June 1999

DAC0800/DAC0802 8-Bit Digital-to-Analog Converters

National Semiconductor

DAC0800/DAC0802 8-Bit Digital-to-Analog Converters

General Description

The DAC0800 series are monolithic 8-bit high-speed current-output digital-to-analog converters (DAC) featuring typical settling times of 100 ns. When used as a multiplying DAC, monotonic performance over a 40 to 1 reference current range is possible. The DAC0800 series also features high compliance complementary current outputs to allow differential output voltages of 20 Vp-p with simple resistor loads as shown in *Figure 1*. The reference-to-full-scale current matching of better than ±1 LSB eliminates the need for full-scale trims in most applications while the nonlinearities of better than ±0.1% over temperature minimizes system error accumulations.

The noise immune inputs of the DAC0800 series will accept TTL levels with the logic threshold pin, V_{LC} , grounded. Changing the V_{LC} potential will allow direct interface to other logic families. The performance and characteristics of the device are essentially unchanged over the full ±4.5V to ±18V power supply range; power dissipation is only 33 mW with ±5V supplies and is independent of the logic input states.

The DAC0800, DAC0802, DAC0800C and DAC0802C are a direct replacement for the DAC-08, DAC-08A, DAC-08C, and DAC-08H, respectively.

Features

- Fast settling output current: 100 ns
- Full scale error: ±1 LSB
- Nonlinearity over temperature: ±0.1%
- Full scale current drift: ±10 ppm/°C
- High output compliance: -10V to +18V
- Complementary current outputs
- Interface directly with TTL, CMOS, PMOS and others
- 2 quadrant wide range multiplying capability
- Wide power supply range: ±4.5V to ±18V
- Low power consumption: 33 mW at ±5V
- Low cost

Typical Applications

FIGURE 1. ±20 V_{P-P} Output Digital-to-Analog Converter (Note 5)

Ordering Information

Non-Linearity	Temperature	Order Numbers							
	Range	J Package (J16A) (Note 1)		N Package (N	16E) (Note 1)	SO Package (M16A)			
±0.1% FS	$0^{\circ}C \le T_A \le +70^{\circ}C$	DAC0802LCJ	DAC-08HQ	DAC0802LCN	DAC-08HP	DAC0802LCM			
±0.19% FS	$-55^{\circ}C \le T_A \le +125^{\circ}C$	DAC0800LJ	DAC-08Q						
±0.19% FS	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	DAC0800LCJ	DAC-08EQ	DAC0800LCN	DAC-08EP	DAC0800LCM			
Note 4. Devices mey be endered by using either order number									

Note 1: Devices may be ordered by using either order number.

© 1999 National Semiconductor Corporation DS005686

Absolute Maximum Ratings (Note 2)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

±18V or 36V
500 mW
V ⁻ to V ⁺
V ⁻ to V ⁺
5 mA
V ⁻ to V ⁻ plus 36V
4.25 mA
TBD V

Operating Conditions (Note 2)

	Min	Max	Units
Temperature (T _A)			
DAC0800L	-55	+125	°C
DAC0800LC	0	+70	°C
DAC0802LC	0	+70	°C

Electrical Characteristics

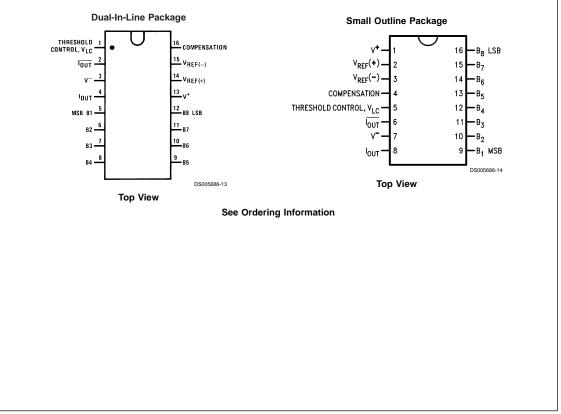
The following specifications apply for $V_S = \pm 15V$, $I_{REF} = 2$ mA and $T_{MIN} \le T_A \le T_{MAX}$ unless otherwise specified. Output characteristics refer to both I_{OUT} and $\overline{I_{OUT}}$.

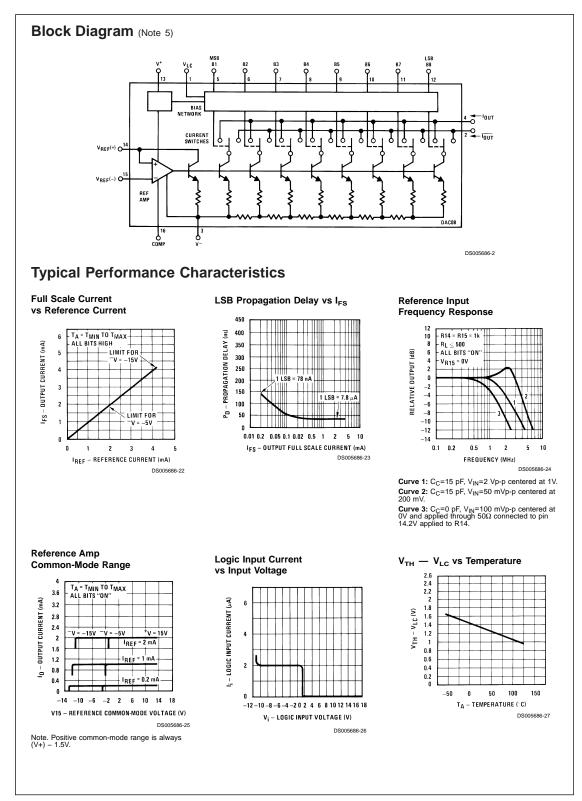
			DAC0802LC			DAC0800L/			
Symbol	Parameter	Conditions					DAC0800LC		
			Min	Тур	Max	Min	Тур	Max	
	Resolution		8	8	8	8	8	8	Bits
	Monotonicity		8	8	8	8	8	8	Bits
	Nonlinearity				±0.1			±0.19	%FS
ts	Settling Time	To ±1/2 LSB, All Bits Switched		100	135				ns
		"ON" or "OFF", T _A =25°C							
		DAC0800L					100	135	ns
		DAC0800LC					100	150	ns
tPLH,	Propagation Delay	T _A =25°C							
tPHL	Each Bit			35	60		35	60	ns
	All Bits Switched			35	60		35	60	ns
TCI _{FS}	Full Scale Tempco			±10	±50		±10	±50	ppm/°
V _{oc}	Output Voltage Compliance	Full Scale Current Change	-10		18	-10		18	V
		<1/2 LSB, R _{OUT} >20 MΩ Typ							
I _{FS4}	Full Scale Current	V _{REF} =10.000V, R14=5.000 kΩ	1.984	1.992	2.000	1.94	1.99	2.04	mA
		R15=5.000 kΩ, T _A =25°C							
I _{FSS}	Full Scale Symmetry	I _{FS4} -I _{FS2}		±0.5	±4.0		±1	±8.0	μA
I _{ZS}	Zero Scale Current			0.1	1.0		0.2	2.0	μA
I _{FSR}	Output Current Range	V ⁻ =-5V	0	2.0	2.1	0	2.0	2.1	mA
		V ⁻ =-8V to -18V	0	2.0	4.2	0	2.0	4.2	mA
	Logic Input Levels								
VIL	Logic "0"	V _{LC} =0V			0.8			0.8	V
VIH	Logic "1"		2.0			2.0			V
	Logic Input Current	V _{LC} =0V							
IIL	Logic "0"	-10V≤V _{IN} ≤+0.8V		-2.0	-10		-2.0	-10	μA
I _{IH}	Logic "1"	2V≤V _{IN} ≤+18V		0.002	10		0.002	10	μA
VIS	Logic Input Swing	V ⁻ =-15V	-10		18	-10		18	V
V _{THR}	Logic Threshold Range	V _S =±15V	-10		13.5	-10		13.5	V
I ₁₅	Reference Bias Current			-1.0	-3.0		-1.0	-3.0	μA
dl/dt	Reference Input Slew Rate	(Figure 11)	4.0	8.0		4.0	8.0		mA/µ
PSSI _{FS+}	Power Supply Sensitivity	4.5V≤V ⁺ ≤18V		0.0001	0.01		0.0001	0.01	%/%
PSSI _{FS-}		-4.5V≤V ⁻ ≤18V		0.0001	0.01		0.0001	0.01	%/%
		I _{REE} =1mA							

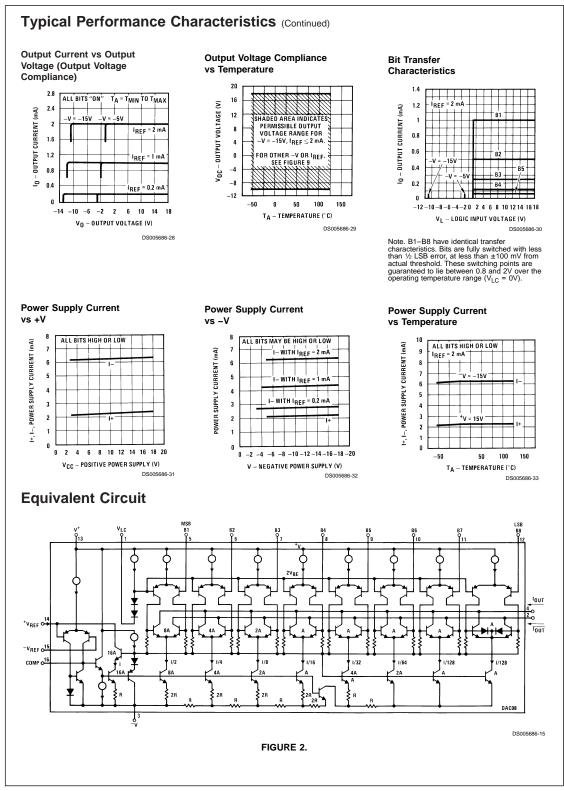
Electrical Characteristics (Continued)

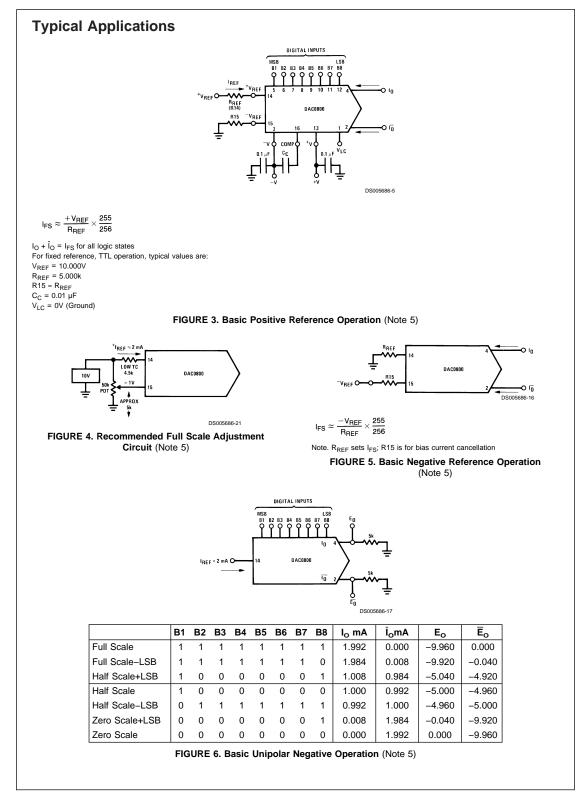
The following specifications apply for $\frac{V_S}{I_{OUT}}$ = ±15V, I_{REF} = 2 mA and $T_{MIN} \le T_A \le T_{MAX}$ unless otherwise specified. Output characteristics refer to both I_{OUT} and $\overline{I_{OUT}}$.

	_		DAC0802LC			DAC0800L/			
Symbol	Parameter	Conditions				DAC0800LC			Units
			Min	Тур	Max	Min	Тур	Max	
	Power Supply Current	V _S =±5V, I _{REF} =1 mA							
l+				2.3	3.8		2.3	3.8	mA
I-				-4.3	-5.8		-4.3	-5.8	mA
		V _S =5V, -15V, I _{REF} =2 mA							
l+				2.4	3.8		2.4	3.8	mA
I-				-6.4	-7.8		-6.4	-7.8	mA
		V _S =±15V, I _{REF} =2 mA							
l+				2.5	3.8		2.5	3.8	mA
I-				-6.5	-7.8		-6.5	-7.8	mA
PD	Power Dissipation	±5V, I _{REF} =1 mA		33	48		33	48	mW
		5V,-15V, I _{REF} =2 mA		108	136		108	136	mW
		±15V, I _{REF} =2 mA		135	174		135	174	mW

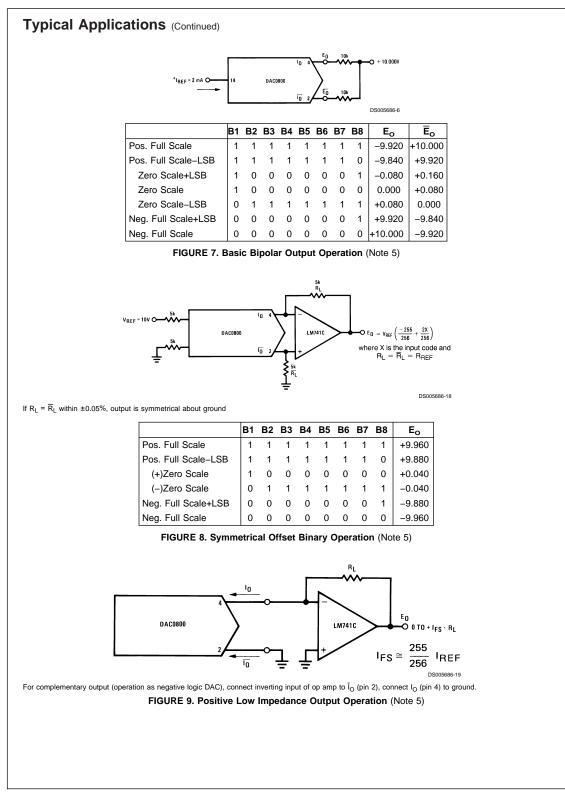

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.

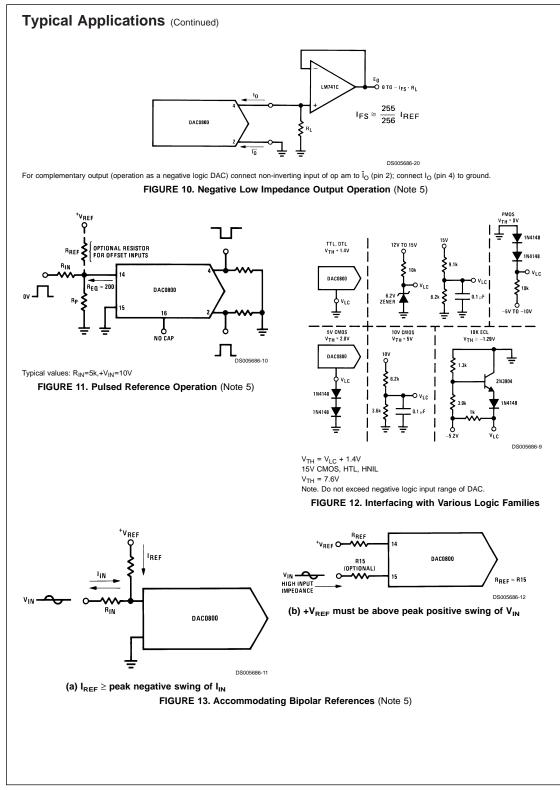

Note 3: The maximum junction temperature of the DAC0800 and DAC0802 is 125°C. For operating at elevated temperatures, devices in the Dual-In-Line J package must be derated based on a thermal resistance of 100°C/W, junction-to-ambient, 175°C/W for the molded Dual-In-Line N package and 100°C/W for the Small Outline M package.

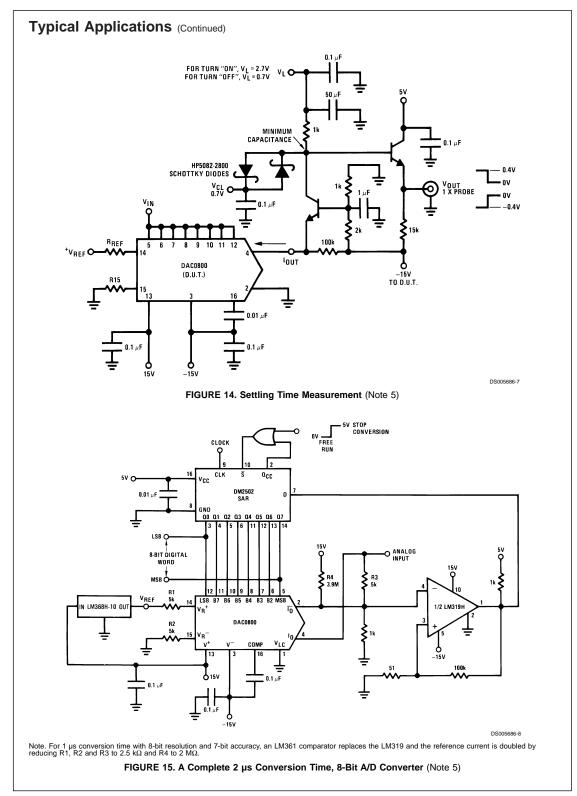

Note 4: Human body model, 100 pF discharged through a 1.5 $k\Omega$ resistor.

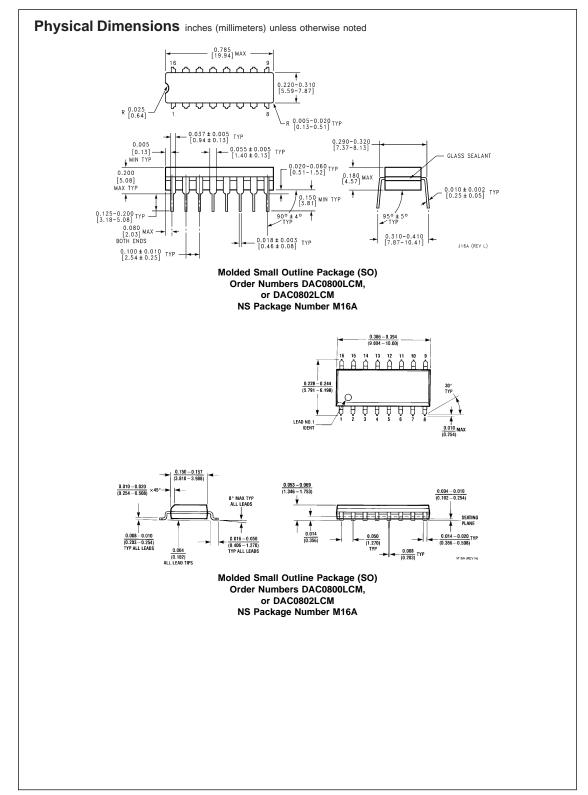

Note 5: Pin-out numbers for the DAC080X represent the Dual-In-Line package. The Small Outline package pin-out differs from the Dual-In-Line package.

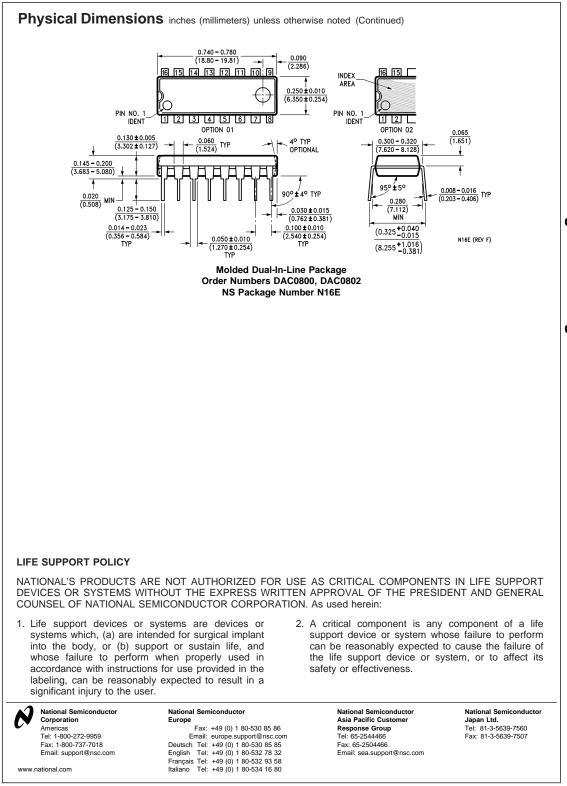
Connection Diagrams






•


6



8

