
March, 1974 - 75 cents

Electronic Servicing & HOWARD W. SAMS PUBLICATION OF THE PUBLICATION O

Fail-Safe Symptoms Servicing Calculators Don't Neglect Safety

MR HO ACE SMITH
SMITHS RADIO & TV
850 LAURELWOOD ROAD
POTTSTOWN PA 19464

HOME OFFICE—INDIANA: 5233 S. HWY. 37 BLOOMINGTON, INDIANA 47401 TEL. 812, 824-9331

CALIFORNIA—NORTH: PTS ELECTRONICS, INC 4611 AUBURN BLVD. SACRAMENTO, CALIF. 95841 TEL. 916, 482-6220

CALIFORNIA—SOUTH: PTS ELECTRONICS, INC. 5111 UNIVERSITY AVE. SAN DIEGO, CALIF. 92105-TEL. 714. 280-7070

COLORADO: PTS ELECTRONICS, INC. 4958 ALLISON ST. ARVADA, COLO. 80001 TEL. 303, 423-7080

FLORIDA: PTS ELECTRONICS, INC. 1918 BLANDING BLVD. JACKSONVILLE, FLA. 32210 TEL. 904, 389-9952

PTS ELECTRONICS, INC. 5233 S. HWY 37 BLOOMINGTON, IND. 47401 TEL. 812, 824-9331

KANSAS: PTS ELECTRONICS, INC. 3116 MERRIAM LANE KANSAS CITY, KANSAS 66100 TEL 913, 831-1222

LOUISIANA: PTS ELECTRONICS, INC. 2914 WYTCHWOOD DRIVE METAIRIE, LOUISIANA 70033 TEL 504, 885-2349

MARYLAND: PTS ELECTRONICS, INC. 1105 SPRING ST SILVER SPRING, MD. 20910 TEL. 301, 565 0025

MASSACHUSETTS: PTS ELECTRONICS, INC 191 CHESTNUT ST SPRINGFIELD, MASS. 01103 TEL. 413, 734-2737

MINNESOTA: PTS ELECTRONICS, INC 815W LAKE ST MINNEAPOLIS, MINN, 55408 TEL 612, 824-2333

NEW YORK: PTS ELECTRONICS, INC 993 SYCAMORE ST BUFFALO, N.Y. 14212 TEL 716, 891-4935

NEW YORK CITY—NEW JERSEY: PTS ELECTRONICS, INC 158 MARKET ST E. PATERSON, N.J. 07407 TEL 201, 791-6380

NORTH CAROLINA: PTS ELECTRONICS, INC. 724 SIEGLE AVE. CHARLOTTE, N. C. 28205 TEL 704, 332-8007

OHIO: PTS ELECTRONICS, INC 5682 STATE RD CLEVELAND, OHIO 44134 TEL 216, 845,4480

OKLAHOMA: PTS ELECTRONICS, INC 3007 N MAY OKLAHOMA CITY, OKLA, 73106 TEL 405, 947-2013

OREGON:
PTS ELECTRONICS, INC
5220 N.E SANDY BLVD
PORTLAND, OREGON 97213
TEL 503, 282-9636

PENNSYLVANIA—EAST: PTS ELECTRONICS, INC 1921 S 70TH ST PHILADELPHIA, PA. 19142 TEL 215, 724-0999

PENNSYLYANIA—WEST: PTS ELECTRONICS, INC 257 RIVERVIEW AVE. W PITTSBURGH, PA. 15202 TEL. 412, 761-7648

TEXAS—NORTH: PTS ELECTRONICS, INC MOPAC LANE LONGVIEW, TEX. 75601 TEL 214, 753-4334

TEXAS—EAST: PTS ELECTRONICS, INC 4324-26 TELEPHONE RO HOUSTON, TEX. 77052 TEL. 713, 644-6793

PTS ELECTRONICS

is proud to announce the

Precision Tuner Service

GRAND OPENING of our new Service Center in CHARLOITE. N. CAROLINA

Mowyou too get...

Fast 8 hr. Service!

FREE JOB CARDS . FREE SHIPPING LABELS

Come and see us. PTS Branches are all company owned—No Franchises—we care for our customers. For a TUNER PART or COMPLETE TUNER REBUILT, come to us, we will take care of your tuner problems like no one else can. WE'RE PROFESSIONALS—18 years experience made us what we are!

You owe it to yourself

to try P.T.S. We are the fastest growing, oldest and now the largest tuner service company in the world. Here is what you get:

 Fastest Service—8 hour—in and out the same day. Overnight transit to one of our plants.

2. Fine Quality! Your customers are satisfied and you are not bothered with returning tuners for rework!

3 Lower Cost! Up to \$5.50 less than other tuner companies!

4. Friendly, helpful service! We help you do more business—that way we will do more, too. We want your business and we try to deserve it!

Color • Black & White • Transistor • Tubes • Varactor • Detent UHF All Makes

YEAR GUARANTEE

VHF or UHF____ \$9.95 UV-Comb.____ \$16.95

Major parts and shipping charged at cost.
(Dealer net!)

for finer, faster, ... Precision

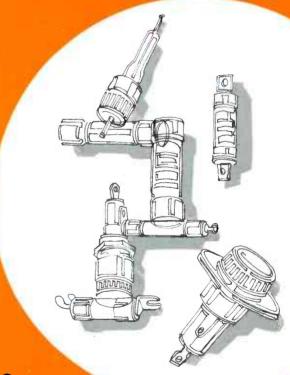
send faulty unit with tubes, shields and all broken parts to:

PTS ELECTRONICS, INC. P. O. BOX 5512 724 SIEGLE AVENUE CHARLOTTE, N. C. 28205 TEL. 704, 332-8007

or to any of our strategically located Service Centers

IS ONE BRAND OF FUSE AND FUSEHOLDER AS GOOD AS ANOTHER?

DON'T BET ON IT.


BET ON BUSS°

There are some good reasons for being brand-conscious. Here are three of them:

- 1. ACCEPTANCE Without question, BUSS® is the best known and most widely accepted name in fuses and fuseholders of all types. There's no need for introductions or explanations. When it's BUSS, no questions are asked.
- QUALITY You can take BUSS quality for granted, because BUSS doesn't. Not only are BUSS fuses manufactured to exacting quality control standards, but every one is electronically tested.
- 3. **SPECIALIZATION** All BUSS resources are focused solely on manufacturing quality fuses and fuse mounting hardware. Such a concentration of undivided attention automatically results in a superior product.

So be brand-conscious —

YOU'LL ALWAYS BE AHEAD WITH BUSS.

BUSSMANN MANUFACTURING a McGraw-Edison Company Division St. Louis Missouri 63107

Electronic Servicing

in this issue...

- 14 Digital Multimeters . . . A New Service Tool—How they function, and their advantages—John E. Cunningham.
- 28 Safety ... The Ignored Subject—Reminders of methods to protect both customers and you from electronic dangers—Wayne Lemons.
- 33 Have Time For An Injury?—A true story of the consequences from a few seconds of thoughtlessness—Ted Youngman. CET.
- 36 Strange Symptoms From "Fail-Safe" Circuits, Part 1—Analysis of those circuits that appear to do nothing—Lawrence Bowen.
- 42 Servicing Electronic Calculators, Part 1—Repairing calculators isn't as difficult as it seems—Joseph J. Carr. CET.
- 46 Signature Patterns—Of the General Electric JA chassis, made on the Sprague/Williams curve tracer—Jud Williams. CET.

ABOUT THE COVER

Editorial Director Ron Merrell examines the inside of a B&K Precision Model 281 digital multimeter.

DEPARTMENTS

Electronic Scanner 4
Symcure 8
Reader's Exchange 9
Troubleshooting Tips 11
Service Associations 41
Test Equipment 50
Product Report 52
Catalogs and Literature 53
Antenna Systems 54
Photofact Bulletin 55
Advertiser's Index 56

Second class postage paid at Shawnee Mission, Kansas and additional mailing offices. Published monthly by INTERTEC PUBLISHING CORP., 1014 Wyandotte St., Kansas City, Mo. 64105. Vol. 24, No. 3. Subscription rate \$6 per year in U.S., its possessions and Canada; other countries \$7 per year. Send Form 3579 to 9221 Quivira Road, Shawnee Mission, Ks. 66215.

© Copyright, 1974, Howard W. Sams & Co., Inc. All Rights Reserved: Material may not be reproduced or photocopied in any form without written permission of publisher.

EDITORIAL
RONALD N. MERRELL, Director
CARL H. BABCOKE, Managing Editor
LESLEE ANDERSON, Editorial Assistant
WEBB G. STREIT, Graphic Designer

CONTRIBUTING AUTHORS
Lawrence Bowen

Lawrence Bowen Joseph J. Carr Wayne Lemons Robert G. Amick

TECHNICAL CONSULTANT JOE A. GROVES

EDITORIAL ADVISORY BOARD LES NELSON, Chairman Howard W. Sams & Co., Indianapolis

> CIRCULATION EVELYN ROGERS, Manager

ADVERTISING SALES
Kenses City, Missouri 64105
Tele: 913/888-4664
E. P. LANGAN, Director
R. J. HANCOCK, Manager
JAKE STOCKWELL
RON ROBINETTE
GREG GARRISON:, Production

REGIONAL ADVERTISING SALES OFFICES Indianapolis, Indiana 46280 ROY HENRY 2469 E. 98th St. Tele: 317/846-7026

> New York, New York 10017 STAN OSBORN Room 1227 60 E. 42nd St. Tele. 212/687-7240

Los Angeles, California 90005 MIKE KREITER 3600 Wilshire Blvd., Suite 1510 Tele: 213/383-1552

London W. C. 2, England JOHN ASHCRAFT & CO. 12 Bear Street Leicester Square Tele: 930-0525

Amsterdam C. Holland JOHN ASHCRAFT & CO. W. J. M. Sanders, Mgr. for Benelux & Germany Herengracht 365 Tele: 020-240908

Tokyo, Japan INTERNATIONAL MEDIA REPRESENTATIVES LTD. 1, Shiba-Kotohiracho, Minatoku Tele: 502-0656

ELECTRONIC SERVICING (with which is combined PF Reporter) is published monthly by Intertec Publishing Corp., 1014 Wyandotte Street, Kansas City, Missouri 64105.

Subscription Prices: 1 year — \$8.00, 2 years — \$10.00, 3 years — \$13.00, in the U.S.A. its possessions and Canada.

All other foreign countries: 1 year — \$7.00, 2 years — \$12.00, 3 years — \$16.00. Single copy 75c; back copies \$1. Adjustment necessitated by subscription termination at single copy rate.

Robert E. Hertel, Publisher

intertec Publishing Corp.
Subsidiary of Howard W. Sams & Co.,

Stocking only 49 ECG[™] semiconductors is like having thousands of audio transistors on hand.

Manufacturers of TV, radio and stereo systems have audio transistor replacements listed under thousands of different part numbers.

But, thanks to the Sylvania ECG semiconductor replacement guide, you can replace practically all of them with just 49 different transistors.

And that can save a lot of hunting and stocking, especially when you're a busy service dealer.

For example, if you need a low-noise, high-gain NPN-silicon transistor for an audio preamp, check out our ECG-199. It fits a lot of sockets.

And if import parts are bugging you, our ECG-158, 176, 226 and 226MP are direct replacements for parts like the 2SB405, 2SB474 and 2SB492 plus a lot of others you'll find in our guide.

But, our cross-reference guide (ECG-212E) lists a lot more than just audio transistors. It lists over 75,000 parts that can be replaced with a minimum number of Sylvania ECG parts.

For you, it means one source for practically all your replacement needs, including industrial components.

What more could anyone ask for?

GIE SYLVANIA

electronicscanner

news of the industry

A color picture tube that lights with full brilliance approximately five seconds after turn-on has been developed by GTE-Sylvania. This makes possible instant-on operation without the necessity of applying partial heater voltage when the set is turned off. Sylvania estimates the possible saving of energy for each receiver over present types of instant-on sets might be as much as 20 kilowatt hours per year.

Sansui's QS four-channel matrix system has been adopted by the Recording Industry Association of America (RIAA) as Type II standard for disc encoding, according to an announcement by the Sansui Electronics Corporation of Japan.

Courses covering repairs of Sony video tape recorders have been scheduled for 1974. Now available at Sony's resident school are courses for monochrome AV-series VTR's, and U-Matic videocassette equipment (five days and three days, respectively). Three-day courses for color VTR's might be added, if the demand is sufficient. Classes will be limited to ten students, and instruction will include balanced amounts of theory and workbench methods. For further information, write to Sony Corporation of America, 47-47 Van Dam Street, Long Island City, New York 11101.

A new video-disc system offering potentially lower prices has been developed by Eric Rabe, a German inventor, according to Home Furnishings Daily. At current exchange rates, the playback machine might sell for \$150. Innovations include a special grooving and magnetic coating of the standard 12-inch-sized record, and refinements of the recording and playback head. Although the short playing time of about 10 minutes per side is still a limitation of the discs, Rabe believes the time can be increased to 24 minutes.

A 5% allowance for handling of in-warranty parts has been initiated by the Philco-Ford Corporation. John W. Miller, Philco general parts and service manager, is quoted by Home Furnishings Daily as saying: "These are legitimate expenses, normally passed along to the consumer for in-warranty work, and the industry simply cannot ignore them any longer." In addition, Philco is increasing some in-warranty labor payments.

Controversial Intro 109, the bill calling for the licensing of all TV, radio, and audio repair shops in New York City, was signed by Mayor John Lindsay, and becomes effective on April 1. Technicians now are required to obtain a \$100-per-year license for each shop, and \$15 permits for service managers, reports Home Furnishings Daily. Although the bill was bitterly opposed by many technicians, only a few people showed up for the last public hearing, according to Henry Stern, the Deputy Commissioner of Consumer Affairs. No major representatives of service organizations attended, perhaps because the hearing was held on the afternoon of a holiday weekend.

(Continued on page 6)

TUNER SERVICE CORPORATION

PROVIDES YOU WITH A COMPLETE SERVICE FOR ALL YOUR TELEVISION TUNER REQUIREMENTS.

REPAIR

VHF Or UHF Any Type \$9.95. UHF/VHF Combo \$15.00.

In this price all parts are included, tubes, transistors, diodes, and nuvistors are charged extra. This price does not cover mutilated tuners.

Fast efficient service at our conveniently located service centers.

All tuners ultrasonically cleaned, repaired, realigned and air tested.

REPLACE

Universal Replacement Tuner \$9.95 (In Canada \$14.95)
This price buys you a complete new tuner built specifically by SARKES TARZIAN INC. for this purpose.

All shafts have a maximum length of $10\frac{1}{2}$ " which can be cut to $1\frac{1}{2}$ ".

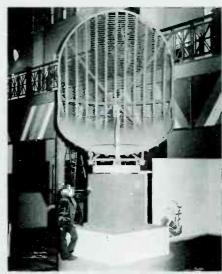
Specify heater type parallel and series 450mA or 600mA.

CUSTOMIZE

Customized tuners are available at a cost of only \$15.95; (with trade-in \$13.95) \$17.95/\$15.95) Send in your original tuner for comparison purposes.

WATCH US GROW

			537 S. Walnut Street Tel. 812-334-0411
	ARIZONA	TUCSON, ARIZONA 85713	1528 So, 6th Street, P.O. Box 4534 Tel 602-791-9243
	CALIFORNIA	NORTH HOLLYWOOD, CALIF. 91601	. 10654 Magnolia Boulevard Tel. 213-769-2720
		BURLINGAME, CALIF. 94010	1324 Marsten Road
	(P ()	MODESTO, CALIF. 95351	-123 Phoents Avenue 121. 209 521-8051
	FLORIDA	TAMPA, FLORIDA 33606	. 1505 Cypress Street
	GEORGYA	ATLANTA GEORGIA 30310	938 Gordon Street & W Tel. 404-758-2232 37 West 55th Street
	ILLINOIS	CHICAGO, ILLINOIS 60621	137 West 55th Street Tel. 312873-5556-7
	TI_	SKOKIE, ILLINOIS 60076	. 5110 West Brown Street
	INDIANA	HAMMOND, INDIANA 46323	. 6833 Grand Avenue 161. 219-845-2676
		INDIANA POLIS, INDIANA 46204	
	KENTUCKY	LOUISVELE, KENTUCKY 40208	2920 Taylor Boulevard 1502-634-3334
	LOUISIANA	SUBEVETORT LOUISIANA 71104	. 3025 Highland Ave
	MADVIAND	WALTIMORE MD 21215	5505 Reistertown Rd. P.O. Box 2624 Tel. 301-358-1186
	MISSOLIBI	TOTILS MISSOURI 63132	. 10530 Page Avenue
	NEVADA	I A S VEGAS, NEWADA ROLL	1412 Western Ave. No. 1
	NEW IEDCEV	TERSET CITY NEW TERSEY 07307	547-49 Tonnele Avenue HWY 1&9 Tel. 201-792-3730
	NEW JERSEI	TRENTON, NEW JERSEY 08638	901 N Olden Ave Tel. 609-393-0999
	ORIO	SINCINNATI OHIO 45216	
	Ollio	CLEVELAND ONLO 4000	4597 Pearl Road
		TOURTH OHIO 43674	119 North Erie Street Tel. 419-243-6733
	OPECON	POPTIAND OPEGON 97210	1732 N.W. 25th Avenue Tel. 503-222-9059
	TENNECCEE	CDEFNEUIL F TENNESSEE 2774	1215 Snapps Ferry Road Tel. 615-639-8451
	I ENNESSEE	MEMBUR TENNECCEE 30111	3158 Barron Ave Tel. 901-458-2355
	TEVAS	DALLAS TEVAS 75218	11540 Garland Road
			4538 East Princess Anne Rd. Tel. 703-855-2518
	_		
)	CANADA	. ST. LAURENT, MONTREAL,	305 Decarie Blvd Tel. 514-748-8803
		OUEBEC H4N-2L7	., 303 Decarie Diva

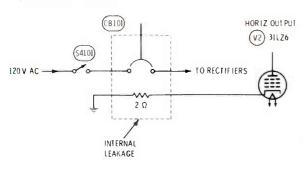

FOR INFORMATION ON FRANCHISE, CONTACT HEADQUARTERS

A new line of b-w television cameras is the first offering of the RCA Corporation upon entering the closed-circuit video market. These cameras feature integrated-circuit construction, automatic-light compensation (ALC), easy-to-use controls and 2/3-inch RCA vidicon camera tubes. They are backed by service at the manufacturing location, and are said to be competitively priced.

An ultra-sonic dishwasher planned to retail for \$485 might be imported by a Swiss manufacturer. Dishwashers of this type have been sold in Europe for several years, according to Home Furnishings Daily. Electronic circuits supply ultra-sonic power to a transducer immersed in water where the dishes are located. Vibrations of the water loosen the dirt which is floated away. Advantages are less power used compared to conventional dishwashers, and a short cycle time of only 10 to 15 minutes. On the other hand, more water is used and the machines are expensive to manufacture.

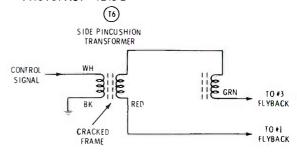
Fifty years ago, the Electronic Industries Association (EIA) began operations as the Radio Manufacturers Association (RMA). A charter was issued by the state of Illinois on April 16, 1924 to a group of Chicago radio and parts manufacturers, who had been meeting informally for about a year to discuss mutual problems. From that small beginning has grown a large organization providing guidance and help to many segments of our industry. Changes of names reflect the enlarged scope of the organization. In 1950, the name became Radio-Television Manufacturers Association. Later it was changed to Radio-Electronics-Television Manufacturers Association, and finally, in 1957, to Electronic Industries Association. One of the most valuable contributions to television was the introduction of proposed standards for both b-w and color television. EIA now sponsors the Consumer Electronics Show twice each year. Profits from the show are used for educational programs for technicians.

The first airport-surveillance radar made especially for civilian use has now been enshrined in the Air Science Museum at the Smithsonian in Washington, D.C. This radar gave a continuous view of all aircraft in a 40-mile-wide area, and was built by the ITT Gilfillan Division of International Telephone and Telegraph Corporation.



(Courtesy of ITT)

Stocking these 9 ECG semiconductors is like having hundreds of solid-state deflection circuit devices on hand.

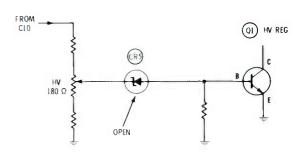


Chassis—RCA CTC52 PHOTOFACT—1211-3

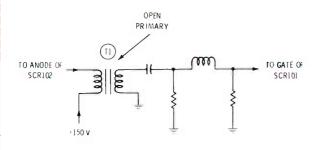

Symptom—Width in an "hourglass" shape Cure—Check for leakage inside circuit breaker, and replace breaker if defective

Chassis—RCA CTC39 PHOTOFACT—1246-2

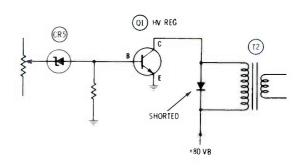
Symptom—High-frequency squeal Cure—Check side pincushion transformer T6 for a cracked frame, and replace transformer if defective


Chassis—RCA CTC46 PHOTOFACT—1243-2

Symptom—Repeated failures of vertical output transistor Q102


Cure—Check for an intermittent open in CR102, or replace on suspicion

Chassis—RCA CTC46 PHOTOFACT—1243-2


Symptom—No HV regulation and unstable horizontal locking
Cure—Check zener diode CR5, and replace if open

Chassis—RCA CTC46 PHOTOFACT—1243-2

Symptom—Low HV, horizontal foldover and no HV regulation
Cure—Check T1, and replace if it is open

Chassis—RCA CTC48 PHOTOFACT—1300-2

Symptom—Video has "S" bend vertically Cure—Check CR4, and replace if it is shorted

reader's exchange

Need a not-available schematic? Need an obsolete part? Have an unusual service problem and want help? Send information and full mailing address to ELECTRONIC SERVICING. Other ES readers should send replies with their offer of help direct to the writer. We reserve the right to edit and print all letters sent to this column. Let us help one another.

Needed: Four WD-11 tubes, eight WD-99 tubes and Volume 1 of Perpetual Troubleshooter's Manual by John F. Rider. Also, any other manuals or schematics on radios older than 1930.

Douglas L. White 1767 Campbellton Road S.W. Atlanta, Georgia 30311

Needed: Address of Superior Instruments Company, a copy of operating instructions for a Sico model 450 tube tester, and tube charts or updated charts. Also need updated rollcharts for Sico Superior TW11 tube tester.

W. W. Blackwell 521 Gold Street Toms River, New Jersey 08753 Needed: Dial glass for a Viscount stereo model 205.

Earl White

West Adams TV Service

4486 West Adams Blvd.

4486 West Adams Blvd.
Los Angeles, California 90016

Needed: Roll chart or booklet with latest tube listings for a Precision tube-and-battery tester model 10-12. State price.

Edward Schoener P.O. Box 44 New Ringfield, Pa. 17960

Needed: Schematic and service information for a Beyside 990 portable aircraft VHF transceiver. Also need schematic and instruction book for an Engine Ignition Analyzer model AR-1 (REIC 310.000) manufactured by Republic Electronic Industries of Farmingdale, New York.

Hoang Trung Sac 82 Ngo Tung Chau Saigon, South Vietnam

(Continued on page 10)

SYSTEMS have... SCOPE you need!

A wide range of quality Scopes at a price that satisfies

\$280.00 SYSTEMS 27 SOLID STATE DC-2.5 MHz SERVICE SCOPE

FEATURES: • 13 cm (5") CRT • Solid state circuitry • High sensitivity • TV line and field synchronization • Elegant finish • Easy-grip handle-cum-tilt stand • Compact size • Low cost.

SYSTEMS 37, 5 Hz-2.5 MHz MINI SCOPE FEATURES: •7 cm (3") CRT • High sensitivity • Elegant finish • Attractive metallic brush-finish anodized front panel • Truly portable • Low cost • Easy-grip handle-cum-tilt stand.

\$275.00

SYSTEMS 57 PORTABLE DC-3 MHz TRIGGERED SCOPE

FEATURES: ●7 cm (3") CRT ●High sensitivity ●Portability ●Low cost ●Elegant finish ●Easy-grip handle-cum-tilt stand.

It's time a Lab or Service Tech owned one!

Systems Electronics Inc.

makers of fine oscilloscopes 9727 Inglewood Avenue, Inglewood, California 90301 Tel: (213) 671-8231

SEE THESE UNITS AND MORE, IN OUR BOOTH NO. 2710 AT IEEE INTERCON '74!

For More Details Circle (4) on Reply Card

Covers: • IF • CHROMA • VSM • CHANNELS 2 thru 13 • UHF CHANNELS 14 thru 83

SMG-39 sweeper generator

A precision sweeper with quality and features found only in lab instruments. The SMG-39 utilizes post injection crystal controlled intensity or pulse markers for a sharp jitter free display. The SMG-39 features four independent bias supplies, VFO (variable frequency oscillator) provides an additional calibrated marker between 39-49 MHz. Unique marker display enables accurate marker positioning for faster receiver alignment, VFO facility provides an additional marker for protection against obsolescence, may also be used for spot alignment. All solid state with glass epoxy circuit boards. Complete with all cables and pads.

VHF-UHF sweeper generator

The SMG-12: Checks alignment of Tuner RF Amplifier and RF-IF overall response. Sweeps all channels 2 thru 13 and 14 thru 83 when used with the SMG-39 or other brand sweep generators. SMG-12 converts an IF sweeping signal to each of the 12 VHF channels with crystal controlled stability. The 45.75 MHz (Picture), 42.17 MHz (Chroma) and 41.25 MHz (Sound) IF markers are also converted to correspond to the picture, chroma and sound carrier frequencies of each of the TV channels. No additional marker source is required.

SMG/UHF Balanced Detector. Displays the alignment curves of a passive type UHF tuner when used in conjunction with the SMG-39 or equivalent generator. Display includes crystal accurate picture, chroma and sound

markers

SMG-12 complete with SMG/UHF and all cables. Net 249,50

For More Details Circle (24) on Reply Card

(Continued from previous page)

Needed: Name and address of any company that services Precision Test Instruments.

Leon Arends Arends Radio & T.V. Service Center 102 N. Webster Shenandoah, Iowa 51601

Needed: RCA radio service manuals Volume 1 for 1923-1928, and Volume 2 for 1929-1930. Also, pre-1931 Atwater Kent radio manuals.

> E. T. Montgomery 1092 Willowbranch Avenue Jacksonville, Florida 32205

Needed: Playback/record head for Sony reel-to-reel model TC-530.

> R. Richardson P. O. Box 93 Thomson, Illinois 61285

Needed: Recording head part number 11X380 for model 288 Webster-Chicago wire recorder. Or would like to know where it can be repaired; coils are okay, core is worn.

> M. F. Elliott 1252 Winston Road Cleveland, Ohio 44121

Needed: Schematic for Ansafone model KH85. Will pay handling and cost of schematic.

John Hluchy 286 Garrett Road Mountainside, New Jersey 07092

Needed: Schematic for a "Checkmate 66" guitar amplifier.

Stanley Pindjak 10907 W. 49th Terrace Shawnee Mission, Kansas 66203

Needed: Service data for AGS model 7TVP2 combination TV and radio.

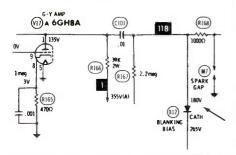
> Leon Tebis 434 4th Street Brooklyn, New York 11215

Needed: Meter for an NRI model W VTVM. Cyrus V. Todd 1320 N. W. 116th Street Miami, Florida 33167

Needed: Schematic for a model 37 Atwater Kent radio. David Badt 2377 Beechwood Drive Westlake, Ohio 44145

Needed: Operating manuals and schematics for a B&K Dynamatic 375 vacuum-tube voltmeter.

> Lewis TV & Radio 1004 South 6th Street Brownfield, Texas 79316


troubleshootinglips

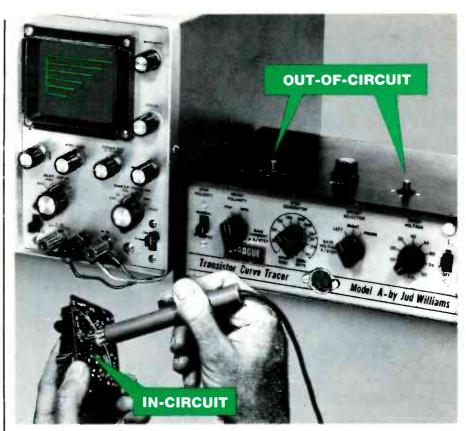
Send in your helpful tips-we pay!

No color, brightness was excessive RCA CTC31A color chassis (Photofact 928-3)

In this case, the trouble was very hard to locate because the symptoms were misleading.

There was no color on the screen; with the service/normal switch in the service position it was impossible to extinguish the horizontal line; contrast and brightness controls had little effect; the screen was slightly darker on the left; but removing any -Y tube changed the screen to white.

When the color bar generator was connected, the scope showed color present at the grids of the picture tube, although visibly the color was very weak.


After trying many tests that led into blind alleys, I found diode X12 (used for DC restoration of the CRT grid) to be shorted. After I replaced the diode, the contrast control operated okay and there was some color. But the picture was still too bright and no red could be seen in the picture.

Replacement of the other two DC-restoration diodes (X13 and X14) plus adjustment of the gray scale corrected all the troubles.

Charles Spurgeon Duncanville, Texas

Editor's Note: In all cases of excessive brightness, it's advisable to measure the DC voltages at all grids and cathodes of the picture tube. In this chassis leakage of the DC-restoration diodes makes the affected picture-tube grid more positive. If the three grids are not within ten volts of the same reading, suspect the diodes.

(Continued on page 12)

The fastest, easiest, most-reliable, least-expensive way to test transistors

Sprague's Model A Transistor Curve Tracer by Jud Williams Incorporates Dynamic Signature Pattern™ Servicing Technique

Eliminate transistor damage.

Did you ever unsolder a transistor to test it, find it defective, then wonder if it was ruined in removal? Or, if the device tested OK, how about the ticklish job of resoldering without damage to either transistor or board? The solution to such problems is in-circuit testing with the "Signature Pattern" technique.

What are Signature Patterns?

They are scope readouts of the dynamic impedance of in-circuit transistors. With this unique test method, the transistor under test is actually **turned on**, not merely made to oscillate, as with conventional techniques. The "Signature Pattern" method of trouble-shooting has these definite advantages: (1) Quick, decisive, "good-or-bad" tests of suspect transistors; (2) Discovery of defective components within transistor circuits even when transistors are good; (3) Elimination of damage to transistors and other components; (4) Safe testing with system power removed.

Quick, accurate tests.

By observing the family of curves, you can determine at a glance such parameters as gain, linearity, saturation, avalanche point, and leakage. No zeroing or balancing is necessary. The Model A also performs the all-important breakdown voltage test. It will identify a transistor type as either silicon or germanium. In addition, it will analyze an FET as either junction-type or insulated gate, as well as determine the pinch-off voltage.

Service modules profitably.

With more and more set-makers switching to modular circuitry, it becomes economically difficult for service shops to stock a variety of plug-in panels in quantity . . . not to mention excessive costs to your customers when panel replacements are made. Also, you waste valuable time processing paper work and preparing modules for shipment to the factory for repair or credit. The practical solution is to quickly and economically repair defective modules in your own shop with the "Signature Pattern" test technique.

Low-cost testing.

When the Sprague Model A Curve Tracer is connected to any general-purpose scope, you have the most complete semiconductor testing facility possible at a budget price . . . only \$149.50.

Get the Sprague Model A Transistor Curve Tracer from your Sprague distributor now. Or, ask him for Brochure M-957. If his supply of brochures is depleted, write to Sprague Products Co., 105 Marshall St., North Adams, Mass. 01247.

COMPLETE SERVICE ON ALL MAKES OF TV TUNERS

Maximum Time In Shop 24 Hrs.

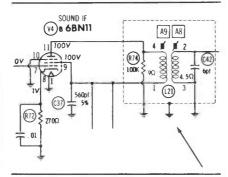
UV Combo's \$16.50

Price includes all labor and parts except Tubes, Diodes & Transistors. If combo tuner needs only one unit repaired, disassemble and ship only defective unit. Otherwise there will be a charge for a combo tuner. When sending tuners for repair, remove mounting brackets, knobs, indicator dials, remote fine tuning arrangements and remote control drive units.

WE UNCONDITIONALLY GUARANTEE All Tuners FOR ONE FULL YEAR

All tuners are serviced by EXPERTLY TRAINED TECHNICIANS with years of experience in this specialized field. All tuners are ALIGNED TO MANUFACTURER'S SPECIFICATION on crystal controlled equipment and air checked on monitor before shipping to assure that tuner is operating properly.

GEM CITY TUNER SERVICE

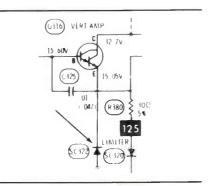

Box 6G Dabel Station 1621 Mardon Drive Dayton, Ohio 45420

troubleshootinglips

(Continued from previous page)

Intermittent buzz in sound Admiral G13 color chassis (Photofact 844-1)

The buzz in the sound was intermittent, and sounded the same as a misadjusted AGC control, but the buzz did not change with the program (which argued against it being an AGC problem).


I sprayed all the components with freeze spray, but without any clues. Also, there was no pattern to the buzz; it might happen with the set hot or cold, rapidly or after a long period of time.

Finally, during ohmmeter tests of the sound circuit, I found an intermittently-open secondary winding in L21, the sound IF transformer. Replacement of the transformer and peaking the adjustments stopped the buzz.

> R. J. Horsley Buffalo, New York

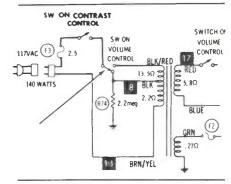
Insufficient height Sylvania D18 color chassis (Photofact 1322-3)

Waveform measurements showed insufficient AC voltage from the

emitter of the driver transistor, Q316.

Many of the components in this area were tested, but without suc-

cess. Finally on suspicion (for it had checked okay), I replaced limiting diode SC322 and obtained full height. Evidently the diode leaked when the AC and DC voltages of the receiver were applied, but not from the lower ohmmeter voltage.


Thomas O. Ward Lutz, Florida

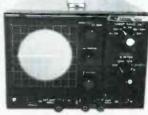
Small picture General Electric A-2 b-w chassis

(Photofact 1196-1)

The picture was small, having a two- or three-inch margin on all sides. Everything else was reasonably normal.

The obvious conclusion is an open filter capacitor. Or at least, a power supply problem. All the filters were bridged with new ones; no change. Sometimes a bad damper tube causes this symptom; but a new damper made no change. And the power-supply diodes checked okay.

Then I noticed that the heaters of all the tubes were not very bright. Different taps of the power transformer primary winding are used in the instant-on circuit; these components now were tested. Apparently the section of the switch connecting to the primary winding was stuck in one position, allowing the heaters to operate from reduced instant-on voltage at all times. And of course, sweep tubes which are operated with insufficient heater voltages act as though they are weak. Installation of a new volume control with switches cured the small size.


> Roger D. Redden Beaver, West Virginia

You'd probably expect a portable oscillosope as rugged and reliable as this one to cost a lot.

You'd be wrong.

Introducing the B&K Model 1403 3" Solid-state oscilloscope. It's so compact, reliable, and inexpensive that it's the perfect scope for most onthe-line monitoring applications. Look at its specs: DC to 2MHz bandwidth at 20mV/cm. Recurrent sweep speeds from 10Hz to 100KHz. New wideangle CRT to reduce case depth to a minimum. Direct-deflection terminals for waveforms up to 150 MHz. Weighs only 8½ pounds. And has a smoked acrylic graticule for trace sharpness and easy reading. All the reliability and accuracy you need in a monitor scope - at a surprisingly

Contact your distributor, or write Dynascan Corporation.

BIJ Very good equipment at a very good price.

Dynascan Corporation. 1801 West Belle Plaine Avenue, Chicago, Illinois 60613

Here's everything you'd expect from a high-priced Hi-Low FET multimeter.

Except a high price.

Introducing the B&K Model 290 solid-state FET Multimeter. Just by glancing at its specs, you can tell that the 290 is capable of more applications than any other multimeter in its class. 75 ranges. Hi-Lo power ohms ranges (low power only 33 mV).
15 megohms input impedance. A large 7"meter.
50 mV to 1500V full-scale sensitivity on both AC and DC. 50 micro-amp current range. Rx0.1 ohm range with 1 ohm center scale lets you measure low resistance down to .01 ohm. Circuit provides automatic overload protection with fuses and spark gaps. More multimeter for your money -that's

just what you expect from B&K. Contact your

distributor, or write Dynascan Corporation. Model 290 Hi-Low FET Multimeter including Model PR-21 Probe: \$1

BY Very good equipment at a very good price.

Dynascan Corporation. 1801 West Belle Plaine Avenue, Chicago, Illinois 60613

Here's everything you'd expect from a high-priced signal generator.

Except a high price.

Our new B&K Model 2050 Solid-state RF Signal Generator has features other companies charge much more for. Look at our specs: 100% Solid-state silicon circuitry with FET's in RF and audio oscillator stages. 6 bands with 1.5% accuracy from 100 kHz to 30 MHz. 3 outputs: RF, modulated RF (400 Hz), and externally modulated RF. Positive anti-backlash dial drive. Zener-regulated power supply. You needn't pay high prices for versatility, accuracy and reliability-now there's the Model 2050. And that's just what you'd expect from B&K.

Contact your distributor, or write Dynascan

Very good equipment at a very good price.

Dynascan Corporation. 1801 West Belle Plaine Avenue, Chicago, Illinois 60613

Introducing the expensive digital multimeter that doesn't cost a lot.

The B&K Precision Model 281.

This 21/2 -digit unit is so versatile, its range covers 99% of your measurements. And its DC accuracy is 1%. The stable 281 also gives you positive over-range and wrong-polarity indications.

It's easy to use and easy to read across all 32 ranges, 100mV to 1000V.

Naturally, we're enthused about our Model 281. You will be, too, when you see our complete specs. Call your B&K distributor. Or write Dynascan Corporation.

Very good equipment at a very good price.

8

Product of Dynascan Corporation 1801 West Belle Plaine Avenue, Chicago, Illinois 60613

DIGITAL MULTIMETERS ... A New Service Tool

Here's practical information about digital multimeters (DMM's) that all technicians need to know.

By John E. Cunningham

Digital multimeters for years have had the good reputation of providing convenience and extreme accuracy of readings, but high prices limited their use to research and engineering laboratories.

During the past year or two, however, rapid developments in the fields of integrated circuits and optoelectronics have permitted significant price reductions. In fact, some models of digital multimeters (DMM's) now sell for less than \$200, and others are priced only slightly higher.

Two important questions arise with the introduction of any new item of test equipment: "How does it work?", and "What are the advantages to me?" We will answer

those questions about digital meters.

How DMM's Operate

Other types of meters read in the analog mode. That is, the reading is continuous and changes smoothly from one value to the other. Whether the instrument is a simple VOM, or a more-complex VTVM or FET meter, the readout is made visually according to the position of a meter pointer relative to the printed scale. The reading must be interpreted from one of several scales, and parallax errors occur if the meter face is viewed from an angle.

The word "digital" originally came from fingers, and the way

they could be manipulated to count up to ten. Digital meters sample the voltage that is being tested, change this analog (amplitude) signal to a digital one (time), and display the result on several readout devices, each capable of showing any of the ten numbers from zero to nine. In other words, a voltage shows as two or more lighted numbers; no interpretation or scales are necessary.

Although the circuit details of the various brands and types of digital meters differ widely, they can all be illustrated by one basic block diagram (Figure 2).

The heart of each DMM is the analog-to-digital (A/D) converter stage. This stage accepts some continuous input signal (such as a DC voltage between zero and one volt) and produces a digital (pulsed) output signal that is directly related in some way to the input. Several different circuits are used for this purpose, each having unique advantages and limitations. In fact, it is in this stage that DMM's differ most from each other.

Linear-ramp converter

One method of converting the analog signal to digital is by use of a single linear ramp. In the converter, a DC ramp is generated starting with a maximum positive value and continuing on to an equal negative value (Figure 3). In this example, the voltage changes at a rate of one volt-per-second. It is imperative that the ramp voltage change at a perfectly-constant rate at all times.

Suppose the converter applies the

Fig. 1 Digital multimeters come in all sizes. One of our editors is shown using a B&K Model 281 to measure voltages in a Heathkit IM-102 which he built. On the table is a Model 970A Hewlett-Packard DMM, probably the smallest available.

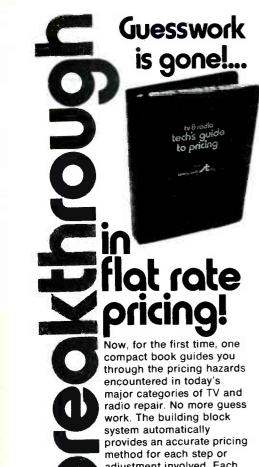
Announcing the Panasonic Parts Hot Line.

In 48 hours we can ship you anything we've got.

The New Panasonic Parts Hot Line is a performance promise: 24-hour-a-day, 7-day-a-week service. Now, if you have a problem getting the part you need, just call one pentral number.

Then things start happening fast: we'l ask our computer to locate your part (or parts) by searching all five regional Panasonic parts depots. In just seconds. Electronically. Then we'll telex an order to the depot which has the part you need and within

48 hours, your order is on its way.*


And we can make this promise with confidence, because our warehouses are now fully automated. We've got the 2,000 fastest moving parts on electronic order pickers. At the touch of a button any of these high traffic parts is at our fingertips.

To become a member of the Panasonic Parts Hot Line, call the toll-free number below. We'll send you a bright red emblem imprinted with the hot line num-

ber for your particular region. We'll also send you an easy-reference booklet that gives you the names of authorized Panasonic parts distributors in your area, and information on other Parts Division services.

We know that your business depends upon having the right parts at the right time — when your customer needs them. Our business is standing right behind your business, with quality parts for over 1,000 products.

Now, for the first time, one compact book guides you through the pricing hazards encountered in today's major categories of TV and radio repair. No more guess work. The building block system automatically provides an accurate pricing method for each step or adjustment involved. Each step is priced according to its complexity or magnitude. Also, there's a bonus section in the book that provides new business planning insight, that gives you an edge in all areas of pricing. It's simple to use! 1...index to the product repair. 2... total times for each repair. 3... convert time to

repair. 3... convert time to price on the calculator page. (converts time to price in any area of the U.S.). Order now! A must for every shop owner...Don't delay another profit day simply fill out and mail the coupon below.

\$1800 per Issue, postpaid.

(Nebr. residents add city and state sales tax)

tveradio tech's guide to pricing

A Spe	erry tech tinc.
☐ More information plea	P.O. Box 5234 se. Lincoln, NE. 68505
My check or money or	ger enclosed.
COMPANY	
ADDRESS	STATE ZIP
	ircle (9) on Reply Card

PROBES SIGNAL ANALOG10-DIGITAL DISPLAY

LOGIC
CIRCUITS

Fig. 2 All digital multimeters conform to this block diagram.


ramp voltage and the unknown voltage to be measured to a pair of comparator circuits as shown in Figure 4. When the ramp voltage equals the voltage being measured, a pulse is produced by the comparator. The ramp voltage continues to decrease at a constant rate, and when it reaches zero, another pulse is produced by the ground comparator. To find the unknown voltage, it's necessary only to measure the time interval between the two pulses. If the unknown voltage was .5 volt, the time between start and stop pulses would be exactly .5 second. A block diagram of the complete meter (Figure 4) shows that the time is measured by counting the number of cycles from the oscillator (clock) between the start and stop pulses. The display is merely a frequency counter.

Although this explanation is greatly simplified, it serves to illustrate several features of DMM's. From the values given in this hy-

pothetical example, a second of time would be required to measure the voltage once (a meter continues to measure until turned off). Most DMM's are not that slow; about one millisecond is more typical. However, all A/D converters require some time to make each measurement.

One drawback of the simple single-ramp circuit is that noise or hum mixed with the signal can cause faulty readings. Depending on polarity and waveshape, these undesired signals can trigger the start pulse too soon or too late.

Conventional meters are not affected excessively by noise riding on the signal. VTVM's have low-pass integrating filters, and VOM's have mechanical inertia of the meter's moving-coil and pointer system. Digital multimeters respond instantly during each count. Also, DMM's have greater sensitivity which permits measurement of lower voltages, those most susceptible to noise.

This partial view inside a Heathkit IM-102 shows the Nixie tubes and a few of the IC's.

ELECTRONIC SERVICING

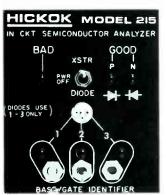
NTRODUCI

For over 50 years Hickok has been a leading U.S. developer of precision test instrumentation for industrial and military requirements. Now all this experience and quality are available to you in our new line of servicing equipment.

LAB QUALITY EQUIPMENT... AT COMPETITIVE PRICES.

We've engineered into our new line industrial performance and rugged reliability. Our service instruments are built, calibrated and inspected by the same people who build our industrial and military equipment. To assure maximum reliability and high performance we use glass-epoxy PC boards. We make extensive use of IC's including custom MOS and CMOS, and when required fully regulated power supplies. All our test equipment is easy-to-use, light weight and portable.

TWO-YEAR WARRANTY.

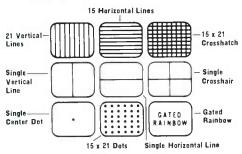

We stand behind our test instruments with the best warranty in the business. Instead of the usual 60 to 90 days, Hickok's warranty protects you for a full 2 years (unconditionally for the first year, only a nominal service charge during the second year). In every way, you get more from Hickok.

It's as easy to use as it is to carry. This lightweight, easy-to-use portable gives instant Good/Bad analysis of NPN's, PNP's, FET's and diodes, in or out of circuit. The palmsized Model 215 weighs just 12 ounces and slips easily into your pocket. The 215 operates anywhere on two standard 9V batteries. It's the same compact size and weight as our Model 239 Pocket Color Bar Generator also featured on this page.

You'll find this semiconductor tester the easiest and fastest of all to use. No searching through data books and service manuals to find basing diagrams. No switches to operate, no buttons to push. Easy no-hands operation allows you to use both hands for probing or making lead connections. Just connect the 215 to the device leads in any order, in/or out of circuit. Instantly and automatically, the 215 determines the lead configuration, and tells you in bright LED displays if the semiconductor is GOOD or BAD. If GOOD, it further identifies which lead is the base (gate for FET's) and whether NPN or PNP.

The solid state design of the Model 215 is based on low power CMOS circuitry that greatly extends battery life. This instrument will not damage transistors, diodes or circuits under test.

(without batteries - test leads included) recharge: is available for Models 215 and 239 when using nickel-cadmium batteries.

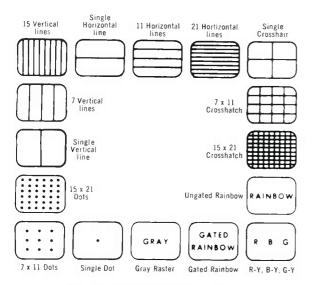


All the performance features you need in the palm of your hand. This portable, battery-operated Model 239 Pocket Color Bar Generator weighs only 12 ounces, yet we've engineered into it industrial performance, rugged reliability and bench instrument quality . . . with half the size and weight. Take a close look at these features.

- Small size, light weight design only 5¾" x 3¾" x 1¾" (fits jacket pocket), 12 ounces.
- Exclusive Hickok-developed MOS LSI IC provides these unique advantages: low component count for high reliability . . . extremely low battery drain . . . rock-stable signals from -50° to +150°F; all digital timing circuits for solid pattern stability . . . and small package size.
- · Simplified controls. Two matrix slide switches select any of the nine patterns.
- · Chroma level adjustable from 0-150% for bright, sharp patterns.

(without batteries)

- RF adjustable, Channels 2-4.
- · Crystal controlled chroma and timing oscillators.
- · Powered by two standard 9V batteries.
- · Rugged polypropylene case.



only our unique MOS LSI circuitry can give you these nine, stable, FCC-Specification

signals in so small and rugged a unit

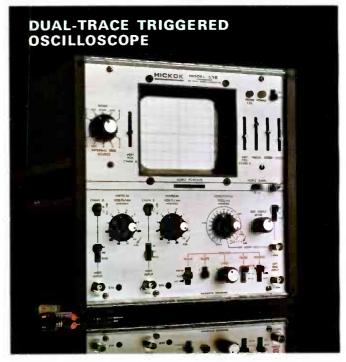
It has everything you ever wanted. It does everything you'll ever need. The small-cube Model 246 Deluxe Color Bar Generator with advanced solid state circuitry provides 16 stable patterns including a gated rainbow for testing/aligning color circuits. Its three gun killers with piercing clips let you selectively kill the red, blue and green gun grids in the set you're testing. There's even a handy storage compartment for cables, leads and line cord.

Maximum versatility with all these patterns.

Compare these features:

- Exclusive Hickok-developed MOS LSI IC provides digitally controlled stable patterns from -50° to +150°F. The lower component count with this IC also increases overall reliability and permits a smaller package size.
- A full 16 patterns gives maximum versatility and minimum distraction when making critical checks and adjustments.
- Chroma level adjustable from 0-200% for bright, sharp patterns.
- RF adjustable, Channels 2-4.
- Crystal controlled chroma and timing oscillators.
- Gun killers are switch-selectable from front panel; leads and piercing clips provided.
- · Adjustable dot size.
- Video output, ±3V peak-to-peak.
- · Horizontal and vertical oscilloscope triggering outputs.

\$17500 (all leads included)



Lab quality and performance in an economical serviceman's scope. A good wideband triggered oscilloscope can be the most valuable signal tracing instrument you own for servicing TV, audio and radio equipment. On the other hand, a cheap, unreliable scope can frustrate you, lie to you and let you down when you need it most. It's your choice.

The Hickok Model 511 Oscilloscope combines economy with the reliability, ruggedness and advanced solid state circuitry built into our laboratory and industrial oscilloscopes.

\$425°°

A value-loaded scope with all the quality, precision and features of our Model 511. This is the ultimate signal tracing instrument for all TV, audio and radio servicing jobs. The Model 512 has all the features or our lab quality single trace Model 511 plus the versatility of four dual trace modes.

When the relative phase of two signals must be known, or when the condition of two waveforms must be analyzed simultaneously only a dual trace scope will do the job. One of the most obvious advantages of dual-trace operation is in analyzing circuits like chroma and video which have keying or blanking from horizontal pulses. More and more technicians are finding practical and essential uses for a dual-trace scope. If you haven't tried a dual-trace and think you need its added capabilities try the new Hickok 512. You'll \$57500 find it to be your best buy.

Both Model 511 and Model 512 have all these important features . . . and many more!

- 10 MHz response flat within 3 dB for all signal levels. Excellent pulse response minimizes overshoot and ringing.
- Foolproof triggering to 15 MHz.
- 5 mV/cm sensitivity, very useful for solid state work.
- Bright 8 cm x 10 cm display. High 2.5 kV accelerating potential and P31 phosphor provide a clear, high contrast trace even for low repetition rate signals.
- Beam finder quickly locates off-scale traces,

- Simplified front panel controls are color coded and convenient to use.
- Unique VITS synch separator automatically locks on Field 1 or Field 2 VITS for video response checks.
- · Line and field triggering for TV service work.
- Regulated power supply maintains amplifier gain and sweep rate within 0.1% with changes in line voltage from 105 to 125 volts
- Industrial quality and construction. Glass-epoxy PC boards used throughout.

HICKOK HAS 50 YEARS OF EXPERIENCE IN DEVELOPING TEST INSTRUMENTATION AND A 50 YEAR REPUTATION FOR SUPERB CRAFTSMANSHIP.

Our new line of test equipment will also include a unique, full feature, in/out of circuit semi-conductor analyzer and a deluxe automatic CRT tester-rejuvenator. Add to this our standard line of tube testers, signal generators and other world-famous service equipment and you'll understand why Hickok is your best value. Call your nearest distributor or write for complete specifications on any of this equipment.

HICKOK
the value innovator

Instrumentation & Controls Division The Hickok Electrical Instrument Co. 10514 Dupont Avenue—Cleveland, Ohio 44108 (216) 541-8060—TWX: 810-421-8286

Dual-slope integration

A popular circuit that minimizes the errors caused by noise mixed with the signal is dual-slope integration. Figure 5 shows two linear ramps, back to back. The first ramp always has the same duration (timed by a certain number of clock pulses), but the amplitude is proportional to the average of the incoming voltage. This minimizes errors from noise and hum riding on the signal voltage.

Next the ramp voltage is reduced to zero by applying a fixed standard voltage of opposite polarity. The higher the ramp voltage at the start of the discharge time, the more time is required to reduce it to zero. A start-counting pulse is generated at the end of the charge period, and then when the ramp voltage reaches zero, the stop-counting pulse is generated. Time between these two pulses is proportional to the reference voltage versus the voltage being tested.

In other words, a capacitor is charged slowly by the voltage under test for a fixed period of time. The higher the voltage, the larger is the capacitor voltage at the end of the charge period. The capacitor voltage is discharged by a fixed voltage; therefore, the time required to reach zero depends on the initial charge in the capacitor. The time required for the capacitor voltage to reach zero is measured by starting and stopping the counting of the clock pulses.

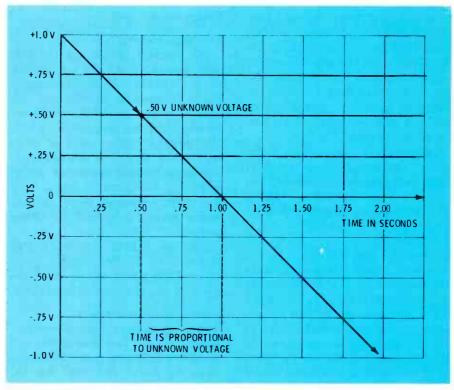
Accuracy of the reading depends on the linearity of the ramps, and on the voltage stability of the reference voltage, which might be from a battery cell or a zener diode.

Surprisingly, long-term frequency of the oscillator need not be very stable. Both the charging and discharging ramps are timed by the same oscillator, so it is necessary only that the frequency remain the same during the two ramps of each individual voltage measurement.

Frequency counting

Pulses from the A/D converter during the discharge time are measured by a frequency counter. This digital device counts pulses up to ten, overflows to the next-higher digit and resets to zero. The next-higher digit does the same, and so on for as many digits as required. The count of each digit is displayed

in numbers from zero to nine.


Types of displays

Different arrangements of segmented elements are used to form all numbers of the readout.

Perhaps the first type used was a small vacuum tube having the numbers zero through nine stacked from front to back. DC voltage applied between the desired number and a common anode caused the number to glow orange. These glorified neon bulbs often are called "Nixie" tubes, and one is used for each separate digit.

Two popular arrangements of segmented number displays are shown in Figure 6. Any number can be shown by lighting the proper segments.

The seven-segment type of Figure 6A is most often used with "liquid-crystal" displays. Liquid-crystal displays consist of two clear glass plates having conductive coatings

Fig. 3 A single-slope converter compares the DC input voltage against a linear ramp having a known amplitude. The input voltage is tested by measuring the time required for the ramp to move from a point which equals the input voltage to the zero-voltage point.

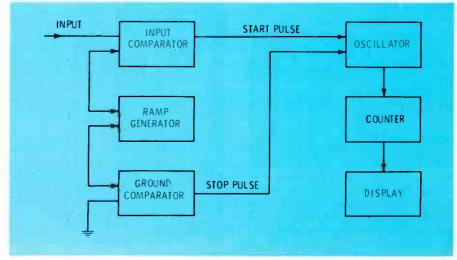


Fig. 4 Block diagram of a DMM using a single-slope ramp.

(for connection to the energizing voltage) separated by a thin layer of liquid-crystal material. These displays require less power than any other. However, external light (either from behind or from room light) is required to generate the necessary brightness. Perhaps they are best for operation under bright ambient lighting.

A 5X7 matrix of dots using lightemitting diodes (LED's) is shown in Figure 6B. Each dot represents an LED.

Because they require more power, Nixies usually are limited to equipment operated from the AC line. Both LED's and liquid crystals need very little power, and are employed in battery-operated meters. Liquid-crystal displays dissipate less power than any other, so they are used in wristwatches, clocks or displays where long battery life is essential.

Regardless of the display, a decoder is required to accept the A/D signal and energize the display devices. In many modern DMM's, this function is accomplished by one integrated circuit (IC).

Signal-conditioning circuits

As mentioned before, the A/D converter of a DMM can only accept a limited range of input signals, such as a DC voltage between zero and one volt. In order to use the DMM for measuring other voltages, the quantity to be measured first must be converted into a DC voltage between zero and one

volt. That's called signal conditioning.

If the full-scale range is less than one volt, amplification is required. Or if it is greater than one volt, attenuation is needed.

Figure 7 shows a typical signal-conditioning arrangement used for DC-voltage measurements. Gain of the operational amplifier (op amp) is determined by the negative feedback through resistors R3 and R4, which are switched as the ranges are selected. Resistors R1 and R2 form a voltage divider to prevent overload when higher-voltage ranges are selected.

AC measurements

AC voltages always are rectified and measured as DC. A single diode, doubler, or bridge circuit might be used for rectification. All are calibrated for RMS, but some rectifier circuits respond to RMS, and others to either peak or average values. Peak- or average-reading meter circuits introduce errors when the waveform is not a pure sine wave (although these are the same errors inherent in other meters).

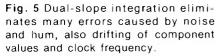
Not all DMM's provide flat response to AC frequencies above about 5,000 Hertz. Better check the specs, if you need wider bandwidth.

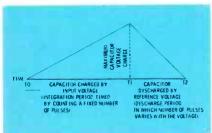
Resistancé measurements

Analog meters have ohmmeter scales that are very non-linear, and require a different scale calibration than the linear one used for DC volts. Also, accuracy of reading is

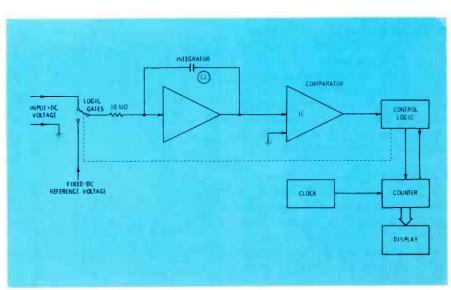
not very good, especially at certain areas of the dial.

Ohmmeter circuits in DMM's must be linear in order to match the readouts, and they are capable of greater accuracy. The theory is simple: generate a constant current; then the voltage drop across an unknown resistance is in direct proportion to the value of resistance. It is only necessary to measure the voltage drop with an appropriate DC scale (Figure 8).


Logic Operations


Logic circuits in a DMM control its operation. They determine when each measurement is started and completed, constantly repeat the measurement, position the decimal point in the readout, and indicate the polarity of the DC voltages.

Basic functions, such as DC volts, AC volts and ohms, are selected by the operator using a function switch. Individual voltage voltage and resistance ranges might be selected by another switch, or they might be determined automatically by the logic circuits. This latter function is called autoranging.


Digital Ranges

The ranges of a DMM are quite different from those of a conventional VOM. With a VOM, the full-scale value can be anything determined by scale calibration and the multiplier resistances. Digital displays have no scale to mark. Also, the full-scale range can't be

(A) Length of the rising ramp is always the same, but the amplitude depends on the input voltage. Time required for the ramp to fall to zero depends on the maximum charge of the capacitor, and it's measured by counting the number of clock pulses during that period.

(B) Simplified block diagram of a commercial DMM using dual-slope integration in the A/D converter.

Essential Electronic Servicing Help from Sams

Here are seven extremely helpful books that can make a serviceman's work much easier. Five of them are just off the press, one is a new second edition, and one came out in '73. It'll pay you to check them out.

VIDEO TAPE RECORDERS

By Harry Kybett

This basic text on the fast-growing field of helical vtr's contains information seldom found in service manuals, which only cover specific models. It explains the fundamentals of video tape recording; describes electronic circuits and mechanical systems in currently available machines; lists basic problems encountered and their solutions; and presents recent developments in the field. 352 pages,

No. 21024 \$8.95

ELECTRONIC FLASH EQUIPMENT By Verl Mott

A fully informative book on the use of flash/strobe equipment, the problems sometimes encountered, and the service information needed to overcome those problems. Its information on the basic flash unit, flash tubes, triggering circuits, power sources, storage, and service can save you time and frustration. 112 pages, softbound.

No. 21020. \$4.50.

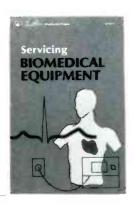
No. 21020 \$4.50

1-2-3-4 SERVICING HI-FI **TURNTABLES**

By Forest H. Belt

Greatly simplifies understanding of the Greatly simplifies understanding of the mechanisms in terms of four divisions: record changers by sections, assemblies within sections, breakdown of assemblies, and mechanical parts. The following chapters cover specifics for each type of drive system, tone arm and turntable. In addition, problem diagnosis—locating, isolating, and pinpointing faults is explained so that servicing can be accomplished quickly and easily. 192 pages, softbound.

TUBE SUBSTITUTION HANDBOOK, 17th Edition


By the Howard W. Sams **Engineering Staff**

Engineering Staff

Quick and accurate information for making suitable substitutions when exact replacements are not available. Lists over 18,000 replacements in seven sections: American receiving and picture tubes, industrial tubes, cross-reference of subminiature tubes, communications and special tubes, cross-reference between American and foreign tubes. 96 pages, softbound.

No. 21007 \$1.95

No. 21007 \$1.95

SERVICING BIOMEDICAL **EQUIPMENT**

By Elliott S. Kanter

Introduces the biomedical technician to the specialized types of electronic and electromechanical devices used in present-day hospi-tals. Describes test procedures, service and maintenance techniques, and safety factors of centrifuges, electrocardiographs, defibrillators, monitoring devices, oxygen and vacuum devices. 160 pages, soft-

No. 21011 \$5.50

COLOR-TV SERVICING GUIDE 2nd Edition

By Robert G. Middleton

This guide uses color photos of symptoms of circuit defects as they appear on the picture-tube screen. If the serviceman follows these picture clues and uses proper troubleshooting methods, he can service sets correctly and in less time. Covers both tube and solid-state circuits. 112 pages, softbound.

No. 20990 \$4.95

ELECTRONIC SECURITY SYSTEMS

By Leo G. Sands

The principle and operation of the various electronic devices used for industrial and home security systems are covered in detail. Chapters on: scope and application, switches and relays, sensors and encoders, indicators and alarms, electrical and electronic control and alarm circuits, security communication and systems installation, closed-circuit ty, transmission media. 416 pages, hardbound. No. 23205 \$5.95

		ES
ELECTRONIC SECURITY SYSTEMS	HOWARD W. SAMS & CO., INC. 4300 W. 62nd St., Indianapolis, Ind. 4	16206
by too & fields	Order from your Electronics Parts Distributor, or mail to Howard W. Sams & Co., Inc.	
	Send books checked at right. \$ enclosed. F	lease inclu
	sales tax where applicable. Canadian prices slightly highe	er.
40	sales tax where applicable. Canadian prices slightly higher Send FREE 1974 Sams Book Catalog.	er.
	☐ Send FREE 1974 Sams Book Catalog.	_ 210
	☐ Send FREE 1974 Sams Book Catalog.	☐ 210 ☐ 210

more than the largest number formed by the digits in the display.

Figure 9 shows a digital display using four digits. Although it isn't always true, we assume that each digit can display any number from zero through nine. Now, the largest voltage possible to display with four digits is 9999 volts. On this range, the decimal point would be to the right of all four digits. The smallest voltage that can be displayed is 100 microvolts, or .0001 volt. Here the decimal point must be to the left of all digits. The full-scale voltage of the range in use depends only on the position of the decimal point. In other words, all ranges are decimally related.

In specifying the digits of a DMM, many manufacturers use expressions such as 4-1/2 digit capability. Generally, the whole number of digits are the ones capable of assuming any value from zero to nine. If another digit of the display cannot assume all values, it is referred to as a 1/2 digit. In most cases, it either is not lit or it shows a 1. Therefore, a 3-1/2 digit display can read up to 1999.

When such a display switches to over 1000 volts, it is said to be overranging. Chart 1 shows the nominal, overrange, and the value of the least-significant digit for the

Nominal Range up to:	Overrange up to:	Least- significant digit:
1.000 volt	1.999 volts	10 mV
10.00 volts	10.99 volts	1 mV
100.0 volts	199.9 volts	.1 volt
1000 volts	1999 volts	1 volt

Chart 1 Limits of overrange, and the minimum values of the least-significant digit for four voltage ranges.

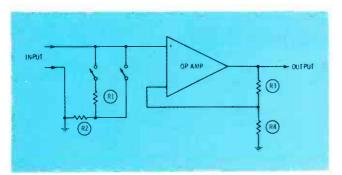
Fig. 6 Displays are segmented so all numbers from zero to nine can be formed by lighting the proper segments. (A) A 7-segment display looks this way when showing number 3. (B) A 5X7 35-segment display forms number 5. (C) A 5-1/2 digit gas-discharge display. (Courtesy of Diacon, Inc.) (D) An experimental electronic clock using liquid-crystal readout. (Courtesy of RCA)

four usual DC ranges.

Most readouts also show a plus or a minus sign at the left of the digits to indicate polarity.

It's easy to see when the voltage applied to a conventional meter is excessive; the pointer swings off scale on the high side. Digital meters have no pointers, so some provision must be made to show when the applied voltage is greater than the scale can measure. For example, suppose a 3-1/2 digit display indicated 1999 volts. How do we know that the actual voltage isn't larger than this? Some DMM's have a separate overload indicator, or all the digits may blink at once. Consult the operating

manual for each instrument to be certain.


Specifications of DMM's

Many specifications of DMM's (such as the number of functions, its ranges, and the input impedance) have the same meaning as those for any other type of multimeter. Other specifications might be unfamiliar to you, because they apply only to digital meters.

Some unique digital specifications are sensitivity, resolution, accuracy, common-mode rejection, and normal-mode rejection.

Sensitivity and resolution

Sensitivity describes the ability of

Fig. 7 Changing the value of negative-feedback resistors determines gain of the op-amp, and input voltage dividers prevent overload. Both together determine the full-scale range.

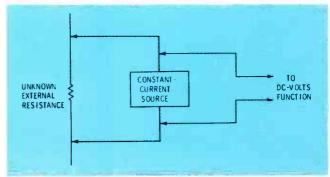


Fig. 8 Resistances are measured by applying constant current, then reading the voltage drop across the resistance.

a DMM to respond to small changes of voltage. It's usually equal to the value of the least-significant digit on the range in use.

Resolution is related to sensitivity, but stated as a percentage. For example, a 4-digit DMM can resolve one digit in 10,000, so the resolution is stated as one part in 10,000, or as .01 per cent.

Accuracy

Different ratings must be given to DMM's to describe accuracy. For years, we have worked with multimeters whose accuracy was expressed simply as a percentage of the full-scale rating of the scale in use. A 3% multimeter on the 100-volt range could have an error of up to ±3 volts at full scale. Little thought was ever given about what percentage of error this represented at low-scale readings.

Accuracy of a DMM is given in two figures. The first is a percentage of the indication. If a DMM indicated 120 volts and the accuracy was rated at $\pm 2\%$, the error could be up to 2.4 volts.

The other specification might be either a percentage of the full-scale range or a certain number of digits. As an example, assume a 3-1/2 digit DMM on the 1000-volt-DC range, and an accuracy specification of $\pm 2\%$ of indication ± 1 digit. At 120 volts DC, the possible error due to the first specification would be ± 2.4 volts. Because the least-significant digit represents 1 volt, the error represented by ± 1 digit would be ± 1 volt. Therefore, the total error might be as much as 3.4 volts maximum.

One reason for the question about the least-significant digit is found in the basic nature of frequency counters. Sometimes there is a fraction of a pulse at either the beginning or ending of the counting time. Therefore, accuracy of counting can never exceed ±1 digit.

Common-Mode Rejection

As shown in Figure 10, normal-mode signals enter the instrument through the two usual input terminals, just as the desired signal does. Common-mode signals (usually undesired) enter between the normal inputs (when not grounded) and case ground.

Any 60 Hz signal riding along with the DC voltage that is being

measured is the main cause of normal-mode errors. A low-pass resistance/capacitance filter (or a bridged-T filter tuned to 60 Hz) can be added to the input terminals to minimize the AC. Of course, dual-or triple-slope integration in the A/D converter also reduces the error from noise or 60-Hz signals.

Some DMM's have both input terminals isolated from the case, which permits measurement of voltages in a circuit where neither side of the meter is grounded. This increases the possibility of stray signals entering the meter through the common mode and causing errors.

When listed, the manufacturer's specifications usually state the ability of the instrument to reject stray signals in both common and normal modes. This rejection is usually listed in decibels.

Advantages of DMM's

The most obvious advantage of

digital multimeters is the convenient readout, which is displayed in easy-to-read figures with the decimal point in the right place. There is no need to estimate how far a pointer is from a mark on a scale, and it's not necessary to notice multiplying factors.

Parallax is the change of apparent position from different angles. With conventional meters, parallax errors are introduced unless you look at the meter scale from a point perpendicular to the pivot of the meter. Mirrored scales offer one solution for the error, but require additional time for each measurement. Digital displays have no parallax errors.

Accuracy of readings with freedom from drift are other major advantages of DMM's. Some models are rated on DC volts with accuracy as excellent as .2% ±1 digit, and this is obtainable without zero adjusts or any need to interpret a scale!

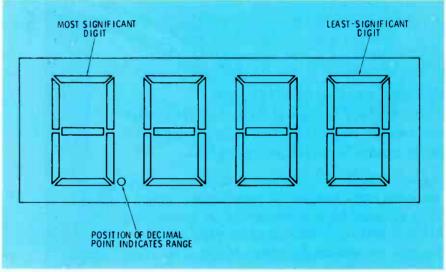


Fig. 9 Appearance of a 4-digit display with a decimal point.

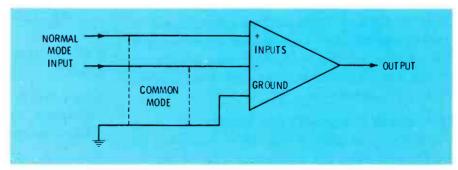
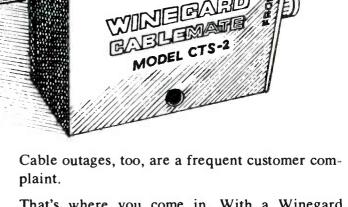


Fig. 10 Normal-mode undesired signals enter a DMM in the same way as the desired voltages. Common-mode undesired signals enter between the input terminals and the metal cabinet.

This unusual switch cable TV user into your

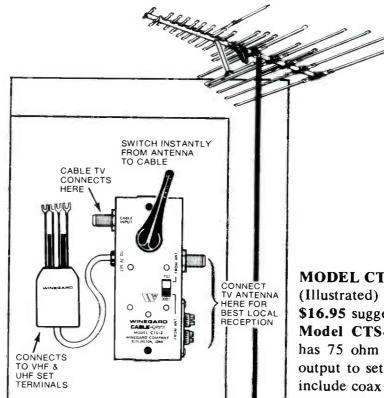
customer.


The new exclusive Winegard Cablemate TV Signal Selector lets your customers enjoy the advantages of both cable and TV antenna reception.

If there's cable TV in your area, a lot of your customers already have, or someday will have, a cable hookup. Most of them sign up to get long distance stations or local programming not possible with an outdoor antenna. At the same time, cable people claim that every subscriber will get better reception all the way around.

But the cable subscriber usually gets short-changed. He soon finds out that the channels he regularly watched with an outdoor antenna don't come in as clear on cable. And these are almost always the network stations, the ones people watch 90% of the time.

Technicians Frequently Get Blame


The problem of poor quality cable reception on one or more channels is a common one in city after city. Too often the TV technician is called for TV set repair when the cable is really at fault.

That's where you come in. With a Winegard Cablemate TV Signal Selector and a Winegard outdoor antenna.

Cablemate lets you connect cable signal and the antenna signal to the TV receiver. The viewer simply flips a switch to select antenna or cable.

can turn a new TV antenna

Not "Just Another Switch"

Cablemate, of course, is not an ordinary switch. It has specially designed circuitry with 58db isolation to prevent interference between cable and antenna signals. And it gives you a choice of coax or twinlead antenna input.

Customers Are Waiting For You

If your cable TV customer already has a good antenna on the roof, then all he needs is Cablemate. But if he has an inadequate antenna or none at all, then he's a hot prospect for both an antenna and Cablemate. That's profitable business . . . and the easiest way yet to sell a TV antenna to a cable subscriber.

As you can tell, you stand to gain a lot from one switch! But then remember it comes from Winegard, the folks who consistently originate new and better products for the TV service industry.

MODEL CTS-2

\$16.95 suggested list.

Model CTS-1 (same, but has 75 ohm and 300 ohm output to set and does not include coax or band separator): \$14.95 suggested

For more information, circle the reader's service card or write to: Winegard Company, 3000 Kirkwood Street, Burlington, Iowa 52601

For More Details Circle (12) on Reply Card

SAFETY... The ignored subject

By Wayne Lemons

It's only human nature to become complacent about hazards that are not visible. However, the dangers from television receivers are so important they should be kept in mind at all times.

Have you given any serious thought to the potential dangers inherent in your job of repairing television receivers, and how to minimize those hazards? Before buying replacement parts, do you consider what future dangers your choice of wrong specifications might bring your customers? I fear we ignore these questions all too often.

Television receivers can expose people to four different dangers:

- electrical shock.
- · fire.
- X-radiation, and
- picture-tube implosion.

Most new receivers have been carefully designed and manufactured to minimize those hazards. So it is the responsibility of TV technicians to maintain those relatively-safe conditions by proper repairs.

Dangers To TV Users

The one condition most dangerous to the operators of TV sets are any shorts that bring a "hot" 120-volt connection to the outside where a person could touch it accidentally. Such an accident might cause only an annoying tingle if the

floor were dry. But if a lower resistance ground return is possible, the result could be serious.

"Hot-Chassis" Receivers

Any receiver having one side of the line voltage intentionally connected to the main part of the chassis is called a hot-chassis type. Now, it might or might not have some kind of a power transformer, so the term "transformerless" is not sufficiently accurate. Don't be fooled by heater transformers; many chassis have them, but ground the power line, too.

"Hot" chassis, when correctly mounted in their cabinets, are made safe by insulation. Frontpanel knobs usually are made of plastic, and the shafts of the tuner and controls are insulated from the chassis, either individually or as a cluster of controls. Rear-chassis controls which can be reached from outside the back have plastic shafts. And around any holes through the cabinet back are shields of insulating paper to prevent people from inserting metal objects which might touch the chassis or wiring.

Metal cabinet parts and escutcheons also are insulated by mounting the chassis to the cabinet by screws driven into plastic blocks. Capacitors in series between the antenna connectors and the wires of the twin lead going to the tuner isolate antenna circuits from the chassis.

Needless to say, none of these safeguards should ever be defeated. It's an excellent idea to examine every machine, just before you replace the back, to make certain all the insulators are in the proper place, and that none of the mounting screws ploughed a wrong path down the outside of a plastic block so it's shorting cabinet and chassis together.

Static charges

Annoying, but not dangerous to life, are the tingles or small shocks caused by discharge through the body of high-voltage low-current static charges. These static shocks originate from two different sources.

One kind of static shock has no direct connection to the TV set, but happens from contact with any metallic object. Usually this is caused by walking across a rug, then touching anything made of metal. Friction from the walking builds up static electricity on the body, and it discharges with a visible spark and a tingle to the person when he touches anything made of metal.

Customers have been known to be afraid of a TV or stereo because they suffered a shock when they turned it on or off. They thought the machine was defective and dangerous. In such cases, you should explain (then demonstrate with a lamp or doorknob) that touching other metallic objects also produces the same shock.

Other mild shocks are caused by external static charges built up

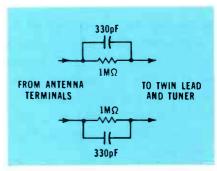


Fig. 1 "Hot"-chassis TV receivers have this type of protective circuit. The desired RF passes through the capacitors, but DC and 60-Hz voltages are blocked. Static charges leak away through the resistors.

The latest in kits...the newest factory assembled products. You'll find them all in these two new Heath catalogs. The Electronic Instruments catalog provides detailed information and specifications on dozens of low cost, high performance instruments for service, design and teaching applications...all factory assembled and guaranteed. The new Heathkit catalog gives details on instruments, stereo systems, color TV, amateur radio gear and much more...all in easy-to-build kit form. Use the postcard or coupon to get both new catalogs now!

High and low voltage power supplies...available kit or assembled. Low voltage supplies start at \$21.95* in kit form...as little as \$125* for a full-featured, factory assembled model.

Digital voltmeters, VTVMs and VOMs. Factory assembled & calibrated digital voltmeters start as low as \$120.* Kit form portable VOMs start from just \$22.50.*

Single and dual trace solid-state oscilloscopes. Choose a 15 MHz scope kit for only \$329.95*... get it factory assembled and calibrated for just \$475.* 5 MHz scopes as low as \$119.95* in kit form.

Frequency counters. New 110 MHz factory assembled counter just \$325*... assembled 600 MHz counter only \$795.* Kit form counters begin at only \$169.95* for 30 MHz...\$229.95* for 100 MHz...just \$379.95* for 180 MHz.

Strip chart recorders. New factory assembled 10~mV-10~V recorder with 10~speeds is only \$335.* For just \$149.95* you can get a 12-speed, 1~mV-10~mV recorder in kit form.

Get your TWO NEW FREE Heath catalogs. Send postcard or use coupon now!

	1,000,000				
Heath Company	Schlumberger				
Dept. 196-3 Benton Harbor, Michigan 49022					
Name					
Title					
Company/Institution					
Address					
CityState *Mail order prices; F.	O.B. factory. AI-103				

from voltages inside the TV receiver. It seems logical to believe that merely insulating a piece of metal, or by connecting it to ground through a capacitor, would protect against shocks from 60-Hz voltage and from static charges alike. Well, the capacitor idea works fine for 60-Hz problems, but not for static charges.

Here's the reason. An undergrounded piece of metal near another which has a DC voltage will receive part of the voltage by capacitance-charging action. When the voltage source is the high voltage inside a picture tube, any ungrounded metal object nearby charges up enough to produce a small arc to ground, if given the chance. The solution, then, is to ground all exposed pieces of metal on "cold" sets, or connect them to ground through a resistance, if the chassis is "hot".

That's the reason for connecting a resistor and a capacitor in parallel from escutcheons, metal cabinet, or control brackets to the chassis. Resistors of values between 470K and 2.2M are used for this purpose. The capacitor grounds RF, and the resistor bleeds away any static charges so they can't build up to troublesome levels.

A similar need is fulfilled by the resistance/capacitance filters (see Figure 1) between both antenna connectors and the antenna coil in the tuner. The desired RF signal goes through the capacitors with very little loss, while the resistors bleed away static charges, which

might otherwise build up enough to are across and ruin the capacitors.

Watch tuner replacements

Tuners intended for use in "hot"-chassis receivers are different in two ways from transformer-operated "cold" sets. As shown in Figure 2, most "hot" tuners have RC filters at the antenna terminals on the tuner, and the tuner shaft includes a plastic insulator. Although a tuner intended for a "hot" set can be used with a "cold" chassis, don't ever install a "cold" tuner with a "hot" chassis.

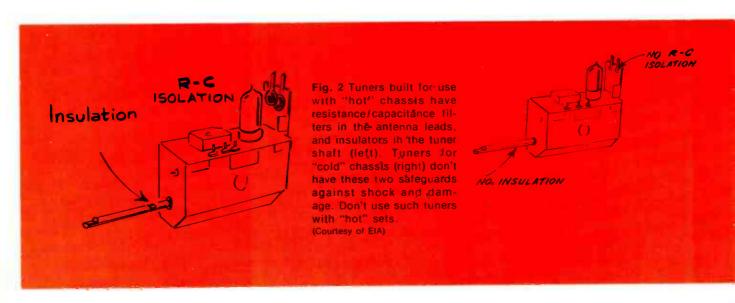
Polarized wiring

One conductor of house wiring is connected to earth ground. If this wire always was the one going to the chassis of a "hot" receiver, there could not be a shock hazard. Many sets have polarized "cheater" power cables and input power sockets so the cable can be plugged into the set only one way. In addition, each male plug of the cable has one wide prong. In a correctly-wired house, this is the one connected to ground.

The danger is that the house wiring might be wrong, or that some misguided technician or customer might cut off the extra width of the prong, allowing the mutilated plug to fit any AC outlet regardless of polarity.

Another safety feature is house wiring that has a third conductor which is grounded. Unfortunately, this desirable feature can be defeated all too easily by use of a dime-store adapter.

Measuring Leakage


Visual checks of the various insulating safeguards are not enough. I can't forget the refrigerator motor I checked once long ago. It looked okay, but between the refrigerator cabinet and a nearby sink was the full 120 volts. Someone had replaced the fuse socket (a screw-in type) with one not having any insulation. One wire of the fuse was solidly grounded to the frame of the motor! It was just a miracle nobody was electrocuted by that example of appliance "servicing".

The only way to be certain any individual TV is safe from 120-volt shocks is to measure the leakage voltage. Two popular ways are used.

VOM measurements of leakage

Because many technicians use 20,000-ohms-per-volt VOM's during service calls, one method of measuring voltage leakage is based on that type of meter. The sensitivity for AC measurements usually is 5,000-ohms-per-volt, and this meter resistance determines the voltage reading obtained. Other resistances produce different voltages for the same amount of leakage.

After the repairs are all done, and the back of the receiver is in place, string a temporary connection from the nearest earth ground (water pipe, sink, lavatory faucet, etc.) and measure the AC voltage

Have Time For An Injury?

By Ted Youngman, CET

From the time it was new, my scope had a tilted base line. One day I decided to correct the tilt, and removed the scope case to expose the works. Sure enough, the clamp around the base of the CRT was loose. I plugged in the power cable, adjusted for a sharp horizontal line of full width, and turned the CRT until the line was level with the graticule.

Because I was a thoughtful, safety-conscious person, I carefully avoided the high-voltage anode on the CRT as I tightened the screw in the clamp. I stood back and admired my accomplish-

ment. Perfect!

Now, I never had looked inside my scope before, and this seemed a good chance to admire it. After examining the topside, I decided to look underneath. My eyes scanned the plug firmly inserted in the power outlet, and I briefly thought about removing it. But, for reasons too unclear to be explained, I didn't pull the plug.

I grabbed the chassis with both hands to turn it over, and in a flash knew something was wrong. Smoke poured from the chassis, as I heard an erratic buzz, smelled something burning, and felt a piercing pain in my right hand. I was doing a 60-Hertz handshake with my scope and couldn't let go! Finally, with my left hand, I unplugged the power cable, and examined the results of that long.

dangerous second.

One finger of my right hand had a half-inch jagged wound with white edges. Under the break in the skin was a hole large enough to contain a small transistor. Don't believe it? Well, this time I don't recommend "hands-on" training as a means of finding out!

What about the scope? It hadn't escaped unscathed. The solder connection I had touched was barren of solder; evidently vaporized in the arc along with part of my finger. It seems I had made contact with the terminal carrying high voltage from the power transformer.

Now the moral: It takes only a second either to pull out the line plug, or to get seriously shocked. What will you do with your

between this ground and each exposed metal part of the receiver. Select the 2.5-volts AC scale of the meter, and have the receiver plugged in and turned on. After you make that first voltage test, reverse the polarity of the AC cable, and repeat the measurement. If necessary to defeat any safety wiring, use a non-polarized extension cable.

Under these conditions, a full-scale reading of 2.5-volts AC is considered to be the **maximum** safe amount of leakage. This is a current of .2 milliampere, or about 600K of leakage resistance.

Measurements by SS meter

Another more scientific test, not so dependent on meter resistance

for accuracy, is shown in Figure 3. A capacitor and resistor in parallel are connected between the test point and earth ground. Then the voltage drop of AC and both polarities of DC across the RC circuit are measured by a battery-operated solid-state multimeter or FET meter. (AC-operated meters might have some internal leakage and thus give wrong readings.) Value of the capacitor is such that RF and high-frequency noise are bypassed to prevent false readings, but the value is small so accuracy at 60 Hz is not degraded. Maximum safe current is stated usually as .5 milliampere. That's .75 volts across the 1.5K resistor, or the equivalent to leakage of 240K ohms.

Test for antennas

Leakage of voltages in antenna or MATV systems should be checked by one of the methods given previously. Technicians have been known to receive dangerous shocks from undergrounded antennas made "hot" by receiver shorts, or from shorted MATV amplifiers.

No receiver can be above suspicion. For example, the power transformers in "cold" chassis receivers seldom develop internal leakage. However, I remember one in a color set that had a short circuit between the primary and the power-supply secondary. Performance of the receiver was not affected. Because the secondary winding was not grounded directly, ohmmeter tests were not conclusive. But the chassis measured about 80 volts to earth ground for one polarity of the power cable, and about 40 volts the other way. When used with rabbitear antenna, this set was very dangerous to anyone operating it.

Because it was a "cold" chassis, no RC filters were supplied to isolate the antenna leads. If this receiver had been connected to an outside antenna that was not grounded, the antenna and the lead-in wires would have been an extreme shock hazard to anyone touching them. All the more dangerous, because it's a condition we don't expect.

If this particular receiver had been attached to a grounded outside antenna, the overload when the set was plugged in would have ruined the antenna coil and possibly blown the house fuse.

Beware of extra wiring

Investigate carefully, if you find wires other than power cable and antenna leads coming out of a TV set. The customer might have attached an extension speaker, phonograph, or other gadget, in such a way as to make the television a shock hazard.

Several years ago, a case was written up in magazines about a death attributed to an AC-DC "hot"-chassis radio used as an extension speaker. Don't let that happen to you.

Normal leakage

Every television receiver operated

from AC power has some leakage. Perhaps the smallest possible amount is that produced by stray capacitance between the primary winding and other windings plus the case in the power transformer used in a "cold" receiver. However, even this tiny (and safe) amount of capacitance is sufficient to cause the sensation of being shocked, if a person is grounded and then touches the chassis or some conductor attached to it.

That's the reason for using meter readings to determine the exact amount of current in the leakage path. This way, you know for certain; and you can show the customer the reading, if he doubts your diagnosis.

Implosion Dangers

Original-equipment picture tubes normally mounted in the cabinet present virtually no implosion hazards. Each face plate is protected by a safety glass, tension band, or some other device. And the neck is protected from damage by the cabinet and back, which also restrain the flying glass should an implosion take place.

But with the back removed, or with the tube out of the cabinet, each picture tube is a potential bomb. It speaks well for the quality of the tubes plus the caution of the technicians that so few injuries have

resulted from the handling of picture tubes.

Nevertheless, it's still recommended that a technician wear goggles and gloves when handling or installing picture tubes, especially color tubes. Don't bump, scratch or apply undue pressure against any part of a picture tube. Don't pick up a tube by the neck. Order all spectators to leave the room (for their own safety) when you install a picture tube.

Radiation Dangers

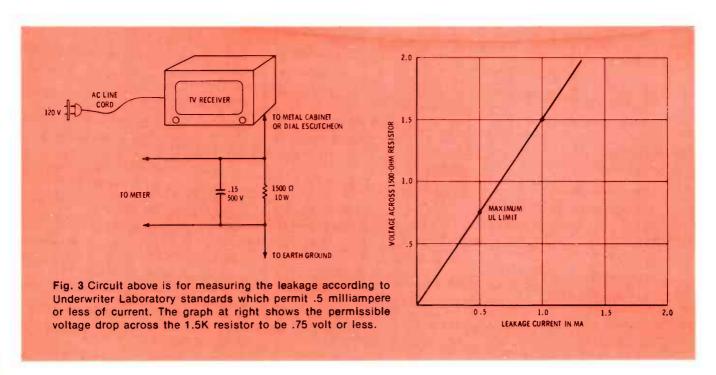
Although the radiation scare is long gone, it's not forgotten; and the possibility of excessive X-radiation still exists. In older color receivers, the danger multiplies with high voltages above about 25KV. Radiation can be generated in the picture tube, or in other tubes, such as HV rectifier, or shunt-DC HV regulator.

No technician accurately can judge the amount of high voltage without a meter (although some believe they can). We recommend you measure the high voltage in each color set you service. In addition to being the first step of protecting the viewers from possible radiation, this simple measurement often indicates borderline troubles before they become more serious. The high voltage should not rise above the rated amount even with

the brightness control turned down for a black screen.

Have you heard that several models of the new 1974 color sets are designed for safe operation using high voltages up to 30KV? Solid-state HV rectifiers are used, and there are no regulator tubes with high voltage applied to them. In addition, the glass used in those picture tubes is a special type giving more filtering of X-rays.

Observe these two important precautions about sets which have the extra-high anode voltage. Replace the picture tube **only** with one having this new kind of glass. And don't operate one of these chassis on your test jig before you install a new test tube which has the new type of glass.


When you are working with any model of color set, keep radiation down to a minimum by always replacing all access panels and high-voltage shields.

Fire Hazards

Have you ever examined a room after a fire originated in a TV receiver? Well, I have. They were sights I would rather forget.

At least one governmental agency is investigating the reasons for fires started by TV's, so it's time to speak frankly about a subject usually swept under the rug.

I don't believe either the manu-

Dust and dirt act as tinder, making fires easier to start. Clean all chassis as one step toward safety.

facturers or the technicians are often to blame for fires. Any electrically-operated device has the potential for causing damage. However, any reduction of this waste of lives and property certainly would be welcome. It's not a simple problem, because fires can originate in several different ways.

Fires From Arcs

Most arcs don't generate enough heat to start a fire; there's not enough current. However, a mixture of dust, cobwebs and oil (either from lubrication and cleaning, or from cooking grease borne by the air) becomes incendiary, and might be ignited by large hot arcs. As prevention, it's best to dust and clean dirty chassis during repairs, and to instruct the customer to shut off the receiver if arcing begins.

Replace any defective spark-gap capacitors with ones of the same rating; don't use normal capacitors of the same value.

Fires From Resistors And Capacitors

Resistors hot from overload and capacitors with burned spots from leakage have been identified as the sources of some fires. Their heat can ignite combustible materials nearby, which then smolder or burn. For example, a ceramic capacitor inside a yoke might short or arc and cause heat which would start a fire on the insulation of a wire lying against the capacitor. Then the fire follows the yoke wires to the chassis.

TV manufacturers who are conscientious use components of certain strict specifications in an effort to minimize the risks of fire. For example, glass-insulated film-type resistors usually are employed for

wattages above 1 watt. Carbon resistors tend to change value with heat. And of course, carbon itself will burn (consider the way charcoal is used for cooking).

Low-value low-wattage carbon resistors which are used as decouplers should **not** be replaced with ones of higher ratings. Normal wattage dissipation is far below the rating of the resistor, so no more reserve is needed. But more important, a low-wattage type is more likely to burn in two when overloaded, and thus, open the circuit, as a fuse would do.

Regarding capacitors, the situation is different. It's perfectly okay to use capacitors of the same capacitance but **higher** voltage rating. In fact, it's an excellent idea to do so.

At least one manufacturer is printing gray blocks on schematics over the symbol of any components whose specifications are important to safety. That's a good idea; it reminds the technicians to use more care in selecting replacements.

On/off switches have caused more than their proper share of problems. Voltage transients on the power line (perhaps lightning) can are across such a switch, even though it's "off", and short out other components in the chassis. Now, in addition to the chassis overload (which might or might not be protected by fuses or circuit breaker), the switch either heats or feeds through the power until the power cable is unplugged from the wall outlet. Either way it is a danger.

Capacitors bypassing each side of the 120-volt line to chassis (or a single capacitor across the line) should be of special designs which fail in ways that are not dangerous. Replace these only with ones intended for such use.

You should do two general things to maintain the original safety from fires. First, know which parts are of critical specifications so safe ones can be ordered. And second, move wires or components to locations that minimize the hazards. For example, insulated wires should never touch any component which dissipates more than .5 watt. In fact, it's better if wires touch none of the active parts, because a capacitor can short and burn, or a

resistor can become overloaded and heat up. Also, wires and components should be kept away from voltages which are high enough to arc. This is particularly important with horizontal sweep and high voltage circuits.

Good Advice

One form of electronic "Russian Roulette" is permitting a TV receiver to operate without anyone watching who can shut it off in case of trouble. Children and adults alike should be instructed to shut off the TV if the picture is lost. That minor defect in the horizontal sweep circuit might turn into a fire (or at least a major repair) if allowed to continue.

Technician Safety

The preceding information largely was for the protection of the paying customers. And you also should be concerned about your own safety. Some things are self evident, such as not touching circuit wiring, and not getting too close to high voltage, knowing it can jump an inch or more.

Bare concrete floors which are laid over the ground are a shock hazard to anyone working on live chassis. Moisture from the earth constantly seeps upward to the surface. It evaporates so the floor doesn't appear wet, but the moisture is sufficient to conduct plenty of electricity to any technician who touches B+ or a hot line-voltage connection. Cover such floors with insulating material, such as asphalt tile or rubber mats.

Benches should be of wood, not metal. Or they should be covered with pressed wood. Imagine the fireworks if two "hot" chassis sets were on a metal bench at the same time and one of the power cables got plugged in backwards!

Don't use rug material to pad benches. Hot tubes can scorch them, and some rug material is flammable.

Danger from shop antennas

Every TV-repair shop should have a good master-antenna system. To avoid damage to both the antenna system and the TV's, we advise you to use couplers that (Continued on page 54)

STRANGE SYMPTOMS FROM "FAIL-SAFE" CIRCUITS, part 1

Following the big radiation scare a few years ago, our government tightened the specifications so that, even under the worst-possible conditions, X-radiation could not be excessive. One answer for these requirements is found in "fail-safe", "hold-down", or "redundant" circuits which appear to "do" nothing. However, protective circuits can fail, so all technicians should understand which peculiar symptoms point to a defective "fail-safe" circuit. By Lawrence Bowen

Fail-safe circuits are designed to prevent X-radiation because of excessive high voltage resulting from failure of the primary HV regulation. Some models replace the HV-adjustment control with precision resistors to prevent wrong adjustments. In others, any loss of HV regulation is sensed, and the circuit automatically reduces the high voltage and width. Another method forces the picture out of lock when the high voltage becomes excessive.

Four things need to be considered:

- How does each circuit operate when the high voltage is normal?
- How does each circuit operate when the high voltage is excessive?

- What are the symptoms when the protective circuit fails?
- How can each circuit be tested easily and accurately?

Fixed Shunt Regulation

Several typical protective circuits can be found in the RCA CTC38 chassis. This model appeared in three model years, with slightly different variations. First-year sets (prefixed FL for table models, and GL for consoles) used the HV circuits of Figure 1.

The usual variable HV control was replaced by R182, a 1% precision resistor, and the tolerance of R183 was tightened to 1%. HV controls in earlier models caused

few problems, but they were subject to a lot of misadjustment by "phantom screwdrivers". Fixed resistors, of course, eliminate that problem, but they prevent any tailoring of the values to compensate for long-term changes in the high-voltage system or to match individual regulator tubes. R181 is added to provide some variation of regulator current. It can be jumpered to increase the high voltage (less regulator current).

Resistance measurements of R182 and R183 using an ohmmeter of the usual 3% accuracy won't show if they are slightly off tolerance. If you can't find any other reason for excessive high voltage

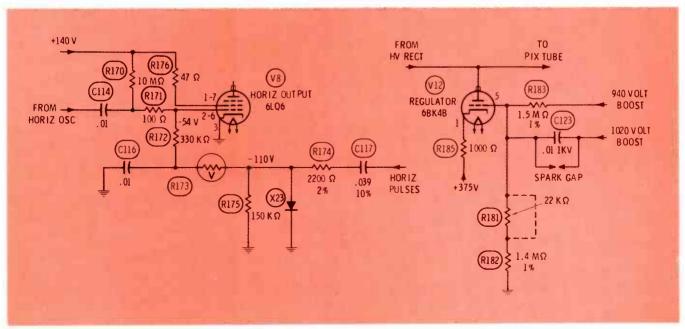


Fig. 1 Partial schematic of the RCA CTC38 early-production chassis shows the DC-shunt regulator, and the back-up circuit that places a ceiling on the high voltage by changing the bias of the horizontal-output tube.

Fig. 2 Late-production RCA CTC38 chassis obtained negative voltage for the back-up circuit from the blanker grid. R173 was changed to a varistor to conduct more of the change of voltage to the output grid. Positive voltage needed to cancel the normal negative voltage of the back-up circuit was obtained from X23. When the regulator drew no current, there was no positive voltage at the anode of X23. Therefore, nearly all of the negative blanker voltage reached the grid of the output tube, which weakened the sweep and high voltage.

caused by insufficient regulator current, replace both R182 and R183 with 1% types known to be good.

Redundant Regulation

In military and space applications where reliability is a "must", critical circuits often have back-up or apparently superfluous circuits. Older color sets connected some of the negative DC voltage from the grid circuit of the blanker to the grid circuit of the horizontal-output tube. Without this connection, loss of HV regulation and zero picture tube current together would skyrocket the HV nearly to 50KV. With the blanker connection, the HV would not exceed 32KV. In other words, the small amount of redundant regulation was enough to prevent arcs, but not sufficient for protection against radiation.

A variation of the basic back-up circuit improves the protection. As shown in Figure 1, negative voltage is produced by X23 rectifying horizontal pulses. But the most important change is R173, now a varistor. When the pulse amplitude increases (and with it the high voltage), a larger voltage appears across R173, causing it to decrease in value and pass more negative voltage to the

output control grid. This results in improved hold-down action, compared to that if R173 were a linear resistance. Normally, the positive voltage reaching the output grid through R170 is about cancelled by the negative voltage through R172. The bias is that produced alone by grid rectification of the oscillator signal. But an increase of negative voltage from R173 increases the negative bias of the output grid, limits the maximum plate current, and with it the high voltage.

Defects of the redundant regulator

Even though the extra regulator does very little so long as the high voltage is regulated properly, defects can cause troubles. For example, a shorted or open diode removes that one source of negative grid voltage and tends to reduce the bias of the output tube. There are no obvious symptoms, but the output tube and damper are likely to have a short operating life.

Defects that increase the negative voltage at the control grid (such as an open R170, shorted R173 or an open R175) reduce the high voltage and possibly narrow the raster. Normal grid voltage is -53 to -54 volts. If the grid voltage is more

than -57, but the drive at the grid is a normal 320 volts peak-to-peak, a defect affecting the grid bias is indicated.

Shunt-Regulator Monitor

Circuits of the late-production CTC38 were modified as shown in Figure 2.

The grid-voltage type of redundant regulation was continued, but with some changes. Instead of using a separate diode rectifier to produce the negative voltage that varied with high voltage, the gridleak bias of the blanker tube furnished the negative voltage. And this negative voltage was cancelled by positive voltage taken from a different point. The positive voltage is missing when the HV regulation fails, and the resulting symptoms are drastic and unmistakable. Here's how it's done.

Diode X23 is added in series between the 1K cathode resistor of the 6BK4 regulator tube and B+. Whenever any regulator current flows, it forward biases X23 which acts as a low-value resistance. R174 is connected to the anode of X23 (source of +275 volts), bringing positive voltage to the output grid and cancelling the negative voltage from R173. This is normal operation.

If for any reason the 6BK4 fails to draw current, X23 becomes an open circuit. No longer is there any positive voltage at the anode of X23, so the negative voltage coming from the blanker grid is not cancelled. Bias at the grid of the output tube might rise to any voltage between -60 and -71. Such excessive bias weakens the horizontal sweep circuit, causing decreased high voltage and narrow width.

The redundant circuit has protected against radiation and also made the picture quality so poor that the customer is spurred to request repairs.

Troubleshooting the fail-safe

Notice that the only component added to make the redundant regulator monitor the action of the shunt regulator was diode X23. If X23 shorts, and the shunt regulator is operating okay, there are no symptoms; the circuit is the same essentially as the older one.

On the other hand, if X23 opens, the regulator tube conducts enough

to keep the anode of X23 near the supply voltage. The only symptom is a loss of high-voltage regulation through the 6BK4.

Because diodes are susceptible to damage from high-voltage arcs, X23 should be checked anytime you service the sweep circuit. An easy way is to turn off the power and measure from the cathode of the regulator tube to the anode of the damper. If X23 is good, one polarity of the test leads should show an open circuit, and the other polarity should show 1000 ohms in series with a diode. (The exact reading of the diode varies with the ohmmeter range used.) The same 1000-ohm reading with both polarities indicates X23 is shorted. An open circuit with both polarities shows that either X23 or the cathode resistor is open.

Symptoms of failure

We mentioned that loss of 6BK4 regulation causes a reduction of width and decreased high voltage. We also should make mention of a most-spectacular symptom occurring when the brightness control is adjusted through its range.

At low-brightness levels, the picture has blurred focus, and is narrow, particularly along the left edge. As you increase the brightness, the width increases and the focus improves. At maximum brightness, the picture quality is nearly normal, just the opposite symptoms of blooming.

Voltage-Doubler Hold Down

Late-production runs of the RCA CTC39 chassis have yet another variation of the redundant regulator. It's a voltage-doubler type (Figure 3). Just to keep the record straight, early-production CTC39 chassis used the same circuit as in the late-production CTC38.

C127, CR106, C141 and CR103 form a conventional voltage doubler supplying about -175 volts at C127. That would be the whole story, if zener CR107 were not there. This 120-volt zener reduces the voltage at C127 during normal operation to nearly the same as the grid voltage of the output tube. Therefore, the circuit has no effect on the sweep circuit so long as the shunt regulator draws current.

If the regulator draws too little current, yet enough to maintain conduction of the diode in the cathode circuit, the stronger horizontal pulses force the doubler circuit to produce more negative voltage. Because of the regulating action of zener CR107, nearly all of the change of voltage is passed along to the grid of the output tube, where it reduces the maximum amount of plate current to weaken the sweep. Thus this holddown circuit more effectively minimizes excessive high voltage than did the previous circuits. And, because the results are more effective, a defective hold-down circuit produces symptoms that are more noticeable.

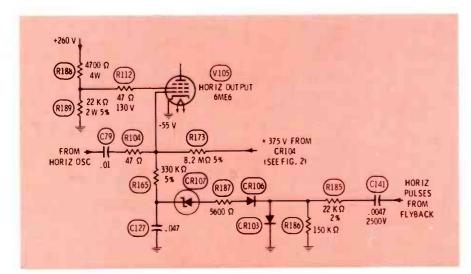


Fig. 3 The modified circuit of late-production CTC39 chassis was more effective in leveling excessive high voltage that might occur if the shunt-regulator current was weak. A voltage doubler provided more negative voltage, and the zener CR107 acted to pass more of the change of voltage on to the output grid.

Troubleshooting the voltage doubler

Many of the failures which might occur in this circuit produce no symptoms, unless a defect also occurs in the shunt regulator. In that case, the most-likely symptom would be excessive high voltage, perhaps with arcs. We advise you to test all three diodes in the hold-down circuit each time you service one of these chassis.

One fault can produce insufficient high voltage and reduced width. If CR107 shorts, the full negative voltage from the voltage doubler will be conducted to the grid of the output tube at all times. Check this diode first if a narrow picture and reduced high voltage are the symptoms.

Summary

Operation of the DC-shunt regulator is conventional in the RCA CTC38 and CTC39 chassis, although the variable control for setting the high voltage was replaced by fixed resistors in some versions.

For more than ten years, RCA color chassis have applied some of the negative voltage from the blanker grid to the control grid of the horizontal output tube. This is a back-up for the shunt regulator. Except for a few cases in which the blanker grid resistor opened and increased the negative voltage too much, the circuit has operated without problems. In fact, many technicians apparently didn't know why the interconnection was there.

However, when the circuit was changed to add the diode in the cathode circuit of the shunt regulator, the symptoms and the number of problems from the back-up circuit were multiplied. A loss of current through the shunt regulator drastically increased the negative bias at the grid of the horizontal output tube and narrowed the picture by about one-third.

Symptoms of decreased high voltage and narrowed width can be very mysterious and hard to find for a technician who doesn't know how the fail-safe circuits operate. Remember to test this circuit before spending too much time on the more conventional causes of a weak horizontal-sweep system.

Next month, we will discuss the fail-safe and disabling circuits used in RCA portable color receivers.

SERVICE ASSOCIATIONS

NESDA Items

Because of energy shortages, the January 24-25 meeting of the NESDA House of Representatives was postponed. It will be held April 11-14 at the Menger Hotel in San Antonio, Texas, and will be followed by the Texas Electronics Association meeting.

More than 7,000 technicians are registered CET's. Although exams are available for related fields, 98% of the CET's passed the tests for repairing home-entertainment products. There are CET's now in all 50 states, Canada, Mexico and 15 foreign countries. Next CET exam day is March 15, 1974.

According to the results of a survey by NESDA, the number of electronic service dealers was 77,230 at the end of 1973, an increase of 2830. Also, the number of technicians now is estimated at 207,950, an increase of 3950. In addition, about 12,250 work as apprentice technicians, and about 18,000 attend technical classes.

Henry V. Golden of Kansas City (see photo) has been presented by Bob Meade with a certificate of Special Recognition by NESDA for his help with the convention last August. Henry is also a proud new CET.

Contact NESDA or ISCET at 1715 Expo Lane, Indianapolis, Indiana 46224.

Valerie Miller (Mrs. Vern Miller), CET, is the new Chairman of ISCET; Henry V. Golden, new CET, happily displays the Certificate of special recognition awarded him by NESDA.

Ladies In The News

The name of Ester J. Ljunggren was omitted accidentally from a list of feminine-type CET's published several months ago. She was the second woman in Oregon and third in the nation to become a CET, and also has a current 3rd-Class FCC lincense. To our delight, she reports reading Electronic Servicing (one of her favorite magazines) since 1962. We commend her for remaining in business following the death of her husband, who also was a technician.

Valerie Miller, CET, now is the Chairman of ISCET, replacing Les Nesvik who resigned to become a full-time NESDA staff member. Mrs. Miller is the wife of

Vern Miller, also a CET, co-operator of Audio Service Company of Portland, Oregon, and mother of five children. She has been active in ISCET, serving as secretary last year. Many NEA (NESDA) members have met her at the many regional meetings she has attended.

News From NARDA

A typical service technician, according to a survey taken by Henry Ford Community College and reported by NARDA, spends 24% of his time in parts installation work, 21% in maintenance, 17% in troubleshooting and analysis, and the remaining 13% in customer relations and routine paper work. Reportedly, the average work week was 47 hours.

Dr. Salvatore Bella, Dean of the School of Business of Notre Dame University, was keynote speaker at the NARDA School of Business Management held in Chicago on February 3 through 5. His address, "The Manager As A Manager", was appropriate as the keynote for the three-day meeting. On February 4th, a new analysis of "The Future of Independent Service" was presented by industrialist W. H. (Bill) Anderson. Conclusion of this 16th annual school was a field trip to the Central Service Company where manager Tony D'Angelo escorted the group through his facilities. NARDA's address is 318 West Randolph Street, Chicago, Illinois 60606.

NATESA Solves Parts Problems

NATESA headquarters staff members have developed a system of obtaining backordered components for their shops. In the past, several hundred NATESA service dealers have been helped by various means to obtain parts rapidly. This accumulated knowledge now is placed at the disposal of all members. If parts have not been received through normal trade channels within ten days or two weeks, the members should fill out the cards, which have been supplied to them, with the necessary information and mail them to NATESA headquarters. NATESA, in turn, will take action to obtain the parts. NATESA is located at 5909 South Troy Street, Chicago, Illinois 60629.

Oklahoma TESA Items

Leon Skalish, NATESA president, is quoted in "The Antenna" as being amazed by newspaper ads in Long Island offering up to \$428 per week for technicians. In answer to his question as to how they could afford to pay so much, company officials replied that the company sells **only** service contracts. Leon suggests this might be a solution to some of your financial problems.

George Weiss, President of NATESA, Chicago, has prepared and is now selling a book of service contracts for \$15.

SERVICING ELECTRONIC CALCULATORS PART 1

By Joseph J. Carr, CET

The new generation of small electronic calculators was made possible by digital techniques using IC's. Information presented in this article should interest you in the general electronic theories used in calculators, as well as supplying enough facts to get you started repairing them.

Miniature electronic calculators probably are the hottest new sales item on the market today. They are beginning to exceed transistor radios as desirable gifts. And even the low-priced ones are minor miracles of integrated-circuit technology. Except for lack of a permanent readout on paper, a tiny pocket-sized calculator can outperform in speed, quietness, and lack of operator effort any mechanical calculator hundreds of times larger.

Another noteworthy fact (in view of the extreme diversity of circuits in solid-state TV's) is that many brands and models of calculators appear to have nearly-identical electronic circuits. To a large degree, when you learn one, you know them all.

Before covering details, we'll digress for a general wide-angle view of these calculators.

Four-Function Calculators

Typical layout of the best-selling type of calculator is shown in Figure 1. Because they perform the basic arithmetical functions of addition, subtraction, multiplication, and division, such machines are called "four-function" types.

Individual-digit keys must be pressed in the proper sequence to enter a complete number. Then one of the arithmetical-function keys is pressed to tell the machine that the number is finished, and which function to calculate.

Most calculators have internal nicad batteries that can be recharged, but each charge only supplies a total of two to four hours of operation. Therefore, if the calculator is to be unused for more than a few minutes, the power switch should be shut off.

Two separate "clear" keys are provided on most calculators. The one marked "C" completely wipes out any previous data. It should be used only at the beginning of each new problem. However, if the operator makes a mistake during one entry, he can eliminate that one entry by pressing the "clear entry" (CE) key. This is similar to the pencil eraser I use so much.

Another key permits locating the decimal point between any two digits of a number. Without this feature, only whole numbers could be calculated. Functions involving cents, percentages or decimals would not be possible without errors. For example, the quantity 4 + 1.5 equals 5.5. But without the decimal point, it becomes 4 + 2 = 6. That's not very accurate.

The "D" button is a displayrecall key; it's part of the circuitry to conserve battery power. Most of

Typical of the four-function calculators is the Heathkit IC-2009 (Courtesy of Heath)

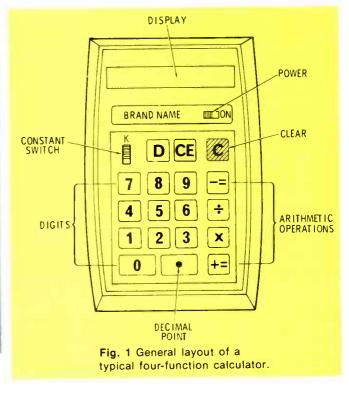


Fig. 2 Texas Instrument SR-10 performs some of the Fig. 3 Nearly all scientific problems can be calculated using engineering calculations. (Courtesy of Texas Instruments)

the Hewlett-Packard HP-35 or the HP-45 (not shown). (Courtesy of Hewlett-Packard)

the power in a calculator is consumed by the display. When an entry is made, but the calculator is not used again for a preset amount of time, a time-delay circuit blanks out the display. If he wants to recall the last digits that appeared before the blanking, the operator merely presses the "D" key.

A time-saving feature is the constant key, "K". With this key, the operator enters a number in its entirety. When it's used again, over and over, he just uses the "K" button.

Engineering Calculators

Simple four-function calculators are much too slow when used to solve formulas involving square root, pi, and other mathematical necessities. Most engineers and scientists require a more sophisticated machine.

One example of an intermediateclass calculator is the Texas Instruments Model SR-10 (Figure 2). In addition to the four basic functions. the SR-10 can perform the square of a number, extract the square root, and take the reciprocal of a number.

Most models also can display the numbers entered and the results obtained in the power-of-ten notation. In that case, the sign of the exponent and the magnitude are displayed on the right edge of the readout. For example, 27182341 X would be displayed as 27182341 -07. This gives extreme accuracy, because the answer is 2.7182341.

The Hewlett-Packard Company, long known to the electronics trade as a manufacturer of laboratorygrade test equipment, has gone into the scientific-calculator market in a big way with three models. Model HP-35 (Figure 3) is a pocket-sized unit that exceeds by far the speed and accuracy of even the best of engineering slide rules.

In addition to the classic four functions, the HP-35 can do these things:

- raise a number (X) to the power of another number (Y);
- calculate log₁₀X;
- calculate log_EX;
- raise E to the power of X;
- calculate the more-common trigonometric functions of an angle;
- provide several memory stacks to store temporarily the constants and subroutine results which are to be used again during the same calculation; and
- has a one-key entry for the quantity "pi".

Even more functions are performed by the Hewlett-Packard HP-45, and there is a third model intended for financial calculations.

Surprisingly, the circuitry necessary to add these subroutines is less than might be imagined. The main integrated circuit for a four-function calculator is a special 24-pin D.I.P. number incorporating mediumscale-integration (MSI) techniques. In addition, either two or four special 14-pin IC's are required to decode the output of the calculator and drive the display panel.

Any special functions are usually performed by special-purpose IC's called "read-only-memory" (ROM). ROM's are used to program the calculator to act somewhat in computer style (although the machine actually does the calculation and does not merely retrieve the values of the functions stored in memory banks as a true computer does). Even complex calculations are completed rapidly. For example, when extracting a square root, the display just blanks out for a fraction of a second before showing the answer.

Display Systems

Modern electronic calculators use some variation of the seven-segment

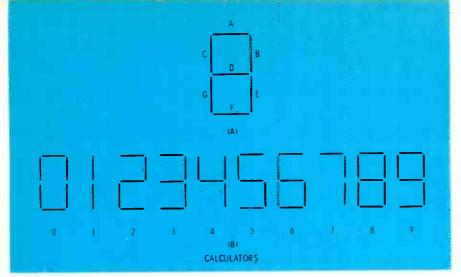
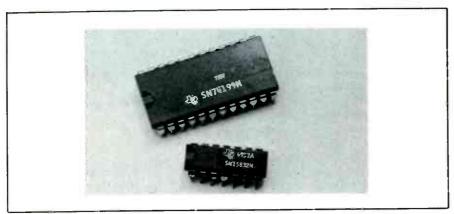
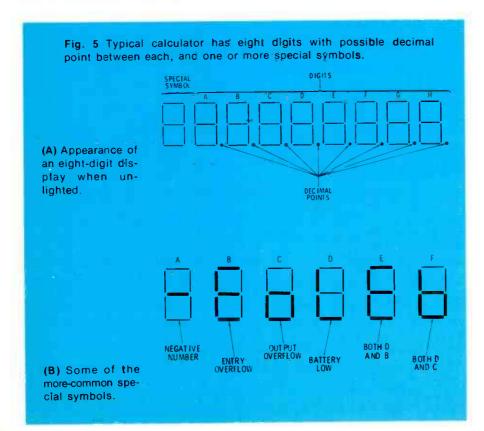




Fig. 4 Various combinations of the seven-segment elements form approximations of all numbers from zero to nine.

Size and appearance of the special 24-pin IC used in calculators compared to that of a standard 14-pin IC.

readout as shown in Figure 4. Any combination of segments can be lighted to form the numbers from zero to nine, plus several alphabetic and special characters. Figure 5A shows a drawing of an eight-digit display with decimals, and one special symbol at the extreme left. Some of the special characters and what they usually indicate are shown in Figure 5B. Two very important characters are the entry and the result overflow flags. These let the operator know that either an entered number (entry overflow) or a computed number (output overflow) is too large for the calculator to handle.

Because of limited battery power, most calculators employ leading-zero suppression. This means all zeros to the left of the most-significant figure are turned off. When the calculator has been cleared (value is zero), the only figure appearing will be a single zero at the extreme right.

Most pocket calculators have displays with numbers only about .1-inch tall, illuminated by light-emitting diodes (LED's). All LED anodes are connected together (Figure 6) to a B+ source, often through a current-limiting resistor. Transistors inside the IC ground the proper cathodes, causing those segments to light. Sometimes a plastic lens is installed over the LED's to magnify their small size.

Other Displays

Desk-top calculators are AC operated, and current drain is no problem. Therefore, most of them use larger displays of various kinds.

Incandescent displays have heated-wire filaments (similar to light bulbs), one for each number or character stacked from front to back. One example is the RCA Numeritron.

Fluorescent display tubes come in either grid or gridless types (Figure 7). The segments are coated with P-15 (blue-green) phosphor. A heated cathode emits electrons which cause a segment to glow only when it is connected through a decoder switch to a B+ source of about 25 volts. (Old-style tuning-eye tubes operated by the same princi-

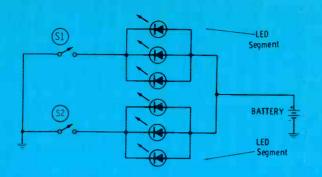
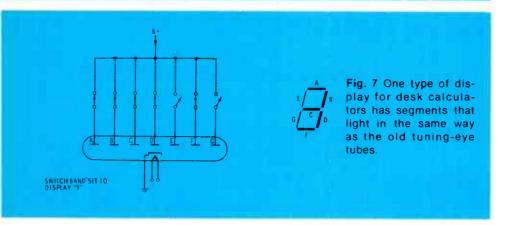



Fig. 6 Wiring of the LED's. The switches shown actually are transistors inside IC's.

ple.) Grid-type tubes are similar, but include a control grid between the cathodes and phosphors. A negative grid voltage cuts off light from the display, if strobed operation is desired.

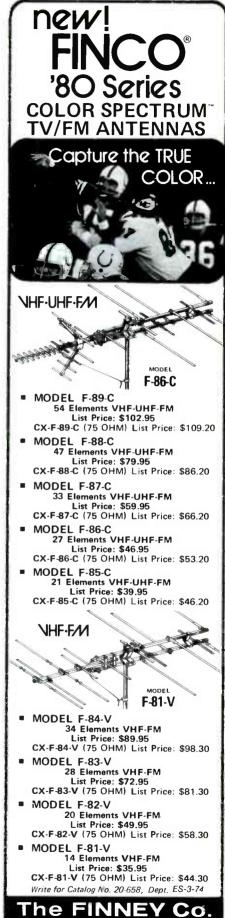
Cold-cathode discharge tubes are similar to neon bulbs. All of the metal numbers or characters are stacked front to back inside a vacuum tube filled with neon gas. The numbers are made of mesh so each can be seen through the others. A common anode completes the circuit. Whichever number has B+ applied to it glows with the characteristic neon orange color. Examples are the famous Nixie tube, and the Burroughs Panaplex.

Gas-discharge displays of a new type have only four parts; two nickel-iron-alloy lead frames and two pieces of window glass, plus some neon gas. The glow is the same as that from the cold-cathode tubes just described, but sevensegment digits are used in these tubes manufactured by Diacon, Inc.

Liquid-crystal displays also are quite new. They have two transparent windows with electrodes for electrical connections, and a liquid between that lights when current flows. The only ones I have seen were of the seven-segment design. Liquid crystals are unique in two

ways: the current required is very small; and external light introduced through either back or front increases the brilliance (making the display well suited for use under high-brightness light).

Checking A Calculator


When testing an ailing calculator, the first step is to do a "prodromal evaluation". In plain talk, this means to look it over, then run through a few sample calculations to see if you can identify the problem from the symptoms.

Make up a few sample calculations that are easy to remember. One I like is: 23456789 minus 12345678 equals 11111111. It checks eight digits, and even I can remember the answer!

Because these are small, plasticcased, hand-held machines, we can expect many of the defects to result from their being dropped. Therefore, examine cases, circuit boards, board-to-board connections, and protruding controls for visible damage. This is very similar to the process of repairing small transistor radios.

Next Month

Typical calculator circuitry will be the subject next month, and we will outline additional service tests.

Bedford, Ohio 44146

For More Details Circle (14) on Reply Card

34 West Interstate Street

SIGNATURE PATTERNS

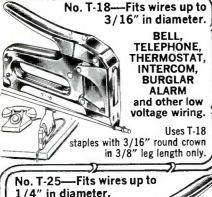
Made On Sprague/Jud Williams Model A Curve Tracer

GENERAL ELECTRIC CHASSIS JA

MANUFACTURER	MODEL OR CHASSIS	MANUFACTURER MODEL OR CHASSIS
TRANSISTOR IDENTIFICATION & CURVE TRACER SETTINGS GENERAL ELECTRIC	SIGNATURE PATTERNS JA	TRANSISTOR IDENTIFICATION & CURVE TRACER SETTINGS GENERAL ELECTRIC JA
Q100 RF AGC AMP POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 100µA	M	Q108 3RD VIDEO AMP POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 100µA
Q103 VIDEO IF AMP POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 200µA		Q109 5TH VIDEO AMP POLARITY PNP SWEEP VOLTAGE 30V BASE CURRENT 100µA
Q104 IST VIDEO AMP POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 50 µA		Q110 4TH VIDEO AMP POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 100µA
Q105 1ST SYNC AMP POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 50 µA		Q111 HORIZ BLANKING POLARITY PNP SWEEP VOLTAGE 30V BASE CURRENT 50µA
Q106 2ND VIDEO AMP POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 100µA		Q112 VERT BLANKING POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 20µA

MANUFACTURER MODEL OR CHASSIS GENERAL ELECTRIC JA	MANUFACTURER MODEL OR CHASSIS GENERAL ELECTRIC JA
TRANSISTOR IDENTIFICATION SIGNATURE PATTERNS & CURVE TRACER SETTINGS	TRANSISTOR IDENTIFICATION SIGNATURE PATTERNS & CURVE TRACER SETTINGS
Q113 CRT BEAM CURRENT LIMITER POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 50µA	Q206 HORIZ OUTPUT REMOVE 68Ω RESISTOR POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 200μA
Q201 SYNC SEP POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 10µA	Q207 HORIZ SAWTOOTH GEN POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 100µA
Q202 REACT POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 200 µA	Q260 VERT OSC POLARITY PNP SWEEP VOLTAGE 30V BASE CURRENT 20µA
Q203 HORIZ OUT POLARITY SWEEP VOLTAGE BASE CURRENT 20µA	Q261 VERT OSC POLARITY SWEEP VOLTAGE BASE CURRENT 20µA
Q204 TIMER POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 20µA	Q262 VERT AMP POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 50µA
Q205 HORIZ DRIVER POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 200µA	Q263 VERT DIFF PAIR POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 10µA

MANUFACTURER GENERAL ELECTRIC	MODEL OR CHASSIS JA	MANUFACTURER MODEL OR CHA	ASSIS
TRANSISTOR IDENTIFICATION & CURVE TRACER SETTINGS	SIGNATURE PATTERNS	TRANSISTOR IDENTIFICATION SIGNATURE PATA CURVE TRACER SETTINGS	TERNS
Q264 VERT DIFF PAIR POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 50µA	M	Q402 OVERLOAD PROTECTOR POLARITY SWEEP VOLTAGE BASE CURRENT NO SIGNATU PATTERN PATTERN TO CHECK	: CIRCUIT
Q266 VERT DRIVER POLARITY PNP SWEEP VOLTAGE 30V BASE CURRENT 200µA		Q501 CHROMA PEÄKER POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 20µA	
Q267 VERT OUTPUT POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 50µA		Q502 CHROMA FOLLOWER POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 20 µA	1
Q268 VERT OUTPUT POLARITY SWEEP VOLTAGE 30V BASE CURRENT 50 µA		Q503 CHROMA OUT POLARITY SWEEP VOLTAGE 100 A	
Q301 AUDIO OUT POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 50µA		Q504 BURST AMP POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 10µA	de
Q400 REGULATOR POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 20µA		Q505 3.58 AMP POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 50µA	


MANUFACTURE GENERAL ELECTR		MODEL OR CHASSIS JA	MANUFACTURER GENERAL ELECTRIC	MODEL OR CHASSIS
TRANSISTOR IDENTIL	FICATION	SIGNATURE PATTERNS	TRANSISTOR IDENTIFICATION & CURVE TRACER SETTINGS	SIGNATURE PATTERNS
Q506 3.58 AMP POLARITY SWEEP VOLTAGE BASE CURRENT	NPN 30V 50μA		Q606 GRN AMP POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 50µA	M
Q507 3.58 OUT POLARITY SWEEP VOLTAGE BASE CURRENT	NPN 30V 50μA		Q650 COLOR KILLER SWITCH POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 10µA	
Q509 ONE TOUCH POLARITY SWEEP VOLTAGE BASE CURRENT	NPN 30V 50μA		Q651 COLOR KILLER AMP POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 20µA	
Q510 ONE TOUCH POLARITY SWEEP VOLTAGE BASE CURRENT	NPN 30V 100μΑ		Q652 COLOR LEVEL AMP POLARITY SWEEP VOLTAGE BASE CURRENT 10µA	
Q600 BLUE AMP POLARITY SWEEP VOLTAGE BASE CURRENT	NPN 30V 50μA	M	Q653 COLOR LEVEL AMP POLARITY NPN SWEEP VOLTAGE 30V BASE CURRENT 20µA	B
Q604 RED AMP POLARITY SWEEP VOLTAGE BASE CURRENT	NPN 30V 50μA		POLARITY SWEEP VOLTAGE BASE CURRENT	

CUT WIRE & CABLE INSTALLATION COSTS

. without cutting into insulation!

SAFE! Grooved Guide positions wire for proper staple envelopment! Grooved Driving Blade stops staple at right depth of penetration to prevent cutting into wire or cable insulation!

1/4" in diameter. Same basic construction

and fastens same wires as No. T-18.

Also used for **RADIANT HEAT WIRE**

Uses T-25 staples 🧖 with 1/4" round crown in 9/32", 1/3/8", 7/16" and 9/16" leg lengths.

T-18 and T-25 staples also available in Monel and with beige, brown and ivory finish at extra cost.

Arrow Automatic Staple Guns save 70% in time and effort on every type of wire or cable fastening job. Arrow staples are specially designed with divergent-pointed legs for easier driving and rosin-coated for greater holding power! All-steel construction and high-carbon hardened steel working parts are your assurance of maximum long-life service and trouble-free performance.

> Ask your Electrical Supply Dealer or write for further details.

ARROW FRSTENER COMPANY INC Saddle Brook, New Jersey 07663 "Pioneers and Pacesetters For Almost A Half Century

test equipment

These features supplied by the manufacturers are listed at no-charge to them as a service to our readers. If you want factory bulletins, circle the corresponding number on the Reply Card and mail it to us.

Portable TV Tuner

An all-transistorized VHF/UHF portable TV tuner is available from PTS Electronics, Inc. Model 3001 Port-A-Tuner is designed to substitute the TV set's tuners while they are removed for overhaul; thus, the customer enjoys uninterrupted use of his

Model 3001 features solid-state tuners (82 channels), high gain and low noise. It operates on AC and can be connected to any TV by a simple hookup. Completely isolated and easy to operate, the Port-A-Tuner is safe even for children to use.

Model 3001 Port-A-Tuner sells for \$49.95, complete with hookups.

For More Details Circle (31) on Reply Card

Generator/Counter

A waveform generator/frequency counter is available from MITS, Inc.

Model 1700A generates six carrier waveforms including sine, triangle, square, ramp, sawtooth, and pulse. The carrier frequency range is from 1 Hz to 1.5 MHz in twelve overlapping ranges. Included are three internal AM or FM modulator waveforms: sine, triangle, and square. The frequency range of the modulator wave-

forms is 100 Hz to 150 KHz in six overlapping ranges.

The frequency counter measures frequency of the waveform generator output or frequency of external signals from 1 Hz to over 10 MHz. Other features include adjustable sensitivity, flashing overrange indication, and an event counter which can be used for counting external pulses. The four-digit display is a Sperry gas discharge type.

Model 1700A waveform generator/ frequency counter sells for \$139.95 in kit form, \$199.95 assembled.

For More Details Circle (32) on Reply Card

Digital VOM

The Simpson 360 VOM is a solidstate meter having a 3-1/2 digit, non-blinking, 0.33-inch high LED display with bright red numerals easily read at a distance of 15 feet.

Polarity selection is automatic, with an appropriate + or - indication; overrange indication is also automatic. An overrange measurement will cause the lower half of the "1" to flash while the remaining three digits register the amount of overrange, up to 250 counts beyond maximum. A unique analog indicator located just beneath the digital display is useful for quickly scanning nulls and peaks.

The new digital VOM features 29 AC, DC, and resistance ranges including low-power ohms. An analog output jack on the front panel makes it easy to interface with recorders and other instruments. Maximum fullscale response time to within rated accuracy is 2 seconds on DC, 5 seconds on AC. The unit operates from rechargeable batteries or AC line and may be operated while it is being charged.

Model 360 is offered by Simpson Electric Company and sells for \$275.00.

For More Details Circle (33) on Reply Card

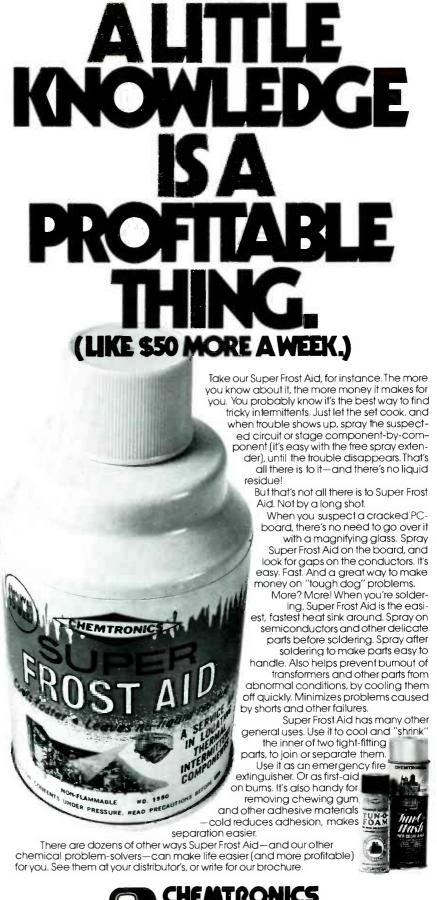
Multimeter

A 3-1/2 digit, 2000-count bench multimeter that measures AC and DC volts, ohms, and capacitance has been introduced by **Data Technology Corporation**.

Model 20 has a resolution of 1 pf and an accuracy of 0.2% of reading for capacitance; four DC-voltage ranges with 1-mV resolution and 0.1% accuracy; four AC-voltage ranges with 1-mV resolution and 0.5% accuracy; and four resistance ranges with 1-ohm resolution and 0.2% accuracy. Other specifications include 3.5-watt power supply and 1/3-inch-high Sperry display.

The multimeter measures 2-1/2 X 6-1/4 X 9 inches and weighs 2-1/2 pounds. Model 20 sells for \$269.00.

For More Details Circle (34) on Reply Card


Transistor and FET Tester

Sencore has introduced a pushbutton transistor and FET tester, the TF26 Touch Tone Cricket. The unique design of the Cricket allows for solidstate testing without any actual knowledge of the transistor required. The tester requires no set up book or knowledge of lead configuration. The test leads can be connected in any order. The pushbutton operation, coupled with the NPN, PNP button, tests all possible combinations of basing for any transistor or FET. The type and basing information of a transistor or FET can be directly obtained from the tester by referring to a basing chart in the instruction manual. This time-saving feature eliminates the need for a reference book to verify transistor specifications when a component is being replaced.

The Cricket was designed with portability and ruggedness in mind. The unit is housed in an unbreakable acrylic case and sliding meter cover. A specially designed spring-loaded, jewel pivot meter movement, built to absorb shock, is also featured in the unit.

The TF26 Touch Tone Cricket sells for \$140.00.

For More Details Circle (35) on Reply Card

For More Details Circle (16) on Reply Card

productreport

These features supplied by the manufacturers are listed at no-charge to them as a service to our readers. If you want factory bulletins, circle the corresponding number on the Reply Card and mail it to us.

Desoldering Kit

A 12-piece desoldering kit with everything needed to handle desolding and resoldering jobs is available from Enterprise Development Corporation.

Model 500K includes Endeco Model 500 desoldering/resoldering iron, eight different-sized tips, and a stand for

the iron and cleaning tool. Internal diameters of the tips range from .025 to .090.

Designed for heavy-duty professional or hobby use, the iron features a safety indicating light in the handle, flexible burn-resistant neoprene 2-wire cord set, cool unbreakable polycarbonate handle and stainless steel construction.

The Model 500K kit sells for \$21.55. For More Details Circle (36) on Reply Card

Digital Calculator

The RCA digital clock/calculator Model 3C3030 represents the latest technological advancements in solid-state and integrated circuits electronics.

It is fast, efficient, handsome and never idle. When simple or complex mathematical problems are not being solved, it is operating as a digital clock or as an automatic calendar or as an electronic timer or as a stopwatch or as an important date reminder unit.

As an electronic calculator it remembers the decimal point to 16 places in extra large, high-intensity 8 digit displays. It adds, subtracts, multiplies, divides, and does compli-

cated chain or mixed calculations.

The digital clock operates by counting the voltage cycles in the electric wiring into which unit is plugged. When the calculator is not being used, a touch of the clock key displays hours, minutes and seconds.

The RCA digital clock/calculator measures 10 X 5-1/2 X 2-1/4 inches and sells for \$149.95.

For More Details Circle (37) on Reply Card

Solid-State Tubes

Electronic Devices, Inc. has announced a new line of plug-in, solidstate tubes that are exact replacements for industrial rectifier tubes. The silicon EDI solid-tubes will replace most regular gaseous and vacuum rectifier tubes with ratings up to 1750 mA and 60 KV. Higher voltages and currents are available as specials. The new tubes are developed from EDI's TV and communications Solid-Tube rectifier line that features no need for filament transformers, solid-state reliability, constant output, long life, no heat generation, compact rugged construction, and fast warm up.

For More Details Circle (38) on Reply Card

Aerosol Chemical Sprays

Five new aerosol products are available from Workman Electronic Products.

Blast-Off dispenses dry air under pressure to remove dust and loose oxide deposits from delicate electronic assemblies. Stik-E spray adhesive is useful for permanent or temporary bonds of almost any kind of material. Corona Dope is a silicone spray that stops squeaks, prevents rust and lubricates; it can be used wherever sticking is a problem. WE40, a lubricant and moisture displacer, cleans, lubricates, and frees rust from tools, locks, and other metal products. It also corrects electrical shorts due to moisture.

For More Detail's Circle (39) on Reply Card

TELEMATIC TRANSVERTER WORKS WITH ANY TEST RIG

PLUG IN—to service solid state **UNPLUG**—for tube type

Matches
• RCA • ZENITH
• MOTOROLA

· SYLVANIA

• MAGNAVOX

And All Others!

leleMatic

2245 Pitkin Ave., Brooklyn, N.Y. 11207

FREE! Adaptor Quick Reference Chart ...

For More Details Circle (17) on Reply Card

Circle appropriate number on Reader Service Card.

103. Centralab—presents a 36-page catalog describing Centralab's line of standard capacitors and ceramic substrates. Products listed in the catalog include disc, monolithic, and special application ceramic capacitors, aluminum electrolytic capacitors, polystyrene-film capacitors, and a new line of 95% alumina-ceramic substrates.

104. EV. Game, Inc.—has issued a combined replacement catalog of the most needed parts for phonograph and tape recorders. The new catalog contains 240 pages listing phonograph cartridges and needles, wheels and belts, phonograph-changer motors, center-posts, adapters, plug-in heads, shells, cartridge mounts, and accessories.

105. Fordham Radio Supply Co.—has published a 32-page catalog of replacement parts and service supplies. The catalog lists features and specifications for products which include service kits, antennas, microphones, speakers, phono cartridges, and transistor testers.

106. H. K. Simon Co.—offers details of actual business increases gained by shop owners who applied the principles given in the business-promotion package which includes "How To Double Your Business" and "Television Sales and TV Service Promotion" supplement.

107. Jensen Tools and Alloys—offers a tool catalog describing 1900 items. "Tools for Electronic Assembly and Precision Mechanics" is a handbook of particular interest to electronic technicians. A feature of the catalog is the inclusion of technical data on tool selection. Known as "Jensen's Tool Tips", these four pages include sections on screwdriver selection, machine screwdata, tool materials, plier facts, metal conductivity, color coding,

wire and insulation data, solderability of metals, temperature conversion, drill sizes, metal gauges, and safety.

108. Metropolitan Supply Co.—has a directory of electronic tubes which lists some 5000 industrial, entertainment and military tube types in alphanumerical order with quantity discount prices. Copies are available free when requested on company letterhead.

109. Motorola, Inc.—has released a full-line catalog on "Motorola Test Equipment" covering products ranging from service monitors to tone generators and wattmeters. The 36-page color catalog includes photographs and complete listings of features, specifications and model nomenclatures for available test equipment.

110. Rohde & Schwarz—has a new addition to the 1973 Rohde & Schwarz Instrument Catalog containing a selection of new test and measuring instruments. Those covered include mobile RF meter and test set, RF-DC millivoltmeter, directional-power meter, frequency counter, service-test set, VHF-UHF monitoring system, radio-monitoring/recording system, TV-relay receiver, and TV-monitoring receiver.

111. Stackpole Carbon Company—presents a comprehensive guide to performance characteristics and application criteria for fixed composition resistors. Bulletin No. 80-101 features selection and dimension data for 1/4, 1/2, 1, and 2 watt sizes, construction features, dimensions for various types of cut and formed leads, packaging options, and performance and testing curves.

112. Triplett Corp.—has released the 59-T, a 16-page test-instrument catalog featuring a tester-selection guide that allows direct comparison of performance characteristics of each model now available from Triplett Corp. The 59-T lists VOM's and accessories, including general purpose, special feature, laboratory accuracy, digital, FET, portable, leakage adapters, cases, shunts, probes, and tester stands.

For More Details Circle (23) on Reply Card

antenna systems papopi

75-Ohm Antenna Preamp

Winegard Company has introduced a VHF-FM antenna preamplifier Model RD-375 that features a 75-ohm output designed for noisy signal areas or where use of 300-ohm twinlead is undesirable.

need belts?

We've thousands in stock

Ready for immediate shipment! Belts for over 1800 makes and models of tape recorders, projectors, dictating machines, video recorders . . . and our simplified cross reference system makes it easy for you to order. Drive tires, wheels, phono idlers also listed. On most items we can ship the same day. Call or write today for your free catalog/cross reference chart.

PROJECTOR-RECORDER BELT CORP. 307 Whitewater St., Whitewater, 414/473-2151 Wisconsin 53190

For More Details Circle (18) on Reply Card

OWN YOUR OWN PICTURE TUBE REBUILDING BUSINESS

With Lakeside Industries re-building equipment you can rebuild any picture tube!

For complete details send name, address, zip code to. LAKESIDE INDUSTRIES 3520 W. Fullerton Ave. Chicago, III. 60647 Phone: 312-342-3399

For More Details Circle (19) on Reply Card

FREE CATALOG TOOLS HARD-TO-FIND PRECISION TOOLS

Lists more than 1700 items—pliers, tweezers, wire strippers, vacuum systems, relay tools, optical equipment, tool kits and cases. Also includes four pages of useful "Tool Tips" to aid in tool selection. JENSEN TOOL 4117 N. 44th Street, Phoenix, Ariz.

For More Details Circle (20) on Reply Card

The circuitry incorporates a new RF stage using the A-210 overlay transistor for increased output and gain (16 dB).

High-input capability of 228,000 dBmV reduces overload in areas having both weak and strong signals, and the 75-ohm coax minimizes noise pickup. The high output level provides enough signal in most areas to operate several TV sets.

The RD-375 comes with a handy five-way mounting bracket and nostrip screw terminals. It is ACpowered with an isolation transformer to eliminate polarity problems and shock hazard.

For More Details Circle (40) on Reply Card

Antenna Rotor

A solid-state antenna rotor is offered by Cornell Dubilier Electronics. The unit, Model AR-40, features completely silent operation, a decorator design that fits into any room decor, high-stall torque and an on-off light that indicates when the system is operating.

The rooftop portion of the system is housed in a heavy-duty "bell housing". It can be rotated a full 360 degrees and has repeatability with an accuracy of 1%.

For More Details Circle (41) on Reply Card

Remote Plug For MATV

A new saddle plate with a 6-pin connector for remote functions in MATV systems is now being offered by Jerrold Electronics. The new unit can easily be snapped into Jerrold Ultra-Tap outlets.

Each new Model UTS-R saddle and

6-pin jack is shipped complete with a 6-pin mating plug.

This arrangement is especially convenient for hospital systems where remote TV receiver control is required, educational TV systems which include audio, and any sophisticated MATV system where extra functions are desired in MATV outlets.

Model UTS-R sells for \$2.20.

For More Details Circle (42) on Reply Card

SAFETY

(Continued from page 35)

can't pass 60 Hz or DC. Or add capacitors in series with the 300ohm wires.

Of course the "hot" sets are supposed to have protective RC filters in their antenna leads, but a capristor might be shorted. Even more likely is the possibility of an antenna "clothes-pin" falling accidentally on a "hot" chassis. Probably more MATV transformers are ruined this way than by all other causes combined.

Isolation transformers

Most manufacturers recommend you use an isolation transformer to protect your equipment from damage and you from shocks when servicing "hot" chassis receivers. Isolation transformers have a 1-to-1 ratio of primary to secondary, but no connection between the two windings. Plug the isolated primary into a 120-volt outlet and operate the "hot" chassis from the secondary winding.

To go first class, obtain an isolation transformer that has taps for adjusting the line voltage. Then add a line-voltage meter to make your setup complete. This provides isolation for safety, plus known, adjustable voltages for those tests with line voltages above or below normal. Be sure the transformer has a wattage rating (perhaps 500 watts, or more) that's sufficient to handle tube-type color chassis.

Of course, only one "hot" chassis should be used with each isolation transformer, else the shock and damage hazards are restored.

Slogan

Perhaps you could start a safety campaign in your shop. If so, we suggest this slogan: THINK SMART—THINK SAFETY.

PHOTOFACT BULLETIN lists new PHOTOFACT coverage issued during the last month for new TV chassis

PHILCO-FORD Chassis 2CY80B	
Chassis CTC71A/B	
528.43600200 thru 600257/606200/606201/610200 thru 610257/616200/616201/620200 thru 620257/626200/636201 1383-1 Remote Control Receiver, Transmitter 90-928 1383-1-A SHARP C-1923, C-1925 1380-3 Remote Control Receiver 701406, Transmitter 702406 1380-3-A TELEDYNE PACKARD BELL Chassis 98C32/C34 (Revised), 98C35/C35A/C36 1374-2 Remote Control Mark 73/93 (WRT-11, WRR-19) 1374-2-A Remote Control Mark 53 (WRT-12, WRR-20) 1374-2-B TELEDYNE PACKARD BELL Chassis 98C39, 98C40 1383-2 TOSHIBA C927 (Ch. TAC-7410, TAC-7411) 1384-3 TRAV-LER T12P800, T12P817 (Ch. T9H1-1A) 1375-2 TRAV-LER Chassis TR2-1A, TR2-2A 1378-3 TRUETONE MNM3410A-47 (2DC3410) 1383-3 WARDS AIRLINE GAI-11134A/B/C/D, GAI-11114A/B/C/D, GAI-11134A/B/C/D, GAI-11114A/B/C/D, GAI-11134A/B/C/D, GAI-111204A/B, GAI-11234A/B 1376-3 ZENITH Chassis 17EC45, 19EC45 1377-3-A Remote Control Receiver S-94929X, Transmitter S-94463 1377-3-B Remote Control Receiver S-94929X, Transmitter S-94828 1377-3-C ZENITH Chassis 25DC56 (L.P.), 25DC58Z 1375-3 Tuner Used in Chassis 25DC56 (L.P.), 25DC58Z 1375-3-A Remote Control Receiver S-91768, Transmitter S-91227 Remote Control Receiver S-93744,	Chassis CTC71A/B
C-1923, C-1925	528.43600200 thru 600257/606200/606201/610200 thru 610257/616200/616201/620200 thru 620257/626200/626201/630200 thru 630257/636200/636201
Chassis 98C32/C34 (Revised), 98C35/C35A/C36 1374-2 Remote Control Mark 73/93 (WRT-11, WRR-19) 1374-2-A Remote Control Mark 53 (WRT-12, WRR-20) 1374-2-B TELEDYNE PACKARD BELL Chassis 98C39, 98C40 1383-2 TOSHIBA C927 (Ch. TAC-7410, TAC-7411) 1384-3 TRAV-LER T12P800, T12P817 (Ch. T9H1-1A) 1375-2 TRAV-LER Chassis TR2-1A, TR2-2A 1378-3 TRUETONE MNM3410A-47 (2DC3410) 1383-3 WARDS AIRLINE GAI-11134A/B/C/D, GAI-11114A/B/C/D, GAI-11134A/B/C/D, GAI-11204A/B, GAI-11234A/B 1369-3 WARDS AIRLINE GAI-12462A/B 1376-3 ZENITH Chassis 17EC45, 19EC45 1377-3-A Remote Control Receiver S-94892X, Transmitter S-94463 1377-3-B Remote Control Receiver S-94929X, Transmitter S-94828 1377-3-C ZENITH Chassis 25DC56 (L.P.), 25DC58Z 1375-3-A Remote Control Receiver S-94929X, Transmitter S-94227 1375-3-B Remote Control Receiver S-91768, Transmitter S-91227 1375-3-B Remote Control Receiver S-91768, Transmitter S-91227 1375-3-B Remote Control Receiver S-93744,	C-1923, C-1925
TOSHIBA C927 (Ch. TAC-7410, TAC-7411) 1384-3 TRAV-LER T12P800, T12P817 (Ch. T9H1-1A) 1375-2 TRAV-LER Chassis TR2-1A, TR2-2A 1378-3 TRUETONE MNM3410A-47 (2DC3410) 1383-3 WARDS AIRLINE GAI-11104A/B/C/D, GAI-11114A/B/C/D, GAI-11134A/B/C/D, GAI-11204A/B, GAI-11234A/B 1369-3 WARDS AIRLINE GAI-12462A/B 1376-3 ZENITH Chassis 17EC45, 19EC45 1377-3-A Remote Control Receiver S-94892X, Transmitter S-94463 1377-3-B Remote Control Receiver S-94929X, Transmitter S-94828 1377-3-C ZENITH Chassis 25DC56 (L.P.), 25DC58Z 1375-3-A Remote Control Receiver S-91768, Transmitter S-91227 1375-3-B Remote Control Receiver S-91768, Transmitter S-91227 1375-3-B Remote Control Receiver S-93744,	Chassis 98C32/C34 (Revised), 98C35/C35A/C36 1374-2 Remote Control Mark 73/93 (WRT-11, WRR-19) 1374-2-A
TRAV-LER T12P800, T12P817 (Ch. T9H1-1A) 1375-2 TRAV-LER Chassis TR2-1A, TR2-2A 1378-3 TRUETONE MNM3410A-47 (2DC3410) 1383-3 WARDS AIRLINE GAI-11104A/B/C/D, GAI-11114A/B/C/D, GAI-11134A/B/C/D, GAI-11204A/B, GAI-11234A/B 1369-3 WARDS AIRLINE GAI-12462A/B 1376-3 ZENITH Chassis 17EC45, 19EC45 1377-3-A Remote Control Receiver S-94892X, Transmitter S-94463 1377-3-B Remote Control Receiver S-94929X, Transmitter S-94828 1377-3-C ZENITH Chassis 25DC56 (L.P.), 25DC58Z 1375-3-A Tuner Used in Chassis 25DC56 (L.P.), 25DC58Z 1375-3-A Remote Control Receiver S-91768, Transmitter S-91227 1375-3-B Remote Control Receiver S-93744,	
T12P800, T12P817 (Ch. T9H1-1A) 1375-2 TRAV-LER Chassis TR2-1A, TR2-2A 1378-3 TRUETONE MNM3410A-47 (2DC3410) 1383-3 WARDS AIRLINE GAI-11104A/B/C/D, GAI-11114A/B/C/D, GAI-11134A/B/C/D, GAI-11204A/B, GAI-11234A/B 1369-3 WARDS AIRLINE GAI-12462A/B 1376-3 ZENITH Chassis 17EC45, 19EC45 1377-3-A Remote Control Receiver S-94892X, Transmitter S-94463 1377-3-B Remote Control Receiver S-94929X, Transmitter S-94828 1377-3-C ZENITH Chassis 25DC56 (L.P.), 25DC58Z 1375-3 Tuner Used in Chassis 25DC56 (L.P.), 25DC58Z 1375-3-A Remote Control Receiver S-91768, Transmitter S-91227 1375-3-B Remote Control Receiver S-93744,	
TRUETONE MNM3410A-47 (2DC3410)	
MNM3410A-47 (2DC3410) 1383-3 WARDS AIRLINE GAI-11104A/B/C/D, GAI-11114A/B/C/D, GAI-11134A/B/C/D, GAI-11204A/B, GAI-11234A/B 1369-3 WARDS AIRLINE GAI-12462A/B 1376-3 ZENITH Chassis 17EC45, 19EC45 1377-3-A Remote Control Receiver S-94892X, Transmitter S-94463 1377-3-B Remote Control Receiver S-94929X, Transmitter S-94828 1377-3-C ZENITH Chassis 25DC56 (L.P.), 25DC58Z 1375-3 Tuner Used in Chassis 25DC56 (L.P.), 25DC58Z 1375-3-A Remote Control Receiver S-91768, Transmitter S-91227 1375-3-B Remote Control Receiver S-93744,	
GAI-11104A/B/C/D, GAI-11114A/B/C/D, GAI-11134A/B/C/D, GAI-11204A/B, GAI-11234A/B	
ZENITH Chassis 17EC45, 19EC45	GAI-11104A/B/C/D, GAI-11114A/B/C/D, GAI-11134A/B/C/D, GAI-11204A/B,
Chassis 17EC45, 19EC45	
Chassis 25DC56 (L.P.), 25DC58Z	Chassis 17EC45, 19EC45
25DC58Z	Chassis 25DC56 (L.P.), 25DC58Z
Remote Control Receiver S-93744,	25DC58Z
	Remote Control Receiver S-93744,

goodies add measure

Best selling 31/2 digit DMM even better with new options and accessories

For data out today,

800-426-0361

New ac/dc high current option lets you measure 10 A. continuously or up to 20 A. momentarily. New low 2 and 20 Ω scales give 0.001 Ω resolution. Low cost RF probe offers new capability.

Other options include rechargeable battery pack, digital printer output, deluxe test leads, 40 kV high voltage probe, 600 A. ac current probe, carrying cases, dust cover and rack mount.

Basic "best buy" \$299 DMM feature dc accuracy of 0.1%. Measure ac/dc volts from 100 µv to 1200 v, current from 100 nanoamperes to 2 A, and resistance from 100 milliohms to 20 megohms. Guaranteed 20,000 hour MTBF.

John Fluke Mfg. Co., Inc., P.O. dial our toll-free hotline, Box 7428, Seattle, WA 98133

For More Details Circle (21) on Reply Card

"The Country Boys" Have It!

Make Your Own **DRIVE BELTS & "O" RINGS**

PRODUCE INSTANT **DRIVE BELTS &** "O" RINGS

Three Kits do it all! Your kits eliminate need for stocking large replacement inventory. This is all you need to make easy repairs on ... 8 tracks, cassettes (both imports and domestic) whether drive belt is round, flat or square. Kits come complete with ample rubber stock, Instant-Weld Adhesive, jig for controlling cuts, razor blade and special cleaning compound.

- ORK-1 Round Rubber Drive Belt Kit
- ORK-2 Flat & Square Rubber Drive Belt Kit
- ORK-3 "O" Ring Kit

No "down time" ... no specials ... no molds ... no vulcanizing.

Write for our complete catalog and discount prices. ONEIDA ELECTRONIC MFG. INC. MEADVILLE, PA. 16335

The MARKETPLACE

This classified section is available to electronic technicians and owners or managers of service shops who have for sale surplus supplies and equipment or who are seeking employment or recruiting employees.

Advertising Rates in the Classified Section are:

- 25 cents per word (minimum \$3.00)
- "Blind" ads \$2.00 additional
- All letters capitalized
 35 cents per word

Each ad insertion must be accompanied by a check for the full cost of the ad.

Deadline for acceptance is 30 days prior to the date of the issue in which the ad is to be published.

This classified section is not open to the regular paid product advertising of manufacturers.

FOR SALE

TV & RADIO TUBES 36c EA!! Free color catalog. Cornell, 4221 University. San Diego. California 92105.

USE YOUR SCOPE (ANY MODEL, NO REWIRING) TO TEST TRANSISTOR IN/OUT CIRCUIT. SIMPLE ISTRUCTIONS \$1.00. SCHEK TECHNICAL SERVICES, 8101 SCHRIDER ST.. SILVER SPRING, MARYLAND 20910. 10-73-12

UNUSUAL SURPLUS AND PARTS Catalog. \$1. ETCO Electronics Dept. E.S., Box 741, Montreal "A" H3C 2V2 12-73-12t

SAMS PHOTOFACTS: Consecutive #1 to #755. mint condition. Most unused. Best offer. Russell T. Mohr, RR2. New Palestine, Ind. 46163. 3-74-1t

DRIVE-IN T.V. REPAIR BUSINESS. 5 to 10 year lease available. Established 12 years—one owner. For cost of inventory and equipment. Separate building with parking in front. Dade TV Service. 17381 N.W. 27th Avenue. Miami. Florida 33054.

TUBES: Old, obsolete and out of production. Write for prices and availability. Send stamped self-addressed envelope to M. Howe, 83 Lucerne Rd., Springfield, Mass. 01119.

TV REPAIR BUSINESS in Bridgeport. Nebr., for someone who wants plenty of work. Equipment & stock list \$5000. All \$AM's too. Asking \$3000. Great hunting & fishing country. Write Box 670. Bridgeport. Nebraska 69336.

FOR SALE: Television Business. First year in business grossing \$45,000. 2 Vans. authorized Zenith. Motorola, Admiral. Some motel contracts. Pocono Lake, Pa. 18347. c/o Ben Fick. 3-74-1t

FOR SALE (CONT.)

RADIO-TELEVISION Service Diagrams. 14 volume library. 2.454 pages. only \$14.95. Beitman, 409 E Chalmers, Champaign. Illinois 61820. 3-74-1t

BUILD YOUR OWN TUNER substitute from junk TV chassis. Unit takes place of set tuner when checking TV for defective tuner. Simple plans \$1. William Morgan. Bruce. Miss. 38915.

WANTED

NEEDED: Used modulation meter model Lampkin 205A or any professional model. Antonio Acevedo, 1240 Boynton Ave., Bronx. N.Y. 10472. 3-74-1t

EDUCATION INSTRUCTION

REPAIR TV TUNERS—High Earnings; Complete Course Details, 12 Repair Tricks, Many Plans, Two Lessons, all for \$2. Refundable, Frank Bocek, Box 3236 Enterprise, Redding, Calif. 96001, 9-73-7t

advertisers' index

Arrow Fastener Co., Inc 50
B & K Div., Dynascan Corp 13 Bussmann Mfg. Div., McGraw-Edison
Castle TV Tuner Service, Inc. Cover 4 Chemtronics Incorporated 51
The Finney Company
Gem City Tuner
Heath/Schlumberger Instruments . 31 Hickok Electrical Instrument Company 17-18-19-20
J.W. Electronics
Lakeside Industries
Oneida Electronic Mfg., Inc 55
Panasonic Parts Division
Howard W. Sams & Co., Inc. 23 Sperry Tech, Inc. 16 Sprague Products Company 11 GTE Sylvania -
Consumer Renewal 3,7 Systems Electronics, Inc. 9
Telematic
Winegard Company 26-27

For More Information On Items Advertised Use Our Reader Service Cards

Work for free. The pay is great.

No matter what you do full-time, there's something you can do part-time. Helping people help themselves.

The pay is nothing but the rewards are fantastic.

Right in your own home town, there's a desperate need for your skills.
Whether you're a doctor. A lawyer. A typist. Or a tutor.

If you can spare some of your spare time, even if it's only for a few hours a week, call your local Voluntary Action Center. Or write: "Volunteer,"

Washington, D.C. 20013. We'll put you in touch

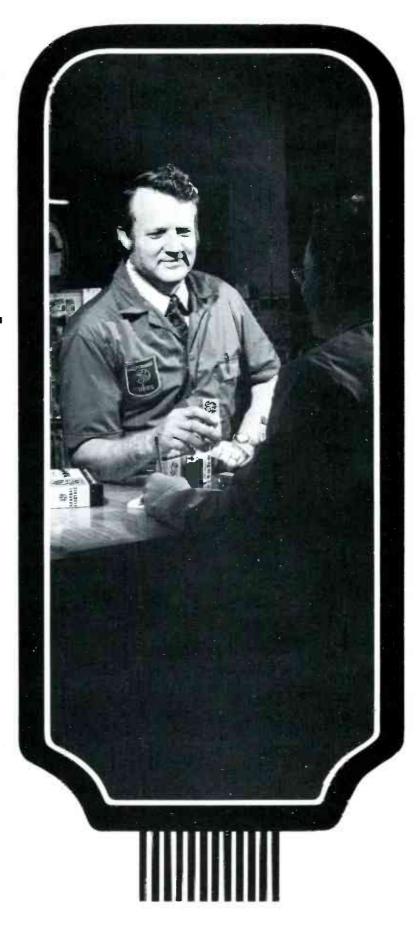
with the people who need what money can't buy. They need you.

Volunteer.

The National Center for Voluntary Action

A Public Service of This Magazine & The Advertising Council

We help him make it easier for you.


Your GE tube distributor is always there when you need him. With a complete line of GE entertainment receiving tubes, replacement semiconductors and ULTRACOLOR® or all-new Spectra-Brite® picture tubes.

Competitively priced. With fast delivery assured by his balanced inventory and the GE tube warehouse network. Along with all the technical information, business and technical aids you'll ever need. You can depend on him and GE tube products.

Tube Products Department, General Electric Company, Owensboro, Kentucky 42301

We're in this business together.

GENERAL ELECTRIC

AC & BATTERY POWERED SUBBER

Latest, all solid state version of the sensational signal circuit analyzing timesaver originated by Castle.

Invaluable for locating the break in the tuner and i.f. signal chain or analyzing agc system defects in tube TV receivers . . . essential for speedy location of signal circuit defects in modular IC, solid state and hybrid TV receivers.

A NEW APPROACH to agc system analyzing!

Permits signal injection after the agc controlled stages to simplify testing for agc defects.

- Works with any 40MHz receiver . . . color or black and white . . . solid state, tube or hybrid.
- · High level, low impedance output furnishes signal usable at input of final i.f. stage
- Special output circuit works equally well into first i.f. input of late model, link coupled systems and older, low "C" bandpass coupled systems.
- Antenna input and i.f. autput electrically isolated; no "hat" chassis hazards.
- No need to discannect supply leads fram suspected tuner being tested. Substitutes the VHF tuner and tests the UHF tuner.
- Tunes all 12 VHF channels, has preset (memary) fine tuning an all channels.
- Higher averall gain than previous models with wide range gain reduction cantral of 60db.
- Completely self-contained and battery aperated, uses papular batteries available everywhere. Simple battery replacement; battery comportment in rear of custam malded case.
- Reduced current cansumption extends battery life to as much as double that of previous models. Bright LED indicator warns when unit is ON.
- · Use on the bench or in the hame . . . anywhere
- Cames camplete with extension cables, batteries and instructions.

Contact your distributor.

IV TUNER SUBBER, Mark IV (Battery model) net \$45.95

IV TUNER SUBBER, Mark IV-A (120 VAC + Battery model) net \$54.95

All battery only models of the SUBBER may be factory modified for 120 VAC use. Contact your distributor for details and cost.

(2)

CASTLE TV TUNER SERVICE, INC.

5701 N. Western Ave., Chicago, Illinois 60645 • Phone: (312) - 561-6354

In Canada: Len Finkler Co., Ontario

For More Details Circle (2) on Reply Card