1.0 volt
-19	110	21	11.000	61	1.1
-18	130	22	13,000	62	1.3
- 17	140	23	14,000	63	1.4
- 16	160	24	16,000	64	1.6
-15	180	25	18,000	65	1.8
-14	200	26	20,000	66	2.0
-13	220	27	22,000	67	2.2
- 12	250	28	25,000	68	2.5
- 11	280	29	28,000	69	2.8
-10	320	30	32,000	70	3.2
-9	360	31	36,000	71	3.6
-8	400	32	40.000	72	4.0
- 7	450	33	45,000	73	4.5
-6	500	34	50,000	74	5.0
-5	560	35	56,000	75	5.6
-4	630	36	63,000	76	6.3
-3	700	37	70,000	77	7.0
-2	800	38	80,000	78	8.0
-1	900	39	90,000	79	9.0
-0	1.000	40	100,000	80	10.0

Chart 1 Use this chart to change $d B$ readings to microvolts, or microvolt readings to $d B$'s when the impedance is 75 ohms. To use the chart for 300 ohms impedance, double the figures in the microvolt column.

Calculations In Decibels

In calculating MATV signal levels, amplifier gain, cable losses, and isolation-pad losses are all expressed in decibels. The gain in dB's are added, and the losses are subtracted. Only at the input and the output of a system are the levels alternately rated in microvolts.

Let's assume we're measuring a MATV system in which the input to the amplifier is 0 dB , the gain of the amplifier is 50 dB , and the total loss before the signal
reaches the last television receiver is 36 dB . What is the signal strength at the last receiver? Here is the solution:
$\left.\begin{array}{lrl}\begin{array}{lr}\text { input signal } \\ \text { amplifier gain } \\ \text { output signal } \\ \text { from the }\end{array} & +50 & \mathrm{~dB}(1000 \mu \mathrm{~V}) \\ \text { amplifier }\end{array} \quad+50 \begin{array}{ll}\mathrm{dB}\end{array}\right)$

All other systems, regardless of how complex they are, should be calculated in the same way.

COMPLETE SERVICE ON ALL MAKES OF TV TUNERS

Maximum Time In Shop 24 Hrs.

UV Combo's \$16.50
Price includes all labor and parts except Tubes, Diodes \& Transistors. If combo tuner needs only one unit repaired, disassemble and ship only defective unit. Otherwise there will be a charge for a combo tuner.
When sending tuners for repair, remove mounting brackets, knobs, indicator dials, remote fine tuning arrangements and remote control drive units.

WE UNCONDITIONALLY GUARANTEE All Tuners FOR ONE FULL YEAR

All tuners are serviced by EXPERTLY TRAINED TECHNICIANS with years of experience in this specialized field. All tuners are AlIGNED TO MANUFACTURER'S SPECIFICATION on crystal controlled equipment and air checked on monitor before shipping to assure that tuner is operating properly.

HOW COLOR BARS ARE PRODUCED
 By Carl H. Babcoke

The omnipresent color-bar generator has been in use for so many years that we tend to forget the ingenuity required in the evolution of such an essential pattern. In this article, we are explaining, in a different way, how the simple signals from an inexpensive generator can produce the color bars which are so helpful in the adjusting and repairing of color TV receivers.

Fig. 1 These scope waveforms show how two sine waves of different frequency can begin in-phase, gradually become out-ofphase, and after a definite time period, become in-phase again.

Fig. 2 Waveforms at various points in the circuit of a RCA WR64B color-bar generator. (A) The $3.56 \mathrm{M} \cdot \mathrm{Hz}$ signal is gated to provide envelopes having about 10 cycles of sine waves. This signal is used in the receiver for burst and for a simulatedchroma signal. (B) The 12 envelopes at the color control in the generator are shown here. (C) The composite signal obtained by demodulating the generator output signal shows the horizontal blanking pulse and the 11 envelopes of $3.56 \mathrm{M}-\mathrm{Hz}$ signal. The corners are more sharp than those of a signal that has passed through a receiver.

The Rainbow Pattern

A "rainbow" display on the color CRT is the most simple color test pattern. The generator circuitry which produces this pattern is also relatively simple.

The output signal of a rainbow generator is an amplitude-modulated carrier whose frequency is the same as one of the low-band TV channels. Consequently, the output leads of the generator are connected to the antenna terminals of the receiver, and the receiver then is adjusted as though tuned to a colorcast from a TV station.

The modulation of the carrier in the generator consists of vertical and horizontal blanking pulses (used in the receiver both for blanking and locking), and a sine-wave subcarrier of 3.563811 M Hz .

In the receiver, this subcarrier has two very different uses. About 10 cycles are used as "burst" to lock the color oscillator, and the remaining sine waves, which we call "simulated chroma", produce the color tints when demodulated. There is no video signal.

Theory Of Operation

Two unrelated electronic facts permit such an uncomplicated signal to show a rainbow color pattern on the screen of the receiver. Fact one: The relative
phase of two sine waves which have different frequencies changes constantly. Fact two: In color receivers, each phase of the chroma signal produces a different voltage output from a demodulator.

Therefore, a rainbow of color is produced when the frequencies of the color oscillator and the simulated-chroma signal are selected so the relative phase between them changes 360 degrees during each cycle of horizontal sweep. Figure 1 shows how the phase of two sine waves can change from in-phase, to out-ofphase, and back in-phase again when their frequencies are not the same.

Of course, the frequency of the chroma-reference oscillator signal is specified by the system of color television. The oscillator must be locked either by a TVstation or a generator signal to 3.579545 M Hz (usually shortened to 3.58 M Hz). This frequency, minus the $15,734-\mathrm{Hz}$ horizontalscanning frequency used during color broadcasting, produces 3.563811 M Hz as the required frequency of the simulated-chroma signal. A rainbow pattern results from demodulation of these $3.58 \mathrm{M}-\mathrm{Hz}$ and $3.56 \mathrm{M}-\mathrm{Hz}$ carriers.

The burst amplifier stage in the receiver accepts and amplifies 8 or 10 of the first sine waves of the simulated-chroma signal which follow the blanking pulse. These sine waves are the "burst" signal which is used to lock the chroma oscillator; all other signals are rejected by the burst amplifier.

How Can 3.56M Hz Lock 3.58M Hz ?

It seems impossible that signals of these frequencies could be locked together. However, they lock because they are inphase during the time the burst amplifier has output. At all other times, there is no burst, and no comparison between the two signals is possible. In other words, there is phase locking, not frequency locking.

Limitations Of The Rainbow Pattern

You can use the rainbow pattern to determine color locking,

Fig. 3 Typical waveforms of the color-bar signal in the video amplifier stages. (A) The horizontal-blanking pulses and the 11 envelopes which are composed of simulatedchroma sine waves. (B) One-and-a-fraction envelopes expanded by use of the $5 \times$ feature of a triggered-sweep scope show the individual cycles.

Fig. 4 Two typical waveforms of the bar signal at various points in the video circuit, and the appearance on the CRT screen of the video pulses which mark the desired location of the bars. (A) The composite waveform at the video detector shows that the video pulses are nearly obscured by the $3.56 \mathrm{M}-\mathrm{Hz}$ sine waves. (B) After removal of the higher frequencies by the peaking coils in the video amplifier, the video pulses are more easily seen. (C) When the color control is turned down to eliminate the color bars, these black and white vertical lines can be seen on the screen of the CRT where they mark the location of the bars.

Fig. 5 Waveforms typical of the color-bar signal in the chroma channel. (A) 11 envelopes of $3.56 \mathrm{M}-\mathrm{Hz}$ signal, without the blanking pulse and video pulses, remain after the first tuned circuit in the chroma channel. (B) After blanking in one of the chroma bandpass stages, only 10 envelopes remain

Fig. 6 The waveform at the input of the burst amplifier stage is composed of hori-zontal-keying pulses and some ringing between the pulses, and the 11 envelopes of $3.56 \mathrm{M}-\mathrm{Hz}$ signal. The envelope used for burst must be near the tip of the hori-zontal-keying pulse.

Fig. 7 After expansion by $5 X$ in the scope; this is the appearance of the envelope of burst at the output of the burst amplifier stage.

Fig. 8 The graph of the output voltage from a demodulator when the phase of the two signals is changed gradually is in the shape of a sine wave. This is the output when an un-keyed rainbow signal is used
because large stripes of diagonal rainbows are on the screen when the color is not locked. And some approximation of the relative amplitudes of the red, blue, and green signals can be obtained. However, a rainbow pattern does not permit any accurate evaluation of the tint control action. Also, the waveform of a rainbow signal in the chroma IF stages is a meaningless blur which cannot effectively be used for signal tracing with a scope.

Now, if the rainbow were broken into vertical bars of color with spaces of no color between, a much more useful pattern would result. This is the result achieved in keyed-rainbow generators by a near-square wave which keys on and off the simu-lated-chroma signal.

Keyed-Rainbow Color Bars

Each "envelope" produced by keying the simulated-chroma signal contains about 10 sine waves of the $3.56 \mathrm{M}-\mathrm{Hz}$ carrier. On the screen of the picture tube, each envelope becomes a vertical bar of color. Fig. 2A shows the $3.56 \mathrm{M}-\mathrm{Hz}$ envelopes in an RCA WR-64B generator. In this generator, the spaces between the envelopes have the same width as the envelopes.

When the horizontal scanning frequency of $15,734 \mathrm{~Hz}$ is multiplied by 12 (the desired number of color bars), the product is 188.81 K Hz . This is the repetition rate of the gating square wave, and it is usually rounded off to 189 K Hz

Many models of color generators use different frequencies from those given here. However, these frequencies are within the permissible tolerance and they produce bars of equal quality.

Not All Envelopes Become Color Bars

Only 10 of the envelopes of $3.56 \mathrm{M}-\mathrm{Hz}$ signal (such as those shown in Figs. 2B and 2C) produce color bars. One of the 12 envelopes is on top of the hori-zontal-blanking pulse; therefore, it is eliminated. The first envelope to the right of the blanking pulse is used for burst. If, in addition to the use as burst, the enve-
lope also reached the demodulators, it would be demodulated as a green color bar. Because the bar would occur during the horizontal retrace time, it might be visible on the screen as a faint, wide, and blurred vertical green bar. Horizontal blanking usually eliminates this possibility.

In many receivers, blanking is applied to one of the chroma bandpass amplifiers to eliminate the burst envelope from the sim-ulated-chroma signal. Although such blanking appears to be unnecessary because of the horizontal blanking in the video circuit, it is used to prevent any unbalance of the DC restoration action in the $-Y$ amplifier stages.

Phase Values Can Be Assigned To The Bars

Because 12 envelopes of simu-lated-chroma signal are generated during each horizontal cycle, each represents 30 degrees of phase. On the screen of the picture tube, each bar is 15 degrees wide, and each space between bars is 15 degrees wide. From center-to-center adjacent color bars are 30 degrees apart. These figures are helpful in analyzing demodulator phasing. For example, the 3rd and 6th bars are separated by 90 degrees.

Signal Tracing Color Bars

The amplitude and waveshape of the color-bar signal often is changed during passage through the receiver.
A typical video detector waveform is shown in Fig. 3A. There are 11 envelopes of the $3.56 \mathrm{M}-\mathrm{Hz}$ signal and one horizontal blanking pulse for each receiver horizontal scanning line.

Amplitude of the envelopes of $3.56 \mathrm{M}-\mathrm{Hz}$ signal relative to the amplitude of the horizontal blanking pulse is determined by the design of the receiver and the bandwidth of the video IF stages. Non-symmetrical envelopes can be caused by incorrect fine tuning adjustments.

Because of the restricted bandwidth of the video IF stages, the edges of the envelopes in the receiver (shown in Fig. 3A) are not so sharp as those of the generator which are shown in Fig. 2.

A Video Signal Also Is Present

Narrow video pulses (obtained from the square waves which gate the envelopes) are added in the generator to the edges of the envelopes of $3.56 \mathrm{M}-\mathrm{Hz}$ signal. Usually these narrow pulses have a low amplitude and seldom can be identified separately in the composite signal.

However, in the video circuit of the receiver after the amplitude of the $3.56 \mathrm{M}-\mathrm{Hz}$ sine waves has been reduced by the filtering action of the peaking circuits, the pulses (Fig. 4) can be seen on a scope.

On the screen of the picture tube (see Fig. 4C), the pulses produce faint, vertical black and white lines which mark the areas within which the color bars should appear. A defective delay line can move the video signal, or poor video IF alignment can move the chroma signal, so the marker lines and the color bars are not in register.

Chroma Waveforms

The waveform in Fig. 5A is typical of those following the first tuned circuit in the chroma bandpass stages. Loss of low frequencies, because of the tuned circuit, has eliminated the horizon-tal-blanking pulse. Also, the envelopes of the $3.56 \mathrm{M}-\mathrm{Hz}$ signal are more rounded and symmetrical.

There are 11 envelopes at this point in the circuit. The first envelope, in many models, is eliminated by blanking of a following stage, as previously explained. The waveform of Fig. 5B is typical of those at the output of the chroma-bandpass amplifiers.

Burst Circuit Waveforms

A waveform typical of those at the input of the burst amplifier stage is shown in Fig. 6. It is a composite. The large pulse is obtained from the horizontalsweep circuit and is used to eliminate the cutoff bias of the tube or transistor. This pulse often is called a gating or keying pulse. The crooked base line between the horizontal pulses consists of ringing from the horizontal circuit plus 10 envelopes of the $3.56 \mathrm{M}-\mathrm{Hz}$ signal. Near the tip of each horizontal pulse is the 11th

Fig. 9 Typical waveforms at the control grids of a color picture tube when a keyed-rainbow pattern is displayed on the screen. (A) At the red grid, the 6th bar is at zero, and the 3 rd is brightest. (B) At the blue grid, the 6 th bar is brightest, and the 3 rd and $9 t h$ bars are at zero. ATC action often moves these one bar to the right. (C) At the green grid, the 10 th bar is brightest, and the 1 st and 7 th h are at zero.

envelope.
Since the burst amplifier stage has no gain except during the time the tip of the horizontal pulse is present, the envelope of burst must be located near the tip. Otherwise, the burst will not be amplified, and there will be no color locking.

At the output of the burst amplifier stage, a narrowed and amplified single envelope (see Fig. 7) should appear. This envelope of burst is used to lock the color oscillator.

The continuous carrier from the color oscillator, and the chroma signal from the bandpass stages are applied to the demodulators where the envelopes of simulated chroma are changed to chroma-signal pulses.

Waveforms After Demodulation

When the relative phase between the two signals that are applied to the demodulators is varied over a wide range, the demodulator outputs are sine waves, as graphed in Fig. 8. Consequently, a sine wave also is the output signal of each demodulator when an unkeyed-rainbow signal is used. And, when the signal is from a keyed-rainbow generator, the tips of the colorbar pulses trace a sine wave.

The waveforms in Fig. 9 are typical of those at the grid of a color picture tube when the chroma circuit also supplies horizon-tal-blanking pulses.

All color-bar pulses above the zero line produce color bars that are brighter than the spaces between the bars, and those pulses below the line produce bars which are darker than the spaces. When viewing color bars on a picture tube, you should advance the brightness control so the spaces between the bars are moderately bright.

One Limitation Of The Keyed Rainbow

Because the vertical and horizontal blanking pulses in the generator must do double duty also as sync pulses, a color-bar or crosshatch pattern should not be used to judge centering of the picture.

Extra Features Of Some New Generators

Keyed-rainbow color-bar generators are available in a bewildering assortment of features and prices. Some are equipped with tubes, many are all-transistor, and others have IC's.

All generators offer 10 color
(Continued on page 46)
bars, white crosshatch lines and white dots. Beyond these basic patterns, you must decide which additional ones you want or need.

Here are some of the features of individual models:

- only three color bars; R-Y, B-Y and G-Y,
- vertical or horizontal lines,
- black crosshatch and dots,
- a single crosshatch junction or dot which can be moved to almost any area of the raster,
- a combination of crosshatch and dots,
- a large, white rectangle used for horizontal centering and tracking and,
- various patterns at video frequency without the RF carrier.
Some generators have a 4.5 M Hz unmodulated carrier which simulates the sound carrier of a station. With this carrier, wrong fine-tuning adjustments or poor IF alignment produces beat patterns which aid in the diagnosis of defects. The carrier also is necessary to find the correct point of fine tuning when you evaluate the overall performance of a receiver or use vector patterns.

Two general types of circuits are used to obtain correct and stable vertical and horizontal sync pulses. Some generators use locked oscillators and others have digital count-down circuits starting with the $189 \mathrm{~K}-\mathrm{Hz}$ gating frequency. Although the digital type might be more stable over a long period of time, there is no difference in the appearance of the patterns, so long as they are locked.

Additional Information About Color Bars

Practical uses of color-bar patterns have been featured in previous issues. We suggest you review these articles:

- "Using Color-Bar And Crosshatch Patterns To Evaluate Color TV Performance" starting on page 26 of the June, 1971 issue, and
- "What Color Bars Reveal About Hue Defects" starting on page 14 of the February, 1972 issue of ELECTRONIC SERVICING.

Features andlor specifications listed are obtained from manufacturers reports. For more information about any product listed, circle the associated number on the reader service card in this issue.

Flat And Square Rubber Drive Belt Kit

Product: ORK-2 Kit
Manufacturer: Oneida, Inc.
Function and/or Application: Drive belt replacements for cassettes and tape recorders.

Features: The kit has three sizes of square, and three sizes of flat rubber stock, a cutting fixture, blade, and adhesive in a carrying case for the fabrication of belts as needed
Specifications: Not available
Price: The ORK-2 kit sells for \$19.95.

Circle 60 on literature card

Intercom Starter Pack

Product: IN-603 starter pack
Manufacturer: Fanon/Courier Corporation
Function and/or Application: Three masters and two cables with plugs can be used as a three-master system, or two additional masters with cables can be added for a five-master station system.

Features: Installation is by the use of plug-in connectors, no wiring or soldering is required. Two separate station-to-station calls can proceed simultaneously. IC's are used in the AC-operated masters.
Specifications: Not available.
Price: The IN -603 starter pack sells for \$74.95.

Circle 61 on literature card

Ceramic-Magnet Speaker

Product: Model WS-110
Manufacturer: The Weltron Company
Function and/or Application: For use in monaural or stereo sound systems.
Features: The speaker has a tenounce ceramic magnet, cloth edge, and air-suspension "whizzer" cone.
Specifications: The 6 inch $\times 9$ inch speaker is rated at 8 ohms, and has a maximum power capability of 15 watts.

Price: The Weltron WS-110 speaker sells for $\$ 9.95$.

Circle 62 on literature card

Acoustic Equalizer

Product: Model Five audio acoustic equalizer
Manufacturer: Norman Laboratories, Inc.

Function: Speaker equalizer.
Features: Ten bass equalization curves, which complement the bass response of ten small speaker systems, are provided. In addition, five-position switches are provided for the bass, mid-
range, and treble frequencies. These three controls act as broad-band tone controls.
Specifications: Extends the bass response of the speaker systems for which it is designed by one octave.
Price: The Model Five Acoustic Equalizer sells for \$87.00.

Circle 63 on literature card

Sound-Level Meter

Product: Model WE-130A
Manufacturer: RCA Electronic Components
Function and/or Application: Measures the level of environmental sounds and noises.
Features: The scale is color coded, in addition to the $d B$ calibrations, to indicate safe, possibly unsafe, and dangerous sound levels. Type " A " weighting is used to approximate the frequency response of the human ear, and the action of the meter pointer is slow to provide an average

indication of rapidly changing levels. The case is made of highimpact blue plastic.
Specifications: Calibrated from 70 to 110 decibels. Supplied with four "AA" penlight batteries and carrying case with a shoulder strap and belt clip. Dimensions are 3 inches $\times 67 / 8$ inches $\times 1$ $15 / 16$ inches, and the weight is less than 12 ounces.
Price: Model WE-130A sells for \$75.00.

Circle 64 on literature card

SPECIAL OFFER

NOW YOU CAN GET THESE TWO TV TECH AID BOOKS AT REDUCED PRICES:

1971 B\&W BOOK - NOW \$4.95 1970 BOOK FORM - NOW \$4.95

TV TECH AID BOOKS ARE FILLED WITH THE LATEST QUICK-SERVICING INFO. ON COLOR TV, B\&W TV, AND STEREO...

TV Tech Aid takes you right to the source of the trouble without guess work and wasted time. In each monthly issue you receive over 40 actual causes and cures of color and B\&W TV trouble symptoms. You also receive timely and complete information about circuit modifications and other valuable service data.

USE THE COUPON BELOW TO PLACE YOUR 1972 SUBSCRIPTION (12 ISSUES \$7.95) OR VALUABLE BACK ISSUES

SEND YOUR CHECK	$\square 1969-12$ Issues $\$ 4.95$	$\square 1970$-Book Form $\$ 4.95$
OR MONEY ORDER	$\square 1971$ B\&W Book $\$ 4.95 \quad \square 197112$ Issues $\$ 7.95$	
TO:	$\square 1972$ All New 12 Issues $\$ 7.95$	

TV TECH AID
P.O. Box 603 Kings Park N.Y. 11754

Address
City State___Z_Z__
Circle 19 on literature card

The ENDECO Desoldering Iron Removes Soldered Components in seconds... without damage! Endeco melts solder; removes last trace by vacuum. Leaves terminals and mounting holes clean. Resolders PC boards better than regular iron. Onehand operation. Temperature controlled for continuous use. Standard tip furnished, 5 other tip sizes. Pays for itself. $\$ 20.65$ net. Smaller size available. See your distributor or write:
 Circle 20 on literature card

REBUILD YOUR OWN PICTURE TUBES?

With the Lakeside Industries precision picture tube rebuilding unit, you can rebuild any pic. ture tube, be it black and white or color or 20 mm or etc. We offer you the most revolution. ized precision equipment of our modern times. This unit is easy to operate and requires only $4 \times 8 \mathrm{ft}$. of space. You can rebuild the finest tube avallable. The picture will be clear and sharp. Your cost to rebuild a color tube is $\$ 6.60$. Your cost to rebuild a black and white tube is $\$ 1.85$.
Profit? Imagine building four color tubes per day and if you sold these tubes for $\$ 60.00$ each. Total income $\$ 240.00$. Total cost $\$ \mathbf{2 6 . 4 0}$. Net profit $\mathbf{\$ 2 1 3 . 6 0}$. Multiply this figure by five days per week. Your profit $\$ 1,068.00$ per week. Cut this figure in half! Build and sell only two color tubes per day. Your profit $\$ 534.00$ per week. Facts are facts, figures do not lie.

For further information, please send your name and address to Lakeside Industries, 3520 W. Fullerton Ave., Chicago, Illinois 60641. Phone: (312) 342-3399.
P.S. No salesman will call.

Circle 21 on literature card

Don't let

 this familiar face fool you.

Messenger 123A is all new inside.

We've taken our most popular 23-channel CB two-way radio and given it completely new circuitry! New ceramic filter for great selectivity. New acoustically isolated speaker for clearer sound. And more. All for a suggested price of $\$ 149.95$.

You're going to hear

more from.

> TDWNSDN

Circle 22 on literature card

NOW A ONE STOP

SHOPPING CENTER FOR
YOUR AUTO RADIO AND 8 TRACK STEREO PARTS:

AT FACTORY DISCOUNTS

WE ARE AUTHORIZED PARTS DISTRIBUTORS FOR:

DELCO	PANASONIC
BENDIX	KRACO
MOTOROLA	PHILIPS
LEAR JET	BELLE WOOD
TENNA	WARD
METRA	QUICKMOUNT
AUTOMATIC	AC SPEEDO
ONGUARD	CRAIG
MEMOREX	VERITAS
INLAND	CHAPMAN CARLOCK
DYNATRONICS	EV GAME
STEREO	LOCK MOUNTS

and many others

Send Your Order With Part Number and Description of The Part To
Laran Electronics, Inc.
Dept. ES, 3768 Boston Road Bronx, N. Y. 10469

Features andior specifications listed are obtained from manufacturers reports. For more information about any product listed, circle the associated number on the reader service card in this issue

Jumper Cables With Connectors

Product: CAD-6MF and CAD-6FF Manufacturer: Jerrold Electronics, Corp.
Function and/or Application: Cables for connecting TV receiv. ers to MATV systems.
Features: Model CAD-6MF is a 6foot jumper cable with a Motoro-la-type male plug on one end and

a " F " male connector on the other end. Model CAD-6FF is a 6foot jumper cable with "F"-type male connectors on each end Specifications: Not available.
Price: Model CAD-6MF sells for $\$ 3.50$, and Model CAD-6FF sells for $\$ 3.15$.

Circle 70 on literature card

Line Tap Offs For CATV And MATV

Product: Model LTO Line Tap Offs
Manufacturer: Kay-Townes, Inc.
Function: Connects and isolates a MATV or CATV cable to one, two, or four outputs.
Features: Covers all 82 channels of TV, and FM band. Isolations of $27 \mathrm{~dB}, 20 \mathrm{~dB}, 15 \mathrm{~dB}$, and 10 dB are available. 12 variations of the line tap offs are available.
Specifications: Not available

Price: Model LTO-1 Line Tap Off sells for $\$ 5.36$, Model LTO-2 sells for $\$ 7.47$, and Model LTO-4 sells for $\$ 10.46$.

Circle 71 on literatare card

Test Cord For Rotor

Product: Model TR-1 Test Cord Manufacturer: Alliance Manufacturing Co., Inc
Function and/or Application: The test cord enables bench testing of Alliance "Tenna-Rotor" controls and rotor operation.

Features:
Specifications: Not available. Price: Model TR-1 Test Cord sells for $\$ 4.95$.

Cincle 72 on literature card

Find Chroma Troubles with SWEEP ALIGNMENT TECHNIQUES

Veteran television technician Allen gives helpful tips about chroma alignment using the newer types of sweep generators, and how to use the curves obtained to spot the stage or part causing the trouble. By Larry Allen

Several months ago, two articles of mine about troubleshooting video IF stages by analyzing sweep alignment curves were published. In this article, I am analyzing in the same way the sweep alignment curves of the chroma circuits in color TV receivers.
Several of you have written to me about difficulties you experienced while aligning traps in the video IF's. You might try an alternate method that I use.

IF Trap Adjustment

First, I connect the test equipment much the same as for sweep alignment of the video

IF's. That is, the output of the marker generator goes to the mixer-grid testpoint. In some sets, this is a terminal, or the top of a feed-through capacitor. In others, the generator lead should be connected through a .001 mfd capacitor to the grid pin of the mixer tube, or to the coils that tune the mixer grid circuit. Check the PHOTOFACT folder for the model being tested to find the suggested point. Apply normal AGC bias to the first IF tube.
At the video detector, as shown in the schematic of Fig. 1A, I attach a VTVM (or FET meter) with a low DC scale selected, and the direct probe of a scope. Next 1
switch on the marker for the trap frequency required and add audio modulation. The pattern on the scope will be similar to that in Fig. 1B, although the sine waves probably will drift. Then I adjust the core of each trap of that frequency (and the balancing resistor, if used) for minimum height of the sine waves on the scope, or a minimum DC reading on the meter. The same adjustments are done for each trap frequency.
There is one precaution. A false indication of the trap null can be obtained if a stage prior to the trap is overloaded. Use the lowest possible output from the marker generator and select the

Fig. 2 Variations of video IF alignment curves. (A) A normal flat-top video IF curve showing the marker frequencies. (B) Some newer generators with postinjection of the markers can apply the markers laterally, as shown. They are easier to see when the skirts are steep. (C) Reduce the sweep width and readjust the center sweep frequency to produce a closeup of the chroma side of the video IF curve. The $41.67 \mathrm{M} \mathrm{Hz}, 42.17 \mathrm{M} \mathrm{Hz}$, and 42.67 M Hz markers should be evenly spaced in a straight line.

Fig. 3 The $4.5 \mathrm{M}-\mathrm{Hz}$ trap can be adjusted by connecting the equipment for overall chroma sweep (sometimes called VSM) and using a demodulator scope probe connected to the video detector. (A) The trap has been adjusted incorrectly to 4.08 M Hz . (B) The trap has been adjusted correctly to 4.5 M Hz .

most sensitive scope and meter ranges.

After the traps have been set by this method, I don't touch them during the sweep alignment.

Tips For IF Sweep Alignment

I have found by experience that all parts of the video IF sweep curve are not equally important. Certain variations from the ideal are permissible. Many curves should resemble the one shown in Fig. 2A, which has a flat top. The curves in other sets tend to peak near the center of the curve. The correct curve depends on the design of the receiver and the characteristics of the IF coils. But
usually the receiver will not align to the wrong curve.

Incidentally, some of the newtype sweep generators which use post-injected markers can be switched to give horizontal markers, as shown in Fig. 2B. These markers are useful on the steep skirts of some curves.

For good color quality, the most important area of the IF curve is the edge with the color markers, the $42.17 \mathrm{M}-\mathrm{Hz}$ side. Very important are the position of the $42.67 \mathrm{M}-\mathrm{Hz}$ marker relative to the corner, and the position of the $41.67 \mathrm{M}-\mathrm{Hz}$ marker relative to the base line. Also, the side of the curve must have the right angle

Fig. 4 This is a partial schematic of a typical chroma IF circuit. There are only three alignment adjustments.

of tilt and should be fairly straight.

After the entire curve looks good, I usually spread the curve and re-center it so the color side occupies the entire scope screen, as shown in Fig. 2C. Then I analyze it carefully.

Only after this side of the curve is perfect, and the picture carrier at the other edge is at the 50 percent point, do l check the chroma alignment.

Alignment Of The $4.5 \mathrm{M}-\mathrm{Hz}$ Trap

Because the $4.5 \mathrm{M}-\mathrm{Hz}$ trap follows the video detector, adjustment of this trap is not a normal part of the overall IF alignment. I usually adjust the trap after all the other steps of the video IF alignment are completed. I do the adjustment on a station, and this is the only adjustment which can be done safely on station. I tune slightly into the sound bars and then adjust the trap for minimum $920 \mathrm{~K}-\mathrm{Hz}$ beat patterns. These are the patterns that resemble the weave of cloth, and they move with the audio modulation.

However, I have found a way of adjusting the $4.5 \mathrm{M}-\mathrm{Hz}$ trap just before the chroma alignment. Here is the method:

- Set up the equipment for overall chroma sweep,
- Connect the demodulator probe to the output of the video detector (grid of the video tube in Fig. 1A), and
- Adjust the trap for minimum response at the $4.5 \mathrm{M}-\mathrm{Hz}$ marker, as shown in Fig. 3.

The Normal Overall Chroma Curve

Most chroma circuits have only three alignment adjustments, as shown in the partial schematic of Fig. 4. L1 is peaked to about 4.08 M Hz , as shown by the curve of Fig. 5A. Because this frequency corresponds to 41.67 M Hz of the video IF curve, the correct

Fig. 5 Alignment curves at various points in the chroma circuit. (A) This curve is of L1 and V1 only. The slope should complement the falling chroma side of the video IF curve. (B) Measured at the plate of V2, the chroma bandwidth is flat because of L1. (C) This is a normal, typical curve of the total response from the mixer to the demodulators.
tuning of L1 provides a relatively flat curve from zero to 4.08 M Hz from the tuner to the demodulators. This response is shown in Fig. 5B. A low-value swamping resistor was paralleled across the primary of T1, and the demodulator probe was connected to the plate of V2. The rising curve of L1 compensates for the falling edge
of the video IF curve to provide flat response over the chroma frequencies.

T1 is of overcoupled design. This gives a flat-topped response curve between 3.08 M Hz and 4.08 M Hz for the bandpass stage alone. The curve resembles the overall curve shown in Fig. 5C, except the skirts are not so steep.

Typical of the overall response curve of most good-quality color receivers is the curve shown in Fig. 5C, which was a sweep from the mixer grid point to the demodulators.

What An Abnormal Curve Shows

To analyze chroma troubles by looking at the response curve, you must know the effect on the curve of each adjustment.

The primary (bottom) core of T1 moves the chroma curve laterally, relative to the markers. Two examples are shown in Fig. 6. During this step, pay no attention to the shape of the curve, but notice how the curve in each case extends considerably beyond the corresponding marker. Adjust this bottom core, when necesary, by adjusting to center the curve between the $3.0 \mathrm{M}-\mathrm{Hz}$ and $4.08 \mathrm{M}-\mathrm{Hz}$ markers.

Adjusting the secondary (top) core of T1 should tilt the curve without moving the curve laterally. Two examples of extreme tilting are shown in Fig. 7.

Although L1 is actually tuned to about 4.08 M Hz , the apparent action when it is adjusted is to slightly tilt and bow the curve. Correct adjustment is the one which gives the most amplitude at the $4.08 \mathrm{M}-\mathrm{Hz}$ marker.

Another tip: Better color is obtained when the curve is nearly symmetrical across the top. A slight sag or hill in the center of the chroma curve is preferable to a curve with a marker high on one side and low on the other. Fig. 7C shows the best overall curve that it was possible to obtain in one model.
by Joseph J. Carr/ES Auto Electronics Consultant

Understanding Signal-Seeker Car Radios

Servicing auto radios can be very profitable, especially when the peak activity occurs at a different time of the year from that of television servicing. And yet many competent technicians shy away from repairing car radios that have signal seekers. If the technician has no data about the mechanisms involved, there is some justification for this attitude. Radios with signal seekers are more complicated than others. However, the information given here can supply enough data to help you avoid the pitfalls.

Extra Functions

Signal-seeking radios have only three functions not found in standard pushbutton radios.

These functions are:

- power to move the tuner,
- recocking of the mechanism after a cycle of operation, and
- automatic stopping at the station.
Power to move the tuner comes from a stretched spring, a worm gear to drive the pushbutton clutch, and a gear-train type of governor to limit the forwardtravel speed of the worm gear.

The recocking function is performed by a powerful solenoid which is connected to both the clutch and the power spring. The solenoid is turned on at the high end and off at the low end of the dial by a tang-operated switch. The tang is mounted to the bar which moves the tuning cores. The solenoid simultaneously
stretches the power spring and returns the core bar and clutch to the low end of the dial.

The stopping circuit has three transistors, and it is activated by signals from the IF stages. Any station signal cuts off conduction of the relay transistor, which de-energizes the relay. When a stop at a station is required, a paddle on the relay locks the gears of the governor to stop movement of the tuner.

Of the basic signal-seeker systems that we will cover, the Delco system by General Motors is the most widely used. Therefore, we will start with that system.

Delco "Wonder Bar"

The circuit diagram for the trigger stages in the Delco Wonder

Fig. 1 This is the schematic of the trigger and relay circuits of the Delco "Wonder Bar" signal-seeking radios. The voltages listed are of those obtained when the radio is seeking.

Bar radios is shown in Fig. 1.
When the "search" switch (operated by a bar on the front of the radio) is pressed, the negative end of the winding of the control relay K 1 is grounded. (See Fig. 2 for location of the relay.) Current flows through the coil of the relay, holding the armature down, pulling the paddle away from the governor, and closing a contact which supplies voltage to the trigger stages. When the bar is released, control of the relay is taken over by current flowing through Q3, the relay-control transistor, because the radio is now off station. The relay should remain energized until an incoming station signal cuts off Q3.

When the relay is energized, its paddle no longer projects through the slot cut into the side of the governor. A closeup of the governor is shown in Fig. 3. Without the paddle to block the governor, the gear train runs, and the tuner seeks.

When a station is received, a signal from the IF amplifier activates the trigger amplifiers (Q1 and Q2). This cuts off Q3 and deenergizes the relay.

To prevent the tuner from stopping too soon when the first faint sideband of the station appears in the passband of the IF's, Delco takes a sample of the signal from the primary of the last IF transformer and rectifies it by a diode to supply AGC to the base of Q1.

When the tuner approaches the stop at the high end of the dial, a solenoid-energizing switch is closed by the forward motion of the tuner core-bar assembly. Movement of the plunger in the solenoid restretches the power spring, recocks the worm gear, returns the core bar assembly to the low end of the band, and turns off the tang-operated actuating swtich.

Because this system for recocking the tuner mechanism draws so much current, be sure that any battery eliminator used to power the radio can handle the extra load. Both the Delco model P-612 and the Eico model 1040 eliminators have a 20-ampere rating which is necessary for this type of operation. The supply should deliver 14 to 16 volts at the " A " lead of the radio.

Fig. 2 The relay and the worm in the Delco radio can be seen easily when the cover is removed. Other components are located more deeply inside.

Fig. 3 Two views of the governor assembly used in Delco radios. The gear train slows the speed of seeking. Seeking is ended by locking these gears.

Fig. 4 The schematic of the trigger and relay circuits of the Bendix signal-seeking radios manufactured for Lincoln autos. None of the transistors shown have voltage unless the radio is seeking

However, a lighter-duty supply can be used if it is paralleled with a 12 -volt automobile battery.

Failure to use a power source having adequate peak current, or a high enough " A " lead voltage can cause the solenoid to bind and stop half way through its recocking cycle. This is before the point where the turnoff switch is tripped, therefore, such binding often results in overheating and subsequent failure of the coil in the solenoid.

Bendix Signal Seekers

Bendix signal-seeker radios made for the Lincoln Continental division of the Ford Motor Company are similar enough to the Delco radios to invite description by comparison. The major differences are in the respective trigger amplifiers and the triggersensitivity switches (see Fig. 4 for the Bendix circuit). Two search switches are used in Bendix radios, as shown in Fig. 5. These also double as sensitivity switches; one is marked "town" and the other "country". Delco radios, on the other hand, have a multi-position sensitivity switch separate from the search switch.

Troubleshooting SignalSeeking Radios

Troubleshooting signal-seeker
radios should begin with observation of the seeking operation. During seeking in the most sensitive mode, the tuner should glide smoothly across the band and stop at nearly any station that is more than barely audible. When the bar holding the tuning cores comes to the high end of the band, it should instantly recoil to the low end.
When the antenna plug is removed from its socket on the radio (to eliminate all signals), the tuner should continue indefinitely the seek-recock cycle. At all times during such operation the motion of the dial pointer and core bar should be smooth.

Typical Troubles

Typical troubles of the signalseeking radios generally fall into only a few categories:

- failure to run,
- failure to recock,
- running erratically, or
- failure to stop on a station.

Failure to seek

If the signal seeker fails to run, you must determine whether:

- the tuner is jammed,
- the relay is stuck,
- the clutch is misadjusted, or
- the search switch is malfunctioning.
If the relay energizes and the
armature pulls all the way inwhenever the search switch (see Fig. 6) is pressed, it is a safe bet the relay and switch are okay. However, if the relay does not pull in, the trouble either could be in the relay itself, or in the search switch. Mechanical operation of the search switch can be checked usually by an "eyeball" examination. Make sure that, when depressed, the leaves of the switch are making good contact. Because a large amount of current passes through these contacts, any oxide, dirt or tarnish on the points will stop the operation.
To check the operation of the switches, ground the lugs of the switch using a screwdriver or similar tool. If the relay still fails to energize, and the proper voltage is applied to the hot lug of the coil, the relay probably is bad. An ohmmeter check of the coil usually will ind icate the fault.
In case the relay functions in the normal manner, yet the tuner fails to start seeking, there is probably a mechanical jam somewhere. One possibility is a misadjusted clutch. This is the best bet, if the manual and pushbutton tunings are also affected. A jam can happen if the clutch plate is pressing too tightly against the pressure plate.

But if the clutch is not at fault, it becomes necessary to determine whether the trouble is in the signal-seeker part of the tuner or in the regular pushbutton portion. To accomplish this, we must disengage the manual tuning by depressing one of the pushbuttons (not enough, however, to move the dial pointer). With one pushbutton slightly depressed, by hand move the dial pointer back and forth across the scale a few times. Any binding or jamming of the pushbuttons, treadle, or core bar should become evident.
If the trouble is in the signalseeker portion of the tuner, it could be caused by a defective governor gear train, a broken power spring, or a jammed worm-gear-and-rack assembly. Of course, there is always a possibility that a loose screw, a piece of solder, or other foreign material might be lodged inside the (Continued on page 59)
(Continued from page 56)
tuner. In most cases, the power spring can be checked visually. If it is defective, it will either be broken or torn loose from one of the moorings at the end.

Assuming that the power spring is in good shape, the mounting screws of the governor should be loosened so it is disengaged from the worm gear. The worm gear and rack should fly forward and strike the high-end stop. If it does, the gear train in the governor is frozen, and the governor should be replaced.

Caution: Make this last test with the power supply disconnected from the radio. If power is applied when the governor is removed, the tuner will "machine gun". Without the governor to slow the speed during the search scan, the tuner will repeat very rapidly the travel-recoil cycle until something breaks, burns out or flies apart! So remember to disconnect the power.

Erratic movement

A tuner that runs erratically probably needs a new governor or a good clean-and-lube job. The same checks used to locate the cause of a jammed tuner often will locate the cause of erratic or jerky operation.

Failure to recoil

If the tuner travels all the way down to the high-end stop but fails to recoil back to the low end, the trouble will be one of the following:

- a bad solenoid,
- a bad recocking switch,
- no tripping of the recocking switch, or
- an inadequate power supply.

One lug of the solenoid coil is connected permanently to the +14 -volt battery line. The other lug is grounded through the recocking switch. Check the solenoid by using a screw driver to ground the terminals of the recocking switch. Caution: Be sure that nothing in the tuner can strike the screwdriver when the solenoid "fires". This recocking action is so violent that it could injure you or cause other serious damage. If this test proves the solenoid to be okay, check to see if the switch is being tripped properly. A visual test is satisfac-

Fig. 5 Two search switches are used in the Bendix radio. One is for "town" and the other for "country" signal conditions.
tory with most modern Delco radios. However, those by Bendix require a little ESP, a dash of occult power, and a lot of luck; the switch is buried beneath the volume and tone control assembly. If the switch is being thrown, yet the solenoid does not receive voltage, the switch is probably open, and should be replaced. In cases where the switch is not thrown properly, often the reason is an operating tang that is bent slightly. A strong pair of long-nose pliers can be used to correct such a defect.

Fallure to stop on a station

A common trouble encountered in servicing signal-seeker radios is when the tuner seeks, but never seems to find a station. If the radio fails to stop when it tunes across a station, the cause of the problem is likely to be one of the following:

- the relay, or the adjustment of the relay,
- the trigger circuit, or
- a problem of weak sensitivity of the radio.
In localities where signals are strong, a lack of sensitivity might not immediately be apparent. Be sure to test on a weak signal or with a generator that has a calibrated attenuator any radios that have this symptom.

You should also determine whether the relay paddle proper-
ly is fitting the gears in the governor. If the paddle is adjusted too high, it will fail to engage the stopping gear inside the governor, and the tuner will continue to seek. In that case, loosen the mounting screws of the relay and reposition the relay so the operation becomes normal.

Also, the relay might be defective. In that event, replace the relay. Unfortunately, this relay is a special part that cannot be replaced by a universal type. Order an original-equipment type for replacement.

The trigger circuit might fail to cut off the conduction of Q3 because of a defect in the trigger circuit itself, or because of an inadequate driving signal (radio is insensitive). DC tests with a VTVM, FET meter, or a high-ohms-per-volt VOM combined with the normal troubleshooting techniques for transistorized circuits usually will locate any problems in these circuits.

Tuner stops at the edge of each station
If the signal seeker stops short of the exact center of the station carrier, check for an unbalanced input to the trigger amplifiers. In Delco radios, the defect might be one of the 22-pf capacitors at the base of Q1. In both Bendix and Delco radios, the problem might be a defective output IF transformer, or one that is misaligned.

Fig. 6 These are the locations of some of the most visible components in the Bendix sig-nal-seeking radios.

"Machine gun" action

Occasionally the problem in a seeker radio will be a rapid repetition of the travel/recoil cycle each time the search switch is pressed. The nickname for this trouble originates from two similarities to the operation of a machine gun: the sound it makes, and motion of the worm/rack assembly which resembles the breech action of a machine gun.

A broken gear train in the governor or a misadjusted governor assembly might be the cause of the symptom in either the Bendix or Delco models. Loose meshing of the threads of the worm gear with those of the governor can cause machine gunning. On the other hand, an excessively tight fit can cause a jam. Use moderation in making this adjustment.

After a radio has been machine gunning, carefully check the dial pointer and core/bar mechanisms; the machine gunning is so violent that many of these parts can become bent or broken.

Tuner starts to seek, but stops when the search bar is released

Either a malfunctioning trigger circuit or a defective relay will cause this symptom. When you test the trigger circuit, remember that the transistors have normal.

DC voltages only when the radio is searching. If these voltages indicate that the trigger/relay circuit should be operating, the relay should be the next suspect.

Slightly more current flows through the coil of the relay when the search switch is operated than when Q3 is conducting. Therefore, a sluggish or sticky relay might release when the search bar is not operated. Measure the voltage across the coil under both conditions to determine if Q3 is conducting sufficiently.

Without a command, the tuner starts to seek

This "mind of its own" symptom is found most often with radios that have a floor-mounted search switch. The leads to the switch can short together intermittently. In other radios, the contacts of the search switch might be too closely spaced and produce an intermittent contact. Other radios might have been improperly fitted during the installation.

The writer remembers one humorous case in which movement of the customers' left foot occasionally activated the signal seeker. The foot switch had not been mounted, but was only covered by the rug so the customer was unaware of its existence. He
owned the car for six years, suffering all the time from a ghostly signal seeker.

Tuner stops at random points off station

A spurious signal which deceives the signal seeker is usually the cause of this symptom. Spark noise from the engine in the customer's car (or a passing car) can cause wrong stopping, as can electrical noise from signs and traffic signals.

Other than to lower the sensitivity, there is little that can be done to the radio to correct the problem.

Tuner remains at the low end of the dial

There are three main possible causes of this symptom. They are:

- poor voltage regulation of the power supply,
- binding of the tuner at the low end, or
- location of a station near the stop at the low end of the dial.
Poor voltage regulation is caused by a deficiency of the test equipment in the shop.

Binding problems usually involve either the clutch or the core/bar assembly. Trace for the source as you would for any type of binding. However, inaccessibility of the components makes the analysis more difficult.

Stopping at the low end of the band because of a station located there can occur in any part of the country. However, it is most common in the coastal regions. Many radios will tune all the way to 500 K Hz where maritime stations sending code sometimes can be received. Also, radio stations on the broadcast band whose frequency is one of the first few channels will cause the same complaint. In my location, we must contend with both conditions. The oscillator frequency can be readjusted so the radio will not tune low enough to receive the ship stations. Unless the radio owner has you desensitize his receiver by adding a resistor of a few hundred ohms in series with the antenna choke, nothing can be done about the low-frequency broadcasting stations.

Features andlor specifications listed are obtained from manufacturers reports. For more information about any product listed, circle the associated number on the reader service card in this issue

Solid-State Inverter

Product: Model 12U-S2A inverter Manufacturer: ATR Electronics, Inc.
Function and/or Application: Operation of 117 volt 60 cycle AC equipment from 12 -volt DC storage battery power in transportation vehicles.
Features: The inverter is recommended for the operation of tape recorders, TV receivers, VTR equipment, public address systems, ham gear, test instruments, phonos, radio sets, small synchronous motors, scientific lab-

oratory and hospital equipment, small AC-DC universal type motors, fluorescent or incandescent lights, and similar equipment. The inverter is filtered and comes complete with battery cables.
Specifications: The 12U-S2A has an output capacity of 275 watts continuous and 300 watts intermittent while maintaining a frequency of 60 cycles with varying load or input voltage.
Price: Model 12U-S2A sells for \$139.50.

Circle 80 on literature card

Screwdriver Line

Product: Color-coded-for-size screwdrivers
Manufacturer: Vaco Products Co.
Function and/or Application: Self evident.
Features: Handles are break proof, shock proof and have Comfordome grips with no-slip action.

Specifications: Red, white and blue handles designate size: red, $3 / 16$ inch blade; white, $1 / 4$ inch size; blue, $5 / 16$ inch size. Blades are made of chrome vandium steel, hand ground to closest tolerances, and chrome plated for durability.
Price: Not available.
Circle 81 on literature card

Electrical Tester

Product: No current electrical tester
Manufacturer: Burnworth Tester Co.
Function and/or Application: Tester for electrical breaks and power failures.
Features: Can be used for electrical wiring equipment, radio and TV circuits, motors, diodes, appliances, etc. Self-powered with two penlight batteries and a

4-foot cord. Bright flash indicates cable is functioning properly. If dim or no flash results,
trouble can be located with point-to-point check for continuity.
Specifications: Not available.
Price: The electrical tester sells for $\$ 2.98$.

Circle 82 on literature card

IC Flat-Pack Puller

Product: S4916 flat-pack plier puller
Manufacturer: Starnetics Co.
Function and/or Application: Installation and removal of 10- and 14-lead IC flat-pack units.
Features: The plier jaws are insulated to be freely used in a live circuit environment. IC's can be

removed in the desoldering phase because of the fulcrum jaw design, which prevents bent leads and short circuits.
Specifications: Not available.
Price: The S 4916 sells for $\$ 18.95$.
Circle 83 on literature card

Solderless Terminal Kit

Product: Kit No. 6175-63 packing kit of solderless terminals
Manufacturer: Vaco Products Co.
Function and/or Application: Individual packing kit.
Features: Each zip-top plastic bag slips into separate terminal compartments assuring fresh, exact count terminals that will not spill, rattle or get lost. Kit

(Continued on page 62)
contains ten of the more popular insulated, single-grip terminals for electronics, electrical, and general purpose use, including ring tongue, spade, and flanged spade types, plus No. 1963 crimping tool with bolt slicer.
Specifications: N/A
Price: The kit sells for $\$ 11.25$.
Circle 84 on literature card

Autotransformer

Product: TVSD-1 step-down autotransformer

Manufacturer: Essex International, Inc.
Function and/or Application: Reduces excessive line voltage supplied to homes.
Features: Plug into wall and plug TV power cord into the TVSD-1. The unit may be mounted in any position on the back of the cabinet or any convenient location. A line cord and plug are provided for input and a receptacle for output.
Specifications: The TVSD-1 reduces line voltage by 10 per cent

CHEMYSTERY
 Or, do you know all our secrets?

The other day, we got quite a shock. And the discovery we made could mean $\$ 100$ ormore a week in added sales to every serviceman in the country:
Intaking one of our regular surveys, we discovered the startling fact that most servicemen are unaware of the broad variety of chemical tools available today. And the profits they can build from the extra service calls chemicals make possible.
Sure, you know about tuner degreasers and cleaner/ lubricants. And what you know has made Chemtronics TUN-O-WASH and TUN-O-FOAM the world's best-selling degreaser and cleaner/lubricant.
But if that's all you know about chemicals, you're missing dozens of ways to save time, do a better job and make more profits.

GRIME GETTER. OUT TUN O BRITE has a controlled polishing action that powers stubborn dirt out of hard-to-reach contacts. It's also good for unfreezing telescopic antennas. locks. motor shafts and more.
WRENCH-IN-A-CAN PLUS. CHEM-Oll's penetrating/lubricating action does thousands of jobs. from freeing trozen yokes to un-squeaking hinges.

Many servicemen buy threeone for shop; one home; one garage.

THE HOUR SAVER. Take SUPER FROST AID. for example. It helps find intermittents in minutes instead of hours. But servicemen have also used it as: a portable small-fire extinguisher, blisterpreventer (used on minor burns immediately). heatsink before soldering...and even chewinggum remover (cold makes gum ((ittle).

PUSHBUTTON PEACE \& QUIET One sproy of SUPER TROL AID or CONTACI KLEEN quiets noisy pots, switches and relays. Some servicemen make a lot of money "curing" nolsy transistor radios, balky dimmers, antenna rotors...ever thermostats. Not to mention tape recorders. $C B$ sets. marine radios...

LAUGH AT THE WEATHER. KLEER SPRAY and NO-ARC will help. since they're both excellent insulators and weather-proofers. Besides flybacks, antenna terminals, splitters, feed-thru's and the like, you can use them on ignition wiring, exposed metals .even wood!
NEW LIFE FOR OLD RUBBER. DUSTZAPPER, TRACKRECORDS. SIICKY STUFF AND SALES. As you can see, we have many more lend-a-hand products. To restore idler wheels and belts. Polish tube guards Improve performance of reel-to-reel. cassette and 8 -rack recorders. Clean records. Repair and mend all kinds of materials. And even sell to customers while you'fe in the shop or on call.
For more information about our professional chemicals, and ideas on how to make money with them, see your local Chemtronics distributor. Or write to us for a catalog. After all, isn't it worth 8 c to find out more ways $\$ 2.79$ can get you \$50.00?

with a 350 VA rating which will handle all size TV sets. The unit measures $2-5 / 8$ inches $\times 2-1 / 4$ inches $\times 2-5 / 16$ inches.
Price: The TVSD-1 sells for $\$ 10.29$.

Circle 85 on literature card

Retaining-Ring Plier Set
 Product: Model 444-K snap-ring plier set.

Manufacturer: Jensen Tools and Alloys
Function and/or Application: Interchangeable plier tips, both internal and external for shafts from $3 / 8$ inch to $11 / 4$ inch.
Features: Two plier handles are furnished, one opens when the handle is squeezed (for external rings), the other closes when the handle is squeezed (for internal

rings). The pliers are manufactured from heat treated steel. Clamping screws hold the replaceable tips in place.
Specifications: Eight pairs of interchangeable tips are provided for use on the plier handles. The tips are furnished in straight, 45 degree, and 90 degree configurations, and in diameters of .035, . 045 , and .060 inches.
Price: Model 444-K sells for \$7.95.

Circle 86 on literature card

Blue Lateral and Purity Assembly

Product: Model 7605 single-unit
blue lateral and purity assembly. Manufacturer: J.W. Miller Co.
Function and/or Application: Replacement for similar assemblies on any size rectangular dot pattern.
Features: The 7605 assembly registers blue, red and green beams. An outer wheel moves

opposing magnets to provide adjustment up to $1 / 2$ inch minimum for blue lateral convergence. Purity correction is accomplished by individual adjustment of the two purity rings
Specifications: Not available.
Price: Not available.
Circle 87 on literature card

Epoweld ${ }^{\circledR}$ Adhesive

Product: "Double/Bubble" fastsetting, two-part adhesive.
Manufacturer: Hardman, Inc.
Function and/or Application: Repairs broken castings, fills cracks, seals joints, repairs fiberglass parts, etc.
Features: Parts A and B are packaged in proportioned foil twin-packs to assure proper mixing ratios. Epoweld ${ }^{(1)}$ adhesive

sets in 3 to 4 minutes and has a resistance to weather, hot or cold water, gasoline, oil, etc., and produces a bond that will resist stresses up to $11 / 2$ tons per square inch.
Specifications: One packet contains a measured amount of resin and the other, the required amount of hardener. Mixed Epoweld ${ }^{\circledR}$, in a thin film, is essen-
tially colorless.
Price: Not available.
Circle 88 on literaure card

Sound-Operated Switch

Product: Remote-control Signal Commander
Manufacturer: Signal Science, Inc.
Function and/or Application: Turns on or off the power to lamps or appliances by hand-
claps, or other loud signals.
Features: A red indicator lights when the remote control unit has power. The first handclap, or loud noise, lights the yellow indicator, and the next handclap turns on the power to the appliance. Noises which occur after the yellow indicator goes out do not activate the switch.
Specifications: Not available.
Price: The remote-control Signal Commander sells for $\$ 29.95$.

Circle 89 on literature card

As fast as you get 'em we help you fix'em

Sound like the TV serviceman's dream? It is. RCA's Industry Compatible Test Jig is a complete testing system that lets you service more than 90% of all color TV console chassis on the market-and updates you as new ones come along.
Here's how: The RCA ICTJ system includes the test jig itself (in bench or portable models), your choice of 102 adaptors and cables, plus a handy cross-reference manual that specifies the right adaptors for each set. But most important, as the new models need service, you'll be kept up to date with new inserts for the manual and any necessary new adaptors will be made available. So whatever's coming, you'll be ready.
See your RCA Parts and Accessories distributor today for full information
Parts and Accessories, Deptford, New Jersey 08096

Circle 26 on literature card

Reliable protective fusing device for replacement of original manufacturer's part numbers.
Listed in Howard Sams' Photofacts and Counterfacts.

-

FREE vest pocket cross reference booklet indicating corrert Workman part numbers to manufacturer's part numbers. No. X58

MANUFACTURED BY
 B0x 3828 SARASOTA. FLA. 33578

Circle 27 on literature card

Help college hepyou.

Businesses like yours gave over $\$ 340,000,000$ to higher education last year. It was good business to do so. Half of all college graduates who seek work go into business. The more graduates there are, and the better educated they are, the more college serves the business community.

Your money was vital to colleges. It relieved financial pressures, made planning more flexible, and contributed to the kind of basic and applied research that puts new knowledge and technology at the service of industry.

So that colleges can continue to help you, give to the college of your choice now. For information on ways to do it, please write on your letterhead to Council for Financial Aid to Education, Inc., 6 East 45th Street, New York, N.Y. 10017. Ask for the free booklet, "How Corporations Can Aid Colleges and Universities.'

Council for Financial Aid to Education, Inc. Advertising contributed for the public good.

Circle 29 on literature card

The MARKETPLACE

This classified section is available to electronic technicians and owners or managers of service shops who have for sale surplus supplies and equipment or who are seeking employment or recruiting employees.

Advertising Rates

in the Classified
Section are:

- 25 cents per word (minimum $\$ 3.00$)
- "Blind" ads $\$ 2.00$ additional
- All letters capitalized35 cents per word

Each ad insertion must be accompanied by a check for the full cost of the ad.

Deadline for acceptance is 30 days prior to the date of the issue in which the ad is to be published.

This classiffed section is not open to the regular paid product advertising of manufacturers.

Use your Scope (any model, no rewiring) to Test Transistors Incircuit. Simple instructions \$1.00 Schek Technical Services, 8101 Schrider St. Silver Spring, Maryland 20910.

6-72-6t

FOR SALE

FOR SALE-B\&K 1450 Oscillo/Vectorscope 1 yr. Perfect. \$199 CO-OP TV RD 2, Rhinebeck, N.Y. 12572.

7-72-1t

NEEDED

NEEDED-One number 1B5 tube and four number UX201A tubes. Write Van Etten Elect., 1215 W. 7th St., Texarkana, Tex. 75501. 7-72-1t

© \times mountain west alarm

4215 n. 16th st., phoenix, az. 85016
Circle 30 on literature card

Amperex Eléctronic Corp.
1
B \& K Mfg. Co., Div. of Dynascan Corp 3
Bussmann Mfg., Div. McGraw EdisonCo.13
Castle TelevisionTuner Service, Inc.Cover 4
Centralab Globe Union, Inc 30
Chemtronics, Inc. 62
Eico Electronic Inst. Co., Inc. 31
Enterprise Development Corp. 47
Gem City Tuner 41
Heath Company 10
Jerrold Electronics Corp. 5
E. F. Johnson Company 48
Lakeside Industries 47
Laran Electronics, Inc 48
Lectrotech, Inc. 12
Mallory Distributor Products, Inc. 32-33
Mountain West Alarm Supply Co. 64
Precision Tuner Service 7
RCA Electronic Components Cover 3
RCA Parts \& Accessories 63
Howard W. Sams \& Co., Inc. 21
GTE Sylvania-Consumer Renewal 9, 19
TV Tech Aid 47
Telematic Div. of UXL Corp. 53
Tuner Service Corporation Cover 2
Workman Electronic Products, Inc. 64
Yeats Appliance Dolly Sales Co. 64
Zenith Radio Corporation 11

Circle appropriate number on Reader Service Card.

ANTENNAS

100. Antenna Specialists Co.announces a new amateur radio catalog with an expanded line of two meter, six meter, and three-quarter meter amateur base and mobile antennas.
101. Blonder-Tongue, Inc.announces a booklet presenting the basic facts necessary to understand MATV systems. A Glossary of Terms is included for further understanding.
102. Jerrold Electronics Corp.Catalog S, titled "Systems and Products for TV Distribution," lists specifications of this manufacturer's complete line of antenna distribution products, including antennas and accessories, head-end equipment, distribution equipment and components, and installation aids.
103. Union Metal Manufacturing Co.-announces a new 8-page catalog that illustrates self-supporting antenna poles up to 250 feet in height, design information for 25 foot through 200 foot poles, pole accessories, foundation specifications and erection information.

AUDIO

104. Arista Enterprises, Inc.announces their 58 -page needle and cartridge cata\log. The needle cross reference reportedly has up-todate cross references of all major needle manufacturers, in addition to cross reference sections of phonograph manufacturers' needle and cartridge numbers.
105. GC Electronics-an updated line of exact replacement rubber drives and belts is detailed in the new Walsco
cross-reference catalog. Included are a variety of phono and recorder drive wheels and pulleys, pinch rollers, round rubber belts, square cross-section rubber belts, spring belts and fabric drive belts, felt pressure pads, phono mounting "E" and "C" clips in an assortment kit, motor mounting grommets, changer switches, and a kit of assorted phono drives and belts.
106. Jensen Manufacturing Div. -has issued an 8-page cata\log, No. $1090-E$, which describes applications of 167 individual speaker models. Special automotive, communications, intercom and weathermaster speakers, plus a complete line of electronic musical instrument loud speakers are featured.
107. Mellotone, Inc.-introduces a new catalog featuring CHANGE-A-GRILLE selfstick acoustic fabric for speaker grilles. Swatches of six basic patterns are attached to the catalog showing fabric styles and colors.
108. Nortronics-a new publication, "Recording Equipment Maintenance Manual" describes factors that make regular maintenance important. Also, product-by-product catalog section on QMSERIES accessories.
109. Shure Brothers-has published a new catalog describing their line of microphone and circuitry products for broadcasting, recording, motion pictures, and professional sound reinforcement. Included are illustrations and technical specifications.
110. Switchcraft, Inc.-introduces a 28 -page catalog listing its line of phone jacks and plugs, switches, connectors, adapters, and molded cable assemblies. Each part is listed by number and the page on which it is found.

AUTO ELECTRONICS

111. Littelfuse, Inc.-has released a new 32-page, 1971 automotive replacement
fuse guide for passenger autos, sports cars, trucks, and taxi cabs. Fuse descriptions and circuits they protect are included.
112. Nortronics Co., Inc.-announces a revised brochure describing the Model 5800 replacement head for a reported 90 per cent of all 8 track auto and home stereo players. A listing of players is offered by more than 70 different manufacturers in terms of model number or head part number.

BUSINESS MATERIALS

113. Laurel Office Aids, Inc.introduces an 80-page, 1972-1973 catalog which includes office equipment, general office forms, sales and receiving forms, office supplies, business books and gift items for the office and home.
114. Watts Business Forms, Inc. -announces a 1972 Stock Business \& Tax Forms catalog. The index covers over 60 categories of standard stock forms and tax forms for general business use.

CCTV

115. GBC Closed Circuit TV Corp.-announces a new 20-page catalog, which illustrates and describes all of the components necessary to a complete video communications system. The catalog illustrates monitors ranging from 5 -inch units to a 20 -inch solid-state unit.

CAPACITORS

116. Cornell-Dubilier Electron-ics-has issued an 80-page cross-reference, 1972 catalog for location of single, dual, triple, and quadruple section replacement electrolytics.
117. Loral Distributor Products -has made available a 24 page electrolytic capacitor replacement guide. The catalog features replacement products by the original manufacturers part number.
118. Sprague Products Co.-has announced a 40-page manual which lists original part numbers for each manufacturer, followed by ratings, recommended Sprague capacitor replacements, and list prices. More than 2,500 electrolytic capacitors are included.

COMPONENTS

119. Bulow Internationl-announces a new parts list for spare-parts and replacement parts for several major European radio and electronics manufacturers. Components, transistors, diodes and mechanical parts are included.
120. Essex International, Inc.the new 64 -page Color and Monochrome Television Parts Replacement Guide lists over 500 Stancor transformer and deflection components for 200 television manufacturers. A reported 14,000 replacements for original parts are available.
121. P. R. Mallory \& Co., Inc.introduces a 64 -page general catalog containing approximately 10,000 items. Included in the catalog are batteries, capacitors, controls, resistors, semiconductors, switchers, and timers plus security systems, cassette recorders and cassette recording tapes.
122. Precision Tuner Serviceannounces a new tuner parts catalog, including a cross reference list of antenna coils and shafts for all makes of tuners.
123. Workman Electronic Products, Inc.-has released a 68 -page 1972 catalog of replacement components for radio and television. Included are resistors, fusing devices, circuit breakers, sockets, convergence controls, electronic chemicals, audio cables, adapters for hi-fi and cassette type recorders battery holders and prototype kit components.

CONTROLS \& SWITCHES

124. Centralab Dist. Productsintroduces a chart which
covers all Fastatch II rotary and push-pull action line switches. Diagrams are illustrated for each switch plus photographs for quick reference guide to replacement push-pull line switches.

KITS

125. Heath Co.-announces their 1972 Heathkit catalog, reportedly featuring over 350 kit projects. Projects for the home, the car, and workshop are included.

MARINE ELECTRONICS

126. Raytheon Co.-introduces the Webster antennas and seven new antennas designed for use with standard and single sideband marine radio-telephone and citizens band radios. The Webster antennas for VHF/FM radio are offered in $3 \mathrm{~dB}, 6 \mathrm{~dB}$, and 9 dB models.

SECURITY ELECTRONICS

127. Mountain West Alarm Supply Co.-a 64 -page catalog describes and offers over 350 intrusion and fire alarm products. Six-pages of Application Notes for alarm equipment also is included.

SEMICONDUCTORS

128. Electronic Devices, Inc.announces a 4 -page catalog on solid-state replacement and renewal parts for color TV receivers including sol-id-tubes, cartridges and multipliers. Solid-state sol-id-tube high-voltage rectifiers, focus rectifiers and damper diodes, silicon and selenium focus cartridges, diagrams showing dimensional drawings and socket connections for solid-tube solid-state replacements of vacuum tubes with maximum ratings for pulse rectifier service is also included.
129. International Rectifier Corp--announces the new 64-page "Semiconductor Cross Reference and Transistor Data Book," with over 35,000 listings, including

10,000 types not previously shown. Types included are transistors, diodes, zeners, capacitors, rectifiers, and SCRs. A removable wall chart and new products bulletin are also included.
130. Motorola, Inc.-announces the 1972 Motorola HEP Semiconductor Cross-Reference Guide and Catalog, featuring approximately 38,000 semiconductor devices to HEP replacements. Included are $1 \mathrm{~N}, 2 \mathrm{~N}, 3 \mathrm{~N}$, JEDEC, manufacturers' regular and special "house" numbers and many international devices, with particular emphasis on Japanese types.
131. RCA Distributor Products -introduces a 96 -page " SK Series Top-Of-The-Line Replacement Guide" (SPG202M) which cross-references over 46,000 semiconductor device numbers. In addition a Solid-State Quick Selection Replacement Chart (1L1367A) listing entertainment SK-Series devices is included.
132. Semitronics Corp. -has a new, revised "Transistor Rectifier, and Diode Interchangeability Guide" containing a list of over 100 basic types of semiconductors that can be used as substitutes for over 12,000 types.

SERVICE AIDS

133. Chemtronics-announces a new 12-page, 1971-1972 catalog of products, including: tuner sprays, circuit coolers, insulating sprays, contact and control sprays, lubricants, tape head cleaners and conditioners, electronic glues and cements, solder, and spray paints.
134. Kester Solder-has released an 8-page brochure presenting the company's full line of soldering products. Presented are: " 44 " resin core solder, acid-core solder, sol-id-wire, bar solder, TV-radio solder and Metal Mender.

SHOP EQUIPMENT

135. Kole Enterprises, Inc.-
announces a 36 -page color catalog which includes 31 sizes of corrugated stock/parts bins, flat and vertical storage bins, transfer and magazine files and shipping cartons.

SOLID-STATE

136. Electronic Devices, Inc.offers a replacement guide on tubes and parts replaced by the EDI solid-state replacement components for color TV.
137. International Rectifier-64page volume, JD-451, has been revised and lists information on diodes, zeners, capacitors, rectifiers and SCR's. There are a reported 4000 new transistor listings. Specifications, characteristics, tables and wall charts are also included.

TECHNICAL PUBLICATIONS

138. Howard W. Sams \& Co., Inc.-announces publication of a new 96-page 1972 Technical and Scientific Book Catalog. Described are over 800 hardbound and softbound books which cover "do-it-yourself" titles from the Audel Division, amateur radio publications, audio visual materials, instructor's guides and student workbooks. Titles range from "ABC's of Air Conditioning" to Writer's and Editor's Technical Stylebook".
139. Sencore, Inc.-Speed Aligner Workshop Manual, Form No. 576P, provides 20 pages of detailed, step-bystep procedures for operation and application for Sencore Model SM 158 Speed Aligner sweepmarker generator.
140. Sylvania Electric Products, Inc., Sylvania Electronic Components Div.-has published the 14th edition of their technical manual, which includes mechanical and electrical ratings for receiving tubes, television picture tubes and solid-state devices.
141. Tab Books-has released
their Spring 1972 catalog describing over 170 current and forthcoming books. The 20-page catalog covers: schematic/servicing manuals, broadeasting; basic technology; CATV; electric motors; electronic engineering; computer technology; reference; television, radio and electronics servicing; audio and hi-fi stereo; hobby and experiment; amateur radio; test instruments; appliance repair, and transistor technology.

TEST EQUIPMENT

142. Dynascan Corp.-announces a new 24 -page 2 -color cata\log of B\&K Precision Test Equipment. A total of 21 instruments are reportedly presented; from a Mutual Conductance Tube Tester to a new DC to 10 MHz Triggered Sweep Oscilloscope.
143. Eico-has released a 32 page, 1972 catalog which features 12 new products in their test equipment line, plus a 7 -page listing of authorized Eico dealers.
144. Hickok-has published a 4 page brochure, "Hickok Oscilloscopes," which contains descriptions, specifications and prices for Models 5000 A and 5002 A oscilloscopes.
145. Information Terminalshas introduced a new brochure featuring the M-100 Tension Monitor, the M-200 Torque Tester and the M300 Head and Guide Gage.
146. Leader Instruments Corp. -announces the 1972 Cata\log of Leader Test Equipment. Test equipment included is the LBO-301 portable triggered-sweep oscilloscope, LSW-300 new sol-id-state post injection sweep/marker generator, and the LCG-384 miniportable, solid-state battery operated color-bar generator.
147. Lectrotech, Inc.-announces the 1972 catalog. "Precision Test Instruments for the Professional Technician". It contains specifications and prices on
sweep marker generator, oscilloscopes, vectorscopes, color bar generators and other test equipment.
148. Mercury Electronics Corp. - 14-page catalog provides technical specifications and prices of this manufacturers' line of Mercury and Jackson test equipment, self-service tube testers, testers, test equipment kits and indoor TV antennas.
149. Pomona Electronics-announces their new 60 -page 1972 general catalog of electronic test accessories. The catalog provides illustrations and complete engineering information on all products, including dimension drawings, schematics, specifications, features, and operating ranges.
150. Signal Analysis Ind. Corp. -announces a 4-page bulletin describing their Model SAI-42 real time digital correlation and probability analyzer. Computional and averaging flexibility, increased dynamic range, increased time resolution, and dial-in capability are among features described with illustrations of the instrument controls.
151. Tektronix, Inc.-introduces a 76-page "New Products" catalog. Products listed are: automated test systems, computer display terminals, machine control products, and TV test instruments and monitors.
152. Testline Instruments-has issued a brochure for their new Model 101 Curve Tracer for checking transistors in- and out-of-circuit. All features, specifications, applications and warranty information are included.
153. Triplett Corp.-a 4-page, illustrated, 2 -color brochure featuring a new batteryoperated, portable Model 603 FET VOM has been introduced. Application data and specifications are included.
154. Triplett Corp.-announces a 2 -page, 2 -color data sheet for Model 6028, a $23 / 4$ digit VOM. Data sheet gives DC volts, AC volts, ohms AC
and DC current ranges plus construction information, price and accessories.
155. Speco Components Specialists, Inc.-announces their 43-page, 1972 catalog of VOM multitesters and meters for TV technicians. Individual features and specifications for each instrument are included.

TOOLS

156. Brookstone Co.-announces a new 48 -page, 1972 catalog which includes 185 new, unusual and useful hard-to-find tools, plus hundreds of other versatile hand tools and small power tools.
157. Chapman Manufacturing Co--offers a pamphlet containing their line of tools and tool kits. Kit No. 6320, the Midget Ratchet is featured along with other available tool kits.
158. Ideal Industries-introduces a 2 -page, 4 -color brochure announcing their new Heat Gun. Performance characteristics applications, operating features, specifications and ordering information reportedly are included.
159. Jensen Tools and Alloyshas announced a new catalog No. 470, "Tools for Electronic Assembly and Precision Mechanics." The 72-page handbook-size catalog contains over 1,700 individually available items.
160. Plato Products, Inc.-introduces a 28 -page, 2 -color soldering tip catalog, No. 0372. Illustrated with dimensioned drawings to facilitate accurate selection, the new catalog features tips to fit leading brands and models of soldering irons.
161. Upson Tools, Inc.-Catalog No. 72 contains many new service kits and metric tools. The complete line of 4 -in-1 tools offers 16 combinations of double-ended screwdrivers and a variety of nutdrivers.
162. Vaco Products Co.-has issued a 12-page price schedule for all Vaco tools. Stock number, description, and list price on each item is given.
163. Xcelite, Inc.-Bulletin N770 describes this company's three new socket wrench and ratchet screwdriver sets.

TRANSFORMERS/COILS

164. Essex Controls Divisionnew Stancor Transformer Catalog No. 207 lists over 1,900 standard transformers for design engineers. Full technical data, mounting dimensions, photographs and other specifications on the line of audio transformers, power transformers, chokes and inductors are included. A complete listing of all Stancor sales offices and stocking warehouses is included.
165. J.W. Miller Co.--announces a new 92-page radio and TV replacement coil cross reference guide for known domestic and foreign color and black and white TV sets, home and car radios. Over 22,000 replacement coils for 327 manufacturers names reportedly are listed.
166. Stancor Products-pocketsize, 108-page "Stancor Color and Monochrome Television Parts Replacement Guide" provides the TV technician with transformer and deflection component part-to-part cross reference replacement data for over 14,000 original parts.

TUNER REPAIR

167. PTS Electronics, Inc.-62page catalog with over 600 exact-replacement tuners listed under their original manufacturer number for ease of exchange. A replacement guide for antenna coils and shafts is also provided.

TV ACCESSORIES
168. Telematic-introduces a 14 page catalog featuring CRT brighteners and reference charts, a complete line of test jig accessories and a cross reference of color set manufacturers to Telematic Adapters and convergence loads.

TV PICTURE TUBES

169. GTE Sylvania-50-page brochure which describes characteristics of over 900 television picture tubes, plus data on interchangeability information and tips on installation and handling of TV picture tubes.
170. GTE Sylvania, Inc.-has published an interchangeability guide listing 191 commonly used color TV picture tubes which can be replaced with 19 GTE Sylvania Color Bright $85^{\text {® }}$ types.

gulve Mubilif
 Supplement fo 1972 ANNUAL INDEX

JANUARY thru JUNE 1972

This Supplement is your Index to new models covered by PHOTOFACT since December 1971．For model coverage prior to this date see the 1972 PHOTOFACT Annual Index．Use this Supplement with the Annual Index－together they are your com－ plete Index to PHOTOFACT coverage of over 89,000 models．

Sot Folder No．No．	Set Foldor No．No．	Set Folder No．No．	Set Folder No．No．	Sel Folder No．No．	Sel Folder No．No．
A	ADMIRAL－COnt．	ARVIN－Cons，	BRADFORD－Cont．	Na	ELECTROHOME－Cont．
			1306820 （Similar to Chassis）	Gamble．Skogmo，Inc． P．O．Box 458	＊Dundurn C07．147（Ch．C7H－E） （Similar to Chassis）．．．1198－1
ADMIRAL	＋197208 ．．．．．．．．． 1218 POM		1306839 （sim	Minneapolis，Minn， 55440	－Gemini m11．205 1238－1
（Also See Rec	\＄2177016 ．．．．．．．．． 1218 POM		to Chassis）．．．． 1049	－TV2－1408A	（Ch．M11－A）．${ }^{\text {a }}$ 236－1
dmial Corp．－National	$\star 21 T 5711 \mathrm{C}$ 1218 POM	ASTRO LIME	1306F20（Similar	－TV2．1420A ．．．．．．．1231－3	endale M04－202（Ch．M4－Z）
crice Div．	$\begin{array}{r} -22 C 91 / 95 \\ \hline \end{array}$	（See Auto Rodio Listing）	to Chassis）…．．．．．．．1130－－5	\＃TV2－2021A ．．．．．．．．．1227－1	（Similor to Chassis）．．．．1176－1
P．O．Box 845 Bloomington，lllinois 61701	（Similar to PCB1013－3） 975	A	1405 M 31 ．．．．．．．．．．MHF－26	\＆TV2．2031A ．．．．．．．．．．1227－1	＊Hompton C07－145（Ch．C7A－E） （5imilar to Chossis）．．．1198－1
	－22T81C	（See Auto Radio Listing）	1506 Ad 0 tSimilar to Chossis）		（Similor to Chossis）${ }^{1198-1}$ －Jupiter M04－205（Ch，m4．z）
－Chassis K 1863.33 （similar	＊2080P．PF	A	2053030 ．．．．．．．．．．．TSM		Sitamilar 0 Chassi，
to Chossis）．．．	＋2097P … ．．．． 1242	（See Auto Radio and	53702 ．．．．．．．．．．．．M M ${ }^{\text {a }}$－	＊TV2－2071A ．．．．．．．．．．．． 1227	． 204 （Ch
Chassis NA10－1a \quad 1236－POM	＊ 5047 PC．M（PCE1211－4］1083－1	Recorder Lis	60434 （Similar to Chassis） 1125	＊TV2－2081A ．．．．．．．．．．． 1227	（Similar to Chass
\＄Chassis Tl1k10．1A ．． 1242 POM	\＄6080P，PC ．．．．．．．．．1242－POM		60830 （Similar to Chassis）1159－5	＊${ }^{\text {PV2－20818 }}$（5i	
tChassis T12K10．18 ．1242－POM	6097P，PC ．．．．．．．．1242－POM		89193 （Similar to Chossis） 1074	Chassis）．．．．．．．．．．．．1227－3	（Ch．C9．B）．1213－1
－Chassis TR2－1A（Run 10）1245－1					polaris Mo4． 203 （Ch．M4－2） （Simitor to Chossis）… 1176－1
－Chassis TR2－2A（Run 10） 1225 －1		omatic Radio Mfg．Co．，Inc．	（See Auto Rodio Listing	（Alsa see	（Serdun M04－201（Ch．M4－Z）
\＃Chassis iK10－B tRuns thru		2 Main Street Melrose，Massachusetts 02176		Frnon／Courier Corporation 990 South Fair Oaks Avenue	Simitar to Chosis］．．．1176－1
18）（PCB1211．4） 1083	Chicago，lllinois 60609			Pasodena California 91105	risalles C09． 109
	TRS－25，TRS－27 ．．．．．．TSM－129	PEI-2501			－8
＊Chassis IK1697－9，－10（Similar			conio，N．Hampshire 03246	$\mathrm{CCT} .3$	h．M4－z
Chassis 1012			11 Serias B ．．．．．．．．．Cb 39	Conqueror ．．．．．．．．．．．．．cB－38	Chassis）
（ Chassis 12K2084					h．M11－A
\pm Chassis 12K2086－2 1218－POM	Th				
${ }^{\text {A Chassis }} 12 \mathrm{k} 2088.1,-2.1218$－POM					（er Lisping）
	All	porats	io on		
	C． 225	ristie A	ings）	CROWN RADIO	
\＃Chassis 15 K 1686		Emeryville，California 94608		Cuntis mathes	Brooklyn，Now York 11236
assis			c		T．9 ．．．．．．．．．．．．．．．．TSM－131
				P．O．Box 5610	16 ．．．．．．．．．．．．．．．． STM $^{\text {TSM }}$－130
Chassis S0A1 ．．．．．．．．MHF－25	Fort Worth，Texas 76107	Alling		Dallas，Texas 75222	T－17 ．．．．．．．．．．．．．．．．．TSM－131
C1897PM（Similar to		Newark 2，New Jersey		CMC37 $\ldots124$	T．108 ．．．．．．．．．．．．．M M ${ }_{\text {MF－23 }}$
	1450 （14A50502）	American－300（VHF／UHF	Secorder List	Ch．${ }_{\text {Ch }}{ }_{\text {47．3 }}$	T－109 ．．．．．．．．．．．．．MHF－23
Chassis1 ．．．．．．．．．．．．1083－3		TVAmp）（V．．．．．．．1238－SED	Recarder List		T．500A－．．．．．．．M M F－26
K5643（Similar 0	ALLIS Chalmers	DA．4U／V．75			T－700
Chossis）	（See Auto Radio Listing）			D	Ch． 24 M
Chass is)		Distribution Ampl ．1232－5ED	Car Tapes，		Ch． 26 C （Similar to
P5571C isimilar to	（Also See Recorder Listi	Homer 75V ．．．．．．．． 1240 SED	918		Chassis）．．．．．．．．
Chassis）．．．．．．．．．1111－4	Allied Purchasi	Homer 300w ．．．．．．．． 12	Chatsworth，Califor	（See Aufo Rad	Ch．31 H \ldots ．．．．．．．．．1222－4
P5F541M（ Similor to	401	Horizon 464 S TV	15M－133	Recorder listings）	Ch． 32 M ，．．．．．．． 1236 －5
Chassis\}	New York，N．Y． 10016	Distribution Amp			C． 41,43 ．．．．．．．．．．．1224－4
－5K9P248，M	WD	panner［VHF／UHF		（See Auto Radio Listing）	Ch． 64 M ．．．．．．． 1217 －4
－5K9P290，M $\quad 1245$	－AM＞112WD（late Prod．）1225－1				Ch．76K \quad Ch．．．．．．．．．．．．．．1214－4
tSk5241 … ．． 1218 －POM	＊AM7116WD ．	Suburbon 4542	Wichita Falls，texas 60639		
＊${ }^{\text {Sk5 } 5245}$－．．．${ }^{\text {a }}$		Vomp－Tic（VYHF TV	122－180（Similar to Contents）	Dumont Radio g television	
＊ 5 K5248	＊1912（Simila		－122．752F	14 th	（See Recorder Listing）
		Voyager 4553			
＾311381 …… 1218 POM	Chassis）${ }^{\text {a }}$（Similar	（VHF／UHF Amp）．．．．1242		（19DP01（Ch．30k18．18）${ }_{12}$	Emerson Television
＊ 311385 ．．．．．． 1218	± 2955（Similar to Chassis）． 87	во	－122－2815A ．．．．．．．．．． 123	（3－18）	
\＃311388－1218－POM	＊ $2060 / 62 / 63$（Similar to	（See		12	4th \＆Colos Streo
	Chassis）……．．．．．．871－3	Recorderr Listings）	＋122－2845A ．．．．．．．． 1234 －	50C04W／065／07m	Jersey City，New Jersey
\＄SALSI48 ．．．．．．．．．．1218－POM	－ $0716 / 18 / 19$（Similar to	BR	＊122－2850A	（Ch．32K16） 125	FP02／03／04W
\＃ 515151 ＋ 515155 \cdots	Chossis）（ ${ }^{\text {a }}$（ ${ }^{\text {838－2 }}$	（A		\＃59TOJWN［Ch．120976A）	T2R2．1A， 2 F ）
	－ 0978 （Similar to Chassis）	W．T．Grant Con	－ 122 －2880 A（TV Ch，Oniv） 1234		CSOLW／02m／03s
¢5i5161	Chassis）．．．．．．．．838－2	1515 groadway，Times Square	＊122－2885A		（Ch．121007）．．．．．．．1151－5
＊515171 ．．．．．．．．．．． 1218 POM	－6982（Similar to Chasis）．858－1	New York，New York 10036	＋122－2890A 1234	\＃Ch． 30 KlB 18 IB ． 1224 POM	（Ch．T2R3－1A，－2A）．． 123
± 551788 ．．．．．．．．．．1218－POM	－ 7015 （Similar to Chassis）	WWIG－53413．．．．．．．．． 123	（123－2607A（TV Ch．Only） 1234	ACh．31K18－18．．．．．． 1224 POM	－188P01（Ch．T25H4－1a）
	056－2	丸WTG．53421－．．．．．．1249－1	（123－2610A \｛TV Ch．Only） 1234	，Ch．32K16／Runs 13	－（Similar to Chassis）
\＄515185 … … 1218 POM	－ 7018 （Similar to Chassis）．838－2	亩TG．54346 ．．．．．．．．．．1228－1		，	－18EP04（Ch．30K17－1A）
＊ 515188 ．$\quad 1218$－POM		\＃WTG－54353 ．．．．．．．．．． 122	CHAN	1209	－…… ．．．．．．．．．12s2－1
＊ $515191 / 93 / 95 \cdots . . .1218 \mathrm{POM}$		\＃WTG－54395 ．．．．．．．．． 122	Slso See Auto radio	2	$98 p 00 / 09 \mathrm{~W}$
（ $515201 / 03 / 05$ ．．．．．．1218－POM	Amerest Corporation	\＃WTG．54403 ．．．．．．． 1220	Recorder Listings）	＊Ch．120984A	Ch． 125 H 4.1 A
	1440 Broadway	\＃WTG－54411	Channel Master Corp．	02	－19CPO4W（Ch．33K18．1A） 1252
¢5LS5231／33／35 ．．．1218－POM	New York，New York 10018	WTG－55202（ S milar	Ellenville，N．Y． 12428		$\star 19 \mathrm{EPO} 1 \mathrm{Ch} .30 \mathrm{~K} 1 \mathrm{~g}-1 \mathrm{~A})$
	32	Chassis）．．．．．．． 109	\＄6106A，6107A ．．．．．．． 122		1252
\＃5SI5223 －7P280	ME	\＃WIG－59204A，B ．．．．．．．． 12			19E．02W（Ch．31k18－1A）
＊BT791C isimilar	See Auto	WTG．60434	＋ $61214 / 22 A / 23 A / 24 A$ alin		
Chassis）．．．．1204－1	r	Chassis）（ ．．．．．．．．．．1125－5	¢ $6143 A$ a ${ }^{\text {a }}$（136－POM		
1204－1		WTG－60939 ．．．．．．．．TSM－132	6201 ．．．．．．．．．．．${ }^{\text {T5 }}$	Fanan／Courier Corporation	19FP04／05W（Ch．11H5）．1222－1
	（Also See	WTG－61093	6202 ．．．．．．．．．．．．．．．T5M－131		0 （ Ch. T！2k3－1A）
\＃В1950	Recorder	WTG．81457（	${ }_{8208}$ ．．．．．．．．．${ }^{\text {ISM－130 }}$		
＊8TS911C（similar to		WTG． 61499	88232		
Chossis）．．．．．．．．．． 1204	2201 lunt Av	Chassis）．．．．．．．．．1130－5	${ }_{6237}$ ．．．．．．．．．．．． TSM－13 $^{\text {a }}$		
－9p239 ．．．．．．．．．．．．． 124	Elik Grove Village，flitinois	WTG． 89425	6238 ．．．．．．．．．．．．．．． ISM 132	oduction Code Source ．．． 1248	1218－POM
－9P245	60007			OHOME	－20FPO1／02W（Ch．16H5）1222－1
－9P257 ．．． 124	0	－WTG． 91967	odio	rohome Limised	$21 \mathrm{ETO1}$（Ch． $11 \mathrm{Kl} 1663-1$
－12P261 ．．．．．．．．．．．．．． 124		WTG－95745 tSimilar to	Recorder Listings）	9 Wellington street No	（Similar to Chassis）
－12P275 ．．．．．．．．．． 124		．．．		itchner，Ontario，Canado	$\begin{aligned} & 1 \text { ETO2W (Ch } \\ & 32 \mathrm{~K} 1687 \cdot 2) \end{aligned}$
$12 P 280$ $\bullet 12 P 287$$\cdots1_{1245}^{1245}$	Recarder Listings）	WTG．9576a（Similar to Chassis）		Apollo M11．206 1236－1	$\text { - } 228 \mathrm{BCO1W} / 02 \mathrm{~m} / \mathrm{O} \mathrm{~S}$
	Arvin Industries l		（5ee Auto Radio Listing）	（Ch．M11－A）${ }_{\text {a }}$	（Ch．12H5）．i．a． 1222
Chassis）	1531 Thirteenth street Columbus，Indiana 47201	－1005A32／B22 … ．．．．．．．．．．． 124			－228502W（Ch． $14 \mathrm{H5} 5$ ）
8p28Fs（Simitor to		－1042840 ．．．．．．．．．${ }^{12433^{-1}}$	1935 Armac	andon M04－210iCh．M4－23	－ 22 BrosmW （Ch． 12 H
Chossis］ 1068		＊1104k31 ．．．．．．．．．．． 1228	Los Angeles，Celifornia 90025	（5imilar to Chassis）1176－1	－ $22 \mathrm{FCO1W} / 02 \mathrm{M} / 035$
9H419M（5imilor to Chassis）		＊1104L41 ．${ }^{\text {a }}$ ． 122	STA－12 ．．．．．．．．．．．．．．．．．．．．25	（Ch．M11－A）	（Ch． $12 \mathrm{H5}$ ） 1222
－19p27CFs（Similar to	55 R58（Ch． 1.83201$)$ ．．．TSM－48	＊1142A21／B21／C21 ．．．．1220－1．		（Ch．M1－A）（ Ch. M．${ }^{\text {a }}$ ）	－22FC06W／07M／08S
Chassis）．．． 1068 －	80 m 25.28 （Ch． 1.01121 ） $1233-4$	あ 117171222		（Similar to Chassis）．．．1176－1	1
－19pa28（Similar 10	$80 \mathrm{M} 35-11$（Ch． 1.007913 ，1230－4	＊1171822 ．．．．．．．．．．． 1249			－22F501
Chassis）．．．．．．．．．．． 1068		＊1205A42／Bd2 ．．．1210－1		Crsair E Coz．	－22FTOM（Ch． $22 \mathrm{H5}$ ）．．． 122
－19P43\％C ISimilar to		1306439 isimilor ．．．． 10	－		－22Fiouw（ch．（2H5）．．．1222
Chassis］．．．．．．．．．1068－	cn． 1.00721 －．．．．．．．．．1212－4	to Chossin）	AR－20tantenma Retator	Ch．M11．A）．．．． 1236	［Similar to Chasis）．．1207－
197100 C ．．．．．．． $1218 . \mathrm{POM}$	Ch． 1.00791 …．．．．．．．1230－4	1306810 （Similar	TR－15／－16（Antenna	＊Crusader C07－15	\＃ 23 ECl 3 W （Ch． $11 \mathrm{k} 1670-2$ ）
9111C ．．．．．．．．．1218－POM	Ch． 1.0104 ：	to Chassis）．．．．．．． 1130	Rotator］	ar to Chassis）． 119	（Similar to Chassis）．1207．
				Rodio Series Volume．C	
WTP Denotes Home Tope Player Series Volume．MHF Denotes Modular Mi－Fi Series Volume．PCB Denotes Production Change Bulietin．POM Denotes Bonus Schematic in Photefoct－ot－the－Month					

By Dr. Howard M. Tremaine

- 1758 fact-filled pages
- Covers more than 3500 topics
- Over 1800 illustrations
- Completely updated content

It's a library in one handy volume! Fully updated to include latest developments, right down to the newest solid-state and integrata circuits. Gives you concise, accurate explana-
tions of all subjects in the fields of acoustics, recording and reproduction ... with each subject instantly located by a unique index and reference system.
It's the indispensable, complete reference book for anyone associated with or interested in the audio field. 20675-\$29.95
25 sections! Contents include: basic principles of sound: acoustics, studio techniques and equipment; constant-speed devices, motors and generators; microphones; attenuators: equalizers; wave filters; transformers \& coils; sound mixers; VU meters; tubes, transistors \& diodes; amplifiers; disc recording; cutting heads; recording \& reproducing styli; pickups; magnetic recording; optical film recording; moenclosures, headphones \& hearing aids; power supplies; test equipment; audio-frequency measurements; installation techniques; special charts \& tables.

10-day FREE EXAMINATION

- $1 *$ ******

AUTO RADIOS
AND TAPE
PLAYERS

CHANNEL MASTER Channer Master Corp
Ellenville, N.

3	AR-116
6204	${ }_{\text {AR- } 22}^{\text {AR-1 }}$
6291	AR-121
6292	AR-11

CHEVROLET

	AR-118
${ }_{\substack{118 P G T 2}}^{1 / A F M \mid}$	AR-115 AR-109
${ }_{21}$ AFPK1	AR-117
21 APB	AR-110
21APBK1	
21 AT411	AR-1/2
${ }^{218 \mathrm{BFM}}$	
${ }^{218 F M 3} 3$ isimilor	
Page (1)	
$218 \mathrm{EMT1}$	
2189 P 1	
${ }^{21818 P P 2}$ (See Page	
$218 \mathrm{FPK1}$	
218 BPK 2	
${ }^{218 P 81}$	
218P6	
${ }_{\text {21PbPK }}$	
${ }_{21} 1 \mathrm{HPE}$ 1	${ }_{\text {AR }}$ (112
21 HPG 2	AR-120
$21 \mathrm{HPGK1}$	AR-112
21HPBK2	AR-120
21 TFP1	AR-117
21 TPB1	AR-11
${ }^{2} 1$ 1/4411	
${ }^{2} 12 \mathrm{YFFI}$	
21 1 PMM	
${ }_{731} 1 \times 8 \mathrm{~PB} 5$	
730584	
${ }_{7314201}$	${ }_{\text {AR }}$
7314201 11972	
7930061	AR-115
7930121	
7930161	AR
7933241	
7933251	AR-117
7933261	
79332911972	
79332911972	
7933301	
7933501	AR-119
7933511	
Pro	
793502111972 Pro	AR-112
${ }_{\text {Prod }} 7935021$ (1972 1/2	
7936181	
7936191	
7936501	
7936801	

Chrysier
Chrysler Corp.
P.o.sor 1118
Detroit Michigan 48231

craig
Craig Corp
2302 East
isth
street

D
DELCO
$\underset{\text { SSee Recorder Listing }}{\substack{\text { York }}}$

ZENITH Zenith Soles Corporation 1900 N. Austin Ave. Chicago, Illinois 60639	
	* ${ }^{\text {T2824W7 (Ch. 14CC142) 1233-3 }}$
C587W (Ch. 29C120) MHF	12824W8 (Ch. 14CCl4Z) (Similar to Chassis) 1233-3
(Ch. 12 CB 12 X)	(284W9 (Ch. 14CCl4Z) 1233-3
3	Ch. 14CC16)
335C2,F2,L2, P2	\$T2828W8 (Ch. 14 CCl 6
CB12X)	$\star^{+12828 W 18 ~(C h . ~ 14 C C l 62) ~}$
	* (Similar to Chossis) 1233-3
(Ch. 12CB12x) …1252-3	$\star^{\text {T } 2833 W 8 ~}(\mathrm{Ch} .18 \mathrm{Cc} 30) \quad 1225-3$
Cl340W,W1,W2,W3 (Ch. 12CB12X)	
835C.cl	
, 3	2837W2 ICn. 1230 POM
	*T285:W7 (Ch. 20CC50Z).. 1238 3
60B12X (1242-POM	*T285iW7 (Ch. 20CC501). 1238 3
	(Similar to Chossis) ...1238-3
\pm (2915W1 (Ch. 20CC50). 1238-3	
	20CC50) $1238-3$
	2853DE7.P7
[Similar to Chossis]1225-3	
(C2965W7 (Ch. 18CC30) [Similar to Chossis] 1225-3	*12853DE31,0E32,P31,P32 (Ch. 20CC50Z)
\star C2983w 11 (Ch. 20C(502), 1238-3	
* C2983W12 (Ch. 20CC50) 1238	Ch. $12 \mathrm{KT40288....tsm-74}$
\star C2983W13 (Ch. 20CC50Z) 1238	*Ch. 14CC14,2/15,2/16,2 1233-3
*C2983W14 1 [Ch. 20CC50) 1238-3	\bullet Ch. 16DB12X 1242 POM
\star C2984W,W2 (Ch. 20cC502)	\#Ch. $18 \mathrm{CC} 29 / 30$.......1225-3
2997W (Ch. 20CC507) 1238-3	\star Ch. 19 CCl 192 (similo
2997W1 (Ch. 20Cc50) . 1238-3	Chassis) $\ldots . . \cdots \cdots{ }^{\text {a }}$ (1215-3
	$\pm \mathrm{Ch} .19 \mathrm{DC20}$....... 1230 POM
14 CCl 4)	\#Ch. 20CC50,2 1238-3
(C3510C7 (Ch. 14CC142) - 1233	
*C3510C8 (Ch. 14 CC	Ch. 24.1
(Simitar to Chass	¢Ch. 25 CC 55
	Ch. 29 Cr 20

NOTE: - Denotes Television Receiver. Denotes Color Television Receiver. AOR Denotes Available On Request. AR Denates Auto Rodio Serie; Volume, CB Denofes CB Radio Series Volume

NEW SAMS COVERAGE CONCEPT Provides
Better Service for the Dealer or Technician

Subscribers to the Sams Modular HiFi Specialized Series manuals will notice several changes in the latest issues.

Although this series has a new cover design, the big change is inside-there's twice the coverage as before. Now each manual contains schematics and pertinent servicing information on up to 13 different modular hi-fi and compact stereo units, and, best of all, it doesn't cost a penny more-the price is still $\$ 3.95$ per volume. All of this is possible through greater utilization of manufac-

turer's service data

It's a tremendous opportunity for any one who needs to repair popular late model modular hi-fi and stereo components. Here's a quick and easy way to establish an extensive file of the necessary servicing information, for all the recently produced modular hi-fi and compact stereo equipment.
Contact your distributor, and order the new Sams Modular Hi-Fi Series manuals today.

What do RCA SK series devices have that other replacements don't?

All three make up the RCA Solid-State System - a product and back-up approach to a replacement line of devices with the professional technician and service dealers' needs in mind. You put the elements together - and they work. Product is top-of-the-line. Literature is accurate and comprehensive, and hardware helps in your day-to-day servicing.

Remember, RCA's Solid-State System is based on premium product - more than 120 different devices (including 23 brand new ones) that can replace more than 46,000 units, both foreign and domestic. They cover the full range of replacement needs - from small signal types, integrated circuits, insulated gate and junction type FET's,
to the newest silicon audio 100-watt output types.
Designed especially for replacement use, RCA SK units are backed by electrical characteristics that make them comparable to or better than original devices. There are no cast-offs or factory seconds.

All units and the types they replace are cross-referenced in the RCA Replacement Guide, SPG-202M. There's a Quick-Selection Wall Chart, too, 1L1367A, and new Audio-Visual service aids. These spell the industry's finest informational backup for replacements - all SK, all available from your RCA Distributor. See him today for your copies.

RCA Electronic Components |Harrison |N.J. 07029.

Pioneering again.....Castle presents a sensational NEW Timesaver for the Professional TV Service Technician. Speed Testing by signal substitution. A new, simplified approach to signal circuit analyzing.....

Transistorized Test Unit substitutes the tuner in defective TV Receiver to prove whether original tuner is good or bad. Performs tests normally made using elaborate and expensive signal generating equipment and oscilloscopes . . . but much more simply, with easily understood results. Tests that are, in fact, so simple that they can be made right in the home, in most cases without removing the tuner or chassis from cabinet.

Use with any 40 MHz receiver . . . black and white or color . . . tube or transistor.
Completely self contained and battery operated; $M k$, all solid state, improved version of original "subber." Uses L.E.D. indicator, has higher gain with wide range control affording more than 40db of gain reduction. Use on the bench or in the home . . . anywhere.
Substitutes the VHF tuner and tests the UHF tuner. Provides signal to simplify testing of tuner, i.f. system and AGC system. Comes complete with extension cables and instructions.

Unsolicited praise bestowed this revolutionary device includes:
". . . works good. I know it will save hours in my TV Service . . you are to be commended . . ." ". . . in one month . . . TV Tuner Subber . . . already paid for itself - twice! Thanks much!"
'. . . received only Ch. 5, and not good. Used the neu' Castle TV Tuner Subber and got all channels . . original tuner removed for service!"

TV TUNER SUBBER MK. II net $\$ 31.95$ Contact your distributor.

 Include $\$ 1.50$ shipping and handling on prepaid mail orders: we will ship C.O.D.CASTLETVTUNER SERVICE,INC.
5701 N. Western Ave., Chicago, Illinois 60645 - Phone: (312)-561-6354

[^0]: For more information about above products use reader service card

