
Building on recent precedent recognizing the
patentability of software and software-related inven-

tions, the Federal Circuit, in WMS Gaming, Inc. v.
International Game Technology,1 addressed the scope of such
inventions drafted in means-plus-function format. The
Federal Circuit held that a disclosed algorithm was prop-
erly part of the means for performing the identified func-
tion.2

In theory, restricting a software-related means-plus-
function claim to a disclosed algorithm is both straight-
forward and well-founded. Decisions in subsequent
cases reflect the accurate understanding that this is what
was taught in WMS Gaming.3 Moreover, within the
software profession, an algorithm is well-understood to
express in human language the essential steps that a
computer is intended to take to achieve a particular re-
sult.

In practice, however, it is very difficult to identify the
algorithm in the disclosures supporting a software-re-
lated claim. Neither WMS Gaming nor any of its prog-
eny provide clear guidance as to how to determine the
disclosed algorithm.4 Further confusing matters is that
WMS Gaming applied several different, if not outright
inconsistent, methods of discerning the disclosed algo-
rithm.

The potential consequences of not having clear stan-
dards for describing an algorithm are both drastic and
pervasive. Patent attorneys and companies are denied
the tools necessary to properly evaluate the scope and
validity of their own and others’ software-related
patents.Worse yet, misconstruing the algorithm results
in wrongly decided infringement rulings. A case in
point is none other than WMS Gaming, in which the
failure to properly discern the disclosed algorithm re-
sulted in the erroneous ruling that the accused elec-
tronically controlled slot machine infringed the patent.

These circumstances present a compelling case for
rejecting traditional methods for disclosing the algo-
rithm in software-related patents. These traditional

methods are unduly narrow, confusing, ill-suited to de-
scribing what the software does, and even out-dated.
The better solution is for patent applicants, examiners,
and courts to apply the Unified Modeling Language
(UML), which was adopted by the software industry in
1997 as a standard method to describe software algo-
rithms.

Means-Plus-Function Claim Limitations
The discussion of algorithms and WMS Gaming is

best understood after developing some common
ground regarding claims drafted using means-plus-
function language.A means-plus-function limitation al-
lows a patent applicant to express an element in a patent
claim as a “means for” performing a specified function
without having to recite in the claim the structure nec-
essary to perform that function.5 However, to protect
against overbreadth and ambiguity, the patent laws pro-
vide that such a claim does not cover every structure
capable of performing the recited function; rather, it is
limited to the particular structure disclosed in the spec-
ification.6

Construing means-plus-function claim limitations
involves determining, as a matter of law, the claimed
function and the structure corresponding to that func-
tion.7 “Function,” practically speaking, is the activity
described in the language immediately following the
“means for”phrase.The claim language itself defines the
functional aspect of a means-plus-function claim limi-
tation.8

“Structure,” practically speaking, is what is referred
to by the “means for” language in the claim. After the
function is identified, the structure is identified by
looking to the patent specification (the written de-
scription, the drawings, and other claims in the patent)
to identify the structure corresponding to the claimed
function.9 Structure encompasses only that structure
that is necessary to perform the recited function.10

A means-plus-function limitation is literally in-
fringed by an accused device when the accused device
performs the identical function specified in the claim
and, in addition, the accused device employs a structure
identical or equivalent to the structure described in the
patent specification.11 The test for determining whether
the structure in an accused device is equivalent to the

The Question Left Unanswered In WMS
Gaming:What Is the Algorithm?
David C. Bohrer and Michael I. Frankel

David C. Bohrer, a patent litigator in Dechert LLP’s Silicon Valley
Office, has a nationwide practice representing high-technology
clients. Mr. Bohrer can be reached at david.bohrer@dechert.com.
Michael I. Frankel practices in the areas of intellectual property
and antitrust in Dechert LLP’s Philadelphia office. Mr. Frankel can be
reached at michael.frankel@dechert.com.

8 Intellectual Property & Technology Law Journal Volume 16 • Number 4 • April 2004

IPT April 04_inside 5/3/04 10:30 AM Page 8

Volume 16 • Number 4 • April 2004 Intellectual Property & Technology Law Journal 9

structure in the means-plus-function limitation is
whether the differences between the two structures are
insubstantial.12 The determination of what constitutes
structural equivalents of the identified structure is a
question of fact for the jury.13 In comparison, an ac-
cused device can infringe under the doctrine of equiv-
alents without infringing literally under 35 U.S.C. §
112, ¶ 6 because the doctrine requires only substantial-
ly the same function, not identicality of a function as in
§ 112, ¶ 6.14

Why Claim a Software-Related
Invention in Means-Plus-Function
Format?

Historically, computer programs were viewed as tex-
tual representations of mathematical algorithms and
thus potentially appropriate subjects for copyright pro-
tection, but not for patents.15 In 1994, the en banc
Federal Circuit decided In re Alapatt,16 clearing the way
for much greater software patent protection.The deci-
sion established that claiming an inventive algorithm as
part of some physical apparatus such as a general pur-
pose computer or standard hardware or memory ele-
ment satisfied the requirements for patentability. The
Alapatt court reasoned that “a general purpose comput-
er in effect becomes a special purpose computer once it
is programmed to perform particular functions pur-
suant to instructions from program software.”17 The in-
sight that patent applicants derived from this analysis
was that, if they wanted to patent software, they needed
only to define their claims in terms of a computer pro-
gram implemented in a machine.18

Because the Alapatt decision dealt with means-plus-
function elements and spoke of a computer pro-
grammed to perform an inventive algorithm as a
“means,”many patent prosecutors took the case as a sig-
nal that this claiming format provided an easy method
of claiming inventions featuring programmed devices.19

A large number of software patents have in fact been
claimed in means-plus-function language, and a corre-
spondingly large percentage of these patents have ma-
tured to where the disputed terms are now being
litigated.20

This is not to say that Alapatt’s legacy is confined to
the use of the means-plus-function format to protect
novel software. Other claiming techniques, such as
claiming the steps performed by the programmed in-
structions as a process, have been found to satisfy the
patentability requirements.21 The nature and scope of
such other claiming techniques, as well as the potential-
ly broader patent coverage available under these tech-
niques, is the subject of other articles. Suffice it to say
that in the post-Alapatt era it is well-settled that soft-

ware related inventions are patentable but that the exact
scope to be given software claims is equally unsettled.
The scope issue, at least insofar as means-plus-function
claims were concerned, remained to be decided in
WMS Gaming.

Scope of Software-Related Patents
Drafted in Means-Plus-Function Format

WMS Gaming arose out of a cease and desist letter
sent by International Game Technology (IGT) indicat-
ing that WMS’WMS 400 slot machine infringed IGT’s
patent (the Telnaes patent).WMS responded by filing a
declaratory judgment action. Following a bench trial,
the district court held that the Telnaes patent was valid
and infringed. On appeal, the Federal Circuit affirmed
the findings of validity and infringement22 but also
found significant error in the district court’s construc-
tion of the software-related means-plus-function ele-
ments of the disputed claims.

The dispute centered on a slot machine design that
electronically manipulates the odds of winning. To
maintain and increase the appeal to players, the market
demanded slot machines with higher payoffs.To gener-
ate higher payoffs without decreasing the slot machine’s
profitability, the probability of winning any one play
had to be decreased. However, to decrease the payout
odds for a mechanical slot machine, either more reels or
larger reels with more stop positions must be added.
This approach reduced the machine’s appeal since play-
ers perceive physically larger machines or machines
with more reels as being “less good” in terms of win-
ning and payout chances. So the challenge faced by the
inventors of the Telnaes patent was to increase payouts
and decrease the probability of winning without in-
creasing the physical size of the machine.

The Telnaes Patent
The Telnaes patent discloses an electronically con-

trolled slot machine that decreases the probability of
winning while maintaining the external appearance of
a standard slot machine.To decrease the probability of
winning, the control circuitry extends the reel “virtual-
ly” to include a range of numbers greater than the
number of actual stop positions and then maps these
numbers non-uniformly to the actual stop positions.
When in play, the control circuitry randomly deter-
mines the stop position of each reel and then stops the
reels at the randomly determined positions. The reels’
only function is to display the randomly chosen result.

For example, if a reel with 22 stop positions contains
a cherry symbol in two positions, the probability of
stopping at a cherry is two out of 22 or 0.0909. If the
reels were “virtually” extended to include 44 virtual

IPT April 04_inside 5/3/04 10:30 AM Page 9

stop positions with the cherry symbol mapped to num-
bers seven, 22, and 37, then the probability of stopping
at the cherry is three out of 44 or 0.0681.23 Thus, the
probability of stopping on the cherry symbol is reduced
without altering the physical appearance of the slot ma-
chine.

The WMS 400
Unlike the apparatus disclosed in the Telnaes patent,

which determines the stop positions first and then de-
termines the payoff based on those stop positions, the
accused product, the WMS 400, calculates the payoff
first and then chooses stop positions that represent that
payoff.The WMS 400 randomly selects a number from
a range of 1 to 632. Once selected, that number is
mapped to a first multiplier stored in memory. Next, a
second number is randomly selected from a second
range of 1 to 632, and once selected, it is mapped to a
second multiplier stored in memory.The two multipli-
ers are then multiplied together to determine the pay-
out value. If there is only one way to display the payout,
then the reels are stopped on those symbols. If, howev-
er, there is more than one arrangement of symbols that
can indicate the payout, then a third random number is
necessary.This third random number determines which
one of the possible reel arrangements will be displayed.

Claim Construction
The construction of Claim 1 of the Telnaes con-

trolled the determination of infringement. Claim 1
reads as follows:

A game apparatus, comprising:

[1] a reel mounted for rotation about an axis
through a predetermined number of radial posi-
tions;

[2] means to start rotation of said reel about said
axis;

[3] indicia fixed to said reel to indicate the an-
gular rotational position of said reel;

[4] means for assigning a plurality of numbers
representing said angular positions of said reel, said
plurality of numbers exceeding said predeter-
mined number of radial positions such that some
rotational positions are represented by a plurality
of numbers;

[5] means for randomly selecting one of said
plurality of assigned numbers; and

[6] means for stopping said reel at the angular
position represented by said selected number.

The parties agreed that the accused device contained the
first three claim elements.The parties’dispute centered on
the last three means-plus-function elements of claim 1.

Of particular significance was the construction given
by both the district court and the Federal Circuit to the
“means-for-assigning” element.The district court, rely-
ing on the parties’ stipulation that the Telnaes patent
disclosed “a microprocessor, or computer, to control the
operation of the slot machine,” held that the “means-
for-assigning” element was satisfied by “an algorithm
executed by a computer.” Under the district court’s
construction, the “means-for-assigning” limitation cov-
ered “any table, formula, or algorithm” that performed
the claimed function.

On appeal, the Federal Circuit held that the district
court had erred by failing to limit the “means-for-as-
signing” element to the exact algorithm disclosed in the
Telnaes patent specification.The Federal Circuit stated
that, “[i]n a means-plus-function claim in which the
disclosed structure is a computer or microprocessor,
programmed to carry out an algorithm, the disclosed
structure is not the general purpose computer, but
rather the special purpose computer programmed to
perform the disclosed algorithm.”24

WMS Gaming effectively limits the software-related
means-plus-function limitation to the disclosed algo-
rithm. In theory, this seems straightforward; indeed, sub-
sequent cases reflect an accurate understanding that this
was the holding of WMS Gaming.25

The theoretical emphasis on algorithms is further
supported by the fundamental nature and purposes of
computer hardware and software. Although computer
hardware is a real machine, when turned on, it does not
perform any of its operations but rather waits for some
signal from the outside to set the machine in motion.26

The computer hardware needs the software or program
to tell it what behavior is desired.27 The creative and in-
ventive action taken by the computer comes in with the
software.

Accordingly, software’s raison-dêtre is causing the
computer to behave in a certain fashion.28 The question
then is how to describe the creative and novel behavior
that the software causes the computer to perform.

There are different levels of abstraction that are used
to describe what the software is telling the computer to
do.The lowest level of abstraction is machine language,
also known as object code, which only the computer
understands (as opposed to people) and which is what
the computer is actually being told to do. A somewhat
higher level of abstraction is source code (e.g., Ada,

10 Intellectual Property & Technology Law Journal Volume 16 • Number 4 • April 2004

IPT April 04_inside 5/3/04 10:30 AM Page 10

Volume 16 • Number 4 • April 2004 Intellectual Property & Technology Law Journal 11

Pascal, C++, JAVA, COBOL, Fortran, etc.), which is
not directly understood by the computer until it is
compiled into machine code but which also is difficult
for all but a small number of persons skilled in the art
to understand. At a still higher level of abstraction are
algorithms, which are easier for professional persons to
understand and convey the action that the computer is
intended to perform (as compared to what the com-
puter is actually told to do).

Algorithms are analogous to engineering blueprints;
they provide a medium through which to communi-
cate a particular software design and to confirm agree-
ment among the interested parties as to the intended
action to be taken by the computer. In short, it is en-
tirely appropriate for the Federal Circuit to choose to
focus on software algorithms when comparing accused
and claimed software.

In practice, however, the determination of the pre-
cise algorithm disclosed in the patent can be problem-
atic and complex.These practical issues are manifest in
none other than the decision that focused software
comparisons on algorithms—WMS Gaming.

How Should the Disclosed Algorithm
Be Described?

Having announced the rule that the disclosed algo-
rithm is a limitation on the claim, the WMS Gaming
decision proceeds to apply the rule without first dis-
cussing what an algorithm is, how it is used, and how it
is usually (or should be) expressed.There is no discus-
sion in WMS Gaming about how one skilled in the art
of software engineering would be expected to review a
patent to determine what the algorithm consists of, nor
is there any guidance provided to the inventor as to
how to disclose the software algorithm in the patent.
The absence of this discussion, which characterizes not
just WMS Gaming but all subsequent Federal Circuit
and lower court decisions applying WMS Gaming, is of
tremendous significance.

As discussed above and again in later sections, soft-
ware algorithms are a well-recognized means of ex-
pressing the logic of computer programs. However,
there are many different techniques that can be used to
disclose an algorithm, and each such technique presents
an equal if not greater array of choices as to the level of
detail provided. Absent guidance from the courts, the
algorithm disclosed in a patent becomes a subjective re-
flection of the interests of the inventor as opposed to a
legitimate standard that has application across case lines.
WMS Gaming essentially teaches that the “disclosed al-
gorithm” is the standard by which to compare different
software programs, but the decision provides no guid-
ance as to how such a comparison should proceed.

The Federal Circuit’s determination in WMS
Gaming of the disclosed algorithm in the Telnaes patent
serves only to confuse an already uncertain situation.
The Federal Circuit’s decision did not comply with its
own rule that the disclosed algorithm must be found in
the the written description part of the specification as
distinguished from the language of the claims.29

The Federal Circuit said that the structure corre-
sponding to the “means-for-assigning” element was “a
microprocessor programmed to perform the algorithm
illustrated in Figure 6” of the Telnaes patent.30 The
court goes on to describe the algorithm allegedly dis-
closed in Figure 6 as (1) the number of single numbers
exceeds the number of stop positions; (2) each single
number is assigned to only one stop position; (3) each
stop position is assigned at least one single number; and
(4) at least one stop position is assigned more than one
single number.

However, items 1 and 4 of the Federal Circuit’s al-
gorithm are virtually the same as the function expressed
in the claim language.The insight is that the algorithm
is properly derived from functional language notwith-
standing directions to the contrary. At least one lower
court decision, Faroudja Laboratories, Inc. v. Dwin
Electronics, Inc.,31 has interpreted WMS Gaming in this
fashion. In Faroudja, the court said that WMS Gaming
presents a special case in which the structure is altered
by virtue of its programmable nature, such that a court
“must . . . limit the structural element to its functional
purpose by importing functional language into the
structural specification.”32

Moreover, there are aspects of the structure of Figure
6 of the Telnaes patent that were not read into the
claim. Beginning at column 4, line 34 of the patent,
Figure 6 is described as a diagrammatic form of repre-
sentation of one standard type of reel where circle 46 il-
lustrates 22 positions of numbers on the reel. The
disclosure then states that “the table entry in the ran-
dom number generator for the machine is illustrated by
the circle 50.” Such “table entry” of numbers assigned
in the random number generator was not read into the
claim. The Federal Circuit did not say that the algo-
rithm included the step of providing a single number
for each location on the reel (as shown by circle 46) or
that additional single numbers were provided for each
location on a table entry in the random number gener-
ator.The Federal Circuit merely indicated that such ad-
ditional numbers were assigned but not how. The
attempted but ultimately incomplete application of
Figure 6 presents one more question regarding the ap-
propriate way to find the disclosed algorithm.There ex-
ists a compelling basis for revisiting the nature and

IPT April 04_inside 5/3/04 10:30 AM Page 11

purposes of software algorithms from the perspective of
persons skilled in the art of writing software.

Misunderstanding of the Software Art
Courts will have to learn a better way to evaluate

software patent specifications in order to describe and
compare algorithms effectively.The disclosure of algo-
rithms in a patent specification also must better serve
the needs of those who mean to evaluate the specifica-
tion for these purposes. Patentees, potential infringers,
patent examiners, attorneys, judges, and even jurors
need a method for communicating the algorithms that
define the scope and detail of software patent claims
that is simultaneously accurate, complete, and digestible.
Unfortunately, the most common methods employed
by patent applicants to document software algorithms
satisfy little or none of these criteria. Fortunately, the
software industry itself has already adopted a satisfacto-
ry method for specifying software algorithms in the
form of its standardized UML.

The Inherent Structure of
Software Algorithms

Persons of ordinary skill in the art of writing soft-
ware recognize that all software algorithms have an in-
herent structure that, within reason, can be
unambiguously specified.33 Although software algo-
rithms can be extremely complex, the nature of soft-
ware has not changed since it was first invented more
than 50 years ago.All software algorithms consist of (1)
data that (2) under certain state conditions (3) are ma-
nipulated by functional processing.34 Understanding
each of these perspectives of an algorithm, first sepa-
rately and then operating together, is necessary to com-
plete one’s understanding of its scope.

The data perspective discloses only the data elements
manipulated by the algorithm and the navigational
paths between sets of data elements necessary for the al-
gorithm to traverse that data during particular func-
tional processing.This perspective discloses only data at
rest and is akin to viewing the data in a spreadsheet de-
void of any underlying formulas that would modify
those data values.

The state conditions of an algorithm disclose its most
critical decision-making logic.This logic acts as an ad-
ministrator for the algorithm and reacts to events by
triggering one or more functional calculations or by
modifying the internal state of the system to recognize
either that additional functional processing is now per-
mitted to occur if appropriately triggered or that addi-
tional functional processing is no longer permitted to
occur while the system remains in its new state. For ex-
ample, in an audit state, a spreadsheet may permit final

column totals to be tallied, but manipulations of the
original data transactions may not be permitted. Later,
when a fiscal year has expired, a spreadsheet may not
permit any changes at all to its content.

The functional perspective consists of the processing
steps that access data and execute formulas, a more vis-
ible component of algorithms and too often the sole
focus of software patent specifications.35 The individual
formulas attached to distinct cells in a spreadsheet are
the functions that it executes when appropriately re-
quested by the user. Some software systems impose ad-
ditional requirements on the timing of the execution of
functional processing, but the same three essential ele-
ments are always present.

Software patent litigation usually concerns the logi-
cal structure of an algorithm (i.e., what it does), as op-
posed to its physical structure (i.e., how it does it). For
example, a logical structure may specify that 10 func-
tional steps must be performed to manipulate three ta-
bles of data elements. By contrast, the physical structure
results from modifying the logical structure to accom-
modate engineering constraints on memory space or
processor speed.The physical structure may specify that
the 10 processing steps are divided into two program-
ming subroutines, each with five processing steps and
executing in parallel, and that two of the three data ta-
bles have been combined into one larger table to im-
prove data access time for the user. Although details of
physical structure can help those skilled in the art un-
derstand how the patentee implemented the algorithm,
such techniques are familiar to the average software en-
gineer and therefore usually unnecessary to enable im-
plementation. Further, instead of facilitating an
understanding of what the algorithm is ultimately ac-
complishing, such physical details distract from this
goal.

Another inherent characteristic of software algo-
rithms is that all software functions are event driven.36

That means that all functional processing within a soft-
ware algorithm executes upon the occurrence of a de-
fined event—the input into a computer of a user
request for information, an internally recognized data
condition (e.g., exceeding a safety threshold value), or
the expiration of a specified time period. Some events
directly trigger functional processing to occur, while
other events merely enable particular functional pro-
cessing to occur when other events are later detected.
Both types of events cause algorithms to transition
through a series of distinct qualitative states.These state
conditions are a critical component in the logical struc-
ture of complex software algorithms, and they provide
two important benefits. First, complex algorithms are
more easily digestible when its functions are evaluated

12 Intellectual Property & Technology Law Journal Volume 16 • Number 4 • April 2004

IPT April 04_inside 5/3/04 10:30 AM Page 12

Volume 16 • Number 4 • April 2004 Intellectual Property & Technology Law Journal 13

in the context of the state in which they execute.Second,
events that trigger software execution are a convenient
mechanism by which to associate a claimed function
with its supporting structural components in the algo-
rithm.

The Goals of Algorithmic Disclosure in
Software Patent Specifications

To facilitate evaluating the scope of a software patent
under WMS Gaming, a specification disclosing the algo-
rithm must permit a thorough human understanding of
the relevant logical structure of the software function
being claimed.Therefore, to determine whether two al-
gorithms are structurally identical or structurally equiva-
lent, the algorithms must be disclosed in sufficient detail
and from multiple perspectives.

Detail means precision in disclosure and facilitates an
accurate comparison of algorithms where the issue re-
sides. For example, if the distinction at issue between two
algorithms concerns the scope of data they can process,
the algorithmic disclosure must list and define the data
elements processed by the algorithm and the relevant
navigable paths for traversal among those data elements.
Without such detail appropriately specifying the struc-
ture of the data upon which the algorithm executes, the
resolution of an issue that turns on data scope becomes
extremely difficult.

An algorithm must also be disclosed from all relevant
data, state, and functional perspectives for a proper evalu-
ation of its structure to proceed.A software patent claim
dispute that concerns the scope of functional processing
performed by the algorithm cannot be easily resolved if
the patent specification discloses only a set of data tables
purportedly manipulated by the claimed function.
Similarly, a purely functional specification devoid of any
detail concerning the data structure of the algorithm
produces a necessarily skewed understanding of its scope.
Like any complex engineered invention, software algo-
rithms have multiple interconnected layers that must be
understood first separately and then in unison to fully
comprehend the scope and effect of their structure.

Finally, the human factor here is paramount.
Algorithms are creatures of human thought, intended to
represent what humans desire a computer processor to
do.Algorithms exist distinct from the computer instruc-
tions—programming code—which represent what a
computer is actually instructed to do using a machine-
interpretable language.The difference is not merely one
of form or level of detail.The critical difference is that an
algorithm is a vehicle for human beings to communicate
to one another the structure of a software function.
Therefore, complexity must be managed for human con-
sumption, algorithmic detail must be appropriately or-

ganized by its nature, symbology must be standardized,
and a common grammar must be in operation. Just as
structural complexity is universally communicated
among architects and contractors via blueprints, software
complexity requires its own appropriate communication
vehicle if courts are to understand what software engi-
neers intended their software programs to do.

Inadequate Methods of Disclosing
Algorithms

The methods commonly used by patent applicants to
describe algorithms in patent specifications can provide
some context for the algorithm being evaluated.
However, these disclosures do not provide the minimum
necessary accurate, complete, and digestible disclosure of
that algorithm needed by those who must consider the
functional claim in dispute. Patent applicants use these
methods separately and sometimes in concert. However,
using them in concert does not resolve the inadequacies
that each type possesses individually. The following ex-
amination of the most common methods demonstrates
these inadequacies.

Source Code
Some software patent specifications disclose the pro-

gramming source code used to implement the function
being claimed as a method of disclosing the algorithmic
structure.This method frustrates human understanding of
the algorithm for a number of reasons. First, even the
most “readable” source code is organized for the purpose
of instructing a machine and does not lend itself to im-
mediate comprehension even by those skilled in the art.
Software engineers would sooner review a graphic
model or textual summary of the algorithm embedded
in source code than read the source code itself, unless the
code needs to be debugged or modified. Moreover, be-
cause software engineers are usually conversant in only a
few of the multitude of existing programming languages,
disclosure of source code in any particular programming
language is not necessarily understood by a majority of
those skilled in the software art.

Second, source code by definition is the merger of
both the logical and physical structure of the algorithm,
which, as discussed above, impedes comprehension of the
logical scope at issue in the algorithm.Third, source code
merges the data, state condition, and functional perspec-
tives of algorithms into one continuous form.
Understanding complex algorithms begins with separat-
ing these views, a goal that source code by its nature pre-
vents. A related practical consideration is that source
code typically qualifies for protection against unautho-
rized copying or other use under the trade secret doc-
trine. However, trade secret status is contingent on

IPT April 04_inside 5/3/04 10:30 AM Page 13

maintaining the confidentiality of the source code,
which is obviously lost if the source code is disclosed in
an issued patent.

Flow Charts
Flow charts as a method of algorithmic disclosure are

an improvement over source code but still often frus-
trate human understanding. As with source code, flow
charts in practice sometimes mix physical and logical
structure together, but they are capable of representing
only logical structure.The graphic symbology used on
flow charts is generally straightforward to follow even
by laypersons, and the symbols themselves have been
mostly standardized throughout the software industry
through decades of practice. Flow charts, however, pres-
ent two problems. First, they disclose only the func-
tional processing perspective of an algorithm, leaving
the data and state condition perspectives to be inferred
after frequent readings. Second, flow charts do not scale
up easily, so once an algorithm starts to require multi-
ple pages of flow charts to be comprehensive, one gets
easily lost following the logic as they jump from page
to page. Therefore, while flow charts can be accurate
disclosures of functional processing, they are incomplete
and lack digestibility.

Benghiat v. Itron37 provides a compelling example of
how the reliance on flow charts (both by the patent ap-
plicant and the court) may result in an erroneous inter-
pretation of the software algorithm.The patent at issue
in Benghiat disclosed more than 10 pages of flow charts
encompassing not just the algorithm necessary to per-
form the function called out in the claim but also addi-
tional processing steps, such as the manner in which
data was stored in memory following the execution of
the algorithm.The flow charts also were complex and
detailed, which, particularly as the reader moved from
page to page, made it extremely difficult to follow the
different algorithmic functions. The court in Benghiat
nonetheless determined as part of the claim construc-
tion that the flow charts, in their entirety, disclosed the al-
gorithm.The court effectively read all of the flow charts
into the claim and thereby gave the claims an unduly
narrow interpretation.38 The court grounded this ex-
treme position on little more than passing reference to
a computer hornbook stating that algorithms “may in-
volve the use of a flow chart.”39

Hardware Schematics
Another type of diagram frequently included in soft-

ware patent specifications is the hardware schematic,
which graphically describes the hardware components
that comprise the physical machine that is the subject
of the patent.These diagrams include representations of

the memory chips on which software and data will be
stored, the microprocessors that will execute the soft-
ware instructions, and the physical communication
links over which data will travel into or out of the
system. Although a hardware schematic can help un-
derstand the patentee’s preferred embodiment of the
machine and may also directly bear on patent claims
beyond the means-plus-function claims at issue in
regard to the algorithm, such a diagram does not dis-
close the algorithm’s logical structure. A hardware
schematic generally discloses only where an algo-
rithm executes, not what it does upon execution.

Concept Diagrams
Concept diagrams are sometimes included to ease

the reader into the patent subject matter or to con-
vey a novel idea graphically. For example, Figure 1 is
a reproduction of the concept diagram included in
the Telnaes patent at issue in WMS Gaming.40 It
shows a wheel-like graphic used to convey the con-
cept of virtual reel stop positions within the slot ma-
chine. This figure is not altogether unhelpful in
understanding the algorithm; in fact, after some brief
study, it does generally convey the novelty claimed in
the patent. However, this kind of diagram is not used
by those skilled in the art of software engineering,
and it contains no formality in symbology or gram-
mar that can ensure that it is interpreted as intend-
ed by the inventor. An example of this frailty is that
this diagram is also inaccurate on its face.As a wheel
with radially extending spokes from the center
(physical reel stop positions) to the outer circle (vir-

14 Intellectual Property & Technology Law Journal Volume 16 • Number 4 • April 2004

IPT April 04_inside 5/3/04 10:30 AM Page 14

Volume 16 • Number 4 • April 2004 Intellectual Property & Technology Law Journal 15

tual reel stop positions), the graphic implies that that
the assignment of virtual reel stop positions to phys-
ical ones is limited by the particular increase of
space available as the spoke moves farther from the
center. The actual algorithm claimed in the specifi-
cation was more flexible than that because it per-
mitted anywhere from one to an unlimited number
of virtual stop positions to be assigned to any one
physical position.41

The Unified Modeling Language
as the Industry Standard

The software industry has already resolved for it-
self how to represent algorithms accurately, com-
pletely, and in a digestible form. After decades of
experimentation with various representational
methods, UML was adopted in 1997 by the software
industry as its standard method for communicating
software algorithms among those skilled in the art.42

UML has also served as a basis for non-software pro-
fessionals to communicate with software engineers
regarding the completeness and accuracy of algo-
rithms under evaluation.

UML consists of a series of diagrams variously tar-
geted toward each inherent perspective of algorithmic
structure: data, state conditions, and functional process-
ing. UML is based on the theory of object-oriented
software development, which manages the inherent
complexity of software systems by purposefully organ-
izing and distributing algorithmic structures around the
objects naturally found in the subject matter domain
being automated by the system.43 This type of algorith-
mic organization facilitates understanding because the
most stable, broadest sweeping rules about the patent
subject matter are examined first. State logic and func-
tional processing are then more easily digested because
they have been partitioned into smaller pieces and can
be evaluated in context of the broader goals of the al-
gorithm. Furthermore, because these data, state and
functional views are partitioned, each one can be pre-
cisely specified without duplicating the information on
another view. Complex systems may require more than
one subject matter domain to be modeled, and each
domain often has multiple objects, each with as much
associated algorithmic structure necessary to fully de-
scribe its behavior.

UML diagrams are subject to both internal and ex-
ternal norms that prevent gross distortions of the al-
gorithm from being asserted. Internal norms are
derived from the definition of UML itself and include
rules for proper use of graphic symbols, completeness
of information, and consistency among diagrams that
purport to represent interconnected perspectives of

the same algorithm.44 External norms include rules
for determining whether data, state conditions, or
functional processing are missing or are being incor-
rectly distributed among the objects on the diagram.
Internal norms are analogous to English grammar
rules, and external norms are analogous to guidelines
for writing an effective journal article.

Figures 2 through 7 illustrate how UML would be
used to communicate the slot machine algorithm dis-
closed by the Telnaes patent specification in WMS
Gaming. Figure 2 shows the data perspective, revealing
that the objects Lever, Reel, Bet, Player, Slot Machine,
etc. are the basic objects about which the algorithm is
concerned. Figure 2 also indicates, by their allocation,
which object each data element best describes. Certain
objects on this diagram have state conditions that trig-
ger or enable functions within the algorithm. These
state conditions and triggering events are distributed to
the Reel, Bet, and Lever objects as shown on Figures
3, 4, and 5, respectively. Each state in these diagrams is
further allocated a small portion of the functional pro-
cessing steps of the gaming algorithm, as shown in
Figure 6.Then, as shown in Figure 7, UML can also tie
the algorithmic pieces together so that a start-to-finish
execution path can be followed.

Of particular importance for means-plus-function
claims in software patents is that UML can be used to
disclose the algorithm of a claimed function regardless

IPT April 04_inside 5/3/04 10:30 AM Page 15

16 Intellectual Property & Technology Law Journal Volume 16 • Number 4 • April 2004

IPT April 04_inside 5/3/04 10:30 AM Page 16

Volume 16 • Number 4 • April 2004 Intellectual Property & Technology Law Journal 17

of whether the patentee originally used UML to de-
velop the software and regardless of whether the actu-
al source code is based on any object-oriented software
development principles. Similarly, UML can be used in
litigation forums to persuade fact-finders of an algo-
rithm’s limitations, even if the patent author did not
use it.The scope of an algorithm, that is, what it does,
can be represented in UML at any stage because an al-
gorithm’s inherent logical structure never changes. Of
course, each patent owner must gauge how accurately

and completely they wish to disclose their algorithm to
maximize the protection they seek.

Application of UML Dictates a
Different Result in WMS Gaming

The application of UML demonstrates significant
differences between the disclosed algorithm in the
Telnaes patent and the algorithm used in WMS 400,
the accused product in WMS Gaming. These differ-
ences cannot be characterized as “insubstantial.”There

IPT April 04_inside 5/3/04 10:30 AM Page 17

was clear error in the trial court’s finding that the
claimed and accused algorithms were structural equiv-
alents.The Federal Circuit in WMS Gaming therefore
should not have affirmed the finding that WMS 400
infringed the Telnaes patent. This, in turn, suggests a
compelling need for the courts to reevaluate how they
determine and compare the algorithms in accused and
claimed software or software-related products.

In Figure 8, UML is used to describe the data per-
spective of the accused device in WMS Gaming. The
objects shown enclosed in the shaded box represent the
portion of the accused device’s algorithm at issue. In
Figures 2 and 3, the Telnaes patent’s disclosed algo-
rithm is similarly highlighted. On first examination,
the algorithms for the claimed and accused devices
contain some similar basic elements, such as a Reel, its
Physical Stop Positions, and that each combination of
three symbols (e.g.,Cherry, Bar, Double-Bar) are associ-
ated with a Symbol Combo Payout for the player.
Because these are the essential elements of all slot ma-
chine gambling, any related algorithm, no matter how
diverse, would necessarily contain these objects. In ad-
dition, both algorithms are targeted at manipulating the
Payout Odds without changing the physical Reels on
the machine.

What is different about these algorithms is both the
mechanism by which the Payout Odds are manipulated
and whether the Reel positions drive the Payout Odds
or vice versa. As shown in Figure 2, in the Telnaes
patent, one or more Virtual Stop Positions are assigned
to each Physical Stop Position before the slot machine

is operated. Then, as shown on Figure 3, when the
Player pulls the Lever, the Reels as a group are set in
motion, but each reel independently chooses its own ran-
dom Virtual Stop Position and then brakes at the corre-
sponding Physical Stop Position. Once every Reel has
stopped, the algorithm looks up the resulting symbol
combination to determine the Payout Odds.

By contrast, a Virtual Stop Position is not employed
by the algorithm in the accused device. Instead, as
shown in Figure 8, the accused device starts by using
two randomly selected Multipliers to determine the
Payout Odds and the corresponding symbol combina-
tion to show the Player.45 Once the desired symbol
combination is determined, one of the potentially many
combinations of Physical Stop Positions that would dis-
play that symbol combination is chosen. Finally, the
Reels are commanded as a group to brake at the chosen
set of Physical Stop Positions.The UML representations
of these algorithms demonstrate that:

1. Where the Telnaes patent employed a virtual expan-
sion of the stop positions on a slot machine reel, the
accused device contained no such algorithmic struc-
ture.

2. Where the Telnaes patent randomly selected Virtual
Stop Positions, the accused device randomly selected
the Payout Odds (via dual multipliers) and then ran-
domly selected (if more than one possible) the Physical
Stop Positions on the Reel.

18 Intellectual Property & Technology Law Journal Volume 16 • Number 4 • April 2004

IPT April 04_inside 5/3/04 10:30 AM Page 18

Volume 16 • Number 4 • April 2004 Intellectual Property & Technology Law Journal 19

3. Where the Telnaes patent let the Reels spin independ-
ently and then derived the Payout Odds from the re-
sult, the accused device determined the Payout Odds
first and then stopped the Reels accordingly.

In WMS Gaming, the district court found that the al-
gorithm implemented in the accused device was the
equivalent of the algorithm disclosed in the Telnaes
patent.46 The district court adopted expert testimony
that the accused device’s assignment of a “combination
of numbers” (i.e., the two random multiplier selections
and the one random choice of Physical Stop Position
combinations) to a Physical Stop Position was not sub-
stantially different than the Telnaes patent’s assignment
of a single number (each Virtual Stop Position) to a
Physical Stop Position.47 Therefore, the court deter-
mined, the algorithmic structures in the two devices
were equivalent.48

The district court’s finding, however, was based on
the erroneous assumption that the accused device was
performing assignments of “combinations of numbers.”
As the UML data model for the accused device shows,
there was no pre-assignment of the individual
Multipliers to any other data element. Furthermore, the
final set of Physical Stop Positions, if more than one set
was possible to display the desired symbol combination,
was randomly selected, not pre-assigned. If a pre-assign-
ment had existed, a random selection would not be
necessary.

The district court also erred when it accepted the
expert’s characterization of the issue as concerning how
many numbers were being assigned.The more integral
question should have been what numbers, if any, were
being assigned, when were those assignments occurring,
and how did those assignments affect the course of each
algorithm’s execution. Most arguably, the accused de-
vice had a substantially different algorithmic structure
and therefore did not infringe the Telnaes patent under
the doctrine of equivalents.The district court may have
done the best it could under the circumstances.
Unfortunately, without a method for evaluating the al-
gorithms at issue that was accurate, complete, and di-
gestible, the district court’s ability to discern the critical
differences was severely handicapped. The end result
was clear error in the district court’s finding of struc-
tural equivalents. The Federal Circuit’s decision to af-
firm the district court’s finding of infringement cannot
be reconciled with this conclusion.

Conclusion
Existing software patents continue to mature and

new software patents continue to multiply. Absent
modification of rules announced in WMS Gaming re-

garding application of the disclosed algorithm, the mis-
takes of algorithmic interpretation that have occurred
in WMS Gaming as well as in other decisions interpret-
ing computer implemented means-plus-function claim
limitations are likely to re-occur. Courts should require
the application of UML to determine the disclosed al-
gorithm.

Notes

1. WMS Gaming, Inc. v. International Game Technology, 184
F.3d 1339 (Fed. Cir. 1999).

2. Id. at 1348-1349.
3. See Itron v. Benghiat, 169 F. Supp. 2d 1073 (D. Minn. 2001);

GTE Wireless, Inc. v. Qualcomm, Inc., 188 F. Supp. 2d 1201
(S.D. Cal. 2002); ABB Automation, Inc. v. Schlumberger
Resource, 2003 WL 1700013 (D. Del. 2003).

4. See William M.Atkinson and John A.Wasleff,“The Devil Is
In The Details: Patent Protection For Software Driven
Inventions After WMS Gaming,” 17 No. 9 CILW 6, 8 (Sept.
2000) (Atkinson, Devil is in the Details) (“What the WMS
Gaming decision doesn’t do, however, is provide guidance
concerning the degree of difference between two software
programs necessary to avoid infringement.This decision . . .
is left for future cases.”).

5. 35 U.S.C. § 112, ¶ 6.
6. Id. See Valmont Indus, Inc. v. Reinke Mfg. Co., 938 F.2d

1039, 1042 (Fed. Cir. 1993).
7. Chiuminatta Concrete Concepts, Inc. v. Cardinal Indus.

Inc., 145 F.3d 1303, 1308 (Fed. Cir. 1998).
8. See id.
9. See id.
10. See id, quoting 35 U.S.C. § 112, ¶ 6.
11. Valmont Indus. Inc., 983 F.2d at 1042.
12. Chiuminatta, 145 F.3d at 1309.
13. See Odetics, Inc. v. Storage Tech Corp., 185 F.3d 1259, 1268

(Fed. Cir. 1999); Chiuminatta, 145 F.3d at 1309.
14. See Al-Site v.VSI Int’l, Inc., 174 F.3d 1308, 1320-1321 (Fed.

Cir. 1999).
15. See Gottschalk v. Benson, 409 U.S. 63 (1972) (The US

Supreme Court held that mathematical algorithms (not just
formulae) were non-patentable subject matter, effectively
blocking the patenting of pure software and forcing patent
applicants to shift their focus to patenting mechanical de-
vices and processes that happened to include computer pro-
grams.).See also, Julie E.Cohen and Mark A.Lemley,“Patent
Scope and Innovation in the Software Industry,” 89 Cal. L.
Rev. 1, 8 (Jan. 2001) (Cohen, Patent Scope); Bruce
Abrahamson, “Promoting Innovation in the Software
Industry: A First Principles Approach to Intellectual
Property Reform,” 8 B.U.J. Sci.&Tech. L. 75, 81 (Winter
2002).

16. In re Alapatt, 33 F.3d 1526, 1545 (Fed. Cir. 1994) (en banc).
17. Id. at 1545.
18. Cohen, Patent Scope, at 10.

IPT April 04_inside 5/3/04 10:31 AM Page 19

19. Atkinson, The Devil is in the Details, at 7.
20. Bradley D. Baugh, “WMS Gaming, Inc. v. International

Game Technology” 15 Berkeley Tech. L.J. 109, 114 (2000),
quoting Mark D. Janis,“Who’s Afraid of Functional Claims?
Reforming the Patent Laws § 112, ¶ 6 Jurisprudence,” 15
Computer & High Tech. L.J. 231, 235 (1999) (“Claims draft-
ed in means-plus-function [language] are especially preva-
lent in patents on software-related inventions, where the
format has been thought useful for complying with the sub-
ject matter eligibility requirement.”).

21. See, e.g., State Street Bank & Trust v. Signature Financial
Group, 149 F.3d 1368, 1374 (Fed. Cir. 1988), cert. denied, 525
U.S. 1093 (1999) (jettisoned the physicality requirement in
favor of rule that business methods are patentable so long as
they produce a “useful, concrete and tangible result”).

22. More specifically, as to infringement, the Federal Circuit re-
versed the holding of literal infringement because the func-
tion of the accused device was not the same as the function
of the claimed device in all respects, see 184 F.3d at 1352,
but nonetheless affirmed the finding of infringement under
the doctrine of equivalents based on the further finding that
the differences between accused and claimed devices were
insubstantial, see id. at 1353-1354.

23. Baugh, supra n.20, at 117, which contains an excellent pres-
entation on the facts and technology at issue in WMS
Gaming.

24. WMS Gaming, 184 F.3d at 1349.
25. See supra, n.3.
26. Allen Newell, “Response: The Models are Broken,” 47 U.

Pitt. L. Rev. 1023, 1028 (Summer 1986).
27. Id.
28. Bruce Abrahamson,“Promoting Innovation in the Software

Industry: A First Principles Approach to Intellectual

Property Reform,” 8 B.U.J. Sci.&Tech. L. 75, 87 (Winter
2002).

29. See GTE Wireless, Inc. v. Qualcomm, Inc., 188 F. Supp. 2d
1201, 1210 (S.D. Cal. 2002) (“The Federal Circuit [in WMS
Gaming] concluded the corresponding structure was the al-
gorithm disclosed in the written description portion of the
specification, not the claims.”).

30. WMS Gaming, 184 F.3d at 1349.
31. Faroudja Laboratories, Inc. v. Dwin Electronics, Inc., 76 F.

Supp. 2d 999, 1010 (N.D. Cal. 1999).
32. Id.
33. See generally Sally Shlaer & Stephen J. Mellor, “Object

Lifecycles: Modeling the World in States” (1991).
34. See generally id.
35. See, e.g.,US Patent No. 5,193,056, figs. 5-11 & cols. 7-13 (is-

sued Mar. 9, 1993) (at issue in State Street, 149 F.3d 1368);
US Patent No. 4,448,419, cols. 3-4. (issued May 15, 1984)
(Telnaes patent) (at issue in WMS Gaming, 184 F.3d 1339).

36. See generally Shlaer & Mellor, supra n.33.
37. Benghiat v. Itron, 169 F. Supp. 2d 1073. See supra, n.3.
38. Id.
39. Id.
40. See Telnaes patent, fig. 6.
41. See WMS Gaming, 184 F.3d at 1349.
42. See Cris Kobryn,“UML 2001:A Standardization Odyssey,”

Communications of the ACM at 31 (Oct. 1999).
43. See id. at 37.
44. See id. at 33-34.
45. The order of functional execution in the accused device is

described by the court in WMS Gaming. See WMS Gaming,
184 F.3d at 1344.

46. See id. at 1354.
47. See id. at 1351.
48. See id. at 1354.

20 Intellectual Property & Technology Law Journal Volume 16 • Number 4 • April 2004

IPT April 04_inside 5/3/04 10:31 AM Page 20

